1
|
Pu X, Zhang Y, Huang X, Lu M, Xu L, Yan R, Li X, Song X. Immunomodulatory effects of Eimeria maxima surface antigen (EmSAG) as an IFN-γ inhibitory molecule on peripheral blood mononuclear cells (PBMCs) and T cell subsets in chickens. Vet Res 2025; 56:103. [PMID: 40390138 PMCID: PMC12090499 DOI: 10.1186/s13567-025-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/28/2025] [Indexed: 05/21/2025] Open
Abstract
Eimeria maxima (E. maxima) infection inhibits the expression of IFN-γ, a cytokine that is essential for the Th1 immune response and plays a key role in combating this parasite. In our preliminary investigations, we identified the E. maxima surface antigen (EmSAG) as an inhibitory molecule of IFN-γ. EmSAG was screened and characterised from an E. maxima sporozoite cDNA expression library. The present study aimed to evaluate the immunomodulatory effects of EmSAG on chicken peripheral blood mononuclear cells (PBMCs) and various T cell subsets. We analysed cell proliferation, nitric oxide (NO) release, and cytokine transcription. The results revealed that EmSAG boosts PBMC proliferation and promotes differentiation of CD4+/CD8+ T cells. Additionally, stimulation with EmSAG significantly inhibited NO release and IFN-γ transcription while enhancing the transcription of IL-4, IL-10, and TGF-β1 in chicken PBMCs. The sorting purity of T cell subsets was as follows: CD8+ (96.90%), CD4+ (86.25%), CD4+CD25- (89.14%), and CD4+CD25+ regulatory T cells (Tregs; 92.16%). These purified subsets were co-incubated with EmSAG to analyse the transcription of hallmark cytokines associated with Th1, Th2, and Treg responses. EmSAG significantly inhibited the transcription of IFN-γ and IL-2 in both CD4+ and CD8+ T cells, while promoting the expression of IL-10, TGF-β1, and CTLA-4 in Tregs. Moreover, depletion of CD25+ cells reversed the EmSAG-induced suppression of IL-2 transcription and reduced its stimulating effects on IL-4 and IL-10 transcription in CD4+CD25- T cells. These findings highlight the role of EmSAG as an inhibitor of IFN-γ, facilitating immune evasion by attenuating the Th1 immune response and modulating Treg cell function. This study provides critical insights into the immune evasion mechanisms utilised by chicken coccidia.
Collapse
Affiliation(s)
- Xianglin Pu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiyuan Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Mingmin Lu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Nideffer J, Bach F, Nankya F, Musinguzi K, Borna Š, Mantilla M, Zedi M, Garcia Romero A, Gerungan C, Yang N, Kim S, van der Ploeg K, Camanag K, Lopez L, Nansubuga E, Nankabirwa JI, Arinaitwe E, Boonrat P, Strubbe S, Cepika AM, Takahashi S, Dorsey G, Greenhouse B, Rodriguez-Barraquer I, Kamya MR, Bacchetta R, Ssewanyana I, Haque A, Roncarolo MG, Jagannathan P. Clone tracking through repeated malaria identifies high-fidelity memory CD4 T cell responses. Sci Immunol 2025; 10:eads2957. [PMID: 40279404 DOI: 10.1126/sciimmunol.ads2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Few studies have tracked human CD4+ T cell clones through repeated infections. We used longitudinal single-cell RNA and T cell receptor (TCR) tracking to study the functional stability and memory potential of CD4+ T cell clonotypes during repeated Plasmodium falciparum (Pf) infections in Ugandan children and adults. Nearly all clonotypes displayed a strong preference for one of seven CD4+ subsets. This phenomenon of "clonal fidelity" was influenced by clonal expansion, linking T cell polarization and proliferation in vivo. Using clone tracking, we characterized subset-specific activation trajectories and identified antigen-specific clones. Type 1 regulatory T (TR1) cells accounted for nearly 90% of Pf-specific CD4+ T cells in blood. Tracking these clones longitudinally for hundreds of days, we observed malaria-induced expansion of TR1 effectors, long-term persistence of TR1 memory cells, and high-fidelity recall responses after reinfection. This work establishes clonal fidelity as a natural phenomenon and demonstrates the stable, long-term memory potential of TR1 cells.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Florian Bach
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Šimon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michelle Mantilla
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chloe Gerungan
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Soyeon Kim
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Luis Lopez
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Grant Dorsey
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Charles-Chess NAE, Kurup SP. Regulatory T cell memory: implications for malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf067. [PMID: 40267394 DOI: 10.1093/jimmun/vkaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Regulatory T cells (Tregs) can persist as memory cells (mTregs) in both infectious and non-infectious settings. However, their functional behavior, phenotypic stability, and suppressive properties upon antigen re-exposure remain poorly understood. Emerging evidence suggests that mTregs exhibit enhanced proliferation and suppressive capacity upon re-encountering the same antigen, a feature that may be critical in recurrent infections such as malaria. In malaria, Tregs are known to modulate immune responses and influence acute disease outcomes, suggesting that mTreg recall may play a significant role in long-term immunity. This review explores the biology of Treg memory, with a focus on malaria, and examines the immunological implications of maintaining a suppressive mTreg population in malaria immunity.
Collapse
Affiliation(s)
- Nana Appiah Essel Charles-Chess
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Osada Y, Shimizu S, Morita K. Parasitic helminths and protozoa: Treasure boxes of disease modifying anti-rheumatic drugs. Parasitol Int 2025; 105:103000. [PMID: 39592081 DOI: 10.1016/j.parint.2024.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Parasites generally survive in their hosts by employing various immunomodulation and immune evasion mechanisms. "helminth therapy" is one strategy that harnesses these parasite-specific beneficial properties for the therapeutic treatment of autoimmune and allergic diseases. Although numerous experimental reports have documented the anti-autoimmune activities of parasitic infections and parasite-derived products, the underlying mechanisms remain insufficiently elucidated due to the significant diversity among parasite species and autoimmune conditions. Rheumatoid arthritis (RA) is one of the most prevalent autoimmune disorders, presenting a substantial opportunity for the therapeutic use of parasites as novel disease-modifying antirheumatic drugs (DMARDs). In this paper, we summarize the immunomodulatory properties of parasites, focusing on their anti-arthritic mechanisms, and discuss the potential of parasite-derived products for the treatment of RA.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan.
| | - Shoichi Shimizu
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
5
|
Fusco EM, Bower L, Polidoro R, Minns AM, Lindner SE, Schmidt NW. Microbiome-mediated modulation of immune memory to P. yoelii affects the resistance to secondary cerebral malaria challenge. Immunohorizons 2025; 9:vlaf009. [PMID: 40193560 PMCID: PMC12086675 DOI: 10.1093/immhor/vlaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Malaria is caused by protozoan parasites in the genus Plasmodium. Over time individuals slowly develop clinical immunity to malaria, but this process occurs at variable rates, and the mechanism of protection is not fully understood. We have recently demonstrated that in genetically identical C57BL/6N mice, gut microbiota composition dramatically impacts the quality of the humoral immune response to Plasmodium yoelii and subsequent protection against a lethal secondary challenge with Plasmodium berghei ANKA in C57BL/6N mice. Here, we utilize this genetically identical, gut microbiome-dependent model to investigate how the gut microbiota modulate immunological memory, hypothesizing that the gut microbiome impacts the formation and functionality of immune memory. In support of this hypothesis, P. yoelii hyperparasitemia-resistant C57BL/6N mice exhibit increased protection against P. berghei ANKA-induced experimental cerebral malaria (ECM) compared to P. yoelii hyperparasitemia-susceptible C57BL/6N mice. Despite differences in protection against ECM, P. yoelii-resistant and -susceptible mice accumulate similar numbers of memory B cells (MBCs) and memory T cells. Following challenge with P. berghei ANKA, P. yoelii-resistant mice generated more rapid germinal center reactions; however, P. yoelii-resistant and -susceptible mice had similar titers of P. yoelii- and P. berghei-specific antibodies. In contrast, P. yoelii-resistant mice had an increased number of regulatory T cells in response to secondary challenge with P. berghei ANKA, which may dampen the immune-mediated breakdown of the blood-brain barrier and susceptibility to P. berghei-induced ECM. These findings demonstrate the ability of the gut microbiome to shape immune memory and the potential to enhance resistance to severe malaria outcomes.
Collapse
Affiliation(s)
- Elizabeth M Fusco
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Layne Bower
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rafael Polidoro
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Allen M Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Scott E Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Asatsuma T, Moreira ML, Lee HJ, Wanrooy BJ, Skinner OP, Li S, Rea I, Harkin T, Asad S, Williams CG, Beattie L, Haque A. Myosin 1f and Proline-rich 13 are transcriptionally upregulated yet functionally redundant in CD4+ T cells during blood-stage Plasmodium infection. PLoS One 2025; 20:e0320375. [PMID: 40132035 PMCID: PMC11936294 DOI: 10.1371/journal.pone.0320375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Plasmodium-specific CD4+ T cells differentiate into effector and memory subsets during experimental malaria, via mechanisms that remain incompletely characterised. By mining scRNA-seq data of CD4+ T cells during Plasmodium chabaudi chabaudi AS infection in mice, we identified two genes previously uncharacterised in T helper cells, long-tailed unconventional myosin 1f (Myo1f) and proline-rich13/taxanes-resistance 1 (Prr13/Txr1), which were upregulated during effector and memory differentiation. Myo1f is reported to regulate motility and granule exocytosis in myeloid and γδ T cells. Prr13/Txr1 is reported to transcriptionally regulate sensitivity to anti-cancer drugs. To test for cell-intrinsic gene function, we generated Plasmodium-specific TCR transgenic, PbTII cells harbouring CD4-promoter driven Cre recombinase and target genes with loxP-flanked essential exons. We validated our approach for the transcription factor Maf, formally demonstrating here that cMaf is essential for T follicular helper (Tfh) cell differentiation in experimental malaria. Next, having generated conditional knockout lines for Myo1f and Prr13, we observed that deficiency in Myo1f or Prr13 had no impact on either clonal expansion, Th1/Tfh differentiation or transit to memory. Additionally, despite continued expression during re-infection, Myo1f was unnecessary for Th1 recall in vivo. Thus, while cMaf is critical for Tfh differentiation in experimental malaria, Myo1f and Prr13, although transcriptionally upregulated, are unnecessary for effector or memory CD4+ T cell responses.
Collapse
Affiliation(s)
- Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marcela L. Moreira
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Hyun J. Lee
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Brooke J. Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Oliver P. Skinner
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ivana Rea
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Taidhgin Harkin
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Saba Asad
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Cameron G. Williams
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Dookie RS, Villegas-Mendez A, Cheeseman A, Jones AP, Barroso R, Barrett JR, Draper SJ, Janse CJ, Grogan JL, MacDonald AS, Couper KN. Synergistic blockade of TIGIT and PD-L1 increases type-1 inflammation and improves parasite control during murine blood-stage Plasmodium yoelii non-lethal infection. Infect Immun 2024; 92:e0034524. [PMID: 39324794 PMCID: PMC11556036 DOI: 10.1128/iai.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Pro-inflammatory immune responses are rapidly suppressed during blood-stage malaria but the molecular mechanisms driving this regulation are still incompletely understood. In this study, we show that the co-inhibitory receptors TIGIT and PD-1 are upregulated and co-expressed by antigen-specific CD4+ T cells (ovalbumin-specific OT-II cells) during non-lethal Plasmodium yoelii expressing ovalbumin (PyNL-OVA) blood-stage infection. Synergistic blockade of TIGIT and PD-L1, but not individual blockade of each receptor, during the early stages of infection significantly improved parasite control during the peak stages (days 10-15) of infection. Mechanistically, this protection was correlated with significantly increased plasma levels of IFN-γ, TNF, and IL-2, and an increase in the frequencies of IFN-γ-producing antigen-specific T-bet+ CD4+ T cells (OT-II cells), but not antigen-specific CD8+ T cells (OT-I cells), along with expansion of the splenic red pulp and monocyte-derived macrophage populations. Collectively, our study identifies a novel role for TIGIT in combination with the PD1-PD-L1 axis in regulating specific components of the pro-inflammatory immune response and restricting parasite control during the acute stages of blood-stage PyNL infection.
Collapse
Affiliation(s)
- Rebecca S. Dookie
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antonn Cheeseman
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam P. Jones
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ruben Barroso
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Leiden Malaria Group, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jane L. Grogan
- Department of Cancer Immunology, Genentech, South San Francisco, California, USA
| | - Andrew S. MacDonald
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kevin N. Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Tang NL, Schaughency P, Gazzinelli-Guimaraes P, Lack J, Thumm L, Miltenberger E, Nash TE, Nutman TB, O'Connell EM. Immunologic Profiling of CSF in Subarachnoid Neurocysticercosis Reveals Specific Interleukin-10-Producing Cell Populations During Treatment. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200320. [PMID: 39475624 PMCID: PMC11527482 DOI: 10.1212/nxi.0000000000200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND AND OBJECTIVES Subarachnoid neurocysticercosis (SANCC) is the most severe form of Taenia solium CNS infection and accounts for the majority of neurocysticercosis-associated mortality. Inflammation is important in the treatment of SANCC because overactivity can lead to serious complications, but excessive suppression may be counterproductive toward parasite eradication. A relative abundance of CSF IL-10 to IL-12 has been associated with increased treatment duration for patients with SANCC, suggesting that IL-10 plays an important role in this disease process. To better understand SANCC immunology and the major sources of IL-10 during anthelmintic treatment, we took an unbiased and comprehensive approach to phenotype the immune cell populations in the CSF and peripheral blood of patients with SANCC. METHODS Eight samples of CSF cells collected from 5 patients with SANCC during treatment were evaluated using single-cell RNA sequencing. Matched CSF and peripheral blood mononuclear cells from 4 patients were assessed using flow cytometry. Staining for extracellular and intracellular markers allowed for the characterization of IL-10-producing T cells. RESULTS The CSF during SANCC contains a diversity of immune cell populations including multiple myeloid and lymphoid populations. Although there were changes in the composition of CSF cells during treatment, the largest population at both early and late time points was CD4+ T cells. Within this population, we identified 3 sources of IL-10 unique to SANCC CSF compared with controls: natural regulatory T cells (nTregs), induced regulatory T cells (iTregs), and Th17 cells. The abundance and phenotype of these IL-10-producing populations differed between CSF and blood in patients with SANCC, but iTregs were the single most productive population in the CSF. During treatment, these IL-10 producers persisted in consistent proportions despite decreases in parasite antigen over time. DISCUSSION This profile of immune cell populations in the CSF provides a comprehensive blueprint of the local and systemic immunology associated with SANCC. The identification of IL-10-producing cells in the CSF and peripheral blood deepens our understanding of the immunosuppressive phenotype that deters SANCC treatment success. Finally, the discovery that these IL-10 producers persist throughout treatment highlights the endurance of these populations in the CNS.
Collapse
Affiliation(s)
- Nina L Tang
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Paul Schaughency
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Pedro Gazzinelli-Guimaraes
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Justin Lack
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Lauren Thumm
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Emily Miltenberger
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Theodore E Nash
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Thomas B Nutman
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| | - Elise M O'Connell
- From the Laboratory of Parasitic Diseases (N.L.T., P.G.-G., L.T., E.M., T.E.N., T.B.N., E.M.O.C.), Integrated Data Sciences Section (P.S., J.L.), National Institute of Allergy and Infectious Diseases; and Clinical Monitoring Research Program Directorate (L.T.), Frederick National Laboratory for Cancer Research
| |
Collapse
|
9
|
Li M, Liu T, Wang Y, Zhang L, Lu F, Xia J, Zheng M, Zhang M, Wang B, Xu Y. Immunogenic and diagnostic potential of recombinant apical membrane antigen-1 from Plasmodium malariae. Diagn Microbiol Infect Dis 2024; 110:116480. [PMID: 39163788 DOI: 10.1016/j.diagmicrobio.2024.116480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
The apical membrane antigen-1 (AMA-1) is a crucial target for malaria management and prevention strategies. While the immunogenicity of AMA-1 has been extensively studied for Plasmodium falciparum and Plasmodium vivax, there is a notable scarcity of information for Plasmodium malariae. In this study, recombinant PmAMA-1 was expressed in Escherichia coli, and its integrity was confirmed via western blotting and indirect immunofluorescence assays. Immunization of BALB/c mice with rPmAMA-1 emulsified in Freund's adjuvant resulted in significantly elevated specific IgG antibodies, predominantly IgG1. The immune response exhibited Th1, Th2, and Th17 phenotypes, with a notable Th1 bias. Antisera from immunized mice effectively recognized native PmAMA-1 on P. malariae. These results suggest that PmAMA-1 is a promising target for both vaccine development and diagnostic applications for P. malariae infections, offering dual preventive and diagnostic benefits in malaria control.
Collapse
Affiliation(s)
- Moyan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Tingting Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yuerong Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China; Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luwen Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Fanbo Lu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China; Department of Clinical laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxing Xia
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Min Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
10
|
Zou F, Wu MMH, Tan Z, Lu G, Kwok KWH, Leng Z. Ecotoxicological risk of asphalt pavements to aquatic animals associated with pollutant leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173985. [PMID: 38876354 DOI: 10.1016/j.scitotenv.2024.173985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1β, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.
Collapse
Affiliation(s)
- Fuliao Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Margaret M H Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhifei Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Guoyang Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin W H Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zhen Leng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Pham TT, Buysrogge L, Matthys P, Van den Steen PE. NK cells contribute to the resolution of experimental malaria-associated acute respiratory distress syndrome after antimalarial treatment. Front Immunol 2024; 15:1433904. [PMID: 39355242 PMCID: PMC11442241 DOI: 10.3389/fimmu.2024.1433904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
In both humans and mice, natural killer (NK) cells are important lymphocytes of the innate immune system. They are often considered pro-inflammatory effector cells but may also have a regulatory or pro-resolving function by switching their cytokine profile towards the production of anti-inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-β, and by killing pro-inflammatory immune cells. Here, the role of NK cells in the resolution of malaria lung pathology was studied. Malaria complications, such as malaria-associated acute respiratory distress syndrome (MA-ARDS), are often lethal despite the rapid and efficient killing of Plasmodium parasites with antimalarial drugs. Hence, studying the resolution and healing mechanisms involved in the recovery from these complications could be useful to develop adjunctive treatments. Treatment of Plasmodium berghei NK65-infected C57BL/6 mice with a combination of artesunate and chloroquine starting at the appearance of symptoms was used as a model to study the resolution of MA-ARDS. The role of NK cells was studied using anti-NK1.1 depletion antibodies and NK cell-deficient mice. Using both methods, NK cells were found to be dispensable in the development of MA-ARDS, as shown previously. In contrast, NK cells were crucial in the initiation of resolution upon antimalarial treatment, as survival was significantly decreased in the absence of NK cells. Considerably increased IL-10 expression by NK cells suggested an anti-inflammatory and pro-resolving phenotype. Despite the increase in Il10 expression in the NK cells, inhibition of the IL-10/IL-10R axis using anti-IL10R antibodies had no effect on the resolution for MA-ARDS, suggesting that the pro-resolving effect of NK cells cannot solely be attributed to their IL-10 production. In conclusion, NK cells contribute to the resolution of experimental MA-ARDS.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Laura Buysrogge
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Lee HJ, Moreira ML, Li S, Asatsuma T, Williams CG, Skinner OP, Asad S, Bramhall M, Jiang Z, Liu Z, Kerr AS, Engel JA, Soon MSF, Straube J, Barrera I, Murray E, Chen F, Nideffer J, Jagannathan P, Haque A. CD4 + T cells display a spectrum of recall dynamics during re-infection with malaria parasites. Nat Commun 2024; 15:5497. [PMID: 38944658 PMCID: PMC11214622 DOI: 10.1038/s41467-024-49879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/24/2024] [Indexed: 07/01/2024] Open
Abstract
Children in malaria-endemic regions can experience repeated Plasmodium infections over short periods of time. Effects of re-infection on multiple co-existing CD4+ T cell subsets remain unresolved. Here, we examine antigen-experienced CD4+ T cells during re-infection in mice, using scRNA-seq/TCR-seq and spatial transcriptomics. TCR transgenic TEM cells initiate rapid Th1/Tr1 recall responses prior to proliferating, while GC Tfh counterparts are refractory, with TCM/Tfh-like cells exhibiting modest non-proliferative responses. Th1-recall is a partial facsimile of primary Th1-responses, with no upregulated effector-associated genes being unique to recall. Polyclonal, TCR-diverse, CD4+ T cells exhibit similar recall dynamics, with individual clones giving rise to multiple effectors including highly proliferative Th1/Tr1 cells, as well as GC Tfh and Tfh-like cells lacking proliferative capacity. Thus, we show substantial diversity in recall responses mounted by multiple co-existing CD4+ T cell subsets in the spleen, and present graphical user interfaces for studying gene expression dynamics and clonal relationships during re-infection.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Marcela L Moreira
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Oliver P Skinner
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Saba Asad
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Michael Bramhall
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Zhe Jiang
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Zihan Liu
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Ashlyn S Kerr
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | | | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, CA, USA
- Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, located at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Furtado R, Paul M, Zhang J, Sung J, Karell P, Kim RS, Caillat-Zucman S, Liang L, Felgner P, Bauleni A, Gama S, Buchwald A, Taylor T, Seydel K, Laufer M, Delahaye F, Daily JP, Lauvau G. Cytolytic circumsporozoite-specific memory CD4 + T cell clones are expanded during Plasmodium falciparum infection. Nat Commun 2023; 14:7726. [PMID: 38001069 PMCID: PMC10673885 DOI: 10.1038/s41467-023-43376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Clinical immunity against Plasmodium falciparum infection develops in residents of malaria endemic regions, manifesting in reduced clinical symptoms during infection and in protection against severe disease but the mechanisms are not fully understood. Here, we compare the cellular and humoral immune response of clinically immune (0-1 episode over 18 months) and susceptible (at least 3 episodes) during a mild episode of Pf malaria infection in a malaria endemic region of Malawi, by analysing peripheral blood samples using high dimensional mass cytometry (CyTOF), spectral flow cytometry and single-cell transcriptomic analyses. In the clinically immune, we find increased proportions of circulating follicular helper T cells and classical monocytes, while the humoral immune response shows characteristic age-related differences in the protected. Presence of memory CD4+ T cell clones with a strong cytolytic ZEB2+ T helper 1 effector signature, sharing identical T cell receptor clonotypes and recognizing the Pf-derived circumsporozoite protein (CSP) antigen are found in the blood of the Pf-infected participants gaining protection. Moreover, in clinically protected participants, ZEB2+ memory CD4+ T cells express lower level of inhibitory and chemotactic receptors. We thus propose that clonally expanded ZEB2+ CSP-specific cytolytic memory CD4+ Th1 cells may contribute to clinical immunity against the sporozoite and liver-stage Pf malaria.
Collapse
Affiliation(s)
- Raquel Furtado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- RF: BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | - Mahinder Paul
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Joowhan Sung
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul Karell
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Sophie Caillat-Zucman
- Université de Paris, AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatiblité, INSERM UMR976, 75010, Paris, France
| | - Li Liang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Philip Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Andy Bauleni
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Syze Gama
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andrea Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- FD: Precision Oncology, Sanofi, Vitry sur Seine, France
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
14
|
O'Neal KA, Zeltner SL, Foscue CL, Stumhofer JS. Bhlhe40 limits early IL-10 production from CD4 + T cells during Plasmodium yoelii 17X infection. Infect Immun 2023; 91:e0036723. [PMID: 37843306 PMCID: PMC10652903 DOI: 10.1128/iai.00367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The cytokine IL-10 suppresses T-cell-mediated immunity, which is required to control infection with Plasmodium yoelii. Consequently, IL-10 can delay the time needed to resolve this infection, leading to a higher parasite burden. While the pathways that lead to IL-10 production by CD4+ T cells are well defined, much less is known about the mediators that suppress the expression of this potent anti-inflammatory cytokine. Here, we show that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) contributes to controlling parasite burden in response to P. yoelii infection in mice. Loss of Bhlhe40 expression in mice results in higher Il10 expression, higher peak parasitemia, and a delay in parasite clearance. The observed phenotype was not due to defects in T-cell activation and proliferation or the humoral response. Nor was it due to changes in regulatory T-cell numbers. However, blocking IL-10 signaling reversed the outcome in Bhlhe40-/ - mice, suggesting that excess IL-10 production limits their ability to control the infection properly. In addition to suppressing Il10 expression in CD4+ T cells, Bhlhe40 can promote Ifng expression. Indeed, IFN-γ production by CD4+ T cells isolated from the liver was significantly affected by the loss of Bhlhe40. Lastly, Bhlhe40 deletion in T cells resulted in a phenotype similar to that observed in the Bhlhe40-/ - mice, indicating that Bhlhe40 expression in T cells contributes to the ability of mice to control infection with P. yoelii.
Collapse
Affiliation(s)
- Kara A. O'Neal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sheldon L. Zeltner
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Camille L. Foscue
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S. Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
15
|
McManus CM, Maizels RM. Regulatory T cells in parasite infections: susceptibility, specificity and specialisation. Trends Parasitol 2023; 39:547-562. [PMID: 37225557 DOI: 10.1016/j.pt.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.
Collapse
Affiliation(s)
- Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
16
|
Frontiers Production Office. Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
17
|
Ornellas-Garcia U, Cuervo P, Ribeiro-Gomes FL. Malaria and leishmaniasis: Updates on co-infection. Front Immunol 2023; 14:1122411. [PMID: 36895563 PMCID: PMC9989157 DOI: 10.3389/fimmu.2023.1122411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Malaria and leishmaniasis are endemic parasitic diseases in tropical and subtropical countries. Although the overlap of these diseases in the same host is frequently described, co-infection remains a neglected issue in the medical and scientific community. The complex relationship of concomitant infections with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and experimental co-infections, showing how this "dual" infection can exacerbate or suppress an effective immune response to these protozoa. Thus, a Plasmodium infection preceding or following Leishmania infection can impact the clinical course, accurate diagnosis, and management of leishmaniasis, and vice versa. The concept that in nature we are affected by concomitant infections reinforces the need to address the theme and ensure its due importance. In this review we explore and describe the studies available in the literature on Plasmodium spp. and Leishmania spp. co-infection, the scenarios, and the factors that may influence the course of these diseases.
Collapse
Affiliation(s)
- Uyla Ornellas-Garcia
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
19
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
20
|
Mooney JP, DonVito SM, Lim R, Keith M, Pickles L, Maguire EA, Wagner-Gamble T, Oldfield T, Bermejo Pariente A, Ehimiyein AM, Philbey AA, Bottomley C, Riley EM, Thompson J. Intestinal inflammation and increased intestinal permeability in Plasmodium chabaudi AS infected mice. Wellcome Open Res 2022; 7:134. [PMID: 36408291 PMCID: PMC9647155 DOI: 10.12688/wellcomeopenres.17781.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Gastrointestinal symptoms are commonly associated with acute Plasmodium spp infection. Malaria-associated enteritis may provide an opportunity for enteric pathogens to breach the intestinal mucosa, resulting in life-threatening systemic infections. Methods: To investigate whether intestinal pathology also occurs during infection with a murine model of mild and resolving malaria, C57BL/6J mice were inoculated with recently mosquito-transmitted Plasmodium chabaudi AS. At schizogony, intestinal tissues were collected for quantification and localisation of immune mediators and malaria parasites, by PCR and immunohistochemistry. Inflammatory proteins were measured in plasma and faeces and intestinal permeability was assessed by FITC-dextran translocation after oral administration. Results: Parasitaemia peaked at approx. 1.5% at day 9 and resolved by day 14, with mice experiencing significant and transient anaemia but no weight loss. Plasma IFNγ, TNFα and IL10 were significantly elevated during peak infection and quantitative RT-PCR of the intestine revealed a significant increase in transcripts for ifng and cxcl10. Histological analysis revealed parasites within blood vessels of both the submucosa and intestinal villi and evidence of mild crypt hyperplasia. In faeces, concentrations of the inflammatory marker lactoferrin were significantly raised on days 9 and 11 and FITC-dextran was detected in plasma on days 7 to 14. At day 11, plasma FITC-dextran concentration was significantly positively correlated with peripheral parasitemia and faecal lactoferrin concentration. Conclusions: In summary, using a relevant, attenuated model of malaria, we have found that acute infection is associated with intestinal inflammation and increased intestinal permeability. This model can now be used to explore the mechanisms of parasite-induced intestinal inflammation and to assess the impact of increased intestinal permeability on translocation of enteropathogens.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Rivka Lim
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Marianne Keith
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lia Pickles
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Eleanor A Maguire
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Tara Wagner-Gamble
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Thomas Oldfield
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Ana Bermejo Pariente
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
- Editorial Team, F1000 Ltd., London, UK
| | - Ajoke M Ehimiyein
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Adrian A Philbey
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom., Edinburgh, EH25 9RG, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| |
Collapse
|
21
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Salazar-Castañón VH, Juárez-Avelar I, Legorreta-Herrera M, Rodriguez-Sosa M. Macrophage migration inhibitory factor contributes to immunopathogenesis during Plasmodium yoelii 17XL infection. Front Cell Infect Microbiol 2022; 12:968422. [PMID: 36093199 PMCID: PMC9449124 DOI: 10.3389/fcimb.2022.968422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine recognized regulator of the inflammatory immune response associated with several immune cells that produce inflammatory cytokines such as IL-1β, IL-6, IL-12, IL-18, and TNF-α. This study aimed to understand the effect of MIF on the immune response and pathogenesis during Plasmodium infection. Wild-type (Wt) and MIF knockout (Mif -/-) mice were intravenously infected with 1×103 Plasmodium yoelii (Py) 17XL-parasitized red blood cells. Our data showed that Py17XL-infected Wt mice died 11 days postinfection, while Mif -/- mice showed reduced parasitemia and an increase in their survival at day 11 up to 58%, importantly they succumb up to day 21 postinfection. The increased survival rate in Mif -/- mice was associated with less severe cachexia and anemia as a result of a mixed Th1/Th2 cytokine profile, high levels of IL-12, IL-17/IL-4, and IL-10 in serum; and high levels of IL-4 and IL-10, and low levels of IFN-γ in spleen cells compared to Py17XL infected Wt mice. Moreover, macrophages (Mφs) from Mif -/- mice exhibited higher concentrations of IL-10 and IL-12 and reduced levels of TNF-α and nitric oxide (NO) compared to Py17XL-infected Wt mice. These results demonstrate that MIF has an important role in regulating the immune response associated with host pathogenesis and lethality, which is relevant to consider in preventing/reducing complications in Plasmodium infections.
Collapse
Affiliation(s)
- Víctor H. Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Imelda Juárez-Avelar
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Estado de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico,*Correspondence: Miriam Rodriguez-Sosa, ; Martha Legorreta-Herrera,
| | - Miriam Rodriguez-Sosa
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Estado de México, Mexico,*Correspondence: Miriam Rodriguez-Sosa, ; Martha Legorreta-Herrera,
| |
Collapse
|
23
|
Ibraheem Y, Bayarsaikhan G, Inoue SI. Host immunity to Plasmodium infection: Contribution of Plasmodium berghei to our understanding of T cell-related immune response to blood-stage malaria. Parasitol Int 2022; 92:102646. [PMID: 35998816 DOI: 10.1016/j.parint.2022.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Yarob Ibraheem
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan.
| |
Collapse
|
24
|
Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine 2022; 157:155962. [PMID: 35853395 DOI: 10.1016/j.cyto.2022.155962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Considerable evidence supports that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in various neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. The purpose of this study is to discuss the recent research on treating cytokine storm and amyloids, including stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's condition, Multi-sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS). Neuroinflammation observed in neurological disorders has a pivotal role in exacerbating Aβ burden and tau hyperphosphorylation, suggesting that stimulating cytokines in response to an undesirable external response could be a checkpoint for treating neurological disorders. Furthermore, the pro-inflammatory cytokines help our immune system through a neuroprotective mechanism in clearing viral infection by recruiting mononuclear cells. This study reveals that cytokine applications may play a vital role in providing novel regulation and methods for the therapeutic approach to neurological disorders and the causes of the deregulation, which is responsible for neuroinflammation and viral infection. However, it needs to be further investigated to clarify better the mechanisms of cytokine release in response to various stimuli, which could be the central point for treating neurological disorders.
Collapse
|
25
|
Kalia I, Anand R, Quadiri A, Bhattacharya S, Sahoo B, Singh AP. Plasmodium berghei-Released Factor, PbTIP, Modulates the Host Innate Immune Responses. Front Immunol 2022; 12:699887. [PMID: 34987497 PMCID: PMC8721568 DOI: 10.3389/fimmu.2021.699887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The Plasmodium parasite has to cross various immunological barriers for successful infection. Parasites have evolved mechanisms to evade host immune responses, which hugely contributes to the successful infection and transmission by parasites. One way in which a parasite evades immune surveillance is by expressing molecular mimics of the host molecules in order to manipulate the host responses. In this study, we report a Plasmodium berghei hypothetical protein, PbTIP (PbANKA_124360.0), which is a Plasmodium homolog of the human T-cell immunomodulatory protein (TIP). The latter possesses immunomodulatory activities and suppressed the host immune responses in a mouse acute graft-versus-host disease (GvHD) model. The Plasmodium berghei protein, PbTIP, is expressed on the merozoite surface and exported to the host erythrocyte surface upon infection. It is shed in the blood circulation by the activity of an uncharacterized membrane protease(s). The shed PbTIP could be detected in the host serum during infection. Our results demonstrate that the shed PbTIP exhibits binding on the surface of macrophages and reduces their inflammatory cytokine response while upregulating the anti-inflammatory cytokines such as TGF-β and IL-10. Such manipulated immune responses are observed in the later stage of malaria infection. PbTIP induced Th2-type gene transcript changes in macrophages, hinting toward its potential to regulate the host immune responses against the parasite. Therefore, this study highlights the role of a Plasmodium-released protein, PbTIP, in immune evasion using macrophages, which may represent the critical strategy of the parasite to successfully survive and thrive in its host. This study also indicates the human malaria parasite TIP as a potential diagnostic molecule that could be exploited in lateral flow-based immunochromatographic tests for malaria disease diagnosis.
Collapse
Affiliation(s)
- Inderjeet Kalia
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajesh Anand
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Afshana Quadiri
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Shreya Bhattacharya
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Bijayalaxmi Sahoo
- Department of Biological Sciences and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
26
|
Georgiadou A, Dunican C, Soro-Barrio P, Lee HJ, Kaforou M, Cunnington AJ. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 2022; 11:e70763. [PMID: 35006075 PMCID: PMC8747512 DOI: 10.7554/elife.70763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.
Collapse
Affiliation(s)
- Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Pablo Soro-Barrio
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Hyun Jae Lee
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Gaballah EM, Morita K, Shimizu S, Elhenawy AA, Nabih N, Elsawey AM, Abdel-Mageed SA, Osada Y. Non-lethal rodent malarial infection prevents collagen-induced arthritis in mice via anti-arthritic immunomodulation. Parasite Immunol 2021; 44:e12901. [PMID: 34931316 DOI: 10.1111/pim.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
AIMS Immunomodulatory effects of parasitic infections on the outcomes of allergic or autoimmune disorders have been addressed in many experimental studies. We examined the effects of Plasmodium yoelii 17X NL (Py) infection on collagen-induced arthritis (CIA). METHODS AND RESULTS Male DBA/1J mice were immunized with bovine type II collagen (IIC). Py inoculation was induced at three different time points (1, 4 weeks after or 4 weeks before the immunization). Only the inoculation at 4 weeks after IIC immunization significantly inhibited arthritis development. Non-malarial anaemia induced by phenylhydrazine hydrochloride (PHZ) did not affect arthritis development. In the infected mice, anti-IIC IgG levels were transiently reduced. In addition, splenic production of pro-arthritic cytokines (IL-17 and TNF-α) and IFN-γ decreased, whereas IL-10 production increased. Flow cytometric analysis clarified that the main IL-10 producers in Py-infected mice had the CD4+ CD25- Foxp3- phenotype, presumably Tr1 cells. CONCLUSION We demonstrated that experimental malarial infection alleviated autoimmune arthritis via immunomodulation, suggesting the importance of malaria in the hygiene hypothesis and the significance of searching for therapeutic immunomodulatory molecules from malarial parasites.
Collapse
Affiliation(s)
- Eman M Gaballah
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Parasitology and Immunology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.,Department of Medical Parasitology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Kentaro Morita
- Department of Parasitology and Immunology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Shoichi Shimizu
- Department of Parasitology and Immunology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Abeer A Elhenawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nairmen Nabih
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aliaa M Elsawey
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Salama A Abdel-Mageed
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yoshio Osada
- Department of Parasitology and Immunology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
28
|
Hahn WO, Pepper M, Liles WC. B cell intrinsic expression of IFNλ receptor suppresses the acute humoral immune response to experimental blood-stage malaria. Virulence 2021; 11:594-606. [PMID: 32407154 PMCID: PMC7549950 DOI: 10.1080/21505594.2020.1768329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria infection that has an unknown physiological role during malaria infection. We demonstrate that B cell-intrinsic IFNλ signals suppress the acute antibody response, acute plasmablast response, and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of the humoral immune response in the host response to experimental malaria.
Collapse
Affiliation(s)
- William O Hahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| | - Marion Pepper
- Department of Immunology, University of Washington , Seattle, USA
| | - W Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| |
Collapse
|
29
|
Surette FA, Guthmiller JJ, Li L, Sturtz AJ, Vijay R, Pope RL, McClellan BL, Pack AD, Zander RA, Shao P, Lan LYL, Fernandez-Ruiz D, Heath WR, Wilson PC, Butler NS. Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-Plasmodium humoral immunity. PLoS Pathog 2021; 17:e1009288. [PMID: 33529242 PMCID: PMC7880450 DOI: 10.1371/journal.ppat.1009288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/12/2021] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Immunity against malaria depends on germinal center (GC)-derived antibody responses that are orchestrated by T follicular helper (TFH) cells. Emerging data show that the regulatory cytokine IL-10 plays an essential role in promoting GC B cell responses during both experimental malaria and virus infections. Here we investigated the cellular source and temporal role of IL-10, and whether IL-10 additionally signals to CD4 T-cells to support anti-Plasmodium humoral immunity. Distinct from reports of virus infection, we found that IL-10 was expressed by conventional, Foxp3-negative effector CD4 T cells and functioned in a B cell-intrinsic manner only during the first 96 hours of Plasmodium infection to support humoral immunity. The critical functions of IL-10 manifested only before the orchestration of GC responses and were primarily localized outside of B cell follicles. Mechanistically, our studies showed that the rapid and transient provision of IL-10 promoted B cell expression of anti-apoptotic factors, MHC class II, CD83, and cell-cell adhesion proteins that are essential for B cell survival and interaction with CD4 T cells. Together, our data reveal temporal features and mechanisms by which IL-10 critically supports humoral immunity during blood-stage Plasmodium infection, information that may be useful for developing new strategies designed to lessen the burden of malaria.
Collapse
Affiliation(s)
- Fionna A. Surette
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Jenna J. Guthmiller
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Lei Li
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Alexandria J. Sturtz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rosemary L. Pope
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Brandon L. McClellan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Angela D. Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan A. Zander
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda Yu-Ling Lan
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Noah S. Butler
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Apte SH, Minigo G, Groves PL, Spargo JC, Plebanski M, Grigg MJ, Kenangalem E, Burel JG, Loughland JR, Flanagan KL, Piera KA, William T, Price RN, Woodberry T, Barber BE, Anstey NM, Doolan DL. A population of CD4 hiCD38 hi T cells correlates with disease severity in patients with acute malaria. Clin Transl Immunology 2020; 9:e1209. [PMID: 33282291 PMCID: PMC7684974 DOI: 10.1002/cti2.1209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE CD4+ T cells are critical mediators of immunity to Plasmodium spp. infection, but their characteristics during malarial episodes and immunopathology in naturally infected adults are poorly defined. Flow cytometric analysis of PBMCs from patients with either P. falciparum or P. knowlesi malaria revealed a pronounced population of CD4+ T cells co-expressing very high levels of CD4 and CD38 we have termed CD4hiCD38hi T cells. We set out to gain insight into the function of these novel cells. METHODS CD4+ T cells from 18 patients with P. falciparum or P. knowlesi malaria were assessed by flow cytometry and sorted into populations of CD4hiCD38hi or CD4norm T cells. Gene expression in the sorted populations was assessed by qPCR and NanoString. RESULTS CD4hiCD38hi T cells expressed high levels of CD4 mRNA and canonical type 1 regulatory T-cell (TR1) genes including IL10, IFNG, LAG3 and HAVCR2 (TIM3), and other genes with relevance to cell migration and immunomodulation. These cells increased in proportion to malaria disease severity and were absent after parasite clearance with antimalarials. CONCLUSION In naturally infected adults with acute malaria, a prominent population of type 1 regulatory T cells arises that can be defined by high co-expression of CD4 and CD38 (CD4hiCD38hi) and that correlates with disease severity in patients with falciparum malaria. This study provides fundamental insights into T-cell biology, including the first evidence that CD4 expression is modulated at the mRNA level. These findings have important implications for understanding the balance between immunity and immunopathology during malaria.
Collapse
Affiliation(s)
- Simon H Apte
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Present address:
Queensland Lung Transplant Service, The Prince Charles HospitalChermsideQLDAustralia
| | - Gabriela Minigo
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Penny L Groves
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Jessie C Spargo
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Magdalena Plebanski
- Department of Immunology and PathologyMonash UniversityPrahranVICAustralia,School of Health and Biomedical SciencesRMIT UniversityBundooraVICAustralia
| | - Mathew J Grigg
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Enny Kenangalem
- Papuan Health and Community Development FoundationTimikaIndonesia
| | - Julie G Burel
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Present address:
La Jolla Institute for ImmunologyLa JollaCAUSA
| | - Jessica R Loughland
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Katie L Flanagan
- Department of Immunology and PathologyMonash UniversityPrahranVICAustralia,School of Health and Biomedical SciencesRMIT UniversityBundooraVICAustralia,School of MedicineUniversity of TasmaniaLauncestonTASAustralia
| | - Kim A Piera
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Timothy William
- School of MedicineUniversity of TasmaniaLauncestonTASAustralia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Nuffield Department of Clinical MedicineCentre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Tonia Woodberry
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Bridget E Barber
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Nicholas M Anstey
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia
| | - Denise L Doolan
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Centre for Molecular TherapeuticsAustralian Institute of Tropical Health & MedicineJames Cook UniversityCairnsQLDAustralia
| |
Collapse
|
32
|
Gao W, Sun X, Li D, Sun L, He Y, Wei H, Jin F, Cao Y. Toll-like receptor 4, Toll-like receptor 7 and Toll-like receptor 9 agonists enhance immune responses against blood-stage Plasmodium chabaudi infection in BALB/c mice. Int Immunopharmacol 2020; 89:107096. [PMID: 33091818 DOI: 10.1016/j.intimp.2020.107096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Toll-like receptor (TLR) signals play vital roles during the blood-stage of malaria infections. However, the roles of TLR agonists in the regulation of immune responses and the development of protective immunity to malaria remain poorly understood. METHOD BALB/c mice were pre-treated with TLR4, TLR7 and TLR9 agonists, followed by infection with Plasmodium chabaudi. After infection, splenic dendritic cells (DCs), Th1 cells and programmed death-1 (PD-1) expressed on Th1 cells, as well as regulatory T cells (Tregs) were analyzed by flow cytometry. The levels of IFN-γ, TNF-α, TGF-β and IL-10 in splenocytes and IgG1 and IgG2a in serum were measured by ELISA. RESULT Administration of TLR4, TLR7 and TLR9 agonists prior to infection improved disease outcomes. All TLR agonists promoted DC activation, and the proportions of Th1 cells increased. In TLR4, TLR7 and TLR9 agonist treated groups the levels of pro-inflammatory cytokines IFN-γ and TNF-α were elevated, and IgG1 and IgG2a serum levels were also significantly increased. TLR4, TLR7 and TLR9 agonists diminished the activation of Tregs and down-regulated the anti-inflammatory cytokines TGF-β and IL-10. Finally, PD-1 expressed on Th1 cells were decreased in TLR4, TLR7 and TLR9 agonist treated groups compared with control groups. CONCLUSION TLR4, TLR7 and TLR9 agonists activated DC-mediated innate immune responses and adaptive immune response, which against the blood-stage of Plasmodium and might be applied to malaria protection and treatment.
Collapse
Affiliation(s)
- Wenyan Gao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China; Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Xiaodan Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Danni Li
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Lin Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Yang He
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Huanping Wei
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China.
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Yaming Cao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
33
|
Transcriptome dynamics of CD4 + T cells during malaria maps gradual transit from effector to memory. Nat Immunol 2020; 21:1597-1610. [PMID: 33046889 DOI: 10.1038/s41590-020-0800-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).
Collapse
|
34
|
Ceballos-Francisco D, Castillo Y, De La Rosa F, Vásquez W, Reyes-Santiago R, Cuello A, Cuesta A, Esteban MÁ. Bactericidal effect on skin mucosa of dietary guava (Psidium guajava L.) leaves in hybrid tilapia (Oreochromis niloticus × O. mossambicus). JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112838. [PMID: 32387463 DOI: 10.1016/j.jep.2020.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Due to the intensification practices in global aquaculture, fish are often confined in small volumes, which can results in outbreak diseases. In this context, the use of antibiotics is very usual. Thus, looking for natural substance able to reduce the use of the antibiotics is imperative. Among them, there is a great interest at present in the study of medicinal plants such as guava (Psidium guajava L.). These plants could help to develop a more sustainable aquaculture all over the world. The application of guava in traditional medicine dates for centuries and it is widely used in tropical countries for the treatment of diseases in human and animals. AIM OF THE STUDY The purpose of this work was to study the effects of the dietary administration of dried leaves of Psidium guajava on the skin mucosal immunity of hybrid tilapia (Oreochromis niloticus × O. mossambicus). Furthermore, the ability of this plant to inhibit the bacterial load in different tissues after an experimental infection with Vibrio harveyi was studied. MATERIALS AND METHODS P. guajava leaves collection and the experimentation was carried out in Dominican Republic. Fish were fed with a commercial diet supplemented with guava leaf at different concentrations (0%, 1.5% and 3%) for 21 days before being intraperitoneally injected with V. harveyi (1 × 104 cells mL-1). Thereafter, several immune activities were measured in fish skin mucus and after 48 h of injection, the skin, spleen and liver were collected to analyse the bactericidal activity of guava leaf and the gene expression of some immune related genes. RESULTS The administration of P. guajava leaves significantly modulated some immune-related enzymes (protease, antiprotease and peroxidase) in the skin mucus of hybrid tilapia. In addition, the bacterial load after V. harveyi infection in skin, spleen and liver significantly reduced in fish supplemented with guava leaves. Finally, the expression profile of hepcidin gene in skin and liver was modulated in fish feed with control diet after V. harveyi infection. CONCLUSION These results demonstrate that the dietary intake of guava leaves increases the skin mucosal barrier defences of hybrid tilapia and confers protection against V. harveyi colonization.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Yussaira Castillo
- Institute of Microbiology and Parasitology, Universidad Autónoma de Santo Domingo (IMPA-UASD), Alma Máter, Santo Domingo, 10103, Dominican Republic
| | - Francisco De La Rosa
- Veterinary Clinic, Acuario Nacional of Dominican Republic, Santo Domingo Este, 11603, Dominican Republic
| | - William Vásquez
- Veterinary Clinic, Acuario Nacional of Dominican Republic, Santo Domingo Este, 11603, Dominican Republic
| | - Raysa Reyes-Santiago
- Faculty of Agronomic and Veterinary Sciences, Universidad Autónoma de Santo Domingo, Calle Rogelio Rosell 1, Engombe, Santo Domingo Oeste, 10904, Dominican Republic
| | - Andreina Cuello
- Faculty of Agronomic and Veterinary Sciences, Universidad Autónoma de Santo Domingo, Calle Rogelio Rosell 1, Engombe, Santo Domingo Oeste, 10904, Dominican Republic
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
35
|
Yui K, Inoue SI. Host-pathogen interaction in the tissue environment during Plasmodium blood-stage infection. Parasite Immunol 2020; 43:e12763. [PMID: 32497249 DOI: 10.1111/pim.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Human malarial infection occurs after an infectious Anopheles mosquito bites. Following the initial liver-stage infection, parasites transform into merozoites, infecting red blood cells (RBCs). Repeated RBC infection then occurs during the blood-stage infection, while patients experience various malarial symptoms. Protective immune responses are elicited by this systemic infection, but excessive responses are sometimes harmful for hosts. As parasites infect only RBCs and their immediate precursors during this stage, direct parasite-host interactions occur primarily in the environment surrounded by endothelial lining of blood vessels. The spleen is the major organ where the immune system encounters infected RBCs, causing immunological responses. Its tissue structure is markedly altered during malarial infection in mice and humans. Plasmodium falciparum parasites inside RBCs express proteins, such as PfEMP-1 and RIFIN, transported to the RBC surfaces in order to evade immunological attack by sequestering themselves in the peripheral vasculature avoiding spleen or by direct immune cell inhibition through inhibitory receptors. Host cell production of regulatory cytokines IL-10 and IL-27 limits excessive immune responses, avoiding tissue damage. The regulation of the protective and inhibitory immune responses through host-parasite interactions allows chronic Plasmodium infection. In this review, we discuss underlying interaction mechanisms relevant for developing effective strategies against malaria.
Collapse
Affiliation(s)
- Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
36
|
Dookie RS, Villegas-Mendez A, Kroeze H, Barrett JR, Draper SJ, Franke-Fayard BM, Janse CJ, MacDonald AS, Couper KN. Combinatorial Tim-3 and PD-1 activity sustains antigen-specific Th1 cell numbers during blood-stage malaria. Parasite Immunol 2020; 42:e12723. [PMID: 32306409 DOI: 10.1111/pim.12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/26/2023]
Abstract
AIMS Co-inhibitory receptors play a major role in controlling the Th1 response during blood-stage malaria. Whilst PD-1 is viewed as the dominant co-inhibitory receptor restricting T cell responses, the roles of other such receptors in coordinating Th1 cell activity during malaria are poorly understood. METHODS AND RESULTS Here, we show that the co-inhibitory receptor Tim-3 is expressed on splenic antigen-specific T-bet+ (Th1) OT-II cells transiently during the early stage of infection with transgenic Plasmodium yoelii NL parasites expressing ovalbumin (P yoelii NL-OVA). We reveal that co-blockade of Tim-3 and PD-L1 during the acute phase of P yoelii NL infection did not improve the Th1 cell response but instead led to a specific reduction in the numbers of splenic Th1 OT-II cells. Combined blockade of Tim-3 and PD-L1 did elevate anti-parasite IgG antibody responses. Nevertheless, co-blockade of Tim-3 and PD-L1 did not affect IFN-γ production by OT-II cells and did not influence parasite control during P yoelii NL-OVA infection. CONCLUSION Thus, our results show that Tim-3 plays an unexpected combinatorial role with PD-1 in promoting and/ or sustaining a Th1 cell response during the early phase of blood-stage P. yoelii NL infection but combined blockade does not dramatically influence anti-parasite immunity.
Collapse
Affiliation(s)
- Rebecca S Dookie
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ana Villegas-Mendez
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Hans Kroeze
- Leiden malaria group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Blandine M Franke-Fayard
- Leiden malaria group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden malaria group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew S MacDonald
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Abstract
Immunity to malaria has been linked to the availability and function of helper CD4+ T cells, cytotoxic CD8+ T cells and γδ T cells that can respond to both the asymptomatic liver stage and the symptomatic blood stage of Plasmodium sp. infection. These T cell responses are also thought to be modulated by regulatory T cells. However, the precise mechanisms governing the development and function of Plasmodium-specific T cells and their capacity to form tissue-resident and long-lived memory populations are less well understood. The field has arrived at a point where the push for vaccines that exploit T cell-mediated immunity to malaria has made it imperative to define and reconcile the mechanisms that regulate the development and functions of Plasmodium-specific T cells. Here, we review our current understanding of the mechanisms by which T cell subsets orchestrate host resistance to Plasmodium infection on the basis of observational and mechanistic studies in humans, non-human primates and rodent models. We also examine the potential of new experimental strategies and human infection systems to inform a new generation of approaches to harness T cell responses against malaria.
Collapse
|
38
|
Bedke T, Muscate F, Soukou S, Gagliani N, Huber S. Title: IL-10-producing T cells and their dual functions. Semin Immunol 2019; 44:101335. [PMID: 31734129 DOI: 10.1016/j.smim.2019.101335] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, which significantly contributes to the maintenance and reestablishment of immune homeostasis. However, this classical view fails to fully describe the pleiotropic roles of IL-10. Indeed, IL-10 can also promote immune responses, e.g. by supporting B-cell and CD8+ T-cell activation. The reasons for these seemingly opposing functions are unclear to a large extent. Recent and previous studies suggest that the cellular source and the microenvironment impact the function of IL-10. However, studies addressing the mechanisms which determine whether IL-10 promotes inflammation or controls it have just begun. This review first summarizes the recent findings on the heterogeneity of IL-10 producing T cells and their impact on the target cells. Finally, we will propose two possible explanations for the dual functions of IL-10.
Collapse
Affiliation(s)
- Tanja Bedke
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Shiwa Soukou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden.
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
39
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine and functions as a negative regulator of immune responses to microbial antigens. IL-10 is particularly important in maintaining the intestinal microbe-immune homeostasis. Loss of IL-10 promotes the development of inflammatory bowel disease (IBD) as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions more generally to prevent excessive inflammation during the course of infection. Although IL-10 can be produced by virtually all cells of the innate and adaptive immune system, T cells constitute a non-redundant source for IL-10 in many cases. The various roles of T cell-derived IL-10 will be discussed in this review. Given that IL-10 is at the center of maintaining the delicate balance between effective immunity and tissue protection, it is not surprising that IL-10 expression is highly dynamic and tightly regulated. We summarize the environmental signals and molecular pathways that regulate IL-10 expression. While numerous studies have provided us with a deep understanding of IL-10 biology, the majority of findings have been made in murine models, prompting us to highlight gaps in our knowledge about T cell-derived IL-10 in the human system.
Collapse
|
40
|
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4
+
T cells during malaria. Immunol Rev 2019; 293:70-87. [DOI: 10.1111/imr.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Rajiv Kumar
- Centre of Experimental Medicine and Surgery Institute of Medical Sciences Banaras Hindu University Varanasi UP India
- Department of Medicine Institute of Medical Sciences Banaras Hindu University Varanasi UP India
| | - Jessica R. Loughland
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Michelle J. Boyle
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Christian R. Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| |
Collapse
|
41
|
Sukhbaatar O, Kimura D, Miyakoda M, Nakamae S, Kimura K, Hara H, Yoshida H, Inoue SI, Yui K. Activation and IL-10 production of specific CD4 + T cells are regulated by IL-27 during chronic infection with Plasmodium chabaudi. Parasitol Int 2019; 74:101994. [PMID: 31634628 DOI: 10.1016/j.parint.2019.101994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
IL-27, a regulatory cytokine, plays critical roles in the prevention of immunopathology during Plasmodium infection. We examined these roles in the immune responses against Plasmodium chabaudi infection using the Il-27ra-/- mice. While IL-27 was expressed at high levels during the early phase of the infection, enhanced CD4+ T cell function and reduction in parasitemia were observed mainly during the chronic phase in the mutant mice. In mice infected with P. chabaudi and cured with drug, CD4+ T cells in the Il-27ra-/- mice exhibited enhanced CD4+ T-cell responses, indicating the inhibitory role of IL-27 on the protective immune responses. To determine the role of IL-27 in detail, we performed CD4+ T-cell transfer experiments. The Il-27ra-/- and Il27p28-/- mice were first infected with P. chabaudi and then cured using drug treatment. Plasmodium-antigen primed CD4+ T cells were prepared from these mice and transferred into the recipient mice, followed by infection with the heterologous parasite P. berghei ANKA. Il-27ra-/- CD4+ T cells in the infected recipient mice did not produce IL-10, indicating that IL-10 production by primed CD4+ T cells is IL-27 dependent. Il27p28-/- CD4+ T cells that were primed in the absence of IL-27 exhibited enhanced recall responses during the challenge infection with P. berghei ANKA, implying that IL-27 receptor signaling during the primary infection affects recall responses in the long-term via the regulation of the memory CD4+ T cell generation. These features highlighted direct and time-transcending roles of IL-27 in the regulation of immune responses against chronic infection with Plasmodium parasites.
Collapse
Affiliation(s)
- Odsuren Sukhbaatar
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Sayuri Nakamae
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
42
|
Hose M, Günther A, Abberger H, Begum S, Korencak M, Becker KA, Buer J, Westendorf AM, Hansen W. T Cell-Specific Overexpression of Acid Sphingomyelinase Results in Elevated T Cell Activation and Reduced Parasitemia During Plasmodium yoelii Infection. Front Immunol 2019; 10:1225. [PMID: 31214184 PMCID: PMC6554418 DOI: 10.3389/fimmu.2019.01225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
The enzyme acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and is thereby involved in several cellular processes such as differentiation, proliferation, and apoptosis in different cell types. However, the function of ASM in T cells is still not well characterized. Here, we used T cell-specific ASM overexpressing mice (t-ASM/CD4cre) to clarify the impact of cell-intrinsic ASM activity on T cell function in vitro and in vivo. We showed that t-ASM/CD4cre mice exhibit decreased frequencies of Foxp3+ T regulatory cells (Tregs) within the spleen. Enforced T cell-specific ASM expression resulted in less efficient induction of Tregs and promoted differentiation of CD4+CD25− naïve T cells into IFN-γ producing Th1 cells in vitro. Further analysis revealed that ASM-overexpressing T cells from t-ASM/CD4cre mice show elevated T cell receptor (TCR) signaling activity accompanied with increased proliferation upon stimulation in vitro. Plasmodium yoelii infection of t-ASM/CD4cre mice resulted in enhanced T cell activation and was associated with reduced parasitemia in comparison to infected control mice. Hence, our results provide evidence that ASM activity modulates T cell function in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anne Günther
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Salina Begum
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Korencak
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katrin A Becker
- Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
43
|
Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO. Oral administration of Coenzyme Q 10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int 2019; 71:106-120. [PMID: 30981893 DOI: 10.1016/j.parint.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
In animal model of experimental cerebral malaria (ECM), the genesis of neuropathology is associated with oxidative stress and inflammatory mediators. There is limited progress in the development of new approaches to the treatment of cerebral malaria. Here, we tested whether oral supplementation of Coenzyme Q10 (CoQ10) would offer protection against oxidative stress and brain associated inflammation following Plasmodium berghei ANKA (PbA) infection in C57BL/6 J mouse model. For this purpose, one group of C57BL/6 mice was used as control; second group of mice were orally supplemented with 200 mg/kg CoQ10 and then infected with PbA and the third group was PbA infected alone. Clinical, biochemical, immunoblot and immunological features of ECM was monitored. We observed that oral administration of CoQ10 for 1 month and after PbA infection was able to improve survival, significantly reduced oedema, TNF-α and MIP-1β gene expression in brain samples in PbA infected mice. The result also shows the ability of CoQ10 to reduce cholesterol and triglycerides lipids, levels of matrix metalloproteinases-9, angiopoietin-2 and angiopoietin-1 in the brain. In addition, CoQ10 was very effective in decreasing NF-κB phosphorylation. Furthermore, CoQ10 supplementation abrogated Malondialdehyde, and 8-OHDG and restored cellular glutathione. These results constitute the first demonstration that oral supplementation of CoQ10 can protect mice against PbA induced oxidative stress and neuro-inflammation usually observed in ECM. Thus, the need to study CoQ10 as a candidate of antioxidant and immunomodulatory molecule in ECM and testing it in clinical studies either alone or in combination with antimalaria regimens to provide insight into a potential translatable therapy.
Collapse
Affiliation(s)
- James N Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya.
| | - Lucy A Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Ngalla E Jillani
- Department of Non-communicable diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Nemwel O Nyamweya
- Departmwent of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, Kenya
| | - Peris E Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Dorcas S Yole
- School of Biological and Life Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Laurent Azonvide
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alfred Orina Isaac
- School of Health Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| |
Collapse
|
44
|
Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci 2019; 224:222-231. [PMID: 30928403 DOI: 10.1016/j.lfs.2019.03.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of innate immunity and are derived from circulating monocytes and embryonic yolk sac. They exhibit high plasticity and polarize functionally in response to stimulus triggering it into classically activated M1 macrophages and alternatively activated M2 macrophages. This review summarizes markers of M2 macrophages like transmembrane surface receptors and signaling cascades initiated on their activation; cytokine and chemokine repertoires along with their receptors; and genetic markers and their involvement in immunomodulation. The detailed discussion emphasizes the role of these markers in imparting functional benefits to this subset of macrophages which define their venture in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Nidhi Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
45
|
Kumar R, Ng S, Engwerda C. The Role of IL-10 in Malaria: A Double Edged Sword. Front Immunol 2019; 10:229. [PMID: 30809232 PMCID: PMC6379449 DOI: 10.3389/fimmu.2019.00229] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
IL-10 produced by CD4+ T cells suppresses inflammation by inhibiting T cell functions and the upstream activities of antigen presenting cells (APCs). IL-10 was first identified in Th2 cells, but has since been described in IFNγ-producing Tbet+ Th1, FoxP3+ CD4+ regulatory T (Treg) and IL-17-producing CD4+ T (Th17) cells, as well as many innate and innate-like immune cell populations. IL-10 production by Th1 cells has emerged as an important mechanism to dampen inflammation in the face of intractable infection, including in African children with malaria. However, although these type I regulatory T (Tr1) cells protect tissue from inflammation, they may also promote disease by suppressing Th1 cell-mediated immunity, thereby allowing infection to persist. IL-10 produced by other immune cells during malaria can also influence disease outcome, but the full impact of this IL-10 production is still unclear. Together, the actions of this potent anti-inflammatory cytokine along with other immunoregulatory mechanisms that emerge following Plasmodium infection represent a potential hurdle for the development of immunity against malaria, whether naturally acquired or vaccine-induced. Recent advances in understanding how IL-10 production is initiated and regulated have revealed new opportunities for manipulating IL-10 for therapeutic advantage. In this review, we will summarize our current knowledge about IL-10 production during malaria and discuss its impact on disease outcome. We will highlight recent advances in our understanding about how IL-10 production by specific immune cell subsets is regulated and consider how this knowledge may be used in drug delivery and vaccination strategies to help eliminate malaria.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India.,Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna Ng
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christian Engwerda
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
46
|
O'Brien CA, Batista SJ, Still KM, Harris TH. IL-10 and ICOS Differentially Regulate T Cell Responses in the Brain during Chronic Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:1755-1766. [PMID: 30718297 DOI: 10.4049/jimmunol.1801229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Control of chronic CNS infection with the parasite Toxoplasma gondii requires ongoing T cell responses in the brain. Immunosuppressive cytokines are also important for preventing lethal immunopathology during chronic infection. To explore the loss of suppressive cytokines exclusively during the chronic phase of infection, we blocked IL-10R in chronically infected mice. Consistent with previous reports, IL-10R blockade led to severe, fatal tissue destruction associated with widespread changes in the inflammatory response, including increased APC activation, expansion of CD4+ T cells, and neutrophil recruitment to the brain. We then sought to identify regulatory mechanisms contributing to IL-10 production, focusing on ICOS, a molecule implicated in IL-10 production. Unexpectedly, ICOS ligand (ICOSL) blockade led to a local expansion of effector T cells in the brain without affecting IL-10 production or APC activation. Instead, we found that ICOSL blockade led to changes in T cells associated with their proliferation and survival. We observed increased expression of IL-2-associated signaling molecules CD25, STAT5 phosphorylation, Ki67, and Bcl-2 in T cells in the brain, along with decreased apoptosis. Interestingly, increases in CD25 and Bcl-2 were not observed following IL-10R blockade. Also, unlike IL-10R blockade, ICOSL blockade led to an expansion of both CD8+ and CD4+ T cells in the brain, with no expansion of peripheral T cells or neutrophil recruitment to the brain and no severe tissue destruction. Overall, these results suggest that IL-10 and ICOS differentially regulate T cell responses in the brain during chronic T. gondii infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Samantha J Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Katherine M Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
47
|
Lippens C, Guivier E, Reece SE, O’Donnell AJ, Cornet S, Faivre B, Sorci G. Early Plasmodium-induced inflammation does not accelerate aging in mice. Evol Appl 2019; 12:314-323. [PMID: 30697342 PMCID: PMC6346666 DOI: 10.1111/eva.12718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with a decline of performance leading to reduced reproductive output and survival. While the antagonistic pleiotropy theory of aging has attracted considerable attention, the molecular/physiological functions underlying the early-life benefits/late-life costs paradigm remain elusive. We tested the hypothesis that while early activation of the inflammatory response confers benefits in terms of protection against infection, it also incurs costs in terms of reduced reproductive output at old age and shortened longevity. We infected mice with the malaria parasite Plasmodium yoelii and increased the inflammatory response using an anti-IL-10 receptor antibody treatment. We quantified the benefits and costs of the inflammatory response during the acute phase of the infection and at old age. In agreement with the antagonistic pleiotropy hypothesis, the inflammatory response provided an early-life benefit, since infected mice that were treated with anti-IL-10 receptor antibodies had reduced parasite density and anemia. However, at old age, mice in all treatment groups had similar levels of C-reactive protein, reproductive output, survival rate, and lifespan. Overall, our results do not support the hypothesis that the benefits of a robust response to malaria infection in early life incur longer term fitness costs.
Collapse
Affiliation(s)
- Cédric Lippens
- Biogéosciences, CNRS UMR 6282Université de Bourgogne Franche‐ComtéDijonFrance
| | - Emmanuel Guivier
- Biogéosciences, CNRS UMR 6282Université de Bourgogne Franche‐ComtéDijonFrance
- Laboratoire IMBEUniversité Aix MarseilleMarseilleFrance
| | - Sarah E. Reece
- Institutes of Evolutionary Biology, and Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| | - Aidan J. O’Donnell
- Institutes of Evolutionary Biology, and Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| | - Stéphane Cornet
- IRDUMR CBGP INRA IRD Cirad Montpellier SupAgroMontpellierFrance
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282Université de Bourgogne Franche‐ComtéDijonFrance
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282Université de Bourgogne Franche‐ComtéDijonFrance
| |
Collapse
|
48
|
Ssemaganda A, Giddam AK, Zaman M, Skwarczynski M, Toth I, Stanisic DI, Good MF. Induction of Plasmodium-Specific Immune Responses Using Liposome-Based Vaccines. Front Immunol 2019; 10:135. [PMID: 30774635 PMCID: PMC6367261 DOI: 10.3389/fimmu.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
In the development of vaccines, the ability to initiate both innate and subsequent adaptive immune responses need to be considered. Live attenuated vaccines achieve this naturally, while inactivated and sub-unit vaccines generally require additional help provided through delivery systems and/or adjuvants. Liposomes present an attractive adjuvant/delivery system for antigens. Here, we review the key aspects of immunity against Plasmodium parasites, liposome design considerations and their current application in the development of a malaria vaccine.
Collapse
Affiliation(s)
| | | | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| |
Collapse
|
49
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
50
|
Cheng Q, Liu J, Pei Y, Zhang Y, Zhou D, Pan W, Zhang J. Neddylation contributes to CD4+ T cell-mediated protective immunity against blood-stage Plasmodium infection. PLoS Pathog 2018; 14:e1007440. [PMID: 30462731 PMCID: PMC6249024 DOI: 10.1371/journal.ppat.1007440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
CD4+ T cells play predominant roles in protective immunity against blood-stage Plasmodium infection, both for IFN-γ-dependent effector mechanisms and providing B cell helper signals. Neddylation, an ubiquitination-like process triggered by covalent conjugation of NEDD8 to specific targets, has emerged as a potential regulator of T cell activities to TCR engagement. However, its contribution to T cell-mediated immunity to blood-stage malaria remains unclear. Here using an experimental model induced by Plasmodium yoelii 17XNL, and conditional knockout mice with T cell-specific deficiency of crucial components of neddylation pathway, we demonstrate activation of neddylation in T cells during blood-stage Plasmodium infection is essential for parasite control and host survival. Mechanistically, we show that apart from promoting CD4+ T cell activation, proliferation, and development of protective T helper 1 (Th1) cell response as suggested previously, neddylation is also required for supporting CD4+ T cell survival, mainly through B-cell lymphoma-2 (Bcl-2) mediated suppression of the mitochondria-dependent apoptosis. Furthermore, we provide evidence that neddylation contributes to follicular helper T (Tfh) cell differentiation, probably via augmenting the ubiquitin ligase Itch activity and proteasomal degradation of FoxO1, thereby facilitating germinal center (GC) formation and parasite-specific antibody production. This study identifies neddylation as a positive regulator of anti-Plasmodium immunity and provides insight into an involvement of such pathway in host resistance to infectious diseases. Malaria, which is caused by the intracellular parasite Plasmodium, remains a major infectious disease with significant morbidity and mortality annually. Better understanding of the molecular mechanisms involved in protective immunity against the pathogenic blood-stage Plasmodium will facilitate development of anti-malarial drugs and vaccines. Neddylation has recently been identified as a potential regulator of T cell function. Here, we directly addressed the effects of neddylation on T cell responses and the outcome of blood-stage P. yoelii 17XNL malaria. We show that activation of neddylation in T cells is essential for IFN-γ-mediated proinflammatory response and generation of parasite-specific antibodies, thus contributing to full resolution of the infection. This is primarily associated with the reported beneficial effects of neddylation on CD4+ T cell activities, including activation, proliferation, and differentiation into T helper 1 (Th1) cells. Additionally, we establish a novel role of neddylation in parasite-responsive CD4+ T cell survival and follicular helper T (Tfh) cell differentiation. Therefore, we provide evidence that neddylation may represent a novel mechanism in orchestrating optimum CD4+ T cell effector response and subsequent humoral immunity to blood-stage Plasmodium infection.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| | - Jian Liu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| |
Collapse
|