1
|
Amsalem E, Cressman A, Modarres Hasani SA. Do bumble bees make optimal nutritional choices? JOURNAL OF INSECT PHYSIOLOGY 2025; 163:104822. [PMID: 40404045 DOI: 10.1016/j.jinsphys.2025.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Nutrition is crucial for bees, impacting their health, survival, and pollination performance in ecosystems and agriculture. Bees get essential nutrients such as carbohydrates, proteins, lipids, vitamins, and minerals, primarily from nectar and pollen. Many bee species are experiencing declines linked partially to nutritional stress, often exacerbated by climate change, pesticides, and pathogens, highlighting the need to understand and support optimal bee nutrition to mitigate these stressors. Bumble bees, such as Bombus impatient and Bombus terrestris, essential pollinators in agriculture, are known to regulate their nutrient intake. However, whether their dietary choices improve fitness is poorly understood. We tested diets with varying protein, lipid, and carbohydrate compositions, analyzing impacts on consumption, body mass, egg laying, and ovarian activation. Results showed that bees overconsumed pollen on protein-enriched diets and under consumed it on lipid-enriched and glucose-based diets. Nectar overconsumption was observed on low-concentration sucrose diets. These patterns, however, did not correspond to improved fitness, as egg laying and body mass were negatively correlated with consumption in diets enriched with protein and sugar. Ovarian activation was largely unaffected across most diets, indicating it may not be a reliable indicator of diet quality. These findings raise doubts about whether bees make optimal nutritional choices and suggest that diet consumption alone may not be a reliable indicator of their optimal diet. Alternatively, bees made the best possible decisions under circumstances that presented a lose-lose tradeoff across all the diets provided. These data can inform future studies on nutritional stress, enhance interpretations of bee diet preferences in bioassays, and guide bumble bee management practices.
Collapse
Affiliation(s)
- Etya Amsalem
- Pennsylvania State University, Department of Entomology, University Park, PA, USA.
| | - Anna Cressman
- Pennsylvania State University, Department of Entomology, University Park, PA, USA
| | | |
Collapse
|
2
|
Martin Ewert A, McMenamin A, Adjaye D, Rainey V, Ricigliano V. Microalgae functional feed additives strengthen immunity and increase longevity in honey bees. J Invertebr Pathol 2025; 211:108352. [PMID: 40324679 DOI: 10.1016/j.jip.2025.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Honey bees (Apis mellifera) are faced with a myriad of immunological threats, often worsened by poor nutrition. The use of functional feed additives offers a promising strategy to address colony nutritional deficiencies while helping strengthen bee immune responses and mitigate stress. Microalgae have gained recognition as beneficial diet ingredients for livestock due to their abundance of essential nutrients and immunomodulatory properties. Here, we tested the effects of microalgae-containing feed on honey bee immunity, lifespan, and nutrient assimilation. Caged bees were fed a commercial artificial diet or the same diet with added pollen, spirulina (Arthrospira platensis) or Chlorella (Chlorella vulgaris). Immune-related gene expression, longevity, and body weight were measured following six days of ad libitum feeding. All diets resulted in similar body weights, indicating adequate nutrient assimilation. While bees fed the pollen-containing diet lived the longest (median lifespan = 51 days), bees fed spirulina- and Chlorella-containing diets lived significantly longer (median lifespan = 48 and 46 days, respectively) than those fed the base diet (median lifespan = 40 days). Spirulina-fed bees exhibited significantly higher expression of several antimicrobial peptide (AMP) genes relative to the base diet and had superior bacterial clearing ability after injection with live E. coli cells. We propose that this increased immunocompetence is at least partially due to elevated AMP levels. Our findings suggest that the tested microalgae can improve honey bee longevity and immune functions with negligible health costs relative to a commonly used artificial diet. Determining the effects of microalgae feed additives in field-relevant contexts and in the face of diverse pathogen challenges should be the focus of future research efforts.
Collapse
Affiliation(s)
- Allyson Martin Ewert
- Louisiana State University, AgCenter, Department of Entomology, Baton Rouge, LA 70803, USA; USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Alexander McMenamin
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Daniela Adjaye
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Victor Rainey
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Unit, Baton Rouge, LA 70820, USA
| | - Vincent Ricigliano
- USDA-ARS Invasive Species and Pollinator Health Unit, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Jeelani S, Kassymbek Z. Simultaneous Determination of 10 Fat-Soluble Vitamins by Ultra-Performance Liquid Chromatography in Multivitamins With Minerals Capsules. J Sep Sci 2025; 48:e70167. [PMID: 40401723 PMCID: PMC12096806 DOI: 10.1002/jssc.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/23/2025]
Abstract
A novel and accurate ultra-high performance liquid chromatography (UHPLC) method combined with UV detector was developed for the simultaneous determination of 10 fat-soluble vitamins (retinyl acetate, retinyl palmitate, beta carotene, alpha tocopherol, alpha tocopheryl acetate, alpha tocopheryl acid succinate, ergocalciferol, cholecalciferol, phytonadione, and menaquinone-7) in multivitamin with mineral capsules. The chromatographic separation was achieved on a Waters XBridge Sheild C18 (100 × 2.1 mm, 1.7 µm) column. The mobile phase comprised of 0.1% formic acid (v/v) in water and 0.1% formic acid in acetonitrile (v/v) delivered in a gradient mode. An enhanced and simple sample preparation procedure involving enzyme digestion of the gel coating of the capsules and ultra-sonication was developed compared to the complex and time-consuming saponification methods. The method was validated to fulfill International Conference on Harmonization (ICH) requirements and included specificity, linearity, accuracy, precision, and robustness. The linearity of the method was excellent (R2 > 0.999), the RSD for the precision was < 5% and the recovery of the vitamins was in the range of 99.2%-101.9%, demonstrating that the method is suitable for analysis of fate-soluble vitamins in multivitamin capsules. The developed method could be incorporated into the USP-NF Multivitamin with minerals capsules monograph.
Collapse
Affiliation(s)
- Salika Jeelani
- Analytical Development LaboratoryUnited States Pharmacopeial Convention (USP)RockvilleMarylandUSA
| | - Zarema Kassymbek
- Analytical Development LaboratoryUnited States Pharmacopeial Convention (USP)RockvilleMarylandUSA
| |
Collapse
|
4
|
Ansaloni LS, Kristl J, Domingues CEC, Gregorc A. An Overview of the Nutritional Requirements of Honey Bees ( Apis mellifera Linnaeus, 1758). INSECTS 2025; 16:97. [PMID: 39859678 PMCID: PMC11766133 DOI: 10.3390/insects16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Honey bees are known for their wide global distribution, their ease of handling, and their economic and ecological value. However, they are often exposed to a wide variety of stress factors. Therefore, it is essential for beekeepers to maintain healthy bee colonies. In this context, a balanced diet is recommended to support the growth of strong and healthy honey bee colonies. The purpose of this review is therefore to provide an overview of the nutritional requirements of Apis mellifera and their importance for the maintenance of healthy bee colonies. An adequate diet includes the consumption of sufficient amounts of proteins, carbohydrates, lipids, amino acids, vitamins, minerals, water, and essential sterols, and a diet based on multi-floral pollen is desirable. However, when honey bee colonies are located near agroecosystems with lower resource diversity, both brood rearing and colony longevity may decrease, making them more susceptible to parasites and diseases. On the other hand, efforts have been made to improve the health of honey bee colonies with the help of nutritional supplements consisting of a variety of components. Nevertheless, studies have shown that even with these supplements, a lack of nutrients can still be an issue for honey bee colonies. Furthermore, future research should focus on identifying nutritional supplements that can better replicate natural diet diversity and assessing long-term effects on honey bee colony resilience, especially in low-flowering areas. This review discusses the interaction between nutrient requirements and the effects of supplements on colony health.
Collapse
Affiliation(s)
- Leticia S. Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (J.K.); (C.E.C.D.); (A.G.)
| | | | | | | |
Collapse
|
5
|
Jovanovic NM, Glavinic U, Stevanovic J, Ristanic M, Vejnovic B, Dolasevic S, Stanimirovic Z. A Field Trial to Demonstrate the Potential of a Vitamin B Diet Supplement in Reducing Oxidative Stress and Improving Hygienic and Grooming Behaviors in Honey Bees. INSECTS 2025; 16:36. [PMID: 39859617 PMCID: PMC11765757 DOI: 10.3390/insects16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
The honey bee is an important insect pollinator that provides critical pollination services for natural and agricultural systems worldwide. However, inadequate food weakens honey bee colonies, making them vulnerable to various biotic and abiotic factors. In this study, we examined the impact of supplementary feeding on bees' genes for antioxidative enzymes and vitellogenin, oxidative stress parameters, and the hygienic and grooming behavior. The colonies were divided into two experimental groups (with ten hives each): a treatment group that received the plant-based supplement and a control group. The experiment was conducted in two seasons, spring and summer. After the treatment, in both seasons, all the monitored parameters in the treatment group differed from those in the control group. The expression levels of genes for antioxidative enzymes were significantly lower, but the vitellogenin gene transcript level was significantly higher. Values of oxidative stress parameters were significantly lower. The levels of hygienic and grooming behavior were significantly higher. Therefore, our field study indicates that the tested supplement exerted beneficial effects on bees, reflected in reduced oxidative stress and enhanced hygienic and grooming behavior.
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia;
| | | | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
6
|
Nakarada Đ, Glavinić U, Ristanić M, Popović M, Stevanović J, Stanimirović Z, Mojović M. Bridging the buzz: In vivo EPR imaging unlocking the secrets of honey bee health. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:880-884. [PMID: 38924358 DOI: 10.1002/jez.2845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Honey bees play a pivotal role in shaping ecosystems and sustaining human health as both pollinators and producers of health-promoting products. However, honey bee colony mortality is on the rise globally, driven by various factors, including parasites, pesticides, habitat loss, poor nutrition, and climate change. This has far-reaching consequences for the environment, economy, and human welfare. While efforts to address these issues are underway, the current progress in electron paramagnetic resonance (EPR) instrumentation affords using the immense potential of this magnetic resonance technique to study small samples such as honey bees. This paper presents the pioneering 2D in vivo EPR imaging experiment on a honey bee, revealing the ongoing redox-status of bees' intestines. This way, by monitoring the spatio-temporal changes of the redox-active spin-probes' EPR signal, it is possible to gain access to valuable information on the course of ongoing bees' pathologies and the prospect of following-up on the efficiency of applied therapies. Employing a selection of diverse spin-probes could further reveal pH levels and oxygen concentrations in bee tissues, allowing a noninvasive assessment of bee physiology. This approach offers promising strategies for safeguarding pollinators and understanding their biology, fostering their well-being and ecological harmony.
Collapse
Affiliation(s)
- Đura Nakarada
- Center for Physical Chemistry of Biological Systems, BioScope Labs, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Popović
- Center for Physical Chemistry of Biological Systems, BioScope Labs, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloš Mojović
- Center for Physical Chemistry of Biological Systems, BioScope Labs, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024; 71:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
8
|
Stevanović J, Glavinić U, Ristanić M, Erjavec V, Denk B, Dolašević S, Stanimirović Z. Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being. Pharmaceuticals (Basel) 2024; 17:1050. [PMID: 39204155 PMCID: PMC11357515 DOI: 10.3390/ph17081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
Collapse
Affiliation(s)
- Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey;
| | | | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| |
Collapse
|
9
|
Kim H, Frunze O, Lee JH, Kwon HW. Enhancing Honey Bee Health: Evaluating Pollen Substitute Diets in Field and Cage Experiments. INSECTS 2024; 15:361. [PMID: 38786917 PMCID: PMC11122370 DOI: 10.3390/insects15050361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Honey bees (Apis mellifera L.) play vital roles as agricultural pollinators and honey producers. However, global colony losses are increasing due to multiple stressors, including malnutrition. Our study evaluated the effects of four pollen substitute diets (Diet 1, Diet 2, Diet 3, and Control) through field and cage experiments, analyzing 11 parameters and 21 amino acids. Notably, Diet 1 demonstrated significantly superior performance in the field experiment, including the number of honey bees, brood area, consumption, preference, colony weight, and honey production. In the cage experiment, Diet 1 also showed superior performance in dried head and thorax weight and vitellogenin (vg) gene expression levels. Canonical discriminant and principle component analyses highlighted Diet 1's distinctiveness, with histidine, diet digestibility, consumption, vg gene expression levels, and isoleucine identified as key factors. Arginine showed significant correlations with a wide range of parameters, including the number of honey bees, brood area, and consumption, with Diet 1 exhibiting higher levels. Diet 1, containing apple juice, soytide, and Chlorella as additive components, outperformed the other diets, suggesting an enhanced formulation for pollen substitute diets. These findings hold promise for the development of more effective diets, potentially contributing to honey bee health.
Collapse
Affiliation(s)
- Hyunjee Kim
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea; (H.K.); (O.F.)
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea; (H.K.); (O.F.)
| | - Jeong-Hyeon Lee
- Department of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea; (H.K.); (O.F.)
- Department of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| |
Collapse
|
10
|
Narciso L, Topini M, Ferraiuolo S, Ianiro G, Marianelli C. Effects of natural treatments on the varroa mite infestation levels and overall health of honey bee (Apis mellifera) colonies. PLoS One 2024; 19:e0302846. [PMID: 38713668 DOI: 10.1371/journal.pone.0302846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
The survival of the honey bee (Apis mellifera), which has a crucial role in pollination and ecosystem maintenance, is threatened by many pathogens, including parasites, bacteria, fungi and viruses. The ectoparasite Varroa destructor is considered the major cause of the worldwide decline in honey bee colony health. Although several synthetic acaricides are available to control Varroa infestations, resistant mites and side effects on bees have been documented. The development of natural alternatives for mite control is therefore encouraged. The study aims at exploring the effects of cinnamon and oregano essential oils (EOs) and of a mixed fruit cocktail juice on mite infestation levels and bee colony health. A multi-method study including hive inspection, mite count, molecular detection of fungal, bacterial and viral pathogens, analysis of defensin-1, hymenoptaecin and vitellogenin immune gene expression, colony density and honey production data, was conducted in a 20-hive experimental apiary. The colonies were divided into five groups: four treatment groups and one control group. The treatment groups were fed on a sugar syrup supplemented with cinnamon EO, oregano EO, a 1:1 mixture of both EOs, or a juice cocktail. An unsupplemented syrup was, instead, used to feed the control group. While V. destructor affected all the colonies throughout the study, no differences in mite infestation levels, population density and honey yield were observed between treatment and control groups. An overexpression of vitellogenin was instead found in all EO-treated groups, even though a significant difference was only found in the group treated with the 1:1 EO mixture. Viral (DWV, CBPV and BQCV), fungal (Nosema ceranae) and bacterial (Melissococcus plutonius) pathogens from both symptomatic and asymptomatic colonies were detected.
Collapse
Affiliation(s)
- Laura Narciso
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Topini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Sapienza University of Rome, Rome, Italy
| | - Sonia Ferraiuolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Sapienza University of Rome, Rome, Italy
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Marianelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Glavinic U, Jovanovic NM, Dominikovic N, Lakic N, Ćosić M, Stevanovic J, Stanimirovic Z. Potential of Wormwood and Oak Bark-Based Supplement in Health Improvement of Nosema ceranae-Infected Honey Bees. Animals (Basel) 2024; 14:1195. [PMID: 38672343 PMCID: PMC11047348 DOI: 10.3390/ani14081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Nosema ceranae, a microsporidian parasite, as one of the stressors that contribute to honey bee decline, has a significant negative impact on the longevity, productivity, and reproductive capacity of honey bee colonies. There are several different strategies for Nosema infection control, including natural-based and antibiotic-based products. In this study, we tested wormwood and oak bark-based supplement "Medenko forte" on survival, Nosema infection, oxidative stress, and expression of immune-related genes in artificially N. ceranae-infected bees. The results revealed a positive influence on the survival of Nosema-infected bees, irrespectively of the moment of supplement application (day 1, day 3, or day 6 after bee emergence), as well as reduction of Nosema loads and, consequently, Nosema-induced oxidative stress. Supplementation had no negative effects on bee immunity, but better anti-Nosema than immune-stimulating effects were affirmed based on expression levels of abaecin, defensin, hymenoptaecin, apidaecin, and vitellogenin genes. In conclusion, the tested supplement "Medenko forte" has great potential in the health protection of Nosema-infected bees. However, further investigations need to be performed to elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Nina Dominikovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Nada Lakic
- Department of Statistics, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milivoje Ćosić
- Institute of Forestry, Kneza Viseslava 3, 11000 Belgrade, Serbia;
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| |
Collapse
|
12
|
Açık MN, Karagülle B, Yakut S, Öztürk Y, Kutlu MA, Kalın R, Çetinkaya B. Production, characterization and therapeutic efficacy of egg yolk antibodies specific to Nosema ceranae. PLoS One 2024; 19:e0297864. [PMID: 38335158 PMCID: PMC10857605 DOI: 10.1371/journal.pone.0297864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Nosema disease, caused by Nosema ceranae, one of the single-celled fungal microsporidian parasites, is one of the most important and common diseases of adult honey bees. Since fumagillin, which has been used for decades in the control of Nosema disease in honey bees (Apis mellifera), poses a toxic threat and its efficacy against N. ceranae is uncertain, there is an urgent need to develop alternative prophylactic and curative strategies for the treatment of this disease. The main aim of this study was to investigate the therapeutic potential of specific egg yolk immunoglobulins (IgY) on Nosema disease. For this purpose, the presence of N. ceranae was determined by microscopic and PCR methods in honey bees collected from Nosema suspicious colonies by conducting a field survey. Layered Ataks chickens, divided into four groups each containing 20 animals, were vaccinated with live and inactivated vaccines prepared from field isolates of N. ceranae. Eggs were collected weekly for 10 weeks following the last vaccination. IgY extraction was performed using the PEG precipitation method from egg yolks collected from each group, and the purity of the antibodies was determined by SDS-PAGE and Western Blot. The presence of N. ceranae-specific IgYs was investigated by Western Blot and indirect ELISA methods. It was determined that specific IgYs showed high therapeutic efficacy on Nosema disease in naturally infected bee colonies. In addition, honey bees collected from infected colonies were brought to the laboratory and placed in cages with 30 bees each, and the effectiveness of IgYs was investigated under controlled conditions. It was detected that specific IgY reduced the Nosema spore load and the number of infected bees significantly in both the field and experimental study groups treated for seven days. It was concluded that chicken IgYs, an innovative and eco-friendly method, had a significant potential for use as an alternative to antifungal drugs.
Collapse
Affiliation(s)
- Mehmet Nuri Açık
- Department of Microbiology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Turkiye
| | - Burcu Karagülle
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkiye
| | - Seda Yakut
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Turkiye
| | - Yasin Öztürk
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Necmettin Erbakan, Konya, Turkiye
| | - Mehmet Ali Kutlu
- Department of Plant and Animal Production, Vocational School of Food, Agriculture and Livestock, University of Bingol, Bingol, Turkiye
| | - Recep Kalın
- Department of Microbiology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkiye
| | - Burhan Çetinkaya
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkiye
| |
Collapse
|
13
|
Kim H, Frunze O, Maigoro AY, Lee ML, Lee JH, Kwon HW. Comparative Study of the Effect of Pollen Substitute Diets on Honey Bees during Early Spring. INSECTS 2024; 15:101. [PMID: 38392520 PMCID: PMC10889207 DOI: 10.3390/insects15020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
The nutritional quality of a colony significantly affects its health and strength, particularly because it is required for population growth in the early spring. We investigated the impact of various artificial pollen substitute diets on colony performance in the Republic of Korea during early spring, a critical period for colony health and growth. The colonies were provided with different diets, including the commercial product Megabee (positive control), our developed diet Test A, and four upgraded versions (Diet 1, Diet 2, Diet 3, and Diet 4) of Test A. The negative control group received no supplementary feed. Over 63 days, we observed 24 experimental colonies and assessed various parameters at the colony and individual levels. The results revealed that Diet 2 had the highest consumption and had the most positive impact on population growth, the capped brood area, colony weight, honey bees' weight, and vitellogenin levels. These findings suggested that Diet 2 is most attractive to honey bees and thus holds great promise for improving colony maintenance and development during the crucial early spring period.
Collapse
Affiliation(s)
- Hyunjee Kim
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong-Lyeol Lee
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
- Department of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
14
|
Garrido PM, Porrini MP, Alberoni D, Baffoni L, Scott D, Mifsud D, Eguaras MJ, Di Gioia D. Beneficial Bacteria and Plant Extracts Promote Honey Bee Health and Reduce Nosema ceranae Infection. Probiotics Antimicrob Proteins 2024; 16:259-274. [PMID: 36637793 PMCID: PMC10850026 DOI: 10.1007/s12602-022-10025-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/14/2023]
Abstract
The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.
Collapse
Affiliation(s)
- Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Martín Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy.
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| | - Dara Scott
- ADVANCE SCIENCE Ltd, Knocknacarra Rd, Galway, H91 XV84, Ireland
| | - David Mifsud
- Institute of Earth Systems, L-Università ta' Malta, University Ring Rd, Msida, MSD2080, Malta
| | - Matín Javier Eguaras
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| |
Collapse
|
15
|
Farhadi Z, Sadeghi AA, Motamedi Sedeh F, Chamani M. The effects of thymol, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on viability, the Nosema sp. spore load and the expression of vg and sod-1 genes in infected honey bees. Anim Biotechnol 2023; 34:4736-4745. [PMID: 36905146 DOI: 10.1080/10495398.2023.2187409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
This study was done to investigate the effects of thymol, fumagillin, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on Nosema sp. spore load, the expression of vitellogenin (vg) and superoxide-dismutase-1 (sod-1) genes and mortality of bees infected with N. ceranae. Five healthy colonies were assigned as the negative control, and 25 Nosema sp. infected colonies were assigned to five treatment groups including: the positive control: no additive to sirup; fumagillin 26.4 mg/L, thymol 0.1 g/L, Api-Bioxal 0.64 g/L and Nose-Go 5.0 g/L sirup. The reduction in the number of Nosema sp. spores in fumagillin, thymol, Api-Bioxal and Nose-Go compared to the positive control was 54, 25, 30 and 58%, respectively. Nosema sp. infection in all infected groups increased (p < .05) Escherichia coli population compared to the negative control. Nose-Go had a negative effect on lactobacillus population compared to other substances. Nosema sp. infection decreased vg and sod-1 genes expression in all infected groups compared to the negative control. Fumagillin and Nose-Go increased the expression of vg gene, and Nose-Go and thymol increased the expression of sod-1 gene than the positive control. Nose-Go has the potential to treat nosemosis if the necessary lactobacillus population is provided in the gut.
Collapse
Affiliation(s)
- Zahra Farhadi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farahnaz Motamedi Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Ilic T, Stevanovic J, Stanimirovic Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees ( Apis mellifera) Infected with Nosema ceranae. Animals (Basel) 2023; 13:3543. [PMID: 38003159 PMCID: PMC10668651 DOI: 10.3390/ani13223543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
17
|
Schilcher F, Scheiner R. New insight into molecular mechanisms underlying division of labor in honeybees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101080. [PMID: 37391163 DOI: 10.1016/j.cois.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Honeybees are highly organized eusocial insects displaying a distinct division of labor. Juvenile hormone (JH) has long been hypothesized to be the major driver of behavioral transitions. However, more and more experiments in recent years have suggested that the role of this hormone is not as fundamental as hypothesized. Vitellogenin, a common egg yolk precursor protein, seems to be the major regulator of division of labor in honeybees, in connection with nutrition and the neurohormone and transmitter octopamine. Here, we review the role of vitellogenin in controlling honeybee division of labor and its modulation by JH, nutrition, and the catecholamine octopamine.
Collapse
Affiliation(s)
- Felix Schilcher
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
19
|
Sun SX, Liu YC, Limbu SM, Li DL, Chen LQ, Zhang ML, Yin Z, Du ZY. Vitellogenin 1 is essential for fish reproduction by transporting DHA-containing phosphatidylcholine from liver to ovary. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159289. [PMID: 36708962 DOI: 10.1016/j.bbalip.2023.159289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.
Collapse
Affiliation(s)
- Sheng-Xiang Sun
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi-Chan Liu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Samwel M Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology University of Dar as Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
20
|
Dong J, Huang M, Guo H, Zhang J, Tan X, Wang D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int J Mol Sci 2023; 24:ijms24065354. [PMID: 36982426 PMCID: PMC10049333 DOI: 10.3390/ijms24065354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers’ guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 μg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| | - Haikun Guo
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| |
Collapse
|
21
|
Bahreini R, Nasr M, Docherty C, de Herdt O, Feindel D, Muirhead S. In Vivo Inhibitory Assessment of Potential Antifungal Agents on Nosema ceranae Proliferation in Honey Bees. Pathogens 2022; 11:pathogens11111375. [PMID: 36422626 PMCID: PMC9695399 DOI: 10.3390/pathogens11111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Nosema ceranae Fries, 1996, causes contagious fungal nosemosis disease in managed honey bees, Apis mellifera L. It is associated around the world with winter losses and colony collapse disorder. We used a laboratory in vivo screening assay to test curcumin, fenbendazole, nitrofurazone and ornidazole against N. ceranae in honey bees to identify novel compounds with anti-nosemosis activity compared to the commercially available medication Fumagilin-B®. Over a 20-day period, Nosema-inoculated bees in Plexiglas cages were orally treated with subsequent dilutions of candidate compounds, or Fumagilin-B® at the recommended dose, with three replicates per treatment. Outcomes indicated that fenbendazole suppressed Nosema spore proliferation, resulting in lower spore abundance in live bees (0.36 ± 1.18 million spores per bee) and dead bees (0.03 ± 0.25 million spores per bee), in comparison to Fumagilin-B®-treated live bees (3.21 ± 2.19 million spores per bee) and dead bees (3.5 ± 0.6 million spores per bee). Our findings suggest that Fumagilin-B® at the recommended dose suppressed Nosema. However, it was also likely responsible for killing Nosema-infected bees (24% mortality). Bees treated with fenbendazole experienced a greater survival probability (71%), followed by ornidazole (69%), compared to Nosema-infected non-treated control bees (20%). This research revealed that among screened compounds, fenbendazole, along with ornidazole, has potential effective antifungal activities against N. ceranae in a controlled laboratory environment.
Collapse
Affiliation(s)
- Rassol Bahreini
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Correspondence:
| | - Medhat Nasr
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
- Saskatchewan Beekeepers Development Commission, Prince Albert, SK S6V 6Z2, Canada
| | - Cassandra Docherty
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - Olivia de Herdt
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - David Feindel
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - Samantha Muirhead
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
22
|
El-Seedi HR, El-Wahed AAA, Naggar YA, Saeed A, Xiao J, Ullah H, Musharraf SG, Boskabady MH, Cao W, Guo Z, Daglia M, El Wakil A, Wang K, Khalifa SAM. Insights into the Role of Natural Products in the Control of the Honey Bee Gut Parasite ( Nosema spp.). Animals (Basel) 2022; 12:3062. [PMID: 36359186 PMCID: PMC9656094 DOI: 10.3390/ani12213062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 08/05/2023] Open
Abstract
The honey bee is an important economic insect due to its role in pollinating many agricultural plants. Unfortunately, bees are susceptible to many pathogens, including pests, parasites, bacteria, and viruses, most of which exert a destructive impact on thousands of colonies. The occurrence of resistance to the therapeutic substances used against these organisms is rising, and the residue from these chemicals may accumulate in honey bee products, subsequently affecting the human health. There is current advice to avoid the use of antibiotics, antifungals, antivirals, and other drugs in bees, and therefore, it is necessary to develop alternative strategies for the treatment of bee diseases. In this context, the impact of nosema diseases (nosemosis) on bee health and the negative insults of existing drugs are discussed. Moreover, attempts to combat nosema through the use of alternative compounds, including essential oils, plant extracts, and microbes in vitro and in vivo, are documented.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, 36310 Vigo, Spain
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, 80131 Naples, Italy
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammad H. Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Pharmacy, University of Napoli Federico II, 80131 Naples, Italy
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 215260, Egypt
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Stevanovic J, Cosic M, Stanimirovic Z. Contact varroacidal efficacy of lithium citrate and its influence on viral loads, immune parameters and oxidative stress of honey bees in a field experiment. Front Physiol 2022; 13:1000944. [PMID: 36171978 PMCID: PMC9510912 DOI: 10.3389/fphys.2022.1000944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
With an almost global distribution, Varroa destuctor is the leading cause of weakening and loss of honey bee colonies. New substances are constantly being tested in order to find those that will exhibit high anti-Varroa efficacy at low doses/concentrations, without unwanted effects on bees. Lithium (Li) salts stood out as candidates based on previous research. The aims of this study were to evaluate Li citrate hydrate (Li-cit) for its contact efficacy against Varroa, but also the effect of Li-cit on honey bees by estimating loads of honey bee viruses, expression levels of immune-related genes and genes for antioxidative enzymes and oxidative stress parameters on two sampling occasions, before the treatment and after the treatment. Our experiment was performed on four groups, each consisting of seven colonies. Two groups were treated with the test compound, one receiving 5 mM and the other 10 mM of Li-cit; the third received oxalic acid treatment (OA group) and served as positive control, and the fourth was negative control (C group), treated with 50% w/v pure sucrose-water syrup. Single trickling treatment was applied in all groups. Both tested concentrations of Li-cit, 5 and 10 mM, expressed high varroacidal efficacy, 96.85% and 96.80%, respectively. Load of Chronic Bee Paralysis Virus significantly decreased (p < 0.01) after the treatment in group treated with 5 mM of Li-cit. In OA group, loads of Acute Bee Paralysis Virus and Deformed Wing Virus significantly (p < 0.05) increased, and in C group, loads of all viruses significantly (p < 0.01 or p < 0.001) increased. Transcript levels of genes for abaecin, apidaecin, defensin and vitellogenin were significantly higher (p < 0.05—p < 0.001), while all oxidative stress parameters were significantly lower (p < 0.05—p < 0.001) after the treatment in both groups treated with Li-cit. All presented results along with easy application indicate benefits of topical Li-cit treatment and complete the mosaic of evidence on the advantages of this salt in the control of Varroa.
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
- *Correspondence: Jevrosima Stevanovic,
| | - Milivoje Cosic
- Institute of Forestry, Belgrade, Serbia
- Department of Animal Breeding, Faculty of Agriculture, Bijeljina University, Bijeljina, Bosnia and Herzegovina
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Impact of the Plant-Based Natural Supplement Imмunostart Herb on Honey Bee Colony Performance. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Winter is the season that poses the greatest challenges for honey bee colonies. Therefore, the main approach in beekeeping practice is aimed mainly at providing sufficient quality food supplies for bee colonies in early autumn. We conducted the present study to test the influence of the natural plant extract IMМUNOSTART HERB on population strength, stored pollen area, capped worker brood area, and honey yield. The experimental groups were supplied with IMМUNOSTART HERB 4 times at 7-day intervals, whereas sugar syrup was given to the control groups. The obtained results showed that the applied supplemental diet affected all investigated biological parameters, with the most noticeable effect after the second application. In all measurements, the honey bee colony parameters in the treated groups showed higher values in comparison to the control groups. These results highlight the potential of herbal supplements to effectively improve bee colonies’ development during the period of scarce bee forage, as well as to provide suitable conditions for successful overwintering.
Collapse
|
25
|
Trytek M, Buczek K, Zdybicka-Barabas A, Wojda I, Borsuk G, Cytryńska M, Lipke A, Gryko D. Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Sci Rep 2022; 12:14406. [PMID: 36002552 PMCID: PMC9402574 DOI: 10.1038/s41598-022-18534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/16/2022] [Indexed: 12/29/2022] Open
Abstract
The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.
Collapse
Affiliation(s)
- Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Grzegorz Borsuk
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Lipke
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
26
|
Use of Thymol in Nosema ceranae Control and Health Improvement of Infected Honey Bees. INSECTS 2022; 13:insects13070574. [PMID: 35886750 PMCID: PMC9319372 DOI: 10.3390/insects13070574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary In the European Union, there is no registered product for the control of the honey bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) derived from Thymus vulgaris on honey bees infected with N. ceranae. Thymol exerted certain positive effects (increasing bee survival, immunity, and antioxidative protection), as well as positively affecting the spore loads in Nosema-infected bees. However, when applied to Nosema-free bees, thymol caused certain health disorders; therefore, beekeepers should be careful with its use. Abstract Nosema ceranae is the most widespread microsporidian species which infects the honey bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive and reproductive capacities. The only registered product for its control is the antibiotic fumagillin; however, in the European Union, there is no formulation registered for use in beekeeping. Thymol (3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol supplementation on the expression of immune-related genes and the parameters of oxidative stress and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae. The results reveal mostly positive effects of thymol on health (increasing levels of immune-related genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation of some immune-related gene expressions), showing that one should be careful with preventive, uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this phytogenic supplement on the immunity of uninfected bees.
Collapse
|
27
|
Diet Supplementation Helps Honey Bee Colonies in Combat Infections by Enhancing their Hygienic Behaviour. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
The hygienic behavior in honey bees is a complex polygenic trait that serves as a natural defense mechanism against bacterial and fungal brood diseases and Varroa destructor mites infesting brood cells. The aim of this study was to evaluate the effect of a dietary amino acids and vitamins supplement “BEEWELL AminoPlus” on hygienic behavior of Apis mellifera colonies combating microsporidial and viral infections. The experiment was performed during a one-year period on 40 colonies alloted to five groups: one supplemented and infected with Nosema ceranae and four viruses (Deformed wing virus - DWV, Acute bee paralysis virus - ABPV, Chronic bee paralysis virus - CBPV and Sacbrood virus – SBV), three not supplemented, but infected with N. ceranae and/ or viruses, and one negative control group. Beside the l isted pathogens, honey bee trypanosomatids were also monitored in all groups.
The supplement “BEEWELL AminoPlus” induced a significant and consistent increase of the hygienic behavior in spite of the negative effects of N. ceranae and viral infections. N. ceranae and viruses significantly and consistently decreased hygienic behavior, but also threatened the survival of bee colonies. The tested supplement showed anti-Nosema effect, since the N. ceranae infection level significantly and consistently declined only in the supplemented group. Among infected groups, only the supplemented one remained Lotmaria passim-free throughout the study. In conclusion, diet supplementation enhances hygienic behavior of honey bee colonies and helps them fight the most common infections of honey bees.
Collapse
|
28
|
Elsayeh WA, Cook C, Wright GA. B-Vitamins Influence the Consumption of Macronutrients in Honey Bees. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.804002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects require dietary sources of B-vitamins, but relatively little is known about whether they regulate B-vitamin intake in the same way they regulate other nutrients. Honey bees meet their B-vitamin requirements mainly from the pollen they collect. Employing the geometric framework for nutrition, we found that honey bees actively regulate their vitamin intake following Bertrand's rule. We fed bees with a diet of essential amino acids (EAAs) and carbohydrate (C) to identify how the addition of B-vitamins affected the regulation of these macronutrients. In our experiments, honey bees preferred vitamins in concentrations comparable to those found in honey bee food (pollen, beebread, and royal jelly). Honey bees actively regulated niacin around an optimal value. Supplementing honey bee diets with B-vitamins influenced the amount of EAAs and carbohydrate ingested differently depending on the type of the vitamin. The impact of these vitamins was observed over the course of seven days where honey bees' mortality increased on diets of low and medium folic acid concentrations. This study provides insights into honey bee food intake regulation and the feeding preferences and sets the basis for future studies considering B-vitamins in honey bees diets.
Collapse
|
29
|
El-Seedi HR, Ahmed HR, El-Wahed AAA, Saeed A, Algethami AF, Attia NF, Guo Z, Musharraf SG, Khatib A, Alsharif SM, Naggar YA, Khalifa SAM, Wang K. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet Sci 2022; 9:vetsci9050199. [PMID: 35622727 PMCID: PMC9146872 DOI: 10.3390/vetsci9050199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Honeybees are the most prevalent insect pollinator species; they pollinate a wide range of crops. Colony collapse disorder (CCD), which is caused by a variety of biotic and abiotic factors, incurs high economic/ecological loss. Despite extensive research to identify and study the various ecological stressors such as microbial infections, exposure to pesticides, loss of habitat, and improper beekeeping practices that are claimed to cause these declines, the deep understanding of the observed losses of these important insects is still missing. Honeybees have an innate immune system, which includes physical barriers and cellular and humeral responses to defend against pathogens and parasites. Exposure to various stressors may affect this system and the health of individual bees and colonies. This review summarizes and discusses the composition of the honeybee immune system and the consequences of exposure to stressors, individually or in combinations, on honeybee immune competence. In addition, we discuss the relationship between bee nutrition and immunity. Nutrition and phytochemicals were highlighted as the factors with a high impact on honeybee immunity.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| | - Hanan R. Ahmed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ahmed F. Algethami
- Al nahal al jwal Foundation Saudi Arabia, P.O. Box 617, Al Jumum, Makkah 21926, Saudi Arabia;
| | - Nour F. Attia
- Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic Univetsity Malaysia, Kuantan 25200, Malaysia;
- Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia;
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| |
Collapse
|
30
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|
31
|
Ugolini L, Cilia G, Pagnotta E, Malaguti L, Capano V, Guerra I, Zavatta L, Albertazzi S, Matteo R, Lazzeri L, Righetti L, Nanetti A. Glucosinolate Bioactivation by Apis mellifera Workers and Its Impact on Nosema ceranae Infection at the Colony Level. Biomolecules 2021; 11:1657. [PMID: 34827655 PMCID: PMC8615805 DOI: 10.3390/biom11111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The microsporidian fungus Nosema ceranae represents one of the primary bee infection threats worldwide and the antibiotic fumagillin is the only registered product for nosemosis disease control, while few alternatives are, at present, available. Natural bioactive compounds deriving from the glucosinolate-myrosinase system (GSL-MYR) in Brassicaceae plants, mainly isothiocyanates (ITCs), are known for their antimicrobial activity against numerous pathogens and for their health-protective effects in humans. This work explored the use of Brassica nigra and Eruca sativa defatted seed meal (DSM) GSL-containing diets against natural Nosema infection in Apis mellifera colonies. DSM patties from each plant species were obtained by adding DSMs to sugar candy at the concentration of 4% (w/w). The feeding was administered in May to mildly N. ceranae-infected honey bee colonies for four weeks at the dose of 250 g/week. In the treated groups, no significant effects on colony development and bee mortality were observed compared to the negative controls. The N. ceranae abundance showed a slight but significant decrease. Furthermore, the GSL metabolism in bees was investigated, and MYR hydrolytic activity was qualitatively searched in isolated bee midgut and hindgut. Interestingly, MYR activity was detected both in the bees fed DSMs and in the control group where the bees did not receive DSMs. In parallel, ITCs were found in gut tissues from the bees treated with DSMs, corroborating the presence of a MYR-like enzyme capable of hydrolyzing ingested GSLs. On the other hand, GSLs and other GSL hydrolysis products other than ITCs, such as nitriles, were found in honey produced by the treated bees, potentially increasing the health value of the final product for human consumption. The results are indicative of a specific effect on the N. ceranae infection in managed honey bee colonies depending on the GSL activation within the target organ.
Collapse
Affiliation(s)
- Luisa Ugolini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Lorena Malaguti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Vittorio Capano
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Sergio Albertazzi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Roberto Matteo
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Luca Lazzeri
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| |
Collapse
|
32
|
Chen J, DeGrandi-Hoffman G, Ratti V, Kang Y. Review on mathematical modeling of honeybee population dynamics. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9606-9650. [PMID: 34814360 DOI: 10.3934/mbe.2021471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Honeybees have an irreplaceable position in agricultural production and the stabilization of natural ecosystems. Unfortunately, honeybee populations have been declining globally. Parasites, diseases, poor nutrition, pesticides, and climate changes contribute greatly to the global crisis of honeybee colony losses. Mathematical models have been used to provide useful insights on potential factors and important processes for improving the survival rate of colonies. In this review, we present various mathematical tractable models from different aspects: 1) simple bee-only models with features such as age segmentation, food collection, and nutrient absorption; 2) models of bees with other species such as parasites and/or pathogens; and 3) models of bees affected by pesticide exposure. We aim to review those mathematical models to emphasize the power of mathematical modeling in helping us understand honeybee population dynamics and its related ecological communities. We also provide a review of computational models such as VARROAPOP and BEEHAVE that describe the bee population dynamics in environments that include factors such as temperature, rainfall, light, distance and quality of food, and their effects on colony growth and survival. In addition, we propose a future outlook on important directions regarding mathematical modeling of honeybees. We particularly encourage collaborations between mathematicians and biologists so that mathematical models could be more useful through validation with experimental data.
Collapse
Affiliation(s)
- Jun Chen
- Simon A. Levin Mathematical and Computational Modeling Sciences Center, Arizona State University, 1031 Palm Walk, Tempe AZ 85281, USA
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, United States Department of Agriculture-Agricultural Research Service, 2000 East Allen Road, Tucson AZ 85719, USA
| | - Vardayani Ratti
- Department of Mathematics and Statistics, California State University, Chico, 400 W. First Street, Chico CA 95929-0560, USA
| | - Yun Kang
- Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, 6073 S. Backus Mall, Mesa AZ 85212, USA
| |
Collapse
|
33
|
Abstract
Optimal nutrition is crucial for honey bee colony growth and robust immune systems. Honey bee nutrition is complex and depends on the floral composition of the landscape. Foraging behavior of honey bees depends on both colony environment and external environment. There are significant gaps in knowledge regarding honey bee nutrition, and hence no optimal diet is available for honey bees, as there is for other livestock. In this review, we discuss (1) foraging behavior of honey bees, (2) nutritional needs, (3) nutritional supplements used by beekeepers, (4) probiotics, and (5) supplemental forage and efforts integrating floral diversity into cropping systems.
Collapse
Affiliation(s)
- Jennifer M Tsuruda
- University of Tennessee - Knoxville, 2505 E J Chapman Drive, Knoxville, TN 37996, USA
| | - Priyadarshini Chakrabarti
- Mississippi State University, P.O. Box 5307, Mississippi State, MS 39762, USA; Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA
| | - Ramesh R Sagili
- Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA.
| |
Collapse
|
34
|
Effects of Agaricus bisporus Mushroom Extract on Honey Bees Infected with Nosema ceranae. INSECTS 2021; 12:insects12100915. [PMID: 34680684 PMCID: PMC8541333 DOI: 10.3390/insects12100915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Nosema ceranae affects honey bee (Apis mellifera L.) causing nosemosis disease that often induces serious problems in apiculture. Antibiotic fumagillin is the only licenced treatment against nosemosis, but its effectiveness is questioned and its usage associated with risk of bee mortality and appearance of residues in bee products. In search for alternative treatment for the control of nosemosis, water crude extract of Agaricus bisporus was tested on bees in laboratory (cage) experiments. Bee survival and food consumption were monitored together with Nosema infection level and expression of five genes (abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin) were evaluated in bees sampled on days 7 and 15. Apart from the gene for defensin, the expression of all tested genes was up-regulated in bees supplemented with A. bisporus extract. Both anti-Nosema and immune protective effects of A. bisporus extract were observed when supplementation started at the moment of N. ceranae infection or preventively (before or simultaneously with the Nosema infection). Abstract Agaricus bisporus water crude extract was tested on honey bees for the first time. The first part of the cage experiment was set for selecting one concentration of the A. bisporus extract. Concentration of 200 µg/g was further tested in the second part of the experiment where bee survival and food consumption were monitored together with Nosema infection level and expression of five genes (abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin) that were evaluated in bees sampled on days 7 and 15. Survival rate of Nosema-infected bees was significantly greater in groups fed with A. bisporus-enriched syrup compared to those fed with a pure sucrose syrup. Besides, the anti-Nosema effect of A. bisporus extract was greatest when applied from the third day which coincides with the time of infection with N. ceranae. Daily food consumption did not differ between the groups indicating good acceptability and palatability of the extract. A. bisporus extract showed a stimulative effect on four out of five monitored genes. Both anti-Nosema and nutrigenomic effects of A. bisporus extract were observed when supplementation started at the moment of N. ceranae infection or preventively (before or simultaneously with the infection).
Collapse
|
35
|
Almasri H, Tavares DA, Diogon M, Pioz M, Alamil M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112258. [PMID: 33915451 DOI: 10.1016/j.ecoenv.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and pollutants, such as pesticides, are potential stressors to all living organisms, including honey bees. Herbicides and fungicides are among the most prevalent pesticides in beehive matrices, and their interaction with Nosema ceranae is not well understood. In this study, the interactions between N. ceranae, the herbicide glyphosate and the fungicide difenoconazole were studied under combined sequential and overlapping exposure to the pesticides at a concentration of 0.1 µg/L in food. In the sequential exposure experiment, newly emerged bees were exposed to the herbicide from day 3 to day 13 after emerging and to the fungicide from day 13 to day 23. In the overlapping exposure experiment, bees were exposed to the herbicide from day 3 to day 13 and to the fungicide from day 7 to day 17. Infection by Nosema in early adult life stages (a few hours post emergence) greatly affected the survival of honey bees and elicited much higher mortality than was induced by pesticides either alone or in combination. Overlapping exposure to both pesticides induced higher mortality than was caused by sequential or individual exposure. Overlapping, but not sequential, exposure to pesticides synergistically increased the adverse effect of N. ceranae on honey bee longevity. The combination of Nosema and pesticides had a strong impact on physiological markers of the nervous system, detoxification, antioxidant defenses and social immunity of honey bees.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | | | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Maryam Alamil
- INRAE, UR Biostatistiques et Processus Spatiaux, F-84914 Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France.
| |
Collapse
|
36
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
37
|
Chel-Guerrero LD, Oney-Montalvo JE, Rodríguez-Buenfil IM. Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico. PLANTS (BASEL, SWITZERLAND) 2021; 10:779. [PMID: 33921186 PMCID: PMC8071551 DOI: 10.3390/plants10040779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
By-products of edible plants may contain potentially useful phytochemicals. Herein, we valorized the by-products of Capsicum chinense by phytochemical characterization of its leaves, peduncles and stems. Plants of habanero pepper were grown in a greenhouse, in polyethylene bags with two soils that were named according to the Maya classification as: K'ankab lu'um (red soil) and Box lu'um (black soil). Habanero pepper by-products were dried using an oven, the extracts were obtained by Ultrasound Assisted Extraction, and phytochemical quantification in all the extracts was conducted by Ultra Performance Liquid Chromatography coupled to Diode Array Detector (UPLC-DAD). Differences in the phytochemical content were observed according to the by-product and soil used. Catechin and rutin showed the highest concentrations in the peduncles of plants grown in both soils. The leaves of plants grown in black soil were rich in myricetin, β-carotene, and vitamin E, and the stems showed the highest protocatechuic acid content. While the leaves of plants grown in red soil were rich in myricetin and vitamin C, the stems showed the highest chlorogenic acid content. This novel information regarding the phytochemical composition of the by-products of C. chinense may be relevant in supporting their potential application in food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | - Ingrid Mayanín Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Sureste, Tablaje Catastral 31264, Km. 5.5 Carretera Sierra Papacal-Chuburn Puerto, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico; (L.D.C.-G.); (J.E.O.-M.)
| |
Collapse
|
38
|
Glavinic U, Stevanovic J, Ristanic M, Rajkovic M, Davitkov D, Lakic N, Stanimirovic Z. Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees. INSECTS 2021; 12:282. [PMID: 33806001 PMCID: PMC8064457 DOI: 10.3390/insects12040282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023]
Abstract
Depending on the infection level and colony strength, Nosema ceranae, a microsporidian endoparasite of the honey bee may have significant consequences on the health, reproduction and productivity of bee colonies. Despite exerting some side effects, fumagillin is most often used for Nosema control. In this study, in a cage experiment, N. ceranae infected bees were treated with fumagillin or the extract of Agaricus blazei mushroom, a possible alternative for Nosema control. Bee survival, Nosema spore loads, the expression levels of immune-related genes and parameters of oxidative stress were observed. Fumagillin treatment showed a negative effect on monitored parameters when applied preventively to non-infected bees, while a noticeable anti-Nosema effect and protection from Nosema-induced immunosuppression and oxidative stress were proven in Nosema-infected bees. However, a protective effect of the natural A. blazei extract was detected, without any side effects but with immunostimulatory activity in the preventive application. The results of this research suggest the potential of A. blazei extract for Nosema control, which needs to be further investigated.
Collapse
Affiliation(s)
- Uros Glavinic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Jevrosima Stevanovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Milan Rajkovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Dajana Davitkov
- Faculty of Veterinary Medicine, Department of Forensic Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Nada Lakic
- Faculty of Agriculture, Department of Statistics, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia;
| | - Zoran Stanimirovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| |
Collapse
|
39
|
Jovanovic NM, Glavinic U, Delic B, Vejnovic B, Aleksic N, Mladjan V, Stanimirovic Z. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Prev Vet Med 2021; 190:105322. [PMID: 33744676 DOI: 10.1016/j.prevetmed.2021.105322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
It is common knowledge that nutritive stress resulting from decreased diversity and quality of food, pollution of food sources and beekeeping errors may lead to increased susceptibility of bees to pathogens and pesticides. The dearth of adequate food is frequently compensated with supplements. Thus, this research was aimed to study the effects of the plant-based supplement B + on colony strength (assessed according to open and sealed brood area, honey and pollen/bee bread reserves, and the number of adult bees). In addition, Nosema ceranae spores and viruses were quantified and the level of infestation with Varroa destructor assessed. The experiment was conducted in late summer and early spring. In colonies which were given B + in feed a significant increase (p < 0.05) in the parameters of colony strength were noticed in comparison to the control (colonies fed on sugar syrup). Moreover, it was proven that the bees from these colonies had significantly lower (p < 0.05) N. ceranae spore counts, and acute bee paralysis, deformed wing and sacbrood virus loads. Our results suggest that the addition of B + supplement to the colonies provide them with nutrients, contribute to their strengthening, might prevent nutritive stress and increase the success of bees in combating pathogens.
Collapse
Affiliation(s)
- Nemanja M Jovanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Biljana Delic
- Higher Agricultural School of Vocational Studies in Šabac, Vojvode Putnika 56, 15000 Šabac, Serbia.
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Nevenka Aleksic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Vladimir Mladjan
- Higher Agricultural School of Vocational Studies in Šabac, Vojvode Putnika 56, 15000 Šabac, Serbia.
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| |
Collapse
|
40
|
The Herbal Supplements NOZEMAT HERB ® and NOZEMAT HERB PLUS ®: An Alternative Therapy for N. ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens 2021; 10:pathogens10020234. [PMID: 33669663 PMCID: PMC7922068 DOI: 10.3390/pathogens10020234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Honey bees (Apis mellifera L.) are the most effective pollinators for different crops and wild flowering plants, thus maintaining numerous ecosystems in the world. However, honey bee colonies often suffer from stress or even death due to various pests and diseases. Among the latter, nosemosis is considered to be one of the most common diseases, causing serious damage to beekeeping every year. Here, we present, for the first time, the effects from the application of the herbal supplements NOZEMAT HERB® (NH) and NOZEMAT HERB PLUS® (NHP) for treating N. ceranae infection and positively influencing the general development of honey bee colonies. To achieve this, in autumn 2019, 45 colonies were selected based on the presence of N. ceranae infections. The treatment was carried out for 11 months (August 2019–June 2020). All colonies were sampled pre- and post-treatment for the presence of N. ceranae by means of light microscopy and PCR analysis. The honey bee colonies’ performance and health were evaluated pre- and post-treatment. The obtained results have shown that both supplements have exhibited statistically significant biological activity against N. ceranae in infected apiaries. Considerable enhancement in the strength of honey bee colonies and the amount of sealed workers was observed just one month after the application of NH and NHP. Although the mechanisms of action of NH and NHP against N. ceranae infection are yet to be completely elucidated, our results suggest a new holistic approach as an alternative therapy to control nosemosis and to improve honey bee colonies’ performance and health.
Collapse
|
41
|
Wang K, Li J, Zhao L, Mu X, Wang C, Wang M, Xue X, Qi S, Wu L. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123828. [PMID: 33254809 DOI: 10.1016/j.jhazmat.2020.123828] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Microplastic contamination is not only a pressing environmental concern in oceans, but also terrestrial ecosystems. However, little is known about its potential impacts on pollinators. Here, we reported the effects of 25 μm-diameter spherical polystyrene microplastics (PS-MPs) alone or in combination with the antibiotic tetracycline on honey bees (Apis mellifera L.) in the laboratory. We noticed that PS-MPs exposure for 14 d had sublethal effects, with low mortalities (up to 1.6 %) across three different treatments (0.5, 5, and 50 mg/L) and no changes to the body weight gains compared to the control bees. Nevertheless, PS-MPs exposure led to significant decreases in the α-diversity of bees' gut microbiota accompanied by changes to the core microbial population structure. Additionally, PS-MPs lead to alterations in the expression of antioxidative (Cat), detoxification (CypQ1 and GstS3), and immune system-related genes (Domeless, Hopscotch, and Symplekin) in guts. More interestingly, we observed that PS-MPs accumulated and degraded inside of the hindgut and interacted with gut bacteria. The depletion of the normal gut microbiota using tetracycline dramatically increased the lethality of microplastics. These results provide a resource for future research on microplastic-microbiome interactions in other insects and also shed light on understanding the potential effects of microplastics in terrestrial ecosystems.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahuan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fujian, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Chen Wang
- Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Miao Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
42
|
LC-MS/MS quantification of fat soluble vitamers - A systematic review. Anal Biochem 2020; 613:113980. [PMID: 33065116 DOI: 10.1016/j.ab.2020.113980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
Fat soluble vitamers (FSV) are several biochemically diverse micronutrients essential for healthy development, growth, metabolism, and cell regulation. We cannot synthesize FSV completely or at the required concentrations. Deficiency or excess of FSV can result in many health problems. Plasma is the most accessible sample matrix for the quantification of FSV. However, due to its complexity and other analytical challenges (e.g., FSV sensitivity to light, oxygen, heat, pH, chemical heterogeneity, standard availability), developing a method for the simultaneous quantification of multiple FSV at physiological concentrations has been challenging. In this systematic review, we examine the parameters and criteria used in existing Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) methods for FSV quantification to the extraction method, chromatographic resolution, matrix effects, and method validation as critical to a sensitive and robust method. We conclude that the final FSV method sensitivity is predominantly based on aforementioned criteria and future method development using LC-MS/MS will benefit from the application of this systematic review.
Collapse
|
43
|
Tlak Gajger I, Vlainić J, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee ( Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. INSECTS 2020; 11:insects11090638. [PMID: 32957451 PMCID: PMC7563132 DOI: 10.3390/insects11090638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary Various negative factors contribute to a decline in insect pollinators. The aim of this study was to assess the impact of commercial probiotic EM® PROBIOTIC FOR BEES on honey bees. The study was conducted in field and laboratory-controlled conditions. In the field, the sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in order to evaluate the colonies’ strength and Nosema spp. infection levels. In the laboratory, the adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies’ strength was increased. The results at the individual level showed positive physiological changes in treated groups of adult bees, but, at the same time, a higher mortality rate. Our findings indicate that the EM® for bees is a promising food additive for nosemosis combating. Therefore, additional emphasis needs to be placed on studies investigating the nutritional requirements crucial to improve and sustain honey bee colonies health. Abstract Several negative factors contribute to a decline in the number of insect pollinators. As a novel approach in therapy, we hypothesize that the EM® for bees could potentially have an important therapeutic and immunomodulatory effect on honey bee colonies. The aim of our study was to evaluate its impact on honey bees at the individual and colony level. This is the first appliance of the commercial probiotic mix EM® PROBIOTIC FOR BEES in honey bees as economically important social insects. The sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in the field conditions, in order to evaluate the infection levels with spores of Nosema spp. and colonies’ strength. Moreover, in laboratory-controlled conditions, in the hoarding cages, adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies’ strength was increased. The results at the individual level showed significant positive physiological changes in treated groups of adult bees, revealing at the same time a higher mortality rate when feeding sugar syrup supplemented with the probiotic.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-91-2390-041
| | - Josipa Vlainić
- Division of Molecular Medicine, Laboratory for Advanced Genomics, Institute Ruđer Bošković, 10 000 Zagreb, Croatia;
| | - Petra Šoštarić
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Janez Prešern
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.P.); (J.B.); (M.I.S.Š.)
| | - Jernej Bubnič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.P.); (J.B.); (M.I.S.Š.)
| | | |
Collapse
|
44
|
Honey bee aggression: evaluating causal links to disease-resistance traits and infection. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02887-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol 2020; 28:1010-1021. [PMID: 32680791 DOI: 10.1016/j.tim.2020.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Pesticide exposure, infectious disease, and nutritional stress contribute to honey bee mortality and a high rate of colony loss. This realization has fueled a decades-long investigation into the single and combined effects of each stressor and their overall bearing on insect physiology. However, one element largely missing from this research effort has been the evaluation of underlying microbial communities in resisting environmental stressors and their influence on host immunity and disease tolerance. In humans, multigenerational bombardment by antibiotics is linked with many contemporary diseases. Here, we draw a parallel conclusion for the case in honey bees and suggest that chronic exposure to antimicrobial xenobiotics can systematically deplete honey bees of their microbes and hamper cross-generational preservation of host-adapted symbionts that are crucial to health.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada; Department of Surgery, Schulich School of Medicine, London, ON, N6A 5C1, Canada.
| |
Collapse
|
46
|
Taric E, Glavinic U, Vejnovic B, Stanojkovic A, Aleksic N, Dimitrijevic V, Stanimirovic Z. Oxidative Stress, Endoparasite Prevalence and Social Immunity in Bee Colonies Kept Traditionally vs. Those Kept for Commercial Purposes. INSECTS 2020; 11:E266. [PMID: 32349295 PMCID: PMC7290330 DOI: 10.3390/insects11050266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Commercially and traditionally managed bees were compared for oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and malondialdehyde (MDA)), the prevalence of parasites (Lotmaria passim, Crithidia mellificae and Nosema ceranae/apis) and social immunity (glucose oxidase gene expression). The research was conducted on Pester plateau (Serbia-the Balkan Peninsula), on seemingly healthy colonies. Significant differences in CAT, GST and SOD activities (p < 0.01), and MDA concentrations (p < 0.002) were detected between commercial and traditional colonies. In the former, the prevalence of both L. passim and N. ceranae was significantly (p < 0.05 and p < 0.01, respectively) higher. For the first time, L. passim was detected in honey bee brood. In commercial colonies, the prevalence of L. passim was significantly (p < 0.01) lower in brood than in adult bees, whilst in traditionally kept colonies the prevalence in adult bees and brood did not differ significantly. In commercially kept colonies, the GOX gene expression level was significantly (p < 0.01) higher, which probably results from their increased need to strengthen their social immunity. Commercially kept colonies were under higher oxidative stress, had higher parasite burdens and higher GOX gene transcript levels. It may be assumed that anthropogenic influence contributed to these differences, but further investigations are necessary to confirm that.
Collapse
Affiliation(s)
- Elmin Taric
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia; (E.T.); (Z.S.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia; (E.T.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Aleksandar Stanojkovic
- Department of Animal Source Foods Science and Technology, Institute for Animal Husbandry, Autoput 16, 11080 Belgrade–Zemun, Serbia;
| | - Nevenka Aleksic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Vladimir Dimitrijevic
- Department of Animal Husbandry and Genetics, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia; (E.T.); (Z.S.)
| |
Collapse
|
47
|
Gage SL, Calle S, Jacobson N, Carroll M, DeGrandi-Hoffman G. Pollen Alters Amino Acid Levels in the Honey Bee Brain and This Relationship Changes With Age and Parasitic Stress. Front Neurosci 2020; 14:231. [PMID: 32265638 PMCID: PMC7105889 DOI: 10.3389/fnins.2020.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Pollen nutrition is necessary for proper growth and development of adult honey bees. Yet, it is unclear how pollen affects the honey bee brain and behavior. We investigated whether pollen affects amino acids in the brains of caged, nurse-aged bees, and what the behavioral consequences might be. We also tested whether parasitic stress altered this relationship by analyzing bees infected with prevalent stressor, Nosema ceranae. Levels of 18 amino acids in individual honey bee brains were measured using Gas Chromatography – Mass Spectrometry at two different ages (Day 7 and Day 11). We then employed the proboscis extension reflex to test odor learning and memory. We found that the honey bee brain was highly responsive to pollen. Many amino acids in the brain were elevated and were present at higher concentration with age. The majority of these amino acids were non-essential. Without pollen, levels of amino acids remained consistent, or declined. Nosema-infected bees showed a different profile. Infection altered amino acid levels in a pollen-dependent manner. The majority of amino acids were lower when pollen was given, but higher when pollen was deprived. Odor learning and memory was not affected by feeding pollen to uninfected bees; but pollen did improve performance in Nosema-infected bees. These results suggest that pollen in early adulthood continues to shape amino acid levels in the brain with age, which may affect neural circuitry and behavior over time. Parasitic stress by N. ceranae modifies this relationship revealing an interaction between infection, pollen nutrition, and behavior.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Samantha Calle
- Carl Hayden Bee Research Center, Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Natalia Jacobson
- Carl Hayden Bee Research Center, Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Mark Carroll
- Carl Hayden Bee Research Center, Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| |
Collapse
|
48
|
Chakrabarti P, Lucas HM, Sagili RR. Novel Insights into Dietary Phytosterol Utilization and Its Fate in Honey Bees ( Apis mellifera L.). Molecules 2020; 25:E571. [PMID: 32012964 PMCID: PMC7036750 DOI: 10.3390/molecules25030571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
Poor nutrition is an important factor in global bee population declines. A significant gap in knowledge persists regarding the role of various nutrients (especially micronutrients) in honey bees. Sterols are essential micronutrients in insect diets and play a physiologically vital role as precursors of important molting hormones and building blocks of cellular membranes. Sterol requirements and metabolism in honey bees are poorly understood. Among all pollen sterols, 24-methylenecholesterol is considered the key phytosterol required by honey bees. Nurse bees assimilate this sterol from dietary sources and store it in their tissues as endogenous sterol, to be transferred to the growing larvae through brood food. This study examined the duration of replacement of such endogenous sterols in honey bees. The dietary 13C-labeled isotopomer of 24-methylenecholesterol added to artificial bee diet showed differential, progressive in vivo assimilation across various honey bee tissues. Significantly higher survival, diet consumption, head protein content and abdominal lipid content were observed in the dietary sterol-supplemented group than in the control group. These findings provide novel insights into phytosterol utilization and temporal pattern of endogenous 24-methylenecholesterol replacement in honey bees.
Collapse
Affiliation(s)
- Priyadarshini Chakrabarti
- Department of Horticulture, Oregon State University, 4017 Agriculture & Life Sciences Building, Corvallis, OR 97333, USA
| | - Hannah M Lucas
- Department of Horticulture, Oregon State University, 4017 Agriculture & Life Sciences Building, Corvallis, OR 97333, USA
| | - Ramesh R Sagili
- Department of Horticulture, Oregon State University, 4017 Agriculture & Life Sciences Building, Corvallis, OR 97333, USA
| |
Collapse
|
49
|
Tesovnik T, Zorc M, Ristanić M, Glavinić U, Stevanović J, Narat M, Stanimirović Z. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113443. [PMID: 31733951 DOI: 10.1016/j.envpol.2019.113443] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
During their lifetime honey bees (Apis mellifera) rarely experience optimal conditions. Sometimes, a simultaneous action of multiple stressors, natural and chemical, results in even greater effect than of any stressor alone. Therefore, integrative investigations of different factors affecting honey bees have to be carried out. In this study, adult honey bees exposed to thiamethoxam in larval and/or adult stage and infected with Nosema ceranae were examined. Newly emerged bees from colonies, non-treated or treated with thiamethoxam, were organized in six groups and kept in cages. Thiamethoxam treated bees were further exposed to either thiamethoxam or Nosema (groups TT and TN), or simultaneously to both (group TTN). Newly emerged bees from non-treated colonies were exposed to Nosema (group CN). From both, treated and non-treated colonies two groups were organized and further fed only with sugar solution (groups C and TC). Here, we present the expression profile of 19 genes in adult worker honey bees comprising those involved in immune, detoxification, development and apoptosis response. Results showed that gene expression patterns changed with time and depended on the treatment. In group TC at the time of emergence the majority of tested genes were downregulated, among which nine were significantly altered. The same gene pattern was observed on day six, where the only significantly upregulated gene was defensin-1. On day nine most of analyzed genes in all experimental groups showed upregulation compared to control group, where upregulation of antimicrobial peptide genes abaecin, defensin-1 and defensin-2 was significant in groups TT and TTN. On day 15 we observed a similar pattern of expression in groups TC and TT exposed to thiamethoxam only, where most of the detoxification genes were downregulated. Additionally RNA loads of Nosema and honey bee viruses were recorded. We detected a synergistic interaction of thiamethoxam and Nosema, reflected in lowest honey bee survival.
Collapse
Affiliation(s)
- Tanja Tesovnik
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia.
| | - Minja Zorc
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Marko Ristanić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| | - Uroš Glavinić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| | - Jevrosima Stevanović
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| | - Mojca Narat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Zoran Stanimirović
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| |
Collapse
|
50
|
Topitzhofer E, Lucas H, Chakrabarti P, Breece C, Bryant V, Sagili RR. Assessment of Pollen Diversity Available to Honey Bees (Hymenoptera: Apidae) in Major Cropping Systems During Pollination in the Western United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2040-2048. [PMID: 31237612 PMCID: PMC6756777 DOI: 10.1093/jee/toz168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 05/30/2023]
Abstract
Global western honey bee, Apis mellifera (L.) (Hymenoptera: Apidae), colony declines pose a significant threat to food production worldwide. Poor nutrition resulting from habitat loss, extensive monocultures, and agricultural intensification is among the several suggested drivers for colony declines. Pollen is the primary source of protein for honey bees; therefore, both pollen abundance and diversity are critical for colony growth and survival. Many cropping systems that employ honey bee colonies for pollination may lack sufficient pollen diversity and abundance to provide optimal bee nutrition. In this observational study, we documented the diversity and relative abundance of pollen collected by honey bees in five major pollinator-dependent crops in the western United States. We sampled pollen from pollen traps installed on honey bee colonies in the following cropping systems-almond, cherry, highbush blueberry, hybrid carrot, and meadowfoam. The pollen diversity was estimated by documenting the number of different pollen pellet colors and plant taxa found in each pollen sample. The lowest pollen diversity was found in almond crop. Relatively higher quantities of pollen collection were collected in almond, cherry, and meadowfoam cropping systems. The information gleaned from this study regarding pollen diversity and abundance may help growers, land managers, and beekeepers improve pollen forage available to bees in these cropping systems.
Collapse
Affiliation(s)
| | - Hannah Lucas
- Department of Horticulture, Oregon State University, Corvallis, OR
| | | | - Carolyn Breece
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Vaughn Bryant
- Department of Anthropology, Palynology Laboratory, Texas A&M University, College Station, TX
| | - Ramesh R Sagili
- Department of Horticulture, Oregon State University, Corvallis, OR
| |
Collapse
|