1
|
Mamabolo M, Machalaba C, Zantsi S, Rostal MK, Karesh WB, Thompson PN, Chaminuka P. One Health Economics approach to prevention and control of zoonotic and animal diseases - considerations for South Africa. ONE HEALTH OUTLOOK 2025; 7:30. [PMID: 40346721 PMCID: PMC12063256 DOI: 10.1186/s42522-025-00142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/21/2025] [Indexed: 05/11/2025]
Abstract
Outbreaks of animal and zoonotic diseases in South Africa are costly and raise concerns about national biosecurity. The interconnectedness of humans, livestock, wildlife and their social and ecological environment necessitates a holistic approach to prevention, preparedness and response to zoonotic and animal diseases. One Health is an increasingly accepted approach in contemporary science and policy spheres, but with limited consideration for economic dimensions. To more fully estimate costs of animal and zoonotic diseases in the country and to explore further scope for applying a One Health economics lens, the Agricultural Research Council of South Africa, in collaboration with partners, held a One Health Economics mini-congress to provide a platform where multidisciplinary stakeholders discussed practical examples, primarily from the Southern African region. Discussions at the mini-congress centred around One Health economics and opportunities, economic insights on prevention and control of Rift Valley fever (RVF), avian influenza and other zoonotic diseases, return on investment for One Health approaches, and insights from the natural resources and animal and human health sectors. Regional and international perspectives on multi-sectoral economic analysis and financing were also shared. Key recommendations from the mini-congress included promoting coordination, co-creation and co-implemented efforts to minimize effects of One Health challenges, and including economic aspects of multi-sectoral engagement to identify and reduce trade-offs and maximize co-benefits of strategies and programmes. Integration of economics in One Health fora, research and collaboration, and promotion of communities of practice and applied training to enhance learning and knowledge exchange were also identified as important.
Collapse
Affiliation(s)
- Manana Mamabolo
- Agricultural Research Council, 1134 Park Street, Hatfield Pretoria, Pretoria, 0002, South Africa.
| | | | - Siphe Zantsi
- Agricultural Research Council, 1134 Park Street, Hatfield Pretoria, Pretoria, 0002, South Africa
| | - Melinda K Rostal
- One Health Research Consulting, LLC, 68 Radburn Rd Glen Rock, Glen Rock, NJ, 07452, USA
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - William B Karesh
- One Health Concepts, 75 Silver Hill Road, Easton, CT, 06612, USA
| | - Peter Neil Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Petronella Chaminuka
- Agricultural Research Council, 1134 Park Street, Hatfield Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
2
|
Bruno L, Nappo MA, Frontoso R, Perrotta MG, Di Lecce R, Guarnieri C, Ferrari L, Corradi A. West Nile Virus (WNV): One-Health and Eco-Health Global Risks. Vet Sci 2025; 12:288. [PMID: 40266979 PMCID: PMC11945822 DOI: 10.3390/vetsci12030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
West Nile virus (WNV) is an important zoonotic pathogen belonging to the Flaviviridae family, which is endemic in some areas and emerging in others. WNV is transmitted by blood-sucking mosquitoes of the genus Culicoides, Aedes, and Anopheles, and the infection can cause different clinical symptoms. The most common and benign illness in humans is West Nile fever (WNF), but a lethal neurological disease (WNND), related to the neuro-invasiveness of WNV lineage 2, represents the highest health risk of WNV infection. The neuro-clinical form is recognized in mammals (land and cetaceans), particularly in humans (elderly or immunosuppressed) and in horses, avian species, and wildlife animals ranging free or in a zoological setting. This review highlights the most relevant data regarding epidemiology, virology, pathogenesis and immunity, clinical signs and differential diagnosis, pathology and imaging, histopathology and gross pathology, economic impact, influence of climate change, and surveillance of WNV. Climate change has favored the wide spread of WNV in many areas of the globe and consequent One-Health and Eco-Health emergencies, influencing the health of human beings, animals, and ecosystems.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (I.Z.S.M.), Portici, 80055 Naples, Italy
| | - Maria Gabriella Perrotta
- Ministry of Health, Office 3 exDGSAF of the General Directorate of Animal Health, 00144 Rome, Italy;
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| |
Collapse
|
3
|
Auplish A, Raj E, Booijink Y, de Balogh K, Peyre M, Taylor K, Sumption K, Häsler B. Current evidence of the economic value of One Health initiatives: A systematic literature review. One Health 2024; 18:100755. [PMID: 38770400 PMCID: PMC11103946 DOI: 10.1016/j.onehlt.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Funding and financing for One Health initiatives at country level remain challenging as investments commonly require demonstrated evidence of economic value or returns. The objectives of this review were to i) identify, critically analyse and summarise quantitative evidence of the net economic value of One Health initiatives; ii) document methodologies commonly used in the scientific literature; and iii) describe common challenges and any evidence gaps. Scientific databases were searched for published literature following the PRISMA guidelines and an online survey and workshop with subject matter experts were used to identify relevant grey literature. Studies were included if they reported on quantitative costs and benefits (monetary and non-monetary) and were measured across at least two sectors. Relevant publications were analysed and plotted against the six action tracks of the Quadripartite One Health Joint Plan of Action to help classify the initiatives. Ninety-seven studies were included. Eighty studies involved only two sectors and 78 reported a positive economic value or return. Of those studies that reported a positive return, 49 did not compare with a sectoral counterfactual, 28 studies demonstrated an added value of using a cross-sectoral approach, and 6 studies demonstrated an added value of One Health communication, collaboration, coordination, and capacity building. Included studies most frequently related to endemic zoonotic, neglected tropical and vector-borne diseases, followed by health of the environment and food safety. However, diversity in economic analysis methodology between studies included resulted in difficulty to compare or combine findings. While there is a growing body of evidence of the value of One Health initiatives, a substantial part of the evidence still focuses on "traditional" One Health topics, particularly zoonoses. Developing a standardised and practical approach for One Health economic evaluation will facilitate assessment of the added value and gather evidence for One Health to be invested in and endorsed by multiple sectors.
Collapse
Affiliation(s)
- Aashima Auplish
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Eleanor Raj
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Yoeri Booijink
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), Montpellier Cedex 5 34398, France
| | - Katinka de Balogh
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Marisa Peyre
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), Montpellier Cedex 5 34398, France
| | - Katrin Taylor
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Keith Sumption
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Barbara Häsler
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
- Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
4
|
Tamba M, Bonilauri P, Galletti G, Casadei G, Santi A, Rossi A, Calzolari M. West Nile virus surveillance using sentinel birds: results of eleven years of testing in corvids in a region of northern Italy. Front Vet Sci 2024; 11:1407271. [PMID: 38818494 PMCID: PMC11138491 DOI: 10.3389/fvets.2024.1407271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
The natural transmission cycle of West Nile virus (WNV) involves birds as primary hosts and mosquitoes as vectors, but this virus can spread to mammals, human beings included. Asymptomatic infected donors pose a risk to the safety of blood transfusions and organ transplants, as WNV can be transmitted through these medical procedures. Since 2009, the region of Emilia-Romagna in northern Italy has been implementing an integrated surveillance system in order to detect WNV circulation in the environment at an early stage. Here we report the results of the two components of the surveillance system, the active testing of corvids and humans, and demonstrate that bird surveillance alone improves a surveillance system based solely on human case detection. As WNV risk reduction measures are applied on a provincial basis, we assessed the ability of this surveillance system component to detect virus circulation prior to the notification of the first human case for each province. Overall, 99 epidemic seasons were evaluated as a result of 11 years (2013-2023) of surveillance in the nine provinces of the region. In this period, 22,314 corvids were tested for WNV and 642 (2.9%) were found to be infected. WNV was generally first detected in birds in July, with sample prevalence peaks occurring between August and September. During the same period, 469 autochthonous human cases were notified, about 60% of which were reported in August. WNV was detected 79 times out of the 99 seasons considered. The virus was notified in birds 73 times (92.4%) and 60 times (75.9%) in humans. WNV was first or only notified in birds in 57 seasons (72.1%), while it was first or only notified in humans in 22 seasons (27.8%). Active surveillance in corvids generally allows the detection of WNV before the onset of human cases. Failure of virus detection occurred mainly in seasons where the number of birds tested was low. Our results show that active testing of a minimum of 3.8 corvids per 100 km2 provides a satisfactory timeliness in the virus detection, but for early detection of WNV it is crucial to test birds between mid-June and mid-August.
Collapse
Affiliation(s)
- Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
6
|
Flodgren GM, Bezuidenhoudt JE, Alkanhal N, Brinkwirth S, Lee ACK. Conceptualisation and implementation of integrated disease surveillance globally: a scoping review. Public Health 2024; 230:105-112. [PMID: 38522247 DOI: 10.1016/j.puhe.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES The objective of this study was to examine the conceptualisation and operationalisation of Integrated Disease Surveillance (IDS) systems globally and the evidence for their effectiveness. Furthermore, to determine whether the recommendations made by Morgan et al. are supported by the evidence and what the evidence is to inform country development of IDS. STUDY DESIGN The study incorporated a scoping review. METHODS This review summarised evidence meeting the following inclusion criteria: Participants: any health sector; Concept: IDS; and Context: global. We searched Medline, Embase, and Epistemonikos for English publications between 1998 and 2022. Standard review methods were applied. A bespoke conceptual framework guided the narrative analysis. This scoping review is part of a research programme with three key elements, with the other studies being a survey of the International Association of National Public Health Institutes members on the current status of their disease surveillance systems and a deeper analysis and case studies of the surveillance systems in seven countries, to highlight the opportunities and challenges of integration. RESULTS Eight reviews and five primary studies, which were assessed as being of low quality, were included, mostly examining IDS in Africa, the human sector, and communicable diseases. None reported on the effects on disease control or on the evolution of IDS during the COVID-19 pandemic. Descriptions of IDS and of integration varied. Prerequisites of effective IDS systems mostly related to the adequacy of core functions and resourcing requirements. Laws or regulations supporting system integration and data sharing were not addressed. The provision of core functions and resourcing requirements were described as inadequate, financing as non-sustainable, and governance as poor. Enablers included active data sharing, close cooperation between agencies, clear reporting channels, integration of vertical programs, increased staff training, and adopting mobile reporting. Whilst the conceptual framework for IDS and Morgan et al.'s proposed principles were to some extent reflected in the highlighted priorities for IDS in the literature, the evidence base remains weak. CONCLUSIONS Available evidence is fragmented, incomplete, and of poor quality. The review found a lack of robust evaluation studies on the impact of IDS on disease control. Whilst a lack of evidence does not imply a lack of benefit or effect, it should signal the need to evaluate the process and impact of integration in the future development of surveillance systems. A common IDS definition and articulation of the parts that constitute an IDS system are needed. Further robust impact evaluations, as well as country reviews and evaluations of their IDS systems, are required to improve the evidence base.
Collapse
Affiliation(s)
| | | | - N Alkanhal
- Public Health Authority of Saudi Arabia, Kingdom of Saudi Arabia
| | | | - A C K Lee
- The University of Sheffield and UK Health Security Agency, UK
| |
Collapse
|
7
|
Milano A, Robbiati C, Declich S, Calistri P, Pediconi O, Amato L, Paronyan L, Avetisyan L, Manucharyan A, Avetisyan G, Yesayan T, Gevorgyan A, Markosyan T, Dente MG. Assessing the Adoption of One Health Approaches in National Plans to Combat Health Threats: The Pilot of a One Health Conceptual Framework in Armenia. Trop Med Infect Dis 2024; 9:22. [PMID: 38251220 PMCID: PMC10819525 DOI: 10.3390/tropicalmed9010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Due to several factors, such as environmental and climate changes, the risk of health threats originating at the human-animal-environment interface, including vector-borne diseases (VBDs) and zoonoses, is increasing. Low-resource settings struggle to counter these multidimensional risks due to their already-strained health systems and are therefore disproportionally affected by the impact caused by these changes. Systemic approaches like One Health (OH) are sought to strengthen prevention and preparedness strategies by addressing the drivers of potential threats with a multidisciplinary and multisectoral approach, considering the whole system at the human-animal-environment interface. The integration of OH in national plans can be challenging due to the lack of effective coordination and collaboration among different sectors. To support the process of knowledge coproduction about the level of OH integration in prevention and preparedness strategies against health threats in Armenia, a situation analysis was performed on Crimean-Congo hemorrhagic fever/virus and anthrax (identified by local stakeholders as priorities to be addressed with the OH approach), and actions to strengthen the national OH system were identified with the support of a OH conceptual framework. The study highlighted that multidisciplinary and multisectoral efforts towards prevention and preparedness against VBDs and zoonoses threats need to be strengthened in Armenia, and priority actions to integrate the OH approach were identified.
Collapse
Affiliation(s)
- Alessia Milano
- National Center for Global Health, Italian National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Robbiati
- National Center for Global Health, Italian National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Declich
- National Center for Global Health, Italian National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
| | - Paolo Calistri
- National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, 64100 Teramo, Italy
| | - Ombretta Pediconi
- Training and Project Management Unit, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, 64100 Teramo, Italy
| | - Laura Amato
- National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, 64100 Teramo, Italy
| | - Lusine Paronyan
- Zoonotic and Parasitic Diseases Epidemiology Department, National Center for Disease Control and Prevention, Yerevan 0096, Armenia
| | - Lilit Avetisyan
- National Center for Disease Control and Prevention, Yerevan 0096, Armenia
| | - Arsen Manucharyan
- Reference Laboratory Center Reference Laboratory of Episootology, Ectoparasitology and Entomology, National Center for Disease Control and Prevention, Yerevan 0096, Armenia
| | - Georgi Avetisyan
- Veterinary Inspectorate, Food Safety Inspection Body, MoE, Yerevan 0010, Armenia
| | - Tigran Yesayan
- Veterinary Inspectorate, Food Safety Inspection Body, MoE, Yerevan 0010, Armenia
| | - Arman Gevorgyan
- Veterinary Inspectorate, Food Safety Inspection Body, MoE, Yerevan 0010, Armenia
| | | | - Maria Grazia Dente
- National Center for Global Health, Italian National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
| |
Collapse
|
8
|
Hayman DT, Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P, Bukachi SA, Casas N, Becerra NC, Charron DF, Chaudhary A, Ciacci Zanella JR, Cunningham AA, Dar O, Debnath N, Dungu B, Farag E, Gao GF, Khaitsa M, Machalaba C, Mackenzie JS, Markotter W, Mettenleiter TC, Morand S, Smolenskiy V, Zhou L, Koopmans M. Developing One Health surveillance systems. One Health 2023; 17:100617. [PMID: 38024258 PMCID: PMC10665171 DOI: 10.1016/j.onehlt.2023.100617] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023] Open
Abstract
The health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system.
Collapse
Affiliation(s)
- One Health High-Level Expert Panel (OHHLEP)
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- University of Indonesia, West Java, Indonesia
- National Emergency Crisis and Disasters Management Authority, Abu Dhabi, United Arab Emirates
- Centres for Disease Control and Prevention, Atlanta, GA, United States of America
- World Health Organization, Guinea Country Office, Conakry, Guinea
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
- National Ministry of Health, Autonomous City of Buenos Aires, Argentina
- School of Agricultural Sciences, Universidad de La Salle, Bogotá, Colombia
- Visiting Professor, One Health Institute, University of Guelph, Guelph Ontario, Canada
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kanpur, India
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Swine and Poultry, Santa Catarina, Brazil
- Institute of Zoology, Zoological Society of London, United Kingdom
- Global Operations Division, United Kingdom Health Security Agency, London, United Kingdom
- Global Health Programme, Chatham House, Royal Institute of International Affairs, London, United Kingdom
- Fleming Fund Country Grant to Bangladesh, DAI Global, Dhaka, Bangladesh
- One Health, Bangladesh
- Afrivet B M, Pretoria, South Africa
- Qatar Ministry of Public Health (MOPH), Health Protection & Communicable Diseases Division, Doha, Qatar
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Mississippi State University, Starkville, MS, United States of America
- EcoHealth Alliance, New York, United States of America
- Faculty of Health Sciences, Curtin University, Perth, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, South Africa
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany
- MIVEGEC, CNRS-IRD-Montpellier, Montpellier University, Montpelier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | - David T.S. Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | | | - Salama Almuhairi
- National Emergency Crisis and Disasters Management Authority, Abu Dhabi, United Arab Emirates
| | | | - Pépé Bilivogui
- World Health Organization, Guinea Country Office, Conakry, Guinea
| | - Salome A. Bukachi
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Natalia Casas
- National Ministry of Health, Autonomous City of Buenos Aires, Argentina
| | | | - Dominique F. Charron
- Visiting Professor, One Health Institute, University of Guelph, Guelph Ontario, Canada
| | - Abhishek Chaudhary
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kanpur, India
| | - Janice R. Ciacci Zanella
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Swine and Poultry, Santa Catarina, Brazil
| | | | - Osman Dar
- Global Operations Division, United Kingdom Health Security Agency, London, United Kingdom
- Global Health Programme, Chatham House, Royal Institute of International Affairs, London, United Kingdom
| | - Nitish Debnath
- Fleming Fund Country Grant to Bangladesh, DAI Global, Dhaka, Bangladesh
- One Health, Bangladesh
| | | | - Elmoubasher Farag
- Qatar Ministry of Public Health (MOPH), Health Protection & Communicable Diseases Division, Doha, Qatar
| | - George F. Gao
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Margaret Khaitsa
- Mississippi State University, Starkville, MS, United States of America
| | | | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, South Africa
| | | | - Serge Morand
- MIVEGEC, CNRS-IRD-Montpellier, Montpellier University, Montpelier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Vyacheslav Smolenskiy
- Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation
| | - Lei Zhou
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Marion Koopmans
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| |
Collapse
|
9
|
El-Jardali F, Bou-Karroum L, Hilal N, Hammoud M, Hemadi N, Assal M, Kalach N, Harb A, Azzopardi-Muscat N, Sy TR, Novillo-Ortiz D. Knowledge management tools and mechanisms for evidence-informed decision-making in the WHO European Region: a scoping review. Health Res Policy Syst 2023; 21:113. [PMID: 37907919 PMCID: PMC10619313 DOI: 10.1186/s12961-023-01058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Knowledge management (KM) emerged as a strategy to promote evidence-informed decision-making. This scoping review aims to map existing KM tools and mechanisms used to promote evidence-informed health decision-making in the WHO European Region and identify knowledge gaps. METHODS Following the Joanna Briggs Institute (JBI) guidance for conducting scoping reviews, we searched Medline, PubMed, EMBASE, the Cochrane library, and Open Grey. We conducted a descriptive analysis of the general characteristics of the included papers and conducted narrative analysis of the included studies and categorized studies according to KM type and phase. RESULTS Out of 9541 citations identified, we included 141 studies. The KM tools mostly assessed are evidence networks, surveillance tools, observatories, data platforms and registries, with most examining KM tools in high-income countries of the WHO European region. Findings suggest that KM tools can identify health problems, inform health planning and resource allocation, increase the use of evidence by policymakers and stimulate policy discussion. CONCLUSION Policymakers and funding agencies are called to support capacity-building activities, and future studies to strengthen KM in the WHO European region particularly in Eastern Europe and Central Asia. An updated over-arching strategy to coordinate KM activities in the WHO European region will be useful in these efforts.
Collapse
Affiliation(s)
- Fadi El-Jardali
- Department of Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Lama Bou-Karroum
- Department of Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nadeen Hilal
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Maya Hammoud
- Department of Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nour Hemadi
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Michelle Assal
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nour Kalach
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Aya Harb
- Knowledge to Policy Center, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Natasha Azzopardi-Muscat
- Division of Country Health Policies and Systems, WHO Regional Office for Europe, Copenhagen, Denmark
| | - Tyrone Reden Sy
- Division of Country Health Policies and Systems, WHO Regional Office for Europe, Copenhagen, Denmark.
| | - David Novillo-Ortiz
- Division of Country Health Policies and Systems, WHO Regional Office for Europe, Copenhagen, Denmark
| |
Collapse
|
10
|
Manzi S, Nelli L, Fortuna C, Severini F, Toma L, Di Luca M, Michelutti A, Bertola M, Gradoni F, Toniolo F, Sgubin S, Lista F, Pazienza M, Montarsi F, Pombi M. A modified BG-Sentinel trap equipped with FTA card as a novel tool for mosquito-borne disease surveillance: a field test for flavivirus detection. Sci Rep 2023; 13:12840. [PMID: 37553350 PMCID: PMC10409816 DOI: 10.1038/s41598-023-39857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Early detection of pathogens in vectors is important in preventing the spread of arboviral diseases, providing a timely indicator of pathogen circulation before outbreaks occur. However, entomological surveillance may face logistical constraints, such as maintaining the cold chain, and resource limitations, such as the field and laboratory workload of mosquito processing. We propose an FTA card-based trapping system that aims to simplify both field and laboratory phases of arbovirus surveillance. We modified a BG-Sentinel trap to include a mosquito collection chamber and a sugar feeding source through an FTA card soaked in a long-lasting viscous solution of honey and hydroxy-cellulose hydrogel. The FTA card ensures environmental preservation of nucleic acids, allowing continuous collection and feeding activity of specimens for several days and reducing the effort required for viral detection. We tested the trap prototype during two field seasons (2019 and 2021) in North-eastern Italy and compared it to CDC-CO2 trapping applied in West Nile and Usutu virus regional surveillance. Collections by the BG-FTA approach detected high species diversity, including Culex pipiens, Aedes albopictus, Culex modestus, Anopheles maculipennis sensu lato and Ochlerotatus caspius. When used for two-days sampling, the BG-FTA trap performed equally to CDC also for the WNV-major vector Cx. pipiens. The FTA cards detected both WNV and USUV, confirming the reliability of this novel approach to detect viral circulation in infectious mosquitoes. We recommend this surveillance approach as a particularly useful alternative in multi-target surveillance, for sampling in remote areas and in contexts characterized by high mosquito densities and diversity.
Collapse
Affiliation(s)
- Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Luca Nelli
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Claudia Fortuna
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Severini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Toma
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - M Di Luca
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Michelutti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | | | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Florigio Lista
- Istituto di Scienze Biomediche Della Difesa, Rome, Italy
| | | | | | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
11
|
Gothe LMR, Ganzenberg S, Ziegler U, Obiegala A, Lohmann KL, Sieg M, Vahlenkamp TW, Groschup MH, Hörügel U, Pfeffer M. Horses as Sentinels for the Circulation of Flaviviruses in Eastern-Central Germany. Viruses 2023; 15:v15051108. [PMID: 37243194 DOI: 10.3390/v15051108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Since 2018, autochthonous West Nile virus (WNV) infections have been regularly reported in eastern-central Germany. While clinically apparent infections in humans and horses are not frequent, seroprevalence studies in horses may allow the tracing of WNV and related flaviviruses transmission, such as tick-borne encephalitis virus (TBEV) and Usutu virus (USUV), and consequently help to estimate the risk of human infections. Hence, the aim of our study was to follow the seropositive ratio against these three viruses in horses in Saxony, Saxony Anhalt, and Brandenburg and to describe their geographic distribution for the year 2021. In early 2022, i.e., before the virus transmission season, sera from 1232 unvaccinated horses were tested using a competitive pan-flavivirus ELISA (cELISA). In order to estimate the true seropositive ratio of infection with WNV, TBEV, and USUV for 2021, positive and equivocal results were confirmed by a virus neutralization test (VNT). In addition, possible risk factors for seropositivity using questionnaires were analyzed using logistic regression based on questionnaires similar to our previous study from 2020. In total, 125 horse sera reacted positive in the cELISA. Based on the VNT, 40 sera showed neutralizing antibodies against WNV, 69 against TBEV, and 5 against USUV. Three sera showed antibodies against more than one virus, and eight were negative based on the VNT. The overall seropositive ratio was 3.3% (95% CI: 2.38-4.40) for WNV, 5.6% (95% CI: 4.44-7.04) for TBEV, and 0.4% (95% CI: 0.14-0.98) for USUV infections. While age and number of horses on the holding were factors predicting TBEV seropositivity, no risk factors were discovered for WNV seropositivity. We conclude that horses are useful sentinels to determine the flavivirus circulation in eastern-central Germany, as long as they are not vaccinated against WNV.
Collapse
Affiliation(s)
- Leonard M R Gothe
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Stefanie Ganzenberg
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Ute Ziegler
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Katharina L Lohmann
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Thomas W Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Martin H Groschup
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Uwe Hörügel
- Animal Diseases Fund Saxony, Horse Health Service, 01099 Dresden, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Thal DA, Mettenleiter TC. One Health—Key to Adequate Intervention Measures against Zoonotic Risks. Pathogens 2023; 12:pathogens12030415. [PMID: 36986337 PMCID: PMC10057313 DOI: 10.3390/pathogens12030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Zoonotic diseases are a heterogenous group of infections transmittable between humans and vertebrate animal species. Globally, endemic and emerging zoonoses are responsible for high social and economic costs. Due to the particular positioning of zoonoses at the human-animal-environment interface, zoonotic disease control is an integral part of One Health, which recognizes the close link between human, animal and ecosystem health. During recent years, the validity of the One Health approach has been recognized by academia and policy makers. However, gaps are still evident, particularly in the implementation of the concept as a unifying, integrated approach for different sectors and disciplines for the control of zoonoses. For example, while cooperation between human and veterinary medicine has made significant progress, networking with environmental sciences leaves room for improvement. Examination of individual intervention measures can help to gain valuable insights for future projects, and help to identify existing gaps. This is also a task for the One Health High-Level Expert Panel, which was established by WHO, OIE, FAO and UNEP to give science-based strategic advice on One Health measures. Overall, we should aim to learn from current situations, and to identify the best practice examples available, to continuously develop and improve One Health concepts for the control of zoonoses.
Collapse
|
13
|
Zinsstag J, Kaiser-Grolimund A, Heitz-Tokpa K, Sreedharan R, Lubroth J, Caya F, Stone M, Brown H, Bonfoh B, Dobell E, Morgan D, Homaira N, Kock R, Hattendorf J, Crump L, Mauti S, Del Rio Vilas V, Saikat S, Zumla A, Heymann D, Dar O, de la Rocque S. Advancing One human-animal-environment Health for global health security: what does the evidence say? Lancet 2023; 401:591-604. [PMID: 36682371 DOI: 10.1016/s0140-6736(22)01595-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
In this Series paper, we review the contributions of One Health approaches (ie, at the human-animal-environment interface) to improve global health security across a range of health hazards and we summarise contemporary evidence of incremental benefits of a One Health approach. We assessed how One Health approaches were reported to the Food and Agricultural Organization of the UN, the World Organisation for Animal Health (WOAH, formerly OIE), and WHO, within the monitoring and assessment frameworks, including WHO International Health Regulations (2005) and WOAH Performance of Veterinary Services. We reviewed One Health theoretical foundations, methods, and case studies. Examples from joint health services and infrastructure, surveillance-response systems, surveillance of antimicrobial resistance, food safety and security, environmental hazards, water and sanitation, and zoonoses control clearly show incremental benefits of One Health approaches. One Health approaches appear to be most effective and sustainable in the prevention, preparedness, and early detection and investigation of evolving risks and hazards; the evidence base for their application is strongest in the control of endemic and neglected tropical diseases. For benefits to be maximised and extended, improved One Health operationalisation is needed by strengthening multisectoral coordination mechanisms at national, regional, and global levels.
Collapse
Affiliation(s)
- Jakob Zinsstag
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Andrea Kaiser-Grolimund
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Institute of Social Anthropology, University of Basel, Basel, Switzerland
| | - Kathrin Heitz-Tokpa
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Rajesh Sreedharan
- Health Security Preparedness Department, Health Emergencies Programme, WHO, Geneva, Switzerland
| | | | | | | | - Hannah Brown
- Department of Anthropology, Durham University, Durham, UK
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Emily Dobell
- Global Operations, UK Health Security Agency, London, UK
| | - Dilys Morgan
- Global Operations, UK Health Security Agency, London, UK
| | - Nusrat Homaira
- Centre for Child Health Research and Innovation, University of New South Wales, Sydney, NSW, Australia
| | - Richard Kock
- Royal Veterinary College, University of London, London, UK
| | - Jan Hattendorf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Lisa Crump
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Stephanie Mauti
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Victor Del Rio Vilas
- Faculty of Medical Sciences, University of Surrey, Surrey, UK; Global Health Programme, Royal Institute of International Affairs, London, UK
| | - Sohel Saikat
- System Resilience and Essential Public Health Functions, Special Programme on Primary Health Care, WHO, Geneva, Switzerland
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, London, UK; National Institute for Health and Care Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - David Heymann
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Osman Dar
- Global Health Programme, Royal Institute of International Affairs, London, UK; Global Operations, UK Health Security Agency, London, UK
| | - Stéphane de la Rocque
- Health Security Preparedness Department, Health Emergencies Programme, WHO, Geneva, Switzerland
| |
Collapse
|
14
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Cerviere MP, Marchesi F, Peruzzi S. West Nile Virus Infection: A Cross-Sectional Study on Italian Medical Professionals during Summer Season 2022. Trop Med Infect Dis 2022; 7:tropicalmed7120404. [PMID: 36548659 PMCID: PMC9786547 DOI: 10.3390/tropicalmed7120404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) has progressively endemized in large areas of continental Europe, and particularly in Northern Italy, in the Po River Valley. During summer season 2022, Italy experienced an unprecedented surge in incidence cases of WNV infections, including its main complications (West Nile fever (WNF) and West Nile neuroinvasive disease (WNND)). As knowledge, attitudes, and practices (KAP) of medical professionals may be instrumental in guaranteeing a prompt diagnosis and an accurate management of incident cases, we performed a cross-sectional study specifically on a sample of Italian medical professionals (1 August 2022-10 September 2022; around 8800 potential recipients). From a total of 332 questionnaires (response rate of 3.8%), 254 participating medical professionals were eventually included in the analyses. Knowledge status of participants was unsatisfying, as most of them exhibited knowledge gaps on the actual epidemiology of WNV, with similar uncertainties on the clinical features of WNF and WNND. Moreover, most of participants substantially overlooked WNV as a human pathogen when compared to SARS-CoV-2, TB, and even HIV. Interestingly, only 65.4% of respondents were either favorable or highly favorable towards a hypothetical WNV vaccine. Overall, acknowledging a higher risk perception on WNV was associated with individual factors such as reporting a seniority ≥ 10 years (adjusted odds ratio [aOR] 2.39, 95% Confidence interval [95%CI] 1.34 to 4.28), reporting a better knowledge score (aOR 2.92, 95%CI 1.60 to 5.30), having previously managed cases of WNV infections (aOR 3.65, 95%CI 1.14 to 14.20), being favorable towards a hypothetic vaccine (aOR 2.16, 95%CI 1.15 to 4.04), and perceiving WNV infections as potentially affecting daily activities (aOR 2.57, 95%CI 1.22 to 5.42). In summary, substantial knowledge gaps and the erratic risk perception collectively enlighten the importance and the urgency for appropriate information campaigns among medical professionals, and particularly among frontline personnel.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: or ; Tel.: +39-339-2994343 or +39-522-837587
| | | | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, 42016 Guastalla, Italy
| |
Collapse
|
15
|
Pichler V, Giammarioli C, Bellini R, Veronesi R, Arnoldi D, Rizzoli A, Lia RP, Otranto D, Ballardini M, Cobre P, Serini P, della Torre A, Caputo B. First evidence of pyrethroid resistance in Italian populations of West Nile virus vector Culex pipiens. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:390-395. [PMID: 35396754 PMCID: PMC9540436 DOI: 10.1111/mve.12573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Culex pipiens (Linnaeus), one of the most abundant mosquito species in Europe, plays a crucial role in the endemic transmission of West Nile virus and caused the large outbreak with >1600 human cases in 2018. Although evidence of resistance to pyrethroids has been reported for Cx. pipiens populations from Spain and Greece, resistance monitoring has been largely neglected in Italy. Herein, we investigate susceptibility of Italian Cx. pipiens populations to the pyrethroids permethrin and deltamethrin. Results from WHO-tube-bioassays revealed mortalities ranging from 14-54%, indicating high levels of resistance, in four out of 10 populations exposed to permethrin (0.75%) and of 63% in one of three populations exposed to deltamethrin (0.05%). Reduced susceptibility (mortality<98%) was detected in almost all other populations. A clear association is shown between the resistant phenotype and the presence of kdr-alleles in position 1014 of the VSSC, strongly suggesting its role in reducing susceptibility. The study provides the first evidence of pyrethroid-resistance in Italian Cx. pipiens populations and reports levels of resistance paralleled in the European region only in Turkey. This highlights the urgent need to implement insecticide-resistance management plans to restore the efficacy of the nowadays only chemical weapon available to control arbovirus transmission in Europe.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità SapienzaRomeItaly
| | - Carola Giammarioli
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità SapienzaRomeItaly
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, Department of Medical and Veterinary EntomologyCrevalcoreItaly
| | - Rodolfo Veronesi
- Centro Agricoltura Ambiente “G. Nicoli”, Department of Medical and Veterinary EntomologyCrevalcoreItaly
| | - Daniele Arnoldi
- Ecohealth Unit, Research and Innovation CentreFondazione Edmund Mach, San Michele all'AdigeTrentoItaly
| | - Annapaola Rizzoli
- Ecohealth Unit, Research and Innovation CentreFondazione Edmund Mach, San Michele all'AdigeTrentoItaly
| | | | - Domenico Otranto
- Dipartimento di Medicina VeterinariaUniversità di BariValenzanoItaly
| | - Marco Ballardini
- Istituto Zooprofilattico Sperimentale del PiemonteLiguria e Valle d'AostaTorinoItaly
| | - Pietro Cobre
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità SapienzaRomeItaly
| | - Paola Serini
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità SapienzaRomeItaly
| | | | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità SapienzaRomeItaly
| |
Collapse
|
16
|
Constant O, Gil P, Barthelemy J, Bolloré K, Foulongne V, Desmetz C, Leblond A, Desjardins I, Pradier S, Joulié A, Sandoz A, Amaral R, Boisseau M, Rakotoarivony I, Baldet T, Marie A, Frances B, Reboul Salze F, Tinto B, Van de Perre P, Salinas S, Beck C, Lecollinet S, Gutierrez S, Simonin Y. One Health surveillance of West Nile and Usutu viruses: a repeated cross-sectional study exploring seroprevalence and endemicity in Southern France, 2016 to 2020. Euro Surveill 2022; 27:2200068. [PMID: 35748300 PMCID: PMC9229194 DOI: 10.2807/1560-7917.es.2022.27.25.2200068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Patricia Gil
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup, Marcy l'Etoile, France
| | - Isabelle Desjardins
- University of Lyon, VetAgro Sup, GREMERES-ICE Lyon Equine Research Center, Marcy l'Etoile, France
| | | | - Aurélien Joulié
- National veterinary school of Toulouse, Université de Toulouse, Toulouse, France
| | - Alain Sandoz
- Aix Marseille Université - CNRS, UMR 7376, Laboratoire Chimie de l'Environnement, Marseille, France
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Michel Boisseau
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | | | - Thierry Baldet
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | | | | | | | - Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Sylvie Lecollinet
- CIRAD, UMR ASTRE, CRVC, Petit Bourg, France
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM, EFS (etablissement français du sang), Montpellier, France
- ASTRE research unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| |
Collapse
|
17
|
Assessment of the Costs Related to West Nile Virus Monitoring in Lombardy Region (Italy) between 2014 and 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095541. [PMID: 35564939 PMCID: PMC9101130 DOI: 10.3390/ijerph19095541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022]
Abstract
In Italy, the West Nile Virus surveillance plan considers a multidisciplinary approach to identify the presence of the virus in the environment (entomological, ornithological, and equine surveillance) and to determine the risk of infections through potentially infected donors (blood and organ donors). The costs associated with the surveillance program for the Lombardy Region between 2014 and 2018 were estimated. The costs of the program were compared with a scenario in which the program was not implemented, requiring individual blood donation nucleic acid amplification tests (NAT) to detect the presence of WNV in human samples throughout the seasonal period of vector presence. Considering the five-year period, the application of the environmental/veterinary surveillance program allowed a reduction in costs incurred in the Lombardy Region of 7.7 million EUR. An integrated surveillance system, including birds, mosquito vectors, and dead-end hosts such as horses and humans, can prevent viral transmission to the human population, as well as anticipate the detection of WNV using NAT in blood and organ donors. The surveillance program within a One Health context has given the possibility to both document the expansion of the endemic area of WNV in northern Italy and avoid most of the NAT-related costs.
Collapse
|
18
|
Gomes BM, Rebelo CB, Alves de Sousa L. Public health, surveillance systems and preventive medicine in an interconnected world. One Health 2022. [DOI: 10.1016/b978-0-12-822794-7.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Ajuwon BI, Roper K, Richardson A, Lidbury BA. One Health Approach: A Data-Driven Priority for Mitigating Outbreaks of Emerging and Re-Emerging Zoonotic Infectious Diseases. Trop Med Infect Dis 2021; 7:tropicalmed7010004. [PMID: 35051120 PMCID: PMC8780196 DOI: 10.3390/tropicalmed7010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
This paper discusses the contributions that One Health principles can make in improving global response to zoonotic infectious disease. We highlight some key benefits of taking a One Health approach to a range of complex infectious disease problems that have defied a more traditional sectoral approach, as well as public health policy and practice, where gaps in surveillance systems need to be addressed. The historical examples demonstrate the scope of One Health, partly from an Australian perspective, but also with an international flavour, and illustrate innovative approaches and outcomes with the types of collaborative partnerships that are required.
Collapse
Affiliation(s)
- Busayo I. Ajuwon
- National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Acton, ACT 2601, Australia; (K.R.); (B.A.L.)
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- Correspondence:
| | - Katrina Roper
- National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Acton, ACT 2601, Australia; (K.R.); (B.A.L.)
| | - Alice Richardson
- Statistical Support Network, The Australian National University, Acton, ACT 2601, Australia;
| | - Brett A. Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Acton, ACT 2601, Australia; (K.R.); (B.A.L.)
| |
Collapse
|
20
|
Marchino M, Paternoster G, Favretto AR, Balduzzi G, Berezowski J, Tomassone L. Process evaluation of integrated West Nile virus surveillance in northern Italy: an example of a One Health approach in public health policy. EVALUATION AND PROGRAM PLANNING 2021; 89:101991. [PMID: 34493380 DOI: 10.1016/j.evalprogplan.2021.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
West Nile virus (WNV) is endemic in the Po valley area in northern Italy. Regional health authorities have implemented integrated WNV surveillance following a One Health approach, based on collaboration between human, animal and environmental health institutions. We evaluated this integrated WNV surveillance system in Emilia-Romagna, Lombardy and Piedmont regions by means of a process evaluation. We examined the system's implementation fidelity, dose delivered and received, reach, and we identified strengths and weaknesses in the system. Qualitative and semi-quantitative data were obtained from three regional focus groups. Data were discussed in a follow up focus group, where participants suggested recommendations for improving the surveillance system. Inter-institutional and interdisciplinary integration and the creation of a 'community of practice' were identified as key elements for effective surveillance. We identified differences in the degree of interdisciplinary integration in the three regions, likely due to different epidemiological situations and years of experience in surveillance implementation. Greater collaboration and sharing of information, public engagement and economic assessments of the integrated surveillance approach would facilitate its social recognition and guarantee its sustainability through dedicated funding. We demonstrate that a transdisciplinary research approach based on process evaluation has value for designing and fine-tuning integrated health surveillance systems.
Collapse
Affiliation(s)
- Monica Marchino
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10050, Grugliasco, Italy.
| | - Giulia Paternoster
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057, Zurich, Switzerland.
| | - Anna Rosa Favretto
- Department of Jurisprudence and Political, Economic and Social Sciences, University of Eastern Piedmont, Via Cavour 84, 15121, Alessandria, Italy.
| | - Giacomo Balduzzi
- Department of Jurisprudence and Political, Economic and Social Sciences, University of Eastern Piedmont, Via Cavour 84, 15121, Alessandria, Italy.
| | - John Berezowski
- Scotland's Rural College, 10 Inverness Campus, IV2 5NA, Inverness, UK.
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10050, Grugliasco, Italy.
| |
Collapse
|
21
|
Crump L, Maidane Y, Mauti S, Tschopp R, Ali SM, Abtidon R, Bourhy H, Keita Z, Doumbia S, Traore A, Bonfoh B, Tetchi M, Tiembré I, Kallo V, Paithankar V, Zinsstag J. From reverse innovation to global innovation in animal health: A review. Heliyon 2021; 7:e08044. [PMID: 34622053 PMCID: PMC8479615 DOI: 10.1016/j.heliyon.2021.e08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/02/2022] Open
Abstract
Reverse innovation refers to learning from or diffusion of innovations developed in low income settings and further translated to industrialized countries. There is lack of consensus regarding terminology, but the idea that innovations in low-income countries are promising for adoption in high-income contexts is not new. However, in healthcare literature globally, the vast majority of publications referring to 'disruptive innovation' were published in the last ten years. To assess the potential of innovative developments and technologies for improving animal health, we initiated a literature review in 2020. We used a combined approach, incorporating targeted searching in PubMed using a key word algorithm with a snowball technique, to identify 120 relevant publications and extract data for qualitative coding. Heterogeneity of articles precluded meta-analysis, quality scoring and risk of bias analysis. We can distinguish technical innovations like new digital devices, diagnostic tests and procedures, and social innovations of intersectoral cooperation. We profile two case studies to describe potential global innovations: an integrated surveillance and response system in Somali Regional State, Ethiopia and a blockchain secured One Health intervention to optimally provide post-exposure prophylaxis for rabies exposed people in West Africa. Innovation follows no borders and can also occur in low-income settings, under constraints of cost, lack of services and infrastructure. Lower administrative and legal barriers may contribute to produce innovations that would not be possible under conditions of high density of regulation. We recommend using the term global innovation, which highlights those emanating from international partnership to solve problems of global implications.
Collapse
Affiliation(s)
- Lisa Crump
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Yahya Maidane
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
| | - Stephanie Mauti
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Rea Tschopp
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Seid Mohammed Ali
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
| | - Rahma Abtidon
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
| | - Hervé Bourhy
- Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Zakaria Keita
- Université des Sciences, des Techniques et des Technologies de Bamako, BP, 1805, Bamako, Mali
| | - Seydou Doumbia
- Université des Sciences, des Techniques et des Technologies de Bamako, BP, 1805, Bamako, Mali
| | | | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP, 1303, Abidjan, Cote d'Ivoire
| | - Mathilde Tetchi
- Institut National d'Hygiène Publique, 23 BP, 3838, Abidjan, Cote d'Ivoire
| | - Issaka Tiembré
- Institut National d'Hygiène Publique, 23 BP, 3838, Abidjan, Cote d'Ivoire
| | - Vessaly Kallo
- Ministère de Resources Animales et Halieutiques, Abidjan, Cote d'Ivoire
| | - Vega Paithankar
- Health Information Traceability Stiftung, Gotthardstrasse 26, Zug, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, PO Box, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| |
Collapse
|
22
|
Wu K, Yu Y, Chen C, Fu Z. Is One Health a Viable Strategy in Animal Health Litigation: Evidence from Civil Lawsuits in China. Animals (Basel) 2021; 11:ani11092560. [PMID: 34573525 PMCID: PMC8468116 DOI: 10.3390/ani11092560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Strategic litigation launched to protect animal welfare worldwide branches out with several tactical themes: environmental protection, child abuse, veterinarian malpractice, product liability and quasi-family member. Currently, the litigation strategy themed in One Health has been observed in legal practice in Chinese mainland. Using 1520 zoonosis related civil lawsuit judgments, this study aimed to assess the effectiveness of this litigation strategy in animal health cases from Chinese mainland. It has been confirmed that using the litigation strategy themed in One Health results in more successful outcomes and larger damage awards, so there might be a practical value in using this strategy in animal welfare lawsuits. Abstract Several litigation strategies are used to gain support from courts in order to protect animals. While the emerging litigation strategy themed in One Health stimulates judicial protection in the animal health sector, little is known about whether and how such strategies are supported by courts. In this article, we investigate how animal welfare litigation strategies influence judge’s choices within their discretion. We argue that litigators equipped with the litigation strategy themed in One Health are placed in an advantageous position in animal health cases, but that this tendency varies markedly across zoonoses. Specifically, we suggest that litigators utilizing One Health’s litigation strategy are associated with higher probabilities to win, whereas normal litigators are not. Further, we propose that litigators equipped with the One Health litigation strategy are awarded more damages from judges. We test and find support for our predictions using a cross sectional dataset of civil lawsuit cases centering on the animal health industry in Chinese mainland. Our findings indicate that courts indeed were persuaded by the One Health litigation strategy, even when bound by the discretion rules. At the same time, we suggest that for advocates who would like to litigate for animal welfare in the animal health sector, the litigation strategy themed in One Health might have potentially positive implications.
Collapse
Affiliation(s)
- Kai Wu
- School of Law, Zhongnan University of Economics and Law, Wuhan 430073, China;
| | - Ying Yu
- School of Public Administration, Zhongnan University of Economics and Law, Wuhan 430073, China
- Correspondence:
| | - Chen Chen
- School of Health Sciences, Wuhan University, Wuhan 430071, China;
| | - Zheming Fu
- School of Law, Peking University, Beijing 100871, China;
- Maurer School of Law, Indiana University Bloomington, Bloomington, IN 47405-7000, USA
| |
Collapse
|
23
|
Tidman R, Abela-Ridder B, de Castañeda RR. The impact of climate change on neglected tropical diseases: a systematic review. Trans R Soc Trop Med Hyg 2021; 115:147-168. [PMID: 33508094 PMCID: PMC7842100 DOI: 10.1093/trstmh/traa192] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neglected tropical diseases (NTDs) are a diverse group of diseases that continue to affect >1 billion people, with these diseases disproportionately impacting vulnerable populations and territories. Climate change is having an increasing impact on public health in tropical and subtropical areas and across the world and can affect disease distribution and transmission in potentially diverse ways. Improving our understanding of how climate change influences NTDs can help identify populations at risk to include in future public health interventions. Articles were identified by searching electronic databases for reports of climate change and NTDs between 1 January 2010 and 1 March 2020. Climate change may influence the emergence and re-emergence of multiple NTDs, particularly those that involve a vector or intermediate host for transmission. Although specific predictions are conflicting depending on the geographic area, the type of NTD and associated vectors and hosts, it is anticipated that multiple NTDs will have changes in their transmission period and geographic range and will likely encroach on regions and populations that have been previously unaffected. There is a need for improved surveillance and monitoring to identify areas of NTD incursion and emergence and include these in future public health interventions.
Collapse
Affiliation(s)
- Rachel Tidman
- Consultant, World Health Organization, Geneva, Switzerland
| | - Bernadette Abela-Ridder
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Rafael Ruiz de Castañeda
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland.,Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
24
|
Soft Computing of a Medically Important Arthropod Vector with Autoregressive Recurrent and Focused Time Delay Artificial Neural Networks. INSECTS 2021; 12:insects12060503. [PMID: 34072705 PMCID: PMC8227104 DOI: 10.3390/insects12060503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Arthropod vectors are responsible for transmitting a large number of diseases, and for most, there are still not available effective vaccines. Vector disease control is mostly achieved by a sustained prediction of vector populations to maintain support for surveillance and control activities. Mathematical models may assist in predicting arthropod population dynamics. However, arthropod dynamics, and mosquitoes particularly, due their complex life cycle, often exhibit an abrupt and non-linear occurrence. Therefore, there is a growing interest in describing mosquito population dynamics using new methodologies. In this work, we made an effort to gain insights into the non-linear population dynamics of Culex sp. adults, aiming to introduce straightforward soft-computing techniques based on artificial neural networks (ANNs). We propose two kind of models, one autoregressive, handling temperature as an exogenous driver and population as an endogenous one, and a second based only on the exogenous factor. To the best of our knowledge, this is the first study using recurrent neural networks and the most influential environmental variable for prediction of the WNv vector Culex sp. population dynamics, providing a new framework to be used in arthropod decision-support systems. Abstract A central issue of public health strategies is the availability of decision tools to be used in the preventive management of the transmission cycle of vector-borne diseases. In this work, we present, for the first time, a soft system computing modeling approach using two dynamic artificial neural network (ANNs) models to describe and predict the non-linear incidence and time evolution of a medically important mosquito species, Culex sp., in Northern Greece. The first model is an exogenous non-linear autoregressive recurrent neural network (NARX), which is designed to take as inputs the temperature as an exogenous variable and mosquito abundance as endogenous variable. The second model is a focused time-delay neural network (FTD), which takes into account only the temperature variable as input to provide forecasts of the mosquito abundance as the target variable. Both models behaved well considering the non-linear nature of the adult mosquito abundance data. Although, the NARX model predicted slightly better (R = 0.623) compared to the FTD model (R = 0.534), the advantage of the FTD over the NARX neural network model is that it can be applied in the case where past values of the population system, here mosquito abundance, are not available for their forecasting.
Collapse
|
25
|
Weber MN, Mosena ACS, Baumbach LF, da Silva MS, Canova R, Dos Santos DRL, Budaszewski RDF, de Oliveira LV, Soane MM, Saraiva NB, Bellucco FT, Mazurek BA, Diehl GN, Gil LHVG, Borba MR, Corbellini LG, Canal CW. Serologic evidence of West Nile virus and Saint Louis encephalitis virus in horses from Southern Brazil. Braz J Microbiol 2021; 52:1021-1027. [PMID: 33797731 DOI: 10.1007/s42770-021-00474-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/26/2021] [Indexed: 12/26/2022] Open
Abstract
Flaviviruses as West Nile virus (WNV), Saint Louis encephalitis virus (SLEV), Ilhéus virus (ILHV), and Rocio virus (ROCV) are previously reported in different Brazilian regions, but studies in Southern Brazil are still scarce. To improve the information regarding flaviviruses in Southern Brazil, horse serum samples were analyzed using RT-qPCR and a commercial ELISA-Ab against WNV followed by PRNT75. All 1000 samples analyzed by real-time RT-PCR resulted negative. The 465 subsampled samples were analyzed by a commercial ELISA-Ab against WNV, and the 18.5% (86/465) positive samples were further analyzed by PRNT75. In the PRNT75, 13/86 and 2/86 horses were positive for SLEV and WNV, respectively. It was observed that 5.8% (13/226) of the farms presented at least one positive animal for SLEV in PRNT75, whereas 0.9% (2/226) for WNV. Apart from the lower seroprevalences identified when compared to data previously reported in other Brazilian regions, our results suggest that public health professionals must be aware of the presence of these potential zoonotic pathogens.
Collapse
Affiliation(s)
- Matheus N Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil.
| | - Ana C S Mosena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Letícia F Baumbach
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana S da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raíssa Canova
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Débora R L Dos Santos
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Renata da F Budaszewski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Livia V de Oliveira
- Instituto Ageu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
| | | | | | | | | | - Gustavo N Diehl
- Secretaria da Agricultura, Pecuária e Desenvolvimento Rural do Rio Grande do Sul (SEAPDR-RS), Porto Alegre, RS, Brazil
| | - Laura H V G Gil
- Instituto Ageu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
| | - Mauro R Borba
- Laboratório de Epidemiologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luis G Corbellini
- Laboratório de Epidemiologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Aenishaenslin C, Häsler B, Ravel A, Parmley EJ, Mediouni S, Bennani H, Stärk KDC, Buckeridge DL. Evaluating the Integration of One Health in Surveillance Systems for Antimicrobial Use and Resistance: A Conceptual Framework. Front Vet Sci 2021; 8:611931. [PMID: 33842569 PMCID: PMC8024545 DOI: 10.3389/fvets.2021.611931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/08/2021] [Indexed: 11/26/2022] Open
Abstract
It is now widely acknowledged that surveillance of antimicrobial resistance (AMR) must adopt a "One Health" (OH) approach to successfully address the significant threats this global public health issue poses to humans, animals, and the environment. While many protocols exist for the evaluation of surveillance, the specific aspect of the integration of a OH approach into surveillance systems for AMR and antimicrobial Use (AMU), suffers from a lack of common and accepted guidelines and metrics for its monitoring and evaluation functions. This article presents a conceptual framework to evaluate the integration of OH in surveillance systems for AMR and AMU, named the Integrated Surveillance System Evaluation framework (ISSE framework). The ISSE framework aims to assist stakeholders and researchers who design an overall evaluation plan to select the relevant evaluation questions and tools. The framework was developed in partnership with the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). It consists of five evaluation components, which consider the capacity of the system to: [1] integrate a OH approach, [2] produce OH information and expertise, [3] generate actionable knowledge, [4] influence decision-making, and [5] positively impact outcomes. For each component, a set of evaluation questions is defined, and links to other available evaluation tools are shown. The ISSE framework helps evaluators to systematically assess the different OH aspects of a surveillance system, to gain comprehensive information on the performance and value of these integrated efforts, and to use the evaluation results to refine and improve the surveillance of AMR and AMU globally.
Collapse
Affiliation(s)
- Cécile Aenishaenslin
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Barbara Häsler
- Veterinary Epidemiology Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - André Ravel
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - E. Jane Parmley
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Sarah Mediouni
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Houda Bennani
- Veterinary Epidemiology Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Katharina D. C. Stärk
- Department of Animal Health, Federal Office for Food Safety and Veterinary Affairs, Bern, Switzerland
| | - David L. Buckeridge
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Carroll D, Morzaria S, Briand S, Johnson CK, Morens D, Sumption K, Tomori O, Wacharphaueasadee S. Preventing the next pandemic: the power of a global viral surveillance network. BMJ 2021; 372:n485. [PMID: 33712471 PMCID: PMC7953426 DOI: 10.1136/bmj.n485] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dennis Carroll and colleagues call for a global early warning system to detect viruses with pandemic potential
Collapse
Affiliation(s)
| | - Subhash Morzaria
- Institute for Infectious Animal Diseases, Texas A&M University, College Station, Texas, USA
| | - Sylvie Briand
- Global Infectious Hazard Preparedness, WHO, Geneva, Switzerland
| | | | - David Morens
- National Institute of Allergy and Infectious Diseases at the National Institutes of Health, Bethesda, MD, USA
| | - Keith Sumption
- Joint Centre for Zoonotic Infections and Antimicrobial Resistance, Rome, Italy
| | | | - Supaporn Wacharphaueasadee
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn University, Pathumwan, Thailand
| |
Collapse
|
28
|
Marini G, Manica M, Delucchi L, Pugliese A, Rosà R. Spring temperature shapes West Nile virus transmission in Europe. Acta Trop 2021; 215:105796. [PMID: 33310078 DOI: 10.1016/j.actatropica.2020.105796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
West Nile Virus (WNV) is now endemic in many European countries, causing hundreds of human cases every year, with a high spatial and temporal heterogeneity. Previous studies have suggested that spring temperature might play a key role at shaping WNV transmission. Specifically, warmer temperatures in April-May might amplify WNV circulation, thus increasing the risk for human transmission later in the year. To test this hypothesis, we collated publicly available data on the number of human infections recorded in Europe between 2011 and 2019. We then applied generalized linear models to quantify the relationship between human cases and spring temperature, considering both average conditions (over years 2003-2010) and deviations from the average for subsequent years (2011-2019). We found a significant positive association both spatial (average conditions) and temporal (deviations). The former indicates that WNV circulation is higher in usually warmer regions while the latter implies a predictive value of spring conditions over the coming season. We also found a positive association with WNV detection during the previous year, which can be interpreted as an indication of the reliability of the surveillance system but also of WNV overwintering capacity. Weather anomalies at the beginning of the mosquito breeding season might act as an early warning signal for public health authorities, enabling them to strengthen in advance ongoing surveillance and prevention strategies.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy.
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy; Center for Information and Communication Technology, Bruno Kessler Foundation, Trento, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Center Agriculture Food Environment, University of Trento, San Michele all'Adige (TN), Italy
| |
Collapse
|
29
|
Zinsstag J, Utzinger J, Probst-Hensch N, Shan L, Zhou XN. Towards integrated surveillance-response systems for the prevention of future pandemics. Infect Dis Poverty 2020; 9:140. [PMID: 33028426 PMCID: PMC7539270 DOI: 10.1186/s40249-020-00757-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022] Open
Abstract
Most human pathogens originate from non-human hosts and certain pathogens persist in animal reservoirs. The transmission of such pathogens to humans may lead to self-sustaining chains of transmission. These pathogens represent the highest risk for future pandemics. For their prevention, the transmission over the species barrier - although rare - should, by all means, be avoided. In the current COVID-19 pandemic, surprisingly though, most of the current research concentrates on the control by drugs and vaccines, while comparatively little scientific inquiry focuses on future prevention. Already in 2012, the World Bank recommended to engage in a systemic One Health approach for zoonoses control, considering integrated surveillance-response and control of human and animal diseases for primarily economic reasons. First examples, like integrated West Nile virus surveillance in mosquitos, wild birds, horses and humans in Italy show evidence of financial savings from a closer cooperation of human and animal health sectors. Provided a zoonotic origin can be ascertained for the COVID-19 pandemic, integrated wildlife, domestic animal and humans disease surveillance-response may contribute to prevent future outbreaks. In conclusion, the earlier a zoonotic pathogen can be detected in the environment, in wildlife or in domestic animals; and the better human, animal and environmental surveillance communicate with each other to prevent an outbreak, the lower are the cumulative costs.
Collapse
Affiliation(s)
- Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lv Shan
- National Institute of Parasitic Diseases at the Chinese Center for Disease Control and Prevention & Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research - Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases at the Chinese Center for Disease Control and Prevention & Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research - Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Caputo B, Manica M. Mosquito surveillance and disease outbreak risk models to inform mosquito-control operations in Europe. CURRENT OPINION IN INSECT SCIENCE 2020; 39:101-108. [PMID: 32403040 DOI: 10.1016/j.cois.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Surveillance programs are needed to guide mosquito-control operations to reduce both nuisance and the spread of mosquito-borne diseases. Understanding the thresholds for action to reduce both nuisance and the risk of arbovirus transmission is becoming critical. To date, mosquito surveillance is mainly implemented to inform about pathogen transmission risks rather than to reduce mosquito nuisance even though lots of control efforts are aimed at the latter. Passive surveillance, such as digital monitoring (validated by entomological trapping), is a powerful tool to record biting rates in real time. High-quality data are essential to model the risk of arbovirus diseases. For invasive pathogens, efforts are needed to predict the arrival of infected hosts linked to the small-scale vector to host contact ratio, while for endemic pathogens efforts are needed to set up region-wide highly structured surveillance measures to understand seasonal re-activation and pathogen transmission in order to carry out effective control operations.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Piazzale A. Moro 5, 38010, 00185 Rome, Italy.
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all' Adige, Italy
| |
Collapse
|
31
|
Calzolari M, Angelini P, Bolzoni L, Bonilauri P, Cagarelli R, Canziani S, Cereda D, Cerioli MP, Chiari M, Galletti G, Moirano G, Tamba M, Torri D, Trogu T, Albieri A, Bellini R, Lelli D. Enhanced West Nile Virus Circulation in the Emilia-Romagna and Lombardy Regions (Northern Italy) in 2018 Detected by Entomological Surveillance. Front Vet Sci 2020; 7:243. [PMID: 32432132 PMCID: PMC7214930 DOI: 10.3389/fvets.2020.00243] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/09/2020] [Indexed: 02/02/2023] Open
Abstract
With several human cases reported annually since 2008 and the unapparent risk of infection of blood donors, the West Nile virus (WNV) is emerging as an important health issue in Europe. Italy, as well as other European countries, experienced a recrudescence of the virus circulation in 2018, which led to an increased number of human cases. An integrated surveillance plan was activated in the Emilia-Romagna and Lombardy regions (Northern Italy) since 2008 in order to monitor the intensity and timing of WNV circulation. A fundamental part of this plan consists in entomological surveillance. In 2018, the surveillance plan made it possible to collect 385,293 mosquitoes in 163 stations in the two Regions. In total 269,147 Culex mosquitoes were grouped into 2,337 pools and tested for WNV, which was detected in 232 pools. Circulation started in the central part of the Emilia-Romagna region in the middle of June, about one month before the previous seasons. Circulation suddenly expanded to the rest of the region and reached the Lombardy region in the middle of July. WNV circulated more intensively in the eastern part of the surveyed area, as confirmed by the highest number of human cases. A relationship between the number of mosquitoes collected and the virus incidence emerged, but the data obtained highlighted that the probability of detecting the virus in a given site was less than expected with a higher number of collected mosquitoes. A significant relationship was observed between the temperature recorded one week before the sampling and the number of collected mosquitoes, as well as between the estimated number of WNV-positive mosquitoes and the temperature recorded two weeks before the sampling. The two weeks delay in the influence of temperature on the positive mosquitoes is in line with the time of the virus extrinsic incubation in the mosquito. This finding confirms that temperature is one of the principal drivers in WNV mosquito infection. The surveillance system demonstrated the ability to detect the virus circulation early, particularly in areas where circulation was more intense. This allowed evaluating the effect of mosquito abundance and weather factors on virus circulation.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Paola Angelini
- Regional Health Authority of Emilia-Romagna, Bologna, Italy
| | - Luca Bolzoni
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Mario Chiari
- Regional Health Authority of Lombardy, Milan, Italy
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Giovenale Moirano
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Deborah Torri
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Crevalcore, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| |
Collapse
|
32
|
Riccardo F, Monaco F, Bella A, Savini G, Russo F, Cagarelli R, Dottori M, Rizzo C, Venturi G, Di Luca M, Pupella S, Lombardini L, Pezzotti P, Parodi P, Maraglino F, Costa AN, Liumbruno GM, Rezza G, The Working Group. An early start of West Nile virus seasonal transmission: the added value of One Heath surveillance in detecting early circulation and triggering timely response in Italy, June to July 2018. ACTA ACUST UNITED AC 2019; 23. [PMID: 30107870 PMCID: PMC6092914 DOI: 10.2807/1560-7917.es.2018.23.32.1800427] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Italy, the 2018 West Nile virus transmission season started early with a high number of cases reported. One-Health surveillance, within the Italian West Nile national preparedness and response plan, detected viral circulation 9 days before symptom-onset of the first confirmed human case; triggering timely implementation of blood and transplant safety measures. This is an example of how functional coordination allows health authorities to use early warning triggers from surveillance systems to implement preventive measures.
Collapse
Affiliation(s)
- Flavia Riccardo
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale Abruzzo e Molise, Teramo, Italy
| | - Antonino Bella
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale Abruzzo e Molise, Teramo, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health, Veneto Region, Venice, Italy
| | - Roberto Cagarelli
- Directorate of Prevention, Food Safety, and Veterinary Public Health, Emilia-Romagna Region, Bologna, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Sezione di Reggio Emilia, Italy
| | - Caterina Rizzo
- Bambino Gesù Children's Hospital, Rome, Italy.,Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Simonetta Pupella
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Letizia Lombardini
- Italian National Transplant Centre, National Institute of Health, Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | | | | | | | | | - Giovanni Rezza
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - The Working Group
- The members of the working group are listed at the end of the article
| |
Collapse
|
33
|
Zinsstag J, Crump L, Schelling E, Hattendorf J, Maidane YO, Ali KO, Muhummed A, Umer AA, Aliyi F, Nooh F, Abdikadir MI, Ali SM, Hartinger S, Mäusezahl D, de White MBG, Cordon-Rosales C, Castillo DA, McCracken J, Abakar F, Cercamondi C, Emmenegger S, Maier E, Karanja S, Bolon I, de Castañeda RR, Bonfoh B, Tschopp R, Probst-Hensch N, Cissé G. Climate change and One Health. FEMS Microbiol Lett 2019; 365:4961133. [PMID: 29790983 PMCID: PMC5963300 DOI: 10.1093/femsle/fny085] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.
Collapse
Affiliation(s)
- Jakob Zinsstag
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Lisa Crump
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Esther Schelling
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Yahya Osman Maidane
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Kadra Osman Ali
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Abdifatah Muhummed
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Abdurezak Adem Umer
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Ferzua Aliyi
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Faisal Nooh
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Mohammed Ibrahim Abdikadir
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Seid Mohammed Ali
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,University of Jigjiga, Jigjiga University One Health Initiative, PO Box 1020, Jigjiga, Ethiopia
| | - Stella Hartinger
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,Universidad Peruana Cayetano Heredia, Public Health School, Lima, Peru, 15102
| | - Daniel Mäusezahl
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Monica Berger Gonzalez de White
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,Universidad del Valle, Guatemala City, Guatemala, 01015
| | | | | | | | - Fayiz Abakar
- Institut de Recherches en Elevage pour le Développement, BP 433, N'Djaména, Chad
| | - Colin Cercamondi
- Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Sandro Emmenegger
- University of Applied Sciences, Institute for Information and Process Management, 9000 St. Gallen, Switzerland
| | - Edith Maier
- University of Applied Sciences, Institute for Information and Process Management, 9000 St. Gallen, Switzerland
| | - Simon Karanja
- Jomo Kenyatta University, School of Public Health, 00200 Nairobi, Kenya
| | - Isabelle Bolon
- Institute of Global Health, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland
| | | | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Rea Tschopp
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland.,Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, PO Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| |
Collapse
|
34
|
Kolimenakis A, Bithas K, Latinopoulos D, Richardson C. On lifestyle trends, health and mosquitoes: Formulating welfare levels for control of the Asian tiger mosquito in Greece. PLoS Negl Trop Dis 2019; 13:e0007467. [PMID: 31163025 PMCID: PMC6568418 DOI: 10.1371/journal.pntd.0007467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/14/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
The expansion of urban ecosystems and climate change, both outcomes of massive lifestyle changes, contribute to a series of side effects such as environmental deterioration, spread of diseases, increased greenhouse gas emissions and introduction of invasive species. In the case of the Athens metropolitan area, an invasive mosquito species—the Asian tiger mosquito (Aedes albopictus)–has spread widely in the last decade. This spread is favoured within urban environments and is also affected by changing climatic trends. The Asian tiger mosquito is accompanied by risks of mosquito-borne diseases, greater nuisance levels, and increased expenses incurring for its confrontation. The main aims of this paper are (i) to estimate the various costs associated with the control of this invasive species, as well as its health and nuisance impacts, (ii) to evaluate the level of citizens’ well-being from averting these impacts and (iii) to record citizens’ and experts’ perceptions regarding alternative control measures. Evidence shows that experts tend to place a high value on mosquito control when associated with serious health risks, while citizens are more sensitive and concerned about the environmental impacts of control methods. The synthesis of results produced by the current study could act as a preliminary guide for the estimation of societal welfare from the confrontation of similar problems in the context of a complex ecosystem. This paper is based on several years’ collaboration among researchers from various disciplines, key health policy makers and stakeholders in an attempt to evaluate the economic dimensions related to the presence of the Asian Tiger Mosquito (Aedes albopictus) and the challenges of tackling mosquito-borne disease outbreaks in Greece and Southern Europe. Similar studies have been conducted and continue to be published in Europe and the USA examining the socioeconomic benefit from the implementation of relevant control and prevention strategies. These studies conclude that there are significant benefits related both to the reduction of nuisance levels and the reduction of the health risks posed by various mosquito species. In our case, the application of an updated economic analysis on the effectiveness of relevant public control and prevention programs provides essential information for public health decision-making, bearing in mind the significant restructuring of the public sector and the fiscal crisis apparent in the European South.
Collapse
Affiliation(s)
- Antonios Kolimenakis
- Institute of Urban Environment & Human Resources, Department of Economic and Regional Development, Panteion University, Kallithea, Athens, Greece
- * E-mail: , ,
| | - Kostas Bithas
- Institute of Urban Environment & Human Resources, Department of Economic and Regional Development, Panteion University, Kallithea, Athens, Greece
| | - Dionysis Latinopoulos
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, Greece
| | - Clive Richardson
- Institute of Urban Environment & Human Resources, Department of Economic and Regional Development, Panteion University, Kallithea, Athens, Greece
| |
Collapse
|
35
|
Ruiz-Arrondo I, McMahon BJ, Hernández-Triana LM, Santibañez P, Portillo A, Oteo JA. Surveillance of Mosquitoes (Diptera, Culicidae) in a Northern Central Region of Spain: Implications for the Medical Community. Front Vet Sci 2019; 6:86. [PMID: 31065550 PMCID: PMC6489427 DOI: 10.3389/fvets.2019.00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022] Open
Abstract
Mosquitoes are important to public and animal health due to their capacity to transmit diseases. Since the Zika virus was declared a pandemic by the WHO in 2016, and it has been recorded in different regions of Mediterranean Area (included Spain), the Government of La Rioja (Northern Spain) through the Center of Rickettsiosis and Arthropod-Borne Diseases, implemented an entomological surveillance programme of mosquitoes in La Rioja and in a close area of Navarra. This surveillance extended to some of the pathogens that they can transmit. Here we describe the framework of the initial surveillance programme for the detection of mosquitoes and associated human pathogens. We outline the benefits and the limitation of the programme to date, and explore how greater benefits can be achieved, for example using a One Health approach. Entomological surveillance has been carried out with BG-Sentinel traps, human bait technique and other methods such as collecting adults in resting places or immature stages by dipping in several wetlands. Since Aedes albopictus, vector of arbovirus such as Dengue, Chikungunya, and Zika, has not been detected yet in the region, the entomological programme included the surveillance of this exotic species using ovitraps in the most important cities. Morphological identification was supported using the mitochondrial cytochrome C oxidase subunit I and the internal transcribed spacer 2 genes analysis. In 2016 and 2017, more than 6,000 mosquitoes were collected. The mosquito's community included 21 species associated with six genera: Anopheles (n = 4), Aedes (n = 5), Culex (n = 6), Culiseta (n = 4), Uranotaenia (n = 1) and Coquillettidia (n = 1). Eleven species represent new records for La Rioja and Navarra regions. Several species were collected biting humans and a great proportion of the sampled mosquito population are competent vectors of several pathogens, such as West Nile virus. Sequences closely related to mosquito-only flavivirus have been detected in 0.34% of analysed pools. At the same time, the epidemiological surveillance emphasis is placed in the early detection of mosquito-borne diseases in primary health and emergency services. The surveillance programme represents a relevant and necessary assessment of the risk of pathogen transmission in a region, and it allows for the establishment of the appropriate preventive measures.
Collapse
Affiliation(s)
- Ignacio Ruiz-Arrondo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - Barry J. McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luis M. Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Paula Santibañez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - Aránzazu Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - José Antonio Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| |
Collapse
|
36
|
Aenishaenslin C, Häsler B, Ravel A, Parmley J, Stärk K, Buckeridge D. Evidence needed for antimicrobial resistance surveillance systems. Bull World Health Organ 2019; 97:283-289. [PMID: 30940985 PMCID: PMC6438253 DOI: 10.2471/blt.18.218917] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/27/2022] Open
Abstract
One Health surveillance for antimicrobial resistance has been promoted by the scientific community and by international organizations for more than a decade. In this article, we highlight issues that need to be addressed to improve the understanding of the effectiveness of One Health surveillance for antimicrobial resistance. We also outline the evidence needed to support countries planning to increase the level of integration of their surveillance system. Based on experience in Canada and other countries, we argue that more effort is needed to understand and measure the added value of One Health for antimicrobial resistance surveillance and to identify the most effective integration strategies. To date, guidelines for the development of One Health surveillance have focused mainly on the types of data that should be integrated. However, it may be necessary to apply the concept of One Health to surveillance tasks beyond data integration to realize the full value of the approach. Integration can be enhanced across different surveillance activities (data collection, analysis, interpretation and dissemination), taking account of the different skills and perspectives of experts and stakeholders involved. More research is needed to investigate the mechanisms through which a One Health approach to surveillance can increase the performance of antimicrobial resistance surveillance and, ultimately, improve health outcomes.
Collapse
Affiliation(s)
- Cécile Aenishaenslin
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicoitte, Saint-Hyacinthe, J2S 2M2, Quebec, Canada
| | - Barbara Häsler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, England
| | - André Ravel
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicoitte, Saint-Hyacinthe, J2S 2M2, Quebec, Canada
| | | | | | - David Buckeridge
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
37
|
William W, Bülent A, Thomas B, Eduardo B, Marieta B, Olivier B, Celine G, Jolyon M, Dusan P, Francis S, Ducheyne E. The importance of vector abundance and seasonality. ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|