1
|
Nguyen HTT, Lindahl JF, Bett B, Nguyen-Viet H, Lâm S, Nguyen-Tien T, Unger F, Dang-Xuan S, Bui TX, Le HT, Lundkvist Å, Ling J, Lee HS. Understanding zoonotic pathogens and risk factors from wildlife in Southeast Asia: a systematic literature review. Vet Q 2025; 45:1-17. [PMID: 40059837 PMCID: PMC11894755 DOI: 10.1080/01652176.2025.2475990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The COVID-19 pandemic has demonstrated the significance of the human-animal interface in the emergence of zoonotic diseases, with wildlife serving as an important source of infection. A better understanding of the specific pathogens and mechanisms involved is vital to prepare against future outbreaks, especially in Southeast Asia, a hotspot for zoonotic diseases. This paper reviews the published literature on wildlife zoonoses in this region from 2012 to 2022. The results show a diverse range of potential zoonotic pathogens and the widespread occurrence of zoonotic diseases from wildlife. Drivers of zoonotic pathogen spillover include (i) environmental factors (e.g. animal habitat disruption, environmental conditions, exposure to contaminated water/food/soil), (ii) animal factors (e.g. movement patterns, age-related susceptibility), (iii) human factors (e.g. lack of awareness, poor hygiene practices, age, gender and income) and (iv) human-animal-environmental interface factors (e.g. close contact between humans and animals, exposure through visiting animals and presence of vectors). The diverse drivers of zoonoses in Southeast Asia put its communities at risk for infection. To mitigate these risks, global health efforts should consider adopting a One Health approach to foster collaboration across human, animal, and wildlife health sectors. This could involve educating communities on safe animal interactions and improving disease surveillance.
Collapse
Affiliation(s)
- Ha Thi Thanh Nguyen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Swedish Veterinary Agency, Uppsala, Sweden
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Steven Lâm
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Fred Unger
- International Livestock Research Institute, Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Hanoi, Vietnam
| | - Thanh Xuan Bui
- Ho Chi Minh City Department of Health, Ho Chi Minh Center for Diseases Control, Ho Chi Minh, Vietnam
| | - Hien Thanh Le
- Ho Chi Minh City University of Agriculture and Forestry, Ho Chi Minh, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Guillebaud J, Ou TP, Hul V, Hoem T, Meng C, Nuon S, Hoem S, Lim R, Khun L, Furey NM, Cappelle J, Duong V, Chevalier V. Study of coronavirus diversity in wildlife in Northern Cambodia suggests continuous circulation of SARS-CoV-2-related viruses in bats. Sci Rep 2025; 15:12628. [PMID: 40221475 PMCID: PMC11993651 DOI: 10.1038/s41598-025-92475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/27/2025] [Indexed: 04/14/2025] Open
Abstract
Since SARS-CoV-2's emergence, studies in Southeast Asia, including Cambodia, have identified related coronaviruses (CoVs) in rhinolophid bats. This pilot study investigates the prevalence and diversity of CoVs in wildlife from two Cambodian provinces known for wildlife trade and environmental changes, factors favoring zoonotic spillover risk. Samples were collected from 2020 to 2022 using active (capture and swabbing of bats and rodents) and non-invasive (collection of feces from bat caves and wildlife habitats) methods. RNA was screened for CoVs using conventional pan-CoVs and real-time Sarbecovirus-specific PCR systems. Positive samples were sequenced and phylogenetic analysis was performed on the partial RdRp gene. A total of 2608 samples were collected: 867 rectal swabs from bats, 159 from rodents, 41 from other wild animals, and 1541 fecal samples. The overall prevalence of CoVs was 2.0%, with a 3.3% positive rate in bats, 2.5% in rodents, and no CoVs detected in other wildlife species. Alpha-CoVs were exclusive to bats, while Beta-CoVs were found in both bats and rodents. Seven SARS-CoV-2-related viruses were identified in Rhinolophus shameli bats sampled in August 2020, March 2021, and December 2021. Our results highlight diverse CoVs in Cambodian bats and rodents and emphasize bats as significant reservoirs. They also suggest continuous circulation of bat SARS-CoV-2-related viruses may occur in a region where ecological and human factors could favor virus emergence. Continuous surveillance and integrated approaches are crucial to managing and mitigating emerging zoonotic diseases.
Collapse
Affiliation(s)
- Julia Guillebaud
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- International Centre of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France.
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chana Meng
- Department of Wildlife and Biodiversity, Forestry Administration, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Sithun Nuon
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sreyleak Hoem
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Reaksa Lim
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Limmey Khun
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Julien Cappelle
- International Centre of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Véronique Chevalier
- International Centre of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- CIRAD, UMR ASTRE, Antananarivo, Madagascar
| |
Collapse
|
3
|
Segala FV, Guido G, Stroffolini G, Masini L, Cattaneo P, Moro L, Motta L, Gobbi F, Nicastri E, Vita S, Iatta R, Otranto D, Locantore P, Occa E, Putoto G, Saracino A, Di Gennaro F. Insights into the ecological and climate crisis: Emerging infections threatening human health. Acta Trop 2025; 262:107531. [PMID: 39837368 DOI: 10.1016/j.actatropica.2025.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The Anthropocene era is marked by unprecedented human-induced alterations to the environment, resulting in a climate emergency and widespread ecological deterioration. A staggering number of up to one million species of plants and animals are in danger of becoming extinct, which includes over 10 % of insect species and 40 % of plant species. Unrestrained release of greenhouse gases, widespread deforestation, intense agricultural practices, excessive fishing, and alterations in land use have exceeded the ecological boundaries that were once responsible for humanity's wellbeing. As per the Intergovernmental Panel on Climate Change (IPCC), existing policies are expected to result in a minimum rise in global temperature of +2 °C, with more recent assessments indicating a potential increase of up to +2.9 °C. The effects of climate change and ecological degradation on the formation of diseases are complex and have multiple aspects. Deforestation diminishes biodiversity and compels wildlife to come into greater proximity with humans, hence promoting the transmission of zoonotic diseases. Climate change intensifies these impacts by modifying the habitats of disease carrying organisms, resulting in the expansion of vector-borne diseases such as malaria, dengue, and Zika virus into previously unaffected areas. Furthermore, climate change amplifies the occurrence and severity of extreme weather phenomena, which undermines water, sanitation, and hygiene (WASH) practices. This creates an environment conducive to the transmission of waterborne diseases such as cholera in densely populated resettlement camps. Climate-induced disasters contribute to the complexity of epidemiological landscapes, exacerbating antimicrobial resistance and posing a threat to modern medical advancements. This narrative review investigates the complex connections between the ecological-climatic crises and emerging illnesses, offering an overview on how environmental changes contribute to outbreaks that pose a substantial threat to public health.
Collapse
Affiliation(s)
- Francesco Vladimiro Segala
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giacomo Guido
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Giacomo Stroffolini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | | | - Paolo Cattaneo
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Lucia Moro
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Leonardo Motta
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Emanuele Nicastri
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Serena Vita
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Roberta Iatta
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong
| | - Pietro Locantore
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore-Fondazione Policlinico "A. Gemelli" IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Edoardo Occa
- Operational Research Unit, doctors with Africa CUAMM, Padova, Italy
| | - Giovanni Putoto
- Operational Research Unit, doctors with Africa CUAMM, Padova, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
4
|
Fathi P, Alfonso AL, Yek C, Putman Z, Drew M, Esposito D, Zaidi I, Chea S, Ly S, Sath R, Lon C, Chea H, Leang R, Huy R, Ly S, Seng H, Tan CW, Zhu F, Wang L, Oliveira F, Sadtler K, Manning J. Humoral Immunity Profiling to Pandemic and Bat-Derived Coronavirus Variants: A Geographical Comparison. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403503. [PMID: 39471070 PMCID: PMC11714182 DOI: 10.1002/advs.202403503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Indexed: 11/01/2024]
Abstract
Dynamic pathogen exposure may impact the immunological response to SARS-CoV-2 (SCV2). One potential explanation for the lack of severe SCV2-related morbidity and mortality in Southeast Asia is prior exposure to related betacoronaviruses. Recent discoveries of SCV2-related betacoronaviruses from horseshoe bats (Rhinolophus sinicus) in Thailand, Laos, and Cambodia suggest the potential for bat-to-human spillover exposures in the region. In this work, serum antibodies to protein constructs from SCV2 and a representative bat coronavirus isolated in Cambodia (RshSTT182) are measured in pre-pandemic Cambodian human sera using ELISA assays. Of 293 Cambodian samples tested (N = 131 with acute malaria, n = 162 with acute undifferentiated febrile illness), 32 (10.9%) are seropositive for SCV2 based on established Spike and receptor-binding domain (RBD) cutoffs. Within SCV2 seropositive samples, 16 (50%) have higher antibody levels to antigens from the representative virus RshSTT182 versus SCV2 antigens; competitive binding ELISA assays demonstrate inhibition of reactivity to SCV2 Spike after pre-incubation with RshSTT182 Spike. Surrogate virus neutralization tests demonstrate that 8/30 (26.7%) SCV2 ELISA positive pre-pandemic Cambodian samples have neutralizing activity against SCV2, while 14/30 (46.7%) have activity against other SCV2-related betacoronaviruses. These data suggest that exposure to related betacoronaviruses may elicit cross-reactive immunity to SCV2 prior to the global pandemic.
Collapse
Affiliation(s)
- Parinaz Fathi
- Section on ImmunoengineeringBiomedical Engineering and Technology Acceleration CenterNational Institute of Biomedical Imaging and BioengineeringBethesdaMD20892USA
| | - Andrea Lucia Alfonso
- Section on ImmunoengineeringBiomedical Engineering and Technology Acceleration CenterNational Institute of Biomedical Imaging and BioengineeringBethesdaMD20892USA
| | - Christina Yek
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleMD20892USA
| | - Zoe Putman
- Protein Expression LaboratoryNCI RAS InitiativeFrederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Matthew Drew
- Protein Expression LaboratoryNCI RAS InitiativeFrederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Dominic Esposito
- Protein Expression LaboratoryNCI RAS InitiativeFrederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesBethesdaMD20892USA
| | - Sophana Chea
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Sokna Ly
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Rathanak Sath
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Huch Chea
- National Center for Parasitology, Entomology, and Malaria ControlMinistry of HealthPhnom Penh120801Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria ControlMinistry of HealthPhnom Penh120801Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria ControlMinistry of HealthPhnom Penh120801Cambodia
| | - Sovann Ly
- Cambodian Center for Disease ControlMinistry of HealthPhnom Penh120407Cambodia
| | - Heng Seng
- Cambodian Center for Disease ControlMinistry of HealthPhnom Penh120407Cambodia
| | - Chee Wah Tan
- Programme for Emerging Infectious DiseasesDuke‐National University of Singapore Medical School169857SingaporeSingapore
- Infectious Diseases Translational Research ProgrammeDepartment of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of Singapore117597SingaporeSingapore
| | - Feng Zhu
- Programme for Emerging Infectious DiseasesDuke‐National University of Singapore Medical School169857SingaporeSingapore
| | - Lin‐Fa Wang
- Programme for Emerging Infectious DiseasesDuke‐National University of Singapore Medical School169857SingaporeSingapore
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleMD20892USA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringBiomedical Engineering and Technology Acceleration CenterNational Institute of Biomedical Imaging and BioengineeringBethesdaMD20892USA
| | - Jessica Manning
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleMD20892USA
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
- Present address:
SanofiWashingtonDC20004USA
| |
Collapse
|
5
|
Andersen-Ranberg E, Nymo IH, Jokelainen P, Emelyanova A, Jore S, Laird B, Davidson RK, Ostertag S, Bouchard E, Fagerholm F, Skinner K, Acquarone M, Tryland M, Dietz R, Abass K, Rautio A, Hammer S, Evengård B, Thierfelder T, Stimmelmayr R, Jenkins E, Sonne C. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176869. [PMID: 39423885 DOI: 10.1016/j.scitotenv.2024.176869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The risk of zoonotic disease transmission from animals to humans is elevated for people in close contact with domestic and wild animals. About three-quarters of all known human infectious diseases are zoonotic, and potential health impacts of these diseases are higher where infectious disease surveillance and access to health care and public health services are limited. This is especially the case for remote circumarctic regions, where drivers for endemic, emerging, and re-emerging zoonotic diseases include anthropogenic influences, such as pollution by long-range transport of industrial chemicals, climate change, loss of biodiversity and ecosystem alterations. In addition to these, indirect effects including natural changes in food web dynamics, appearance of invasive species and thawing permafrost also affect the risk of zoonotic disease spill-over. In other words, the Arctic represents a changing world where pollution, loss of biodiversity and habitat, and maritime activity are likely driving forward occurrence of infectious diseases. As a broad international consortium with a wide range of expertise, we here describe a selection of case studies highlighting the importance of a One Health approach to zoonoses in the circumarctic, encompassing human health, animal health, and environmental health aspects. The cases highlight critical gaps in monitoring and current knowledge, focusing on environmental stressors and lifestyle factors, and they are examples of current occurrences in the Arctic that inform on critically needed actions to prepare us for the future. Through these presentations, we recommend measures to enhance awareness and management of existing and emerging zoonoses with epidemic and pandemic potential while also focusing on the impacts of various environmental stressors and lifestyle factors on zoonoses in the Arctic.
Collapse
Affiliation(s)
- Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, 1870 Frederiksberg, Denmark.
| | - Ingebjørg H Nymo
- Norwegian Veterinary Institute, Holtveien 66, 9016 Tromsø, Norway; Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsø, Norway
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Anastasia Emelyanova
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Solveig Jore
- Department of Zoonotic, Food & Waterborne Infections, Norwegian Institute of Public Health, Postbox 222 Skøyen, 0213 Oslo, Norway
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | | | - Sonja Ostertag
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Emilie Bouchard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, St Hyacinthe J2T 1B3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Freja Fagerholm
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Mario Acquarone
- Arctic Monitoring and Assessment Programme, Hjalmar Johansens gate 14, 9007 Tromsø, Norway
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Anne Evenstads Veg 80, 2480 Koppang, Norway
| | - Rune Dietz
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Khaled Abass
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, postbox 27272, United Arab Emirates
| | - Arja Rautio
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Sjúrður Hammer
- Faroese Environment Agency, Traðagøta 38, 165 Argir, Faroe Islands; University of the Faroe Islands, Vestara Bryggja 15, 100 Tórshavn, Faroe Islands
| | - Birgitta Evengård
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Tomas Thierfelder
- Department of Energy and Technology, Swedish University of Agricultural Sciences, postbox 75651, Uppsala, Sweden
| | - Raphaela Stimmelmayr
- Department of Wildlife management, North Slope Borough, postbox 69, 99723 Utqiagvik, AK, USA
| | - Emily Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
6
|
Crits-Christoph A, Levy JI, Pekar JE, Goldstein SA, Singh R, Hensel Z, Gangavarapu K, Rogers MB, Moshiri N, Garry RF, Holmes EC, Koopmans MPG, Lemey P, Peacock TP, Popescu S, Rambaut A, Robertson DL, Suchard MA, Wertheim JO, Rasmussen AL, Andersen KG, Worobey M, Débarre F. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. Cell 2024; 187:5468-5482.e11. [PMID: 39303692 PMCID: PMC11427129 DOI: 10.1016/j.cell.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Seafood Wholesale Market. Here, we analyze environmental qPCR and sequencing data collected in the Huanan market in early 2020. We demonstrate that market-linked severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity is consistent with market emergence and find increased SARS-CoV-2 positivity near and within a wildlife stall. We identify wildlife DNA in all SARS-CoV-2-positive samples from this stall, including species such as civets, bamboo rats, and raccoon dogs, previously identified as possible intermediate hosts. We also detect animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them with those from farms and other markets. This analysis provides the genetic basis for a shortlist of potential intermediate hosts of SARS-CoV-2 to prioritize for serological and viral sampling.
Collapse
Affiliation(s)
| | - Joshua I Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jonathan E Pekar
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Stephen A Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Reema Singh
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, Av. da República, Oeiras, Lisbon 2780-157, Portugal
| | - Karthik Gangavarapu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Niema Moshiri
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Robert F Garry
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA; Zalgen Labs, Frederick, MD 21703, USA; Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marion P G Koopmans
- Department of Viroscience, and Pandemic and Disaster Preparedness Centre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas P Peacock
- The Pirbright Institute, Woking GU24 0NF, Surrey, UK; Department of Infectious Disease, Imperial College London, London W2 1P, UK
| | - Saskia Popescu
- University of Maryland, School of Medicine, Department of Epidemiology & Public Health, Baltimore, MD 21201, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - David L Robertson
- MRC-University of Glasgow Center for Virus Research, Glasgow G61 1QH, UK
| | - Marc A Suchard
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA.
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Florence Débarre
- Institut d'Écologie et des Sciences de l'Environnement (IEES-Paris, UMR 7618), CNRS, Sorbonne Université, UPEC, IRD, INRAE, Paris, France.
| |
Collapse
|
7
|
Morris R, Wang S. Building a pathway to One Health surveillance and response in Asian countries. SCIENCE IN ONE HEALTH 2024; 3:100067. [PMID: 39077383 PMCID: PMC11262298 DOI: 10.1016/j.soh.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
To detect and respond to emerging diseases more effectively, an integrated surveillance strategy needs to be applied to both human and animal health. Current programs in Asian countries operate separately for the two sectors and are principally concerned with detection of events that represent a short-term disease threat. It is not realistic to either invest only in efforts to detect emerging diseases, or to rely solely on event-based surveillance. A comprehensive strategy is needed, concurrently investigating and managing endemic zoonoses, studying evolving diseases which change their character and importance due to influences such as demographic and climatic change, and enhancing understanding of factors which are likely to influence the emergence of new pathogens. This requires utilisation of additional investigation tools that have become available in recent years but are not yet being used to full effect. As yet there is no fully formed blueprint that can be applied in Asian countries. Hence a three-step pathway is proposed to move towards the goal of comprehensive One Health disease surveillance and response.
Collapse
Affiliation(s)
- Roger Morris
- Massey University EpiCentre and EpiSoft International Ltd, 76/100 Titoki Street, Masterton 5810, New Zealand
| | - Shiyong Wang
- Health, Nutrition and Population, World Bank Group, Washington, DC, USA
| |
Collapse
|
8
|
Plowright RK, Ahmed AN, Coulson T, Crowther TW, Ejotre I, Faust CL, Frick WF, Hudson PJ, Kingston T, Nameer PO, O'Mara MT, Peel AJ, Possingham H, Razgour O, Reeder DM, Ruiz-Aravena M, Simmons NB, Srinivas PN, Tabor GM, Tanshi I, Thompson IG, Vanak AT, Vora NM, Willison CE, Keeley ATH. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat Commun 2024; 15:2577. [PMID: 38531842 PMCID: PMC10965931 DOI: 10.1038/s41467-024-46151-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Aliyu N Ahmed
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Imran Ejotre
- Department of Biology, Muni University, P.O. Box 725, Arua, Uganda
| | - Christina L Faust
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Winifred F Frick
- Bat Conservation International, Austin, TX, 78746, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Peter J Hudson
- Centre for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, 16801, USA
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA
| | - P O Nameer
- College of Climate Change and Environmental Science, Kerala Agricultural University, Kerala, 680 656, India
| | | | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
| | - Hugh Possingham
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, 17937, USA
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York City, NY, 10024, USA
| | | | - Gary M Tabor
- Center for Large Landscape Conservation, Bozeman, MT, 59771, USA
| | - Iroro Tanshi
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Small Mammal Conservation Organization, Benin City, 300251, Nigeria
- Department of Animal and Environmental Biology, University of Benin, Benin City, 300000, Nigeria
| | | | - Abi T Vanak
- Centre for Policy Design, Ashoka Trust for Research in Ecology and the Environment, Bengaluru, Karnataka, 560064, India
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Neil M Vora
- Conservation International, Arlington, VA, 22202, USA
| | - Charley E Willison
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
9
|
Mendoza AP, Muñoz-Maceda A, Ghersi BM, De La Puente M, Zariquiey C, Cavero N, Murillo Y, Sebastian M, Ibañez Y, Parker PG, Perez A, Uhart M, Robinson J, Olson SH, Rosenbaum MH. Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru. PLoS One 2024; 19:e0287893. [PMID: 38324542 PMCID: PMC10849265 DOI: 10.1371/journal.pone.0287893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 02/09/2024] Open
Abstract
Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.
Collapse
Affiliation(s)
- A. Patricia Mendoza
- Wildlife Conservation Society - Peru Program, Lima, Peru
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
- Asociación Neotropical Primate Conservation – Perú, Moyobamba, San Martín, Perú
| | - Ana Muñoz-Maceda
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Bruno M. Ghersi
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | | | | | - Nancy Cavero
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Yovana Murillo
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | | | - Yohani Ibañez
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Patricia G. Parker
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
| | - Alberto Perez
- Servicio Nacional de Sanidad y Calidad Agroalimentaria, Buenos Aires, Argentina
| | - Marcela Uhart
- One Health Institute, University of California - Davis, Davis, California, United States of America
| | - Janine Robinson
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Sarah H. Olson
- Wildlife Conservation Society - Health Program, Bronx, New York, United States of America
| | - Marieke H. Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
10
|
Zhao J, Kang M, Wu H, Sun B, Baele G, He WT, Lu M, Suchard MA, Ji X, He N, Su S, Veit M. Risk assessment of SARS-CoV-2 replicating and evolving in animals. Trends Microbiol 2024; 32:79-92. [PMID: 37541811 DOI: 10.1016/j.tim.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.
Collapse
Affiliation(s)
- Jin Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Bowen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Guy Baele
- Department of Microbiology, Immunology, and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Meng Lu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Tumelty L, Fa JE, Coad L, Friant S, Mbane J, Kamogne CT, Tata CY, Ickowitz A. A systematic mapping review of links between handling wild meat and zoonotic diseases. One Health 2023; 17:100637. [PMID: 38024256 PMCID: PMC10665173 DOI: 10.1016/j.onehlt.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
1.Hunting, trade, and consumption of wildlife present a serious threat to global public health as it places humans in close contact with zoonotic pathogens.2.We systematically mapped the literature on wild meat handling and zoonotic disease transmission (1996-2022) using the online database Web of Science and Google search engine and identified 6229 articles out of which 253 were finally selected for use in our mapping review; 51 of these provided specific information regarding transmission risks.3.The reviewed studies reported 43 zoonotic pathogens (17 bacteria, 15 viruses, and 11 parasites) that could pose a potential risk to human health.4.Sixteen hygienic and sanitary behaviours were described in the reviewed studies. Disease surveillance was the most frequent. Most of the surveillance studies were carried out in Europe and were less common in the tropics.5.To inform policy and practical actions effectively, it is imperative to broaden our understanding of how various mitigation behaviours can be employed to minimize the risk of transmission.
Collapse
Affiliation(s)
- Luke Tumelty
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor 16115, Indonesia
| | - Julia E. Fa
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor 16115, Indonesia
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lauren Coad
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor 16115, Indonesia
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
| | - Sagan Friant
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph Mbane
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Yaoundé, Cameroon
| | - Cedric Thibaut Kamogne
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Yaoundé, Cameroon
| | | | - Amy Ickowitz
- Center for International Forestry Research (CIFOR)-World Agroforestry Center, Beit Zayit, Israel
| |
Collapse
|
12
|
Geldenhuys M, Ross N, Dietrich M, de Vries JL, Mortlock M, Epstein JH, Weyer J, Pawęska JT, Markotter W. Viral maintenance and excretion dynamics of coronaviruses within an Egyptian rousette fruit bat maternal colony: considerations for spillover. Sci Rep 2023; 13:15829. [PMID: 37739999 PMCID: PMC10517123 DOI: 10.1038/s41598-023-42938-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023] Open
Abstract
Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| | | | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, Sainte-Clotilde, Reunion Island, France
| | - John L de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- EcoHealth Alliance, New York, USA
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Janusz T Pawęska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
13
|
Crits-Christoph A, Levy JI, Pekar JE, Goldstein SA, Singh R, Hensel Z, Gangavarapu K, Rogers MB, Moshiri N, Garry RF, Holmes EC, Koopmans MPG, Lemey P, Popescu S, Rambaut A, Robertson DL, Suchard MA, Wertheim JO, Rasmussen AL, Andersen KG, Worobey M, Débarre F. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557637. [PMID: 37745602 PMCID: PMC10515900 DOI: 10.1101/2023.09.13.557637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Wholesale Seafood Market, the site with the most reported wildlife vendors in the city of Wuhan, China. Here, we analyze publicly available qPCR and sequencing data from environmental samples collected in the Huanan market in early 2020. We demonstrate that the SARS-CoV-2 genetic diversity linked to this market is consistent with market emergence, and find increased SARS-CoV-2 positivity near and within a particular wildlife stall. We identify wildlife DNA in all SARS-CoV-2 positive samples from this stall. This includes species such as civets, bamboo rats, porcupines, hedgehogs, and one species, raccoon dogs, known to be capable of SARS-CoV-2 transmission. We also detect other animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them to those from other markets. This analysis provides the genetic basis for a short list of potential intermediate hosts of SARS-CoV-2 to prioritize for retrospective serological testing and viral sampling.
Collapse
Affiliation(s)
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan E. Pekar
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA
| | - Stephen A. Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Reema Singh
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Karthik Gangavarapu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Matthew B. Rogers
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Niema Moshiri
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
| | - Robert F. Garry
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA; Zalgen Labs, Frederick, MD 21703, USA; Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marion P. G. Koopmans
- Department of Viroscience, and Pandemic and Disaster Preparedness Centre., Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Saskia Popescu
- University of Maryland, School of Medicine, Department of Epidemiology & Public Health, Baltimore, MD 21201, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - David L. Robertson
- MRC-University of Glasgow Center for Virus Research, Glasgow, G61 1QH, UK
| | - Marc A. Suchard
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Florence Débarre
- Institut d’Écologie et des Sciences de l’Environnement (IEES-Paris, UMR 7618), CNRS, Sorbonne Université, UPEC, IRD, INRAE, Paris, France
| |
Collapse
|
14
|
Moloney GK, Gaubert P, Gryseels S, Verheyen E, Chaber AL. Investigating Infectious Organisms of Public Health Concern Associated with Wild Meat. Transbound Emerg Dis 2023; 2023:5901974. [PMID: 40303741 PMCID: PMC12017266 DOI: 10.1155/2023/5901974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/29/2023] [Accepted: 07/04/2023] [Indexed: 05/02/2025]
Abstract
The wild meat trade poses a significant threat to public health as it facilitates the spillover of zoonotic pathogens through high-risk activities such as the hunting, butchering, trade, and consumption of wild animals. Despite the health risks and association with marking epidemics including SARS, Ebola, and COVID-19, the global wild meat trade continues to thrive. To summarize the evidence available, primary literature published between 2000 and 2022 was systematically and critically assessed for evidence of zoonotic pathogens or other infectious organisms detected in samples directly from wild meat, from animals hunted for wild meat, or from humans exposed through high-risk activities. Within the 97 articles analyzed, a total of 114 pathogen genera (15 viruses, 40 bacteria, 54 parasites, and 5 fungi) were detected in wild meat animals belonging to 168 vertebrate species including mammals, reptiles and birds sampled in 32 countries. In the context of wild meat specifically, infectious organisms were differentiated between those with zoonotic potential (32% of reported genera), ectoparasitic vectors (1%), and possible opportunistic or environmental contaminants. Thirteen viral, four bacterial, and one parasitic genera were also documented in humans participating in wild meat trade activities, supporting pathogen spillover potential. Most studies employed a targeted approach to evaluate the presence of (i.e., polymerase chain reaction (PCR); n = 65) or exposure to (i.e., ELISA; n = 19) a specific pathogen, while only one study employed broad-spectrum metabarcoding techniques. The diversity of infectious organisms associated with wild meat are highlighted through this review and could be used to guide policy development. However, the common use of a selected set of targeted detection assays likely biases the exploration of pathogen diversity, therefore potentially preventing the discovery of "disease x". The global health risk demonstrated should make the illegal wild meat trade a priority for law-enforcement agencies and future research.
Collapse
Affiliation(s)
- Georgia Kate Moloney
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, Australia
- Global One Health Alliance Pty Ltd, West Lakes Shore, SA 5021, Australia
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), IRD/CNRS/UPS, University Toulouse III Paul Sabatier, Toulouse, France
- Centro Interdisciplinar de Investigaçao Marinha e Ambiental (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department Biology, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Erik Verheyen
- Evolutionary Ecology Group, Department Biology, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, Australia
- Global One Health Alliance Pty Ltd, West Lakes Shore, SA 5021, Australia
| |
Collapse
|
15
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
16
|
Osofsky SA, Lieberman S, Walzer C, Lee HL, Neme LA. An immediate way to lower pandemic risk: (not) seizing the low-hanging fruit (bat). Lancet Planet Health 2023; 7:e518-e526. [PMID: 37286248 DOI: 10.1016/s2542-5196(23)00077-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/09/2022] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
What is the least that humanity can do to mitigate the risks of future pandemics, to prevent worldwide surges in human deaths, illness, and suffering-and more waves of multitrillion US dollar impacts on the global economy? The issues around our consumption and trading of wildlife are diverse and complex, with many rural communities being dependent on wild meat for their nutritional needs. But bats might be one taxonomic group that can be successfully eliminated from the human diet and other uses, with minimal costs or inconvenience to the vast majority of the 8 billion people on Earth. The order Chiroptera merits genuine respect given all that these species contribute to human food supplies through pollination services provided by the frugivores and to disease risk mitigation delivered by insectivorous species. The global community missed its chance to stop SARS-CoV and SARS-CoV-2 from emerging-how many more times will humanity allow this cycle to repeat? How long will governments ignore the science that is in front of them? It's past time for humans to do the least that can be done. A global taboo is needed whereby humanity agrees to leave bats alone, not fear them or try to chase them away or cull them, but to let them have the habitats they need and live undisturbed by humans.
Collapse
Affiliation(s)
- Steven A Osofsky
- Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA; Cornell Wildlife Health Center, Cornell University, Ithaca, NY, USA; Cornell Atkinson Center, Cornell University, Ithaca, NY, USA.
| | - Susan Lieberman
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY, USA
| | - Christian Walzer
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY, USA; Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Helen L Lee
- Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA; Cornell Wildlife Health Center, Cornell University, Ithaca, NY, USA
| | - Laurel A Neme
- Cornell Wildlife Health Center, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Van Thu N, Newman S, Padungtod P. Captive wildlife management survey in Vietnam, 2015-2021. One Health 2023; 16:100543. [PMID: 37363257 PMCID: PMC10288083 DOI: 10.1016/j.onehlt.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 06/28/2023] Open
Abstract
In Vietnam, breeding and raising a wide range of wildlife species in captive wildlife facilities (CWFs) are common practices but little information on the captive wildlife population is available. We conducted surveys and developed software to create a captive wildlife facilities management (CWFM) system. This database provides up-to-date information on the distribution of CWFs, the number of species, and individuals according to the level of protection outlined by the government and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) categories. CWFs were located in all provinces and regions, but differed in distribution, number of species and individual animals. The Mekong River Delta region recorded the highest number of CWFs (35.3%) and the highest number of animals (43.1%). In 2021, 95 species belong to the highest level of protection group were being raised at 1824 CWFs; 137 species in 4554 CWFs in CITES appendix II, appendix III, government list IIB; and 139 species in 1499 CWFs belong to the common wildlife. The overall number of CWFs in 50 provinces decreased by a negative compound annual growth rate of -7.2%. However, it is crucial to continue to monitor the changing dynamics to assess the risks of disease transmission from zoonoses originating from wildlife. We recommend periodic compulsory reporting of CWF activities using the CWFM system.
Collapse
Affiliation(s)
- Nhu Van Thu
- Emergency Center for Transboundary Animal Diseases, Food and Agricultural Organization of the United Nations, Country Office for Vietnam, Hanoi, Viet Nam
| | - Scott Newman
- Food and Agricultural Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Pawin Padungtod
- Emergency Center for Transboundary Animal Diseases, Food and Agricultural Organization of the United Nations, Country Office for Vietnam, Hanoi, Viet Nam
| |
Collapse
|
18
|
Pruvot M, Denstedt E, Latinne A, Porco A, Montecino-Latorre D, Khammavong K, Milavong P, Phouangsouvanh S, Sisavanh M, Nga NTT, Ngoc PTB, Thanh VD, Chea S, Sours S, Phommachanh P, Theppangna W, Phiphakhavong S, Vanna C, Masphal K, Sothyra T, San S, Chamnan H, Long PT, Diep NT, Duoc VT, Zimmer P, Brown K, Olson SH, Fine AE. WildHealthNet: Supporting the development of sustainable wildlife health surveillance networks in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160748. [PMID: 36513230 DOI: 10.1016/j.scitotenv.2022.160748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wildlife and wildlife interfaces with people and livestock are essential surveillance targets to monitor emergent or endemic pathogens or new threats affecting wildlife, livestock, and human health. However, limitations of previous investments in scope and duration have resulted in a neglect of wildlife health surveillance (WHS) systems at national and global scales, particularly in lower and middle income countries (LMICs). Building on decades of wildlife health activities in LMICs, we demonstrate the implementation of a locally-driven multi-pronged One Health approach to establishing WHS in Cambodia, Lao PDR and Viet Nam under the WildHealthNet initiative. WildHealthNet utilizes existing local capacity in the animal, public health, and environmental sectors for event based or targeted surveillance and disease detection. To scale up surveillance systems to the national level, WildHealthNet relies on iterative field implementation and policy development, capacity bridging, improving data collection and management systems, and implementing context specific responses to wildlife health intelligence. National WHS systems piloted in Cambodia, Lao PDR, and Viet Nam engaged protected area rangers, wildlife rescue centers, community members, and livestock and human health sector staff and laboratories. Surveillance activities detected outbreaks of H5N1 highly pathogenic avian influenza in wild birds, African swine fever in wild boar (Sus scrofa), Lumpy skin disease in banteng (Bos javanicus), and other endemic zoonotic pathogens identified as surveillance priorities by local stakeholders. In Cambodia and Lao PDR, national plans for wildlife disease surveillance are being signed into legislation. Cross-sectoral and trans-disciplinary approaches are needed to implement effective WHS systems. Long-term commitment, and paralleled implementation and policy development are key to sustainable WHS networks. WildHealthNet offers a roadmap to aid in the development of locally-relevant and locally-led WHS systems that support the global objectives of the World Organization for Animal Health's Wildlife Health Framework and other international agendas.
Collapse
Affiliation(s)
- Mathieu Pruvot
- Wildlife Conservation Society, Health Program, Bronx, NY, USA; University of Calgary, Faculty of Veterinary Medicine, Calgary, AB, Canada.
| | - Emily Denstedt
- Wildlife Conservation Society, Lao PDR Country Program, Vientiane, Laos
| | - Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi, Viet Nam
| | - Alice Porco
- Wildlife Conservation Society, Cambodia Country Program, Phnom Penh, Cambodia
| | | | - Kongsy Khammavong
- Wildlife Conservation Society, Lao PDR Country Program, Vientiane, Laos
| | | | | | - Manoly Sisavanh
- Wildlife Conservation Society, Lao PDR Country Program, Vientiane, Laos
| | | | - Pham Thi Bich Ngoc
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi, Viet Nam
| | - Vo Duy Thanh
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi, Viet Nam
| | - Sokha Chea
- Wildlife Conservation Society, Cambodia Country Program, Phnom Penh, Cambodia
| | - Sreyem Sours
- Wildlife Conservation Society, Cambodia Country Program, Phnom Penh, Cambodia
| | - Phouvong Phommachanh
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Laos
| | - Watthana Theppangna
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Laos
| | - Sithong Phiphakhavong
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Laos
| | - Chhuon Vanna
- Department of Wildlife and Biodiversity, Forestry Administration, Phnom Penh, Cambodia
| | - Kry Masphal
- Department of Wildlife and Biodiversity, Forestry Administration, Phnom Penh, Cambodia
| | - Tum Sothyra
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Sorn San
- General Directorate of Animal Health and Production, Phnom Penh, Cambodia
| | - Hong Chamnan
- General Directorate of Natural Protected Areas, Phnom Penh, Cambodia
| | - Pham Thanh Long
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Viet Nam
| | - Nguyen Thi Diep
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Viet Nam
| | - Vu Trong Duoc
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Patrick Zimmer
- Canadian Wildlife Health Cooperative, Saskatoon, SK, Canada
| | - Kevin Brown
- Canadian Wildlife Health Cooperative, Saskatoon, SK, Canada
| | - Sarah H Olson
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Amanda E Fine
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| |
Collapse
|
19
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
20
|
Pham TT, Tang HTK, Nguyen NTK, Dang PH, Nguyen ATV, Nguyen ATT, Tran HNM, Hoang LT, Tran DNL, Nguyen QN. COVID-19 impacts, opportunities and challenges for wildlife farms in Binh Duong and Ba Ria Vung Tau, Vietnam. Glob Ecol Conserv 2022; 40:e02314. [PMID: 36312591 PMCID: PMC9598250 DOI: 10.1016/j.gecco.2022.e02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
The wildlife trade is a major cause of species loss and can trigger disease transmission. While the COVID-19 pandemic sparked public interest in eliminating the wildlife trade, a better understanding is needed of the economic repercussions of COVID-19 on those who rely on wildlife farming for their livelihoods. Using the case studies of Ba Ria Vung Tau and Binh Duong provinces in Vietnam - a country seen as Asia's wildlife trade hotspot - this paper explores COVID-19's impacts on wildlife farms and their owners. Understanding these impacts is important, both in order to design appropriate interventions to support local people in mitigating COVID-19's impacts as well as to inform effective policymaking around wildlife conservation in Vietnam. In this study, we adopted mixed research methods (including a literature and policy review, stakeholder consultation with government agencies and NGOs engaged in designing and monitoring wildlife conservation policies, a wildlife farming household survey, and research validation workshop) to understand the status of Vietnamese wildlife farms, as well as the impacts of COVID-19, and any opportunities and challenges for wildlife conservation and management in Vietnam. Our paper shows that, across the two studied provinces, numbers of wildlife farms and farmed wildlife animals have both declined since the pandemic, with declining market demand and wildlife farm owners experiencing difficulties accessing markets due to travel restrictions. Although this affected wildlife-related income, this represented less than 30 % of families' overall income on average, and thus households were able to maintain their livelihoods through other sources. Most wildlife is raised as an additional food source for farming families and plays an important role in the diets of surveyed households. Findings also highlighted that most surveyed households' post-pandemic recovery strategies involved expanding their wildlife farms in scope and scale; these households perceived a stable domestic market and high prices for wildlife products in future. Our study found several opportunities for sustainable wildlife farming practices, including greater political commitment, an increasing number of wildlife conservation policies, and stronger law enforcement mechanisms. Challenges remain, however; including an unclear and inconsistent policy framework, the presence of an illegal market, and wildlife farm owners' limited knowledge and understanding of wildlife policies. Our paper also shows a lack of comprehensive data and understanding around actual wildlife transactions during the pandemic, leading to challenges in confirming whether COVID-19 had any real impact on wildlife trade. Further research is required to address this knowledge gap.
Collapse
Affiliation(s)
- Thuy Thu Pham
- Center for International Forestry Research, Bogor 16115, Indonesia
| | | | | | | | - Anh Thi Van Nguyen
- University of Economics and Business, Vietnam National University, Hanoi 100000, Viet Nam
| | | | - Hoa Ngoc My Tran
- Center for International Forestry Research, Bogor 16115, Indonesia
| | - Long Tuan Hoang
- Center for International Forestry Research, Bogor 16115, Indonesia
| | | | | |
Collapse
|
21
|
Alhaji NB, Odetokun IA, Lawan MK, Adeiza AM, Nafarnda WD, Salihu MJ. Risk assessment and preventive health behaviours toward COVID-19 amongst bushmeat handlers in Nigerian wildlife markets: Drivers and One Health challenge. Acta Trop 2022; 235:106621. [PMID: 35908578 PMCID: PMC9329136 DOI: 10.1016/j.actatropica.2022.106621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Over 70% of emerging infectious diseases are zoonotic and 72% of them have wildlife reservoirs with consequent global health impacts. Both SARS-CoV-1 and SARS-CoV-2 emerged certainly through wildlife market routes. We assessed wildlife handlers' zoonotic risk perceptions and preventive health behaviour measures toward COVID-19 during pandemic waves, and its drivers at wildlife markets using Health Belief Model (HBM) constructs. A cross-sectional study was conducted at purposively selected wildlife markets in Nigeria between November 2020 and October 2021. Descriptive, univariate, and multivariable logistic regressions analyses were performed at 95% confidence interval. Of the 600 targeted handlers in 97 wildlife markets, 97.2% (n = 583) participated. Consumers were the majority (65.3%), followed by hunters (18.4) and vendors (16.3%). Only 10.3% hunters, 24.3% vendors and 21.0% consumers associated COVID-19 with high zoonotic risk. Also, only few handlers practiced social/physical distancing at markets. Avoidance of handshaking or hugging and vaccination was significantly (p = 0.001) practiced by few handlers as preventive health behaviours at the markets. All the socio-demographic variables were significantly (p<0.05) associated with their knowledge, risk perceptions, and practice of preventive health behaviours toward COVID-19 at univariate analysis. Poor markets sanitation, hygiene, and biosecurity (OR=3.35, 95% CI: 2.33, 4.82); and poor butchering practices and exchange of wildlife species between shops [(OR=1.87; 95% CI: 1.34, 2.60) and (OR=2.03; 95% CI: 1.43, 2.88), respectively] were more likely to significantly influence COVID-19 emergence and spread at the markets. To tackle the highlighted gaps, collaborations between the public health, anthropologists, and veterinary and wildlife authorities through the One Health approach are advocated to intensify awareness and health education programmes that will improve perceptions and behaviours toward the disease and other emerging diseases control and prevention.
Collapse
Affiliation(s)
- Nma Bida Alhaji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria; Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria.
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Mohammed Kabiru Lawan
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Abdulrahman Musa Adeiza
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria
| | - Wesley Daniel Nafarnda
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria
| | - Mohammed Jibrin Salihu
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
22
|
Cronin MR, de Wit LA, Martínez‐Estévez L. Aligning conservation and public health goals to tackle unsustainable trade of mammals. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Melissa R. Cronin
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California USA
| | | | - Lourdes Martínez‐Estévez
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California USA
| |
Collapse
|
23
|
Pham TT, Tang TKH, Dang HP, Nguyen TKN, Hoang TL, Tran NMH, Nguyen TTA, Nguyen TVA, Valencia I. Policymaker perceptions of COVID-19 impacts, opportunities and challenges for sustainable wildlife farm management in Vietnam. ENVIRONMENTAL SCIENCE & POLICY 2022; 136:497-509. [PMID: 35855780 PMCID: PMC9279387 DOI: 10.1016/j.envsci.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
This paper uses Vietnam - where overexploitation of wildlife resources is a major threat to biodiversity conservation - as a case study to examine how government officials perceive the impacts of COVID-19 on wildlife farming, as well as the opportunities and challenges presented for sustainable wildlife management. Findings show Vietnamese government officials perceive COVID-19 to have had mixed impacts on wildlife conservation policies and practice. While the pandemic strengthened the legal framework on wildlife conservation, implementation and outcomes have been poor, as existing policies are unclear, contradictory, and poorly enforced. Our paper also shows policymakers in Vietnam are not in favor of banning wildlife trade. As our paper documents the immediate impacts of the pandemic on wildlife farming, more research is necessary to analyse longer-term impacts.
Collapse
Affiliation(s)
- Thu Thuy Pham
- Center for International Forestry Research, Bogor 16115, Indonesia
| | | | | | | | - Tuan Long Hoang
- Center for International Forestry Research, Bogor 16115, Indonesia
| | - Ngoc My Hoa Tran
- Center for International Forestry Research, Bogor 16115, Indonesia
| | | | - Thi Van Anh Nguyen
- University of Economics and Business, Vietnam National University, Hanoi 100000, Viet Nam
| | - Isabela Valencia
- Center for International Forestry Research, Bogor 16115, Indonesia
| |
Collapse
|
24
|
Boeger WA, Brooks DR, Trivellone V, Agosta SJ, Hoberg EP. Ecological super-spreaders drive host-range oscillations: Omicron and risk space for emerging infectious disease. Transbound Emerg Dis 2022; 69:e1280-e1288. [PMID: 35411706 PMCID: PMC9115439 DOI: 10.1111/tbed.14557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
The unusual genetic diversity of the Omicron strain has led to speculation about its origin. The mathematical modelling platform developed for the Stockholm Paradigm (SP) indicates strongly that it has retro-colonized humans from an unidentified nonhuman mammal, likely originally infected by humans. The relationship between Omicron and all other SARS-CoV-2 variants indicates oscillations among hosts, a core part of the SP. Such oscillations result from the emergence of novel variants following colonization of new hosts, replenishing and expanding the risk space for disease emergence. The SP predicts that pathogens colonize new hosts using pre-existing capacities. Those events are thus predictable to a certain extent. Novel variants emerge after a colonization and are not predictable. This makes it imperative to take proactive measures for anticipating emerging infectious diseases (EID) and mitigating their impact. The SP suggests a policy protocol, DAMA, to accomplish this goal. DAMA comprises: DOCUMENT to detect pathogens before they emerge in new places or colonize new hosts; ASSESS to determine risk; MONITOR to detect changes in pathogen populations that increase the risk of outbreaks and ACT to prevent outbreaks when possible and minimize their impact when they occur.
Collapse
Affiliation(s)
- Walter A. Boeger
- Biological InteractionsUniversidade Federal do ParanáCuritibaBrazil
| | - Daniel R. Brooks
- Eötvös Loránd Research NetworkCentre for Ecological ResearchInstitute of EvolutionBudapestHungary
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Salvatore J. Agosta
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Center for Environmental StudiesVCU Life SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Eric P. Hoberg
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Museum of Southwestern BiologyDepartment of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
25
|
Sánchez CA, Li H, Phelps KL, Zambrana-Torrelio C, Wang LF, Zhou P, Shi ZL, Olival KJ, Daszak P. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nat Commun 2022; 13:4380. [PMID: 35945197 PMCID: PMC9363439 DOI: 10.1038/s41467-022-31860-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351-67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence.
Collapse
Affiliation(s)
| | | | | | | | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
26
|
Carlson CJ, Phelan AL. International law reform for One Health notifications. Lancet 2022; 400:462-468. [PMID: 35810748 DOI: 10.1016/s0140-6736(22)00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
Epidemic risk assessment and response relies on rapid information sharing. Using examples from the past decade, we discuss the limitations of the present system for outbreak notifications, which suffers from ambiguous obligations, fragile incentives, and an overly narrow focus on human outbreaks. We examine existing international legal frameworks, and provide clarity on what a successful One Health approach to proposed international law reforms-including a pandemic treaty and amendments to the International Health Regulations-would require. In particular, we focus on how a treaty would provide opportunities to simultaneously expand reporting obligations, accelerate the sharing of scientific discoveries, and strengthen existing legal frameworks, all while addressing the most complex issues that global health governance currently faces.
Collapse
Affiliation(s)
- Colin J Carlson
- Center for Global Health Science and Security, Medical-Dental Building, Georgetown University, Washington, DC, 20057 USA; Department of Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra L Phelan
- Center for Global Health Science and Security, Medical-Dental Building, Georgetown University, Washington, DC, 20057 USA; O'Neill Institute for National and Global Health Law, Georgetown University, Washington, DC, USA
| |
Collapse
|
27
|
Moraga P, Baker L. rspatialdata: a collection of data sources and tutorials on downloading and visualising spatial data using R. F1000Res 2022; 11:770. [PMID: 36016994 PMCID: PMC9363973 DOI: 10.12688/f1000research.122764.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Spatial and spatio-temporal data are used in a wide range of fields including environmental, health and social disciplines. Several packages in the statistical software R have been recently developed as clients for various databases to meet the growing demands for easily accessible and reliable spatial data. While documentation on how to use many of these packages exist, there is an increasing need for a one stop repository for tutorials on this information. In this paper, we present rspatialdata a website that provides a collection of data sources and tutorials on downloading and visualising spatial data using R. The website includes a wide range of datasets including administrative boundaries of countries, Open Street Map data, population, temperature, vegetation, air pollution, and malaria data. The goal of the website is to equip researchers and communities with the tools to engage in spatial data analysis and visualisation so that they can address important local issues, such as estimating air pollution, quantifying disease burdens, and evaluating and monitoring the United Nation’s sustainable development goals.
Collapse
Affiliation(s)
- Paula Moraga
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Laurie Baker
- College of the Atlantic, 105 Eden St, Bar Harbor, ME, 04609, USA
| |
Collapse
|
28
|
Morgan BL, Stern MC, Pérez-Stable EJ, Hooper MW, Fejerman L. Adding a One Health approach to a research framework for minority health and health disparities. eLife 2022; 11:76461. [PMID: 35796544 PMCID: PMC9262385 DOI: 10.7554/elife.76461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The National Institute on Minority Health and Health Disparities (NIMHD) has developed a framework to guide and orient research into health disparities and minority health. The framework depicts different domains of influence (such as biological and behavioral) and different levels of influence (such as individual and interpersonal). Here, influenced by the “One Health” approach, we propose adding two new levels of influence – interspecies and planetary – to this framework to reflect the interconnected nature of human, animal, and environmental health. Extending the framework in this way will help researchers to create new avenues of inquiry and encourage multidisciplinary collaborations. We then use the One Health approach to discuss how the COVID-19 pandemic has exacerbated health disparities, and show how the expanded framework can be applied to research into health disparities related to antimicrobial resistance and obesity.
Collapse
Affiliation(s)
- Brittany L Morgan
- Department of Public Health Sciences, University of California, Davis, Davis, United States.,Center for Animal Disease Modeling and Surveillance (CADMS), Department of Veterinary Medicine, University of California, Davis, Davis, United States
| | - Mariana C Stern
- Departments of Preventive Medicine and Urology, Keck School of Medicine of USC, Los Angeles, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
| | - Eliseo J Pérez-Stable
- Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, United States
| | - Monica Webb Hooper
- Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, United States
| | - Laura Fejerman
- Department of Public Health Sciences, University of California, Davis, Davis, United States.,Comprehensive Cancer Center, University of California, Davis, Davis, United States
| |
Collapse
|
29
|
Pham-Thanh L, Nhu TV, Nguyen TV, Tran KV, Nguyen KC, Nguyen HT, Ngo Thi Hoa, Padungtod P. Zoonotic pathogens and diseases detected in Vietnam, 2020-2021. One Health 2022; 14:100398. [PMID: 35686154 PMCID: PMC9171505 DOI: 10.1016/j.onehlt.2022.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vietnam has been identified as a country at high-risk for emergence and re-emergence of zoonotic diseases. The government of Vietnam recognized five priority zoonoses, including highly pathogenic avian influenza, rabies, leptospirosis, anthrax, and Streptococcus suis, and established a framework for One Health investigation and response to these diseases. From July 2020 to February 2021, quantitative data of zoonoses were collected from an online survey in 61 of 63 provinces based on either clinical diagnosis or laboratory confirmation. The responses were followed up by using in-depth interviews, and scientific literatures on zoonoses in Vietnam during 2010 to 2020 were reviewed. A total of 234 human health professionals and 95 animal health professionals responded to the survey. The proportion of clinical-based respondents was higher than laboratory-based respondents in both human health (130/234, 55.6%) and animal health (65/95, 68.4%) sectors. There were differences in the reported frequency of zoonoses between human and animal health professionals, and between clinical-based and laboratory-based respondents. Rabies was the most serious zoonotic disease based on the number of human cases and the geographic distribution. No human cases of avian influenza infection have been reported since 2015, although the H5 subtype viruses have been found in poultry. Besides, some bacterial, fungal, and parasitic zoonoses were detected in both humans and animals. Out of the 75 zoonoses identified, we recommend that the original five prioritized zoonoses, plus 24 additional zoonoses, should be targeted for future prevention, detection, and control under One Health approach in Vietnam.
Collapse
Affiliation(s)
- Long Pham-Thanh
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Thu Van Nhu
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Vietnam, Hanoi, Vietnam
| | - Trung Vinh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Department Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Khang Vuong Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Khanh Cong Nguyen
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi, Vietnam
| | - Huong Thi Nguyen
- General Department of Preventive Medicine, Ministry of Health, Hanoi, Vietnam
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
- Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Pawin Padungtod
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Vietnam, Hanoi, Vietnam
| |
Collapse
|
30
|
Wegner GI, Murray KA, Springmann M, Muller A, Sokolow SH, Saylors K, Morens DM. Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. EClinicalMedicine 2022; 47:101386. [PMID: 35465645 PMCID: PMC9014132 DOI: 10.1016/j.eclinm.2022.101386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
A debate has emerged over the potential socio-ecological drivers of wildlife-origin zoonotic disease outbreaks and emerging infectious disease (EID) events. This Review explores the extent to which the incidence of wildlife-origin infectious disease outbreaks, which are likely to include devastating pandemics like HIV/AIDS and COVID-19, may be linked to excessive and increasing rates of tropical deforestation for agricultural food production and wild meat hunting and trade, which are further related to contemporary ecological crises such as global warming and mass species extinction. Here we explore a set of precautionary responses to wildlife-origin zoonosis threat, including: (a) limiting human encroachment into tropical wildlands by promoting a global transition to diets low in livestock source foods; (b) containing tropical wild meat hunting and trade by curbing urban wild meat demand, while securing access for indigenous people and local communities in remote subsistence areas; and (c) improving biosecurity and other strategies to break zoonosis transmission pathways at the wildlife-human interface and along animal source food supply chains.
Collapse
Affiliation(s)
- Giulia I. Wegner
- Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, UK
| | - Kris A. Murray
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Marco Springmann
- Oxford Martin Programme on the Future of Food and Nuffield Department of Population Health, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Adrian Muller
- Department of Environmental Systems Science, ETH, Sonneggstrasse 33, Zürich 8092, Switzerland
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, Frick 5070, Switzerland
| | - Susanne H. Sokolow
- Stanford Woods Institute for the Environment, Jerry Yang & Akiko Yamazaki Environment & Energy Building, MC 4205, 473 Via Ortega, Stanford, CA 94305, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106-6150, USA
| | - Karen Saylors
- Labyrinth Global Health, 15th Ave NE, St Petersburg, FL 33704, USA
| | - David M. Morens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, Yinda CK, Port JR, Buchholz DW, Yeo YY, Faust C, Jax E, Dee L, Jones DN, Kessler MK, Falvo C, Crowley D, Bharti N, Brook CE, Aguilar HC, Peel AJ, Restif O, Schountz T, Parrish CR, Gurley ES, Lloyd-Smith JO, Hudson PJ, Munster VJ, Plowright RK. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20:299-314. [PMID: 34799704 PMCID: PMC8603903 DOI: 10.1038/s41579-021-00652-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.
Collapse
Affiliation(s)
- Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamika Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Aaron Morris
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claude Kwe Yinda
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Julia R Port
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christina Faust
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Elinor Jax
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lauren Dee
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Devin N Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maureen K Kessler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Caylee Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Daniel Crowley
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter J Hudson
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Vincent J Munster
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
32
|
Brookes VJ, Wismandanu O, Sudarnika E, Roby JA, Hayes L, Ward MP, Basri C, Wibawa H, Davis J, Indrawan D, Manyweathers J, Nugroho WS, Windria S, Hernandez-Jover M. A scoping review of live wildlife trade in markets worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153043. [PMID: 35032529 DOI: 10.1016/j.scitotenv.2022.153043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Wet markets sell fresh food and are a global phenomenon. They are important for food security in many regions worldwide but have come under scrutiny due to their potential role in the emergence of infectious diseases. The sale of live wildlife has been highlighted as a particular risk, and the World Health Organisation has called for the banning of live, wild-caught mammalian species in markets unless risk assessment and effective regulations are in place. Following PRISMA guidelines, we conducted a global scoping review of peer-reviewed information about the sale of live, terrestrial wildlife in markets that are likely to sell fresh food, and collated data about the characteristics of such markets, activities involving live wildlife, the species sold, their purpose, and animal, human, and environmental health risks that were identified. Of the 56 peer-reviewed records within scope, only 25% (n = 14) focussed on disease risks; the rest focused on the impact of wildlife sale on conservation. Although there were some global patterns (for example, the types of markets and purpose of sale of wildlife), there was wide diversity and huge epistemic uncertainty in all aspects associated with live, terrestrial wildlife sale in markets such that the feasibility of accurate assessment of the risk of emerging infectious disease associated with live wildlife trade in markets is currently limited. Given the value of both wet markets and wildlife trade and the need to support food affordability and accessibility, conservation, public health, and the social and economic aspects of livelihoods of often vulnerable people, there are major information gaps that need to be addressed to develop evidence-based policy in this environment. This review identifies these gaps and provides a foundation from which information for risk assessments can be collected.
Collapse
Affiliation(s)
- V J Brookes
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation (NSW Dept. of Primary Industries and Charles Sturt University), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Sydney School of Veterinary Science, The University of Sydney, Camden 2570, Australia.
| | - O Wismandanu
- Veterinary Medicine Study Program, Faculty of Medicine, Padjadjaran University, Indonesia
| | - E Sudarnika
- Faculty of Veterinary Medicine, IPB (Institut Pertanian Bogor) University, Indonesia
| | - J A Roby
- Graham Centre for Agricultural Innovation (NSW Dept. of Primary Industries and Charles Sturt University), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - L Hayes
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation (NSW Dept. of Primary Industries and Charles Sturt University), Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - M P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden 2570, Australia
| | - C Basri
- Faculty of Veterinary Medicine, IPB (Institut Pertanian Bogor) University, Indonesia
| | - H Wibawa
- Disease Investigation Centre Wates, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture of Indonesia, Indonesia
| | - J Davis
- Australian Department of Agriculture, Water and the Environment, Canberra, Australia
| | - D Indrawan
- School of Business, IPB (Institut Pertanian Bogor) University, Indonesia
| | - J Manyweathers
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation (NSW Dept. of Primary Industries and Charles Sturt University), Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - W S Nugroho
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
| | - S Windria
- Department of Biomedical Sciences, Division of Microbiology, Veterinary Medicine Study Program, Faculty of Medicine, Padjadjaran University, Indonesia
| | - M Hernandez-Jover
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation (NSW Dept. of Primary Industries and Charles Sturt University), Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
33
|
Nga NTT, Latinne A, Thuy HB, Long NV, Ngoc PTB, Anh NTL, Thai NV, Phuong TQ, Thai HV, Hai LK, Long PT, Phuong NT, Hung VV, Quang LTV, Lan NT, Hoa NT, Johnson CK, Mazet JAK, Roberton SI, Walzer C, Olson SH, Fine AE. Evidence of SARS-CoV-2 Related Coronaviruses Circulating in Sunda pangolins ( Manis javanica) Confiscated From the Illegal Wildlife Trade in Viet Nam. Front Public Health 2022; 10:826116. [PMID: 35356028 PMCID: PMC8959545 DOI: 10.3389/fpubh.2022.826116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the discovery of several closely related viruses in bats, the direct evolutionary progenitor of SARS-CoV-2 has not yet been identified. In this study, we investigated potential animal sources of SARS-related coronaviruses using archived specimens from Sunda pangolins (Manis javanica) and Chinese pangolins (Manis pentadactyla) confiscated from the illegal wildlife trade, and from common palm civets (Paradoxurus hermaphroditus) raised on wildlife farms in Viet Nam. A total of 696 pangolin and civet specimens were screened for the presence of viral RNA from five zoonotic viral families and from Sarbecoviruses using primers specifically designed for pangolin coronaviruses. We also performed a curated data collection of media reports of wildlife confiscation events involving pangolins in Viet Nam between January 2016 and December 2020, to illustrate the global pangolin supply chain in the context of Viet Nam where the trade confiscated pangolins were sampled for this study. All specimens from pangolins and civets sampled along the wildlife supply chains between February 2017 and July 2018, in Viet Nam and tested with conventional PCR assays designed to detect flavivirus, paramyxovirus, filovirus, coronavirus, and orthomyxovirus RNA were negative. Civet samples were also negative for Sarbecoviruses, but 12 specimens from seven live pangolins confiscated in Hung Yen province, northern Viet Nam, in 2018 were positive for Sarbecoviruses. Our phylogenetic trees based on two fragments of the RdRp gene revealed that the Sarbecoviruses identified in these pangolins were closely related to pangolin coronaviruses detected in pangolins confiscated from the illegal wildlife trade in Yunnan and Guangxi provinces, China. Our curated data collection of media reports of wildlife confiscation events involving pangolins in Viet Nam between January 2016 and December 2020, reflected what is known about pangolin trafficking globally. Pangolins confiscated in Viet Nam were largely in transit, moving toward downstream consumers in China. Confiscations included pangolin scales sourced originally from Africa (and African species of pangolins), or pangolin carcasses and live pangolins native to Southeast Asia (predominately the Sunda pangolin) sourced from neighboring range countries and moving through Viet Nam toward provinces bordering China.
Collapse
Affiliation(s)
| | - Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam.,Wildlife Conservation Society, Global Conservation Program, New York City, NY, United States
| | - Hoang Bich Thuy
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam
| | - Nguyen Van Long
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam
| | - Pham Thi Bich Ngoc
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam
| | - Nguyen Thi Lan Anh
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam
| | | | | | | | | | - Pham Thanh Long
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Ha Noi, Viet Nam
| | | | - Vo Van Hung
- Regional Animal Health Office No. 6, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Thi Lan
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Ha Noi, Viet Nam
| | - Nguyen Thi Hoa
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Ha Noi, Viet Nam
| | - Christine K Johnson
- School of Veterinary Medicine, One Health Institute, University of California, Davis, Davis, CA, United States
| | - Jonna A K Mazet
- School of Veterinary Medicine, One Health Institute, University of California, Davis, Davis, CA, United States
| | - Scott I Roberton
- Wildlife Conservation Society, Global Conservation Program, New York City, NY, United States
| | - Chris Walzer
- Wildlife Conservation Society, Global Conservation Program, New York City, NY, United States.,Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Sarah H Olson
- Wildlife Conservation Society, Global Conservation Program, New York City, NY, United States
| | - Amanda E Fine
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam.,Wildlife Conservation Society, Global Conservation Program, New York City, NY, United States
| |
Collapse
|
34
|
Nawtaisong P, Robinson MT, Khammavong K, Milavong P, Rachlin A, Dittrich S, Dubot-Pérès A, Vongsouvath M, Horwood PF, Dussart P, Theppangna W, Douangngeum B, Fine AE, Pruvot M, Newton PN. Zoonotic Pathogens in Wildlife Traded in Markets for Human Consumption, Laos. Emerg Infect Dis 2022; 28:860-864. [PMID: 35318932 PMCID: PMC8962878 DOI: 10.3201/eid2804.210249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We tested animals from wildlife trade sites in Laos for the presence of zoonotic pathogens. Leptospira spp. were the most frequently detected infectious agents, found in 20.1% of animals. Rickettsia typhi and R. felis were also detected. These findings suggest a substantial risk for exposure through handling and consumption of wild animal meat.
Collapse
|
35
|
He WT, Hou X, Zhao J, Sun J, He H, Si W, Wang J, Jiang Z, Yan Z, Xing G, Lu M, Suchard MA, Ji X, Gong W, He B, Li J, Lemey P, Guo D, Tu C, Holmes EC, Shi M, Su S. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell 2022; 185:1117-1129.e8. [PMID: 35298912 PMCID: PMC9942426 DOI: 10.1016/j.cell.2022.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.,These authors contributed equally
| | - Xin Hou
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.,These authors contributed equally
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.,These authors contributed equally
| | - Jiumeng Sun
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijian He
- Agricultural College, Jinhua Polytechnic, Jinhua 320017, China
| | - Wei Si
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Xing
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou 310058, China
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, the United States
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven 3000, Belgium
| | - Deyin Guo
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Senior authors,Correspondence: Shuo Su (); Mang Shi (); and Edward C. Holmes ()
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Bernstein AS, Ando AW, Loch-Temzelides T, Vale MM, Li BV, Li H, Busch J, Chapman CA, Kinnaird M, Nowak K, Castro MC, Zambrana-Torrelio C, Ahumada JA, Xiao L, Roehrdanz P, Kaufman L, Hannah L, Daszak P, Pimm SL, Dobson AP. The costs and benefits of primary prevention of zoonotic pandemics. SCIENCE ADVANCES 2022; 8:eabl4183. [PMID: 35119921 PMCID: PMC8816336 DOI: 10.1126/sciadv.abl4183] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 05/15/2023]
Abstract
The lives lost and economic costs of viral zoonotic pandemics have steadily increased over the past century. Prominent policymakers have promoted plans that argue the best ways to address future pandemic catastrophes should entail, "detecting and containing emerging zoonotic threats." In other words, we should take actions only after humans get sick. We sharply disagree. Humans have extensive contact with wildlife known to harbor vast numbers of viruses, many of which have not yet spilled into humans. We compute the annualized damages from emerging viral zoonoses. We explore three practical actions to minimize the impact of future pandemics: better surveillance of pathogen spillover and development of global databases of virus genomics and serology, better management of wildlife trade, and substantial reduction of deforestation. We find that these primary pandemic prevention actions cost less than 1/20th the value of lives lost each year to emerging viral zoonoses and have substantial cobenefits.
Collapse
Affiliation(s)
- Aaron S. Bernstein
- Boston Children’s Hospital and the Center for Climate, Health and the Global Environment, Boston, MA 02115, USA
| | - Amy W. Ando
- Department of Agricultural and Consumer Economics, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Resources for the Future, 1616 P Street NW, Washington, DC 20036, USA
| | - Ted Loch-Temzelides
- Department of Economics and Baker Institute for Public Policy, Rice University, Houston, TX 77005, USA
| | - Mariana M. Vale
- Ecology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Ecology, Evolution and Biodiversity Conservation, Goiania, Brazil
| | - Binbin V. Li
- Environment Research Center, Duke Kunshan University, Kunshan, Jiangsu Province 215317, China
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Hongying Li
- EcoHealth Alliance, 520 Eighth Avenue, New York, NY 10018, USA
| | - Jonah Busch
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Colin A. Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, China
| | - Margaret Kinnaird
- Practice Leader, Wildlife, WWF International, The Mvuli, Mvuli Road, Westlands, Kenya
| | - Katarzyna Nowak
- The Safina Center, 80 North Country Road, Setauket, NY 11733, USA
| | - Marcia C. Castro
- Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | | | - Jorge A. Ahumada
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Lingyun Xiao
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Patrick Roehrdanz
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Les Kaufman
- Department of Biology and Pardee Center for the Study of the Longer-Range Future, Boston University, Boston, MA 02215, USA
| | - Lee Hannah
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Peter Daszak
- EcoHealth Alliance, 520 Eighth Avenue, New York, NY 10018, USA
| | - Stuart L. Pimm
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
37
|
Manning J, Zaidi I, Lon C, Rosas LA, Park JK, Ponce A, Bohl J, Chea S, Karkanitsa M, Sreng S, Rekol H, Chour CM, Esposito D, Taubenberger JK, Memoli MJ, Sadtler K, Duffy PE, Oliveira F. SARS-CoV-2 Cross-Reactivity in Prepandemic Serum from Rural Malaria-Infected Persons, Cambodia. Emerg Infect Dis 2022; 28:440-444. [PMID: 35076009 PMCID: PMC8798695 DOI: 10.3201/eid2802.211725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inhabitants of the Greater Mekong Subregion in Cambodia are exposed to pathogens that might influence serologic cross-reactivity with severe acute respiratory syndrome coronavirus 2. A prepandemic serosurvey of 528 malaria-infected persons demonstrated higher-than-expected positivity of nonneutralizing IgG to spike and receptor-binding domain antigens. These findings could affect interpretation of large-scale serosurveys.
Collapse
|
38
|
Marchenko V, Kolosova N, Danilenko A, Bragina M, Nhai T, Ryzhikov A. Diversity of coronaviruses in wild and domestic birds in Vietnam. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.359785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Destoumieux-Garzón D, Matthies-Wiesler F, Bierne N, Binot A, Boissier J, Devouge A, Garric J, Gruetzmacher K, Grunau C, Guégan JF, Hurtrez-Boussès S, Huss A, Morand S, Palmer C, Sarigiannis D, Vermeulen R, Barouki R. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. ENVIRONMENT INTERNATIONAL 2022; 158:106915. [PMID: 34634622 PMCID: PMC8500703 DOI: 10.1016/j.envint.2021.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change.
Collapse
Affiliation(s)
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany.
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aurélie Binot
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France
| | - Jérôme Boissier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | | | - Jeanne Garric
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR Riverly, F-69625 Villeurbanne, France
| | - Kim Gruetzmacher
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin Germany
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Jean-François Guégan
- Animals, health, Territories, Risks and Ecosystem (ASTRE), University of Montpellier, Agricultural Research for Development (CIRAD), National Research Institute for Agriculture, Food and the Environment (INRAE), Montpellier, France; MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France; Département de Biologie-Ecologie, Faculté des Sciences, Univ Montpellier, Montpellier, France
| | | | - Serge Morand
- Centre National de la Recherche Scientifique - UMR ASTRE, CIRAD, INRAE - Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Clare Palmer
- Department of Philosophy, YMCA Building, Texas A&M University, College Station, TX 77843, USA
| | - Denis Sarigiannis
- Aristotle University of Thessaloniki, Thessaloniki 54164, Greece; University School for Advanced Study IUSS, Pavia, Italy
| | | | | |
Collapse
|
40
|
Stout AE, Millet JK, Stanhope MJ, Whittaker GR. Furin cleavage sites in the spike proteins of bat and rodent coronaviruses: Implications for virus evolution and zoonotic transfer from rodent species. One Health 2021; 13:100282. [PMID: 34179330 PMCID: PMC8216856 DOI: 10.1016/j.onehlt.2021.100282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bats and rodents comprise two of the world's largest orders of mammals and the order Chiroptera (bats) has been implicated as a major reservoir of coronaviruses in nature and a source of zoonotic transfer to humans. However, the order Rodentia (rodents) also harbors coronaviruses, with two human coronaviruses (HCoV-OC43 and HCoV-HKU1) considered to have rodent origins. The coronavirus spike protein mediates viral entry and is a major determinant of viral tropism; importantly, the spike protein is activated by host cell proteases at two distinct sites, designated as S1/S2 and S2'. SARS-CoV-2, which is considered to be of bat origin, contains a cleavage site for the protease furin at S1/S2, absent from the rest of the currently known betacoronavirus lineage 2b coronaviruses (Sarbecoviruses). This cleavage site is thought to be critical to its replication and pathogenesis, with a notable link to virus transmission. Here, we examine the spike protein across coronaviruses identified in both bat and rodent species and address the role of furin as an activating protease. Utilizing two publicly available furin prediction algorithms (ProP and PiTou) and based on spike sequences reported in GenBank, we show that the S1/S2 furin cleavage site is typically not present in bat virus spike proteins but is common in rodent-associated sequences, and suggest this may have implications for zoonotic transfer. We provide a phylogenetic history of the Embecoviruses (betacoronavirus lineage 2a), including context for the use of furin as an activating protease for the viral spike protein. From a One Health perspective, continued rodent surveillance should be an important consideration in uncovering novel circulating coronaviruses.
Collapse
Affiliation(s)
- Alison E. Stout
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352, Jouy-en-Josas, France
| | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
- Master of Public Health Program, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Yek C, Nam VS, Leang R, Parker DM, Heng S, Souv K, Sovannaroth S, Mayxay M, AbuBakar S, Sasmono RT, Tran ND, Le Nguyen HK, Lon C, Boonnak K, Huy R, Sovann L, Manning JE. The Pandemic Experience in Southeast Asia: Interface Between SARS-CoV-2, Malaria, and Dengue. FRONTIERS IN TROPICAL DISEASES 2021; 2:788590. [PMID: 35373190 PMCID: PMC8975143 DOI: 10.3389/fitd.2021.788590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Southeast Asia (SEA) emerged relatively unscathed from the first year of the global SARS-CoV-2 pandemic, but as of July 2021 the region is experiencing a surge in case numbers primarily driven by Alpha (B.1.1.7) and subsequently the more transmissible Delta (B.1.617.2) variants. While initial disease burden was mitigated by swift government responses, favorable cultural and societal factors, the more recent rise in cases suggests an under-appreciation of prior prevalence and over-appreciation of possible cross-protective immunity from exposure to endemic viruses, and highlights the effects of vaccine rollout at varying tempos and of variable efficacy. This burgeoning crisis is further complicated by co-existence of malaria and dengue in the region, with implications of serological cross-reactivity on interpretation of SARS-CoV-2 assays and competing resource demands impacting efforts to contain both endemic and pandemic disease.
Collapse
Affiliation(s)
- Christina Yek
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, CA, United States
- Department of Epidemiology, University of California, Irvine, Irvine, CA, United States
| | - Seng Heng
- Ministry of Health, Phnom Penh, Cambodia
| | | | | | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sazaly AbuBakar
- WHO Collaborating Center for Arbovirus Reference and Research (Dengue) and Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Nhu Duong Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rekol Huy
- Ministry of Health, Phnom Penh, Cambodia
| | - Ly Sovann
- Ministry of Health, Phnom Penh, Cambodia
| | - Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| |
Collapse
|
42
|
Murphy T, Phan K, Irvine KN, Lean D. The Role of Micronutrients and Toxic Metals in the Management of Epidemics in Cambodia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11446. [PMID: 34769963 PMCID: PMC8582812 DOI: 10.3390/ijerph182111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
The illegal trade of wildlife in SE Asia has been identified as the likely cause of the COVID-19 pandemic. We reviewed 198 papers on the current COVID pandemic in Cambodia, diseases such as avian influenza and Nipah virus, most likely to develop into a new pandemic in Cambodia, and common features of disease that require mitigation. Artisanal goldmining uses pure mercury in the areas where wildlife is smuggled to China. Moreover, 30-40% of Cambodians are zinc deficient. High levels of arsenic in irrigation water (>1000 µg/L) are associated with very low levels of zinc in rice (5 µg/g) and rice is the primary staple food for the region. Brown rice from nine of 15 paddy fields in the arsenic zone of Cambodia had double the new guidelines of 100 µg/kg inorganic arsenic for children's food in the EU and USA. The combination of deficiencies of essential micronutrients like zinc and pervasive presence of arsenic and mercury has the potential to compromise the immunity of many Cambodians. Innovative solutions are suggested to improve micronutrient nutrition. Toxins that suppress the immune system must be better managed to reduce the virulence of pathogens. Cambodia was not likely the source of the COVID-19 but does have problems that could result in a new pandemic.
Collapse
Affiliation(s)
- Thomas Murphy
- Faculty of Science and Technology, International University, Phnom Penh 12000, Cambodia;
| | - Kongkea Phan
- Faculty of Science and Technology, International University, Phnom Penh 12000, Cambodia;
| | - Kim Neil Irvine
- Faculty of Architecture & Planning, Rangsit Campus, Thammasat University, Khlong Nueng 12121, Thailand;
| | - David Lean
- Lean Environmental, Apsley, ON K0L1A0, Canada;
| |
Collapse
|
43
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Stout AE, Guo Q, Millet JK, Whittaker1 GR. Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comp Med 2021; 71:442-450. [PMID: 34635199 PMCID: PMC8594259 DOI: 10.30802/aalas-cm-21-000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
With a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the hu- man population, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronaviruses RaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronaviruses remains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contribute to the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1-S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2-and other coronaviruses-to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.
Collapse
Affiliation(s)
| | - Qinghua Guo
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Gary R Whittaker1
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| |
Collapse
|
45
|
Manning J, Zaidi I, Lon C, Rosas LA, Park JK, Ponce A, Bohl J, Chea S, Karkanitsa M, Sreng S, Rekol H, Chour CM, Esposito D, Taubenberger JK, Memoli MJ, Sadtler K, Duffy PE, Oliveira F. Pre-pandemic SARS-CoV-2 serological reactivity in rural malaria-experienced Cambodians. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.27.21264000. [PMID: 34611671 PMCID: PMC8491862 DOI: 10.1101/2021.09.27.21264000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Greater Mekong inhabitants are exposed to pathogens, zoonotic and otherwise, that may influence SARS-CoV-2 seroreactivity. A pre-pandemic (2005 to 2011) serosurvey of from 528 malaria-experienced Cambodians demonstrated higher-than-expected (up to 13.8 %) positivity of non-neutralizing IgG to SARS-CoV-2 spike and RBD antigens. These findings have implications for interpreting large-scale serosurveys. ARTICLE SUMMARY LINE In the pre-COVID19 pandemic years of 2005 to 2011, malaria experienced Cambodians from rural settings had higher-than-expected seroreactivity to SARS-CoV-2 spike and receptor binding domain proteins.
Collapse
Affiliation(s)
- Jessica Manning
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Irfan Zaidi
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Chanthap Lon
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Luz Angela Rosas
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jae-Keun Park
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aiyana Ponce
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jennifer Bohl
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sophana Chea
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Sokunthea Sreng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Huy Rekol
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Char Meng Chour
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Dominic Esposito
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Matthew J Memoli
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kaitlyn Sadtler
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, USA
| | - Patrick E Duffy
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Fabiano Oliveira
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Manning JE, Duffy PE, Esposito D, Sadtler K. Material strategies and considerations for serologic testing of global infectious diseases. MRS BULLETIN 2021; 46:854-858. [PMID: 34539056 PMCID: PMC8437333 DOI: 10.1557/s43577-021-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 05/08/2023]
Abstract
The SARS-CoV-2 pandemic has brought to light multiple considerations when approaching infectious diseases on the global level. These range from diagnostic platforms, to therapeutics, and prevention agents. In this article, we focus on the engineering platforms and considerations when applying serologic assays to multiple geographic locations, climates with varying endemic virus repertoires, and different laboratory and clinical resource settings. Serologic assays detect antibodies that react against viral proteins, suggesting prior infection and correlative of an increased likelihood of immunity to future infection. As these assays are focused on the human immune response to a pathogen, and humans are variable, there are a number of important engineering steps to optimize assay performance, from sample collection, to assay execution and data analysis. Moving forward, a global approach to infectious disease detection and prevention is necessary to prevent the spread of future viruses with pandemic potential. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Kaitlyn Sadtler
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
47
|
Diet, parasites, and other pathogens of Sunda leopard cats ( Prionailurus javanensis Desmarest 1816) in Aborlan, Palawan Island, Philippines. J Parasit Dis 2021; 45:627-633. [PMID: 34475642 DOI: 10.1007/s12639-020-01335-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022] Open
Abstract
This study is the first investigation of parasites and other pathogens present in Sunda leopard cats (Prionailurus javanensis) in Aborlan, Palawan, Philippines. With the nature of wild carnivore sampling, four (4) wild Sunda leopard cats were captured in Aborlan, Palawan, Philippines for a period of nine (9) months. Of these, three (3) were considered for blood and fecal examination due to the poor condition of one animal. Rapid diagnostic kits were used to detect the presence of selected pathogens in blood samples while fecal samples were examined for parasite fauna and diet contents. Nine (9) parasite species were identified namely: Toxoplasma gondii, Ancylostoma sp., Capillaria hepatica, Echinostoma sp., Hymenolepis nana, Isospora felis, Physaloptera sp., Trichostrongylus sp., and a fasciolid. Chlamydophila felis, a bacterial pathogen was also detected in the blood. No individuals were found to be positive for feline immunodeficiency virus, feline infectious peritonitis virus, and feline leukemia virus antibodies. Six (6) small mammal prey species were identified from the feces of Sunda leopard cats namely: Palawan spiny rat (Maxomys panglima), Asian house rat (Rattus tanezumi), Polynesian rat (Rattus exulans), house mouse (Mus musculus), Southern Palawan tree squirrel (Sundasciurus steerii), and Palawan treeshrew (Tupaia palawanensis). Sunda leopard cats in Aborlan, Palawan, may be highly infected by parasites primarily due to their diet of small mammals such as rodents. Transmission is also possible through environmental contact with contaminated water or soil or direct physical contact with infected domestic animals. This paper contributes to the knowledge on host-parasite systems in wildlife ecosystem in the Philippines which is extremely poorly understood.
Collapse
|
48
|
Lu L, Ashworth J, Nguyen D, Li K, Smith DB, Woolhouse M. No Exchange of Picornaviruses in Vietnam between Humans and Animals in a High-Risk Cohort with Close Contact despite High Prevalence and Diversity. Viruses 2021; 13:v13091709. [PMID: 34578290 PMCID: PMC8473303 DOI: 10.3390/v13091709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/03/2023] Open
Abstract
Hospital-based and community-based 'high-risk cohort' studies investigating humans at risk of zoonotic infection due to occupational or residential exposure to animals were conducted in Vietnam, with diverse viruses identified from faecal samples collected from humans, domestic and wild animals. In this study, we focus on the positive-sense RNA virus family Picornaviridae, investigating the prevalence, diversity, and potential for cross-species transmission. Through metagenomic sequencing, we found picornavirus contigs in 23% of samples, belonging to 15 picornavirus genera. Prevalence was highest in bats (67%) while diversity was highest in rats (nine genera). In addition, 22% of the contigs were derived from novel viruses: Twelve phylogenetically distinct clusters were observed in rats of which seven belong to novel species or types in the genera Hunnivirus, Parechovirus, Cardiovirus, Mosavirus and Mupivirus; four distinct clusters were found in bats, belonging to one novel parechovirus species and one related to an unclassified picornavirus. There was no evidence for zoonotic transmission in our data. Our study provides an improved knowledge of the diversity and prevalence of picornaviruses, including a variety of novel picornaviruses in rats and bats. We highlight the importance of monitoring the human-animal interface for possible spill-over events.
Collapse
Affiliation(s)
- Lu Lu
- Usher Institute, University of Edinburgh, Edinburgh EH9 3FL, UK; (J.A.); (M.W.)
- Correspondence:
| | - Jordan Ashworth
- Usher Institute, University of Edinburgh, Edinburgh EH9 3FL, UK; (J.A.); (M.W.)
| | - Dung Nguyen
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (D.N.); (D.B.S.)
| | - Kejin Li
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK;
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (D.N.); (D.B.S.)
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK;
| | - Mark Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh EH9 3FL, UK; (J.A.); (M.W.)
| | | |
Collapse
|
49
|
Lacher TE, Kennerley R, Long B, McCay S, Roach NS, Turvey ST, Young RP. Support for rodent ecology and conservation to advance zoonotic disease research. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1061-1062. [PMID: 34085734 DOI: 10.1111/cobi.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Thomas E Lacher
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
- Re: Wild, Austin, Texas, USA
| | | | | | - Shelby McCay
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Nicolette S Roach
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
- Re: Wild, Austin, Texas, USA
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, UK
| | | |
Collapse
|
50
|
Hilderink M, de Winter I. No need to beat around the bushmeat-The role of wildlife trade and conservation initiatives in the emergence of zoonotic diseases. Heliyon 2021; 7:e07692. [PMID: 34386637 PMCID: PMC8342965 DOI: 10.1016/j.heliyon.2021.e07692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Wildlife species constitute a vast and uncharted reservoir of zoonotic pathogens that can pose a severe threat to global human health. Zoonoses have become increasingly impactful over the past decades, and the expanding trade in wildlife is unarguably among the most significant risk factors for their emergence. Despite several warnings from the academic community about the spillover risks associated with wildlife trade, the ongoing COVID-19 pandemic underlines that current policies on the wildlife industry are deficient. Conservation initiatives, rather than practices that attempt to eradicate zoonotic pathogens or the wild species that harbour them, could play a vital role in preventing the emergence of life-threatening zoonoses. This review explores how wildlife conservation initiatives could effectively reduce the risk of new zoonotic diseases emerging from the wildlife trade by integrating existing literature on zoonotic diseases and risk factors associated with wildlife trade. Conservation should mainly aim at reducing human-wildlife interactions in the wildlife trade by protecting wildlife habitats and providing local communities with alternative protein sources. In addition, conservation should focus on regulating the legal wildlife trade and education about disease transfer and safer hunting and butchering methods. By uniting efforts for wildlife protection and universal concern for preventing zoonotic epidemics, conservation initiatives have the potential to safeguard both biodiversity, animal welfare, and global human health security.
Collapse
|