1
|
Piattini F, Sidiropoulos ND, Berest I, Kopf M. IL-6 mediates defense against influenza virus by promoting protective antibody responses but not innate inflammation. Mucosal Immunol 2025:S1933-0219(25)00019-4. [PMID: 39978550 DOI: 10.1016/j.mucimm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Influenza virus infection is a leading cause of morbidity and mortality worldwide, posing a significant public health problem. The pro-inflammatory cytokine interleukin-6 (IL-6) has been shown to promote defense against respiratory viral infection, while excessive IL-6 responses have been associated with severe pneumonia. Heterogenous expression of IL-6R and the IL-6-signal transducer subunit (gp130) across many cell types and different signaling modalities have made it difficult to define the precise role of the IL-6/IL-6R pathway in vivo. We generated multiple cell lineage-specific Il6ra-deficient mice and compared them to global Il6ra-/- and Il-6-/- mice to dissect the systemic and cell-intrinsic mechanisms for pneumonitis and control of influenza A virus (IAV) infection. Delayed viral clearance and severe morbidity in the global IL-6 knockouts were associated with reduced antibody responses, complement C3 and C5 production, and impaired T follicular helper (Tfh) cell generation. Mice lacking IL-6R exclusively in T cells phenocopied a defect in Tfh cell differentiation and antibody production, although susceptibility to IAV was only mildly affected. Mice lacking IL-6R specifically in B cells mounted normal antibody responses. Moreover, innate pro-inflammatory cytokine responses, myeloid cell infiltration, and adaptive immunity in the lung remained unaffected in Il6rafl/flLysMCre mice. Our results suggest that IL-6 mediates defense against IAV mainly by generating Tfh cells and promoting local C3 production, which together are required for eliciting protective antibody responses by B cells.
Collapse
Affiliation(s)
- F Piattini
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - N D Sidiropoulos
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - I Berest
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - M Kopf
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Amoddeo A. In silico assessment of CAR macrophages activity against SARS-CoV-2 infection. Heliyon 2024; 10:e39689. [PMID: 39524874 PMCID: PMC11550025 DOI: 10.1016/j.heliyon.2024.e39689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage engineering with chimeric antigen receptor is a promising technique first applied to the treatment of tumours and recently suggested as a possible immunotherapeutic route against the COVID-19 disease. Four immunotherapies based on engineered macrophages have been tested in vitro revealing promising, with one of them acting without increasing the cytokines level. We present a mathematical model aimed at the evaluation of both the SARS-CoV-2 virions dynamics and the cytokines production induced, while such newly developed constructs interact with the immune system once administered. The importance of the study lies both in monitoring the dynamics of the infection and in evaluating the cytokine production, since clinical studies show that in critical COVID-19 patients an abnormal cytokines production occurs, a concern to be accounted for in designing appropriate therapeutic strategies. The mathematical model was built in the context of the continuum approach of the mass conservation, while the numerical simulations have been performed introducing parameters deduced from the experiments, using the finite element method. The model simulations allow to analyse and to compare the immune mechanisms underlying the virus dynamics, deepening the investigation for two selected immunotherapies, suggesting that a synergistic work of involved cytokines with phagocytic activity of macrophages occurs. The best SARS-CoV-2 clearance relies not only on the phagocytic capacity of the engineered macrophages, but also on the production of T-lymphocytes, pro- and anti-inflammatory cytokines which in the two cases examined in depth can decrease by 99.7 %, 99.6 % and 69 % respectively, passing from the most effective immunotherapy to the least effective one. This study is the first mathematical model that analyses the dynamics of macrophages engineered to fight the COVID-19, and paves the way for their possible exploitation against such a challenging disease, going beyond existing models involving other immune cells.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università’Mediterranea’ di Reggio Calabria, Via R. Zehender 1, Feo di Vito, I-89122, Reggio Calabria, Italy
| |
Collapse
|
3
|
Heida R, Jacob Silva PH, Akkerman R, Moser J, de Vries-Idema J, Bornet A, Pawar S, Stellacci F, Frijlink HW, Huckriede ALW, Hinrichs WLJ. Inhibition of influenza virus infection in mice by pulmonary administration of a spray dried antiviral drug. Eur J Pharm Biopharm 2024; 204:114507. [PMID: 39303952 DOI: 10.1016/j.ejpb.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Increasing resistance to antiviral drugs approved for the treatment of influenza urges the development of novel compounds. Ideally, this should be complemented by a careful consideration of the administration route. 6'siallyllactosamine-functionalized β-cyclodextrin (CD-6'SLN) is a novel entry inhibitor that acts as a mimic of the primary attachment receptor of influenza, sialic acid. In this study, we aimed to develop a dry powder formulation of CD-6'SLN to assess its in vivo antiviral activity after administration via the pulmonary route. By means of spray drying the compound together with trileucine, a dispersion enhancer, we created a powder that retained the antiviral effect of the drug, remained stable under elevated temperature conditions and performed well in a dry powder inhaler. To test the efficacy of the dry powder drug against influenza infection in vivo, infected mice were treated with CD-6'SLN using an aerosol generator that allowed for the controlled administration of powder formulations to the lungs of mice. CD-6'SLN was effective in mitigating the course of the disease compared to the control groups, reflected by lower disease activity scores and by the prevention of virus-induced IL-6 production. Our data show that CD-6'SLN can be formulated as a stable dry powder that is suitable for use in a dry powder inhaler and is effective when administered via the pulmonary route to influenza-infected mice.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Paulo H Jacob Silva
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Renate Akkerman
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Aurélien Bornet
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Sujeet Pawar
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
4
|
Ma L, Wang T, Liu M, Ji L, Wang Y, Li S, Zhang Y, Wang Y, Zhao W, Wu Z, Yu H, Zhao H. Xiaoer niuhuang qingxin powder alleviates influenza a virus infection by inhibiting the activation of the TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118000. [PMID: 38527574 DOI: 10.1016/j.jep.2024.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoer Niuhuang Qingxin Powder (XNQP) is a classic traditional Chinese medicine formula with significant clinical efficacy for treating febrile convulsions and influenza. AIM OF THE STUDY This study aims to explore the potential mechanisms of XNQP in combating combating the influenza A virus, providing a theoretical basis for its clinical application. MATERIALS AND METHODS The present investigation employed network pharmacology and bioinformatics analysis to determine the TLR4/MyD88/NF-κB signaling pathway as a viable target for XNQP intervention in IAV infection.Subsequently, a mouse model of influenza A virus infection was established, and different doses of XNQP were used for intervention. The protein expression levels of TLR4/MyD88/NF-κB were detected using HE staining, Elisa, immunohistochemistry, immunofluorescence, and western blot. RESULTS The results showed that treatment with XNQP after IAV infection reduced the mortality and prolonged the survival time of infected mice. It reduced the release of TNF-α and IFN-γ in the serum and alleviated pathological damage in the lung tissue following infection. Additionally, the levels of TLR4, MyD88, NF-κB, and p-NF-κB P65 proteins were significantly reduced in lung tissue by XNQP. The inhibitory effect of XNQP on the expression of MyD88 and NF-κB was antagonized when TLR4 signaling was overexpressed. Consequently, the expression levels of MyD88, NF-κB, and p-NF-κB P65 were increased in lung tissue. Conversely, the expression levels of the proteins MyD88, NF-κB, and p-NF-κB P65 were downregulated when TLR4 signaling was inhibited. CONCLUSIONS XNQP alleviated lung pathological changes, reduced serum levels of inflammatory factors, reduced mortality, and prolonged survival time in mice by inhibiting the overexpression of the TLR4/MyD88/NF-κB signaling pathway in lung tissues after IAV infection.
Collapse
Affiliation(s)
- Lanying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meiyi Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Yanan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuting Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - WenXiao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Liong S, Miles MA, Mohsenipour M, Liong F, Hill-Yardin EL, Selemidis S. Influenza A virus infection during pregnancy causes immunological changes in gut-associated lymphoid tissues of offspring mice. Am J Physiol Gastrointest Liver Physiol 2023; 325:G230-G238. [PMID: 37431584 PMCID: PMC10435073 DOI: 10.1152/ajpgi.00062.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Maternal influenza A virus (IAV) infection during pregnancy can affect offspring immune programming and development. Offspring born from influenza-infected mothers are at increased risk of neurodevelopmental disorders and have impaired respiratory mucosal immunity against pathogens. The gut-associated lymphoid tissue (GALT) represents a large proportion of the immune system in the body and plays an important role in gastrointestinal (GI) homeostasis. This includes immune modulation to antigens derived from food or microbes, gut microbiota composition, and gut-brain axis signaling. Therefore, in this study, we investigated the effect of maternal IAV infection on mucosal immunity of the GI tract in the offspring. There were no major anatomical changes to the gastrointestinal tract of offspring born to influenza-infected dams. In contrast, maternal IAV did affect the mucosal immunity of offspring, showing regional differences in immune cell profiles within distinct GALT. Neutrophils, monocytes/macrophages, CD4+ and CD8+ T cells infiltration was increased in the cecal patch offspring from IAV-infected dams. In the Peyer's patches, only activated CD4+ T cells were increased in IAV offspring. IL-6 gene expression was also elevated in the cecal patch but not in the Peyer's patches of IAV offspring. These findings suggest that maternal IAV infection perturbs homeostatic mucosal immunity in the offspring gastrointestinal tract. This could have profound ramifications on the gut-brain axis and mucosal immunity in the lungs leading to increased susceptibility to respiratory infections and neurological disorders in the offspring later in life.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy is associated with changes in gut-associated lymphoid tissue (GALT) in the offspring in a region-dependent manner. Neutrophils and monocytes/macrophages were elevated in the cecal patch of offspring from infected dams. This increase in innate immune cell infiltration was not observed in the Peyer's patches. T cells were also elevated in the cecal patch but not in the Peyer's patches.
Collapse
Affiliation(s)
- Stella Liong
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Felicia Liong
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
Amoddeo A. A mathematical model and numerical simulation for SARS-CoV-2 dynamics. Sci Rep 2023; 13:4575. [PMID: 36941368 PMCID: PMC10027279 DOI: 10.1038/s41598-023-31733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Since its outbreak the corona virus-19 disease has been particularly aggressive for the lower respiratory tract, and lungs in particular. The dynamics of the abnormal immune response leading to lung damage with fatal outcomes is not yet fully understood. We present a mathematical model describing the dynamics of corona virus disease-19 starting from virus seeding inside the human respiratory tract, taking into account its interaction with the components of the innate immune system as classically and alternatively activated macrophages, interleukin-6 and -10. The numerical simulations have been performed for two different parameter values related to the pro-inflammatory interleukin, searching for a correlation among components dynamics during the early stage of infection, in particular pro- and anti-inflammatory polarizations of the immune response. We found that in the initial stage of infection the immune machinery is unable to stop or weaken the virus progression. Also an abnormal anti-inflammatory interleukin response is predicted, induced by the disease progression and clinically associated to tissue damages. The numerical results well reproduce experimental results found in literature.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università 'Mediterranea' di Reggio Calabria, Via Graziella 1, Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
7
|
Qin T, Chen Y, Huangfu D, Yin Y, Miao X, Yin Y, Chen S, Peng D, Liu X. PA-X Protein of H1N1 Subtype Influenza Virus Disables the Nasal Mucosal Dendritic Cells for Strengthening Virulence. Virulence 2022; 13:1928-1942. [PMID: 36271710 DOI: 10.1080/21505594.2022.2139474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PA-X protein arises from a ribosomal frameshift in the PA of influenza A virus (IAV). However, the immune regulatory effect of the PA-X protein of H1N1 viruses on the nasal mucosal system remains unclear. Here, a PA-X deficient H1N1 rPR8 viral strain (rPR8-△PAX) was generated and its pathogenicity was determined. The results showed that PA-X was a pro-virulence factor in mice. Furthermore, it reduced the ability of H1N1 viruses to infect dendritic cells (DCs), the regulator of the mucosal immune system, but not non-immune cells (DF-1 and Calu-3). Following intranasal infection of mice, CCL20, a chemokine that monitors the recruitment of submucosal DCs, was downregulated by PA-X, resulting in an inhibition of the recruitment of CD11b+ DCs to submucosa. It also attenuated the migration of CCR7+ DCs to cervical lymph nodes and inhibited DC maturation with low MHC II and CD40 expression. Moreover, PA-X suppressed the maturation of phenotypic markers (CD80, CD86, CD40, and MHC II) and the levels of secreted pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) while enhancing endocytosis and levels of anti-inflammatory IL-10 in vitro, suggesting an impaired maturation of DCs that the key step for the activation of downstream immune responses. These findings suggested the PA-X protein played a critical role in escaping the immune response of nasal mucosal DCs for increasing the virulence of H1N1 viruses.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dandan Huangfu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
8
|
Kwak HW, Shin W, Baik K, Kim M, Park Y, Hong SH, Park HJ, Park HJ, Bang YJ, Kim JY, Lee YS, Kim IB, Kim HL, Kim H, Nam JH. Single-stranded RNA adjuvant enhances the efficacy of 10-valent human papilloma virus-like particle vaccine. Microbiol Immunol 2022; 66:529-537. [PMID: 35979884 DOI: 10.1111/1348-0421.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Following the development of various types of vaccines, the use of adjuvants to boost vaccine efficacy has become a focus of research. Aluminum hydroxide (alum), the most commonly used adjuvant, induces a certain immune response and ensures safety in human trials. However, alum mainly induces only a Th2 response; its Th1 response is weak. Thus, we previously developed a single-stranded ribose nucleic acid (ssRNA) adjuvant that induces a Th1 response through toll-like receptors. Here, we explored whether 10-valent human papilloma virus (HPV)-like particle (VLP) vaccine formulated with ssRNA adjuvant and alum helped enhance immune response and maintained memory response. The mice were immunized intramuscularly twice at 2-week intervals and were inoculated 4 days after the second boost (after about 1 year). Antibody response and T cell activation were measured by Elispot, ELISA using harvested serum and splenocytes. 10-valent HPV VLP vaccine formulated with ssRNA adjuvant and alum increased antigen-specific immune response than alum used alone. It increased each type-specific IgG1/IgG2c titers, and antigen-specific IFN-γ cells. Furthermore, the ssRNA adjuvant with alum induced memory response. In memory response, each type-specific IgG1/IgG2c, IFN-γ, and IL-6 cytokines, and neutralizing antibodies were increased by the ssRNA adjuvant with alum. Overall, the ssRNA adjuvant with alum induced memory responses and balanced Th1/Th2 responses. The ssRNA adjuvant and alum may help to enhanced prophylactic vaccine efficacy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hye Won Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Department of R&D, SMLbiopharm, Bucheon, 14662, Republic of Korea
| | - Wooseok Shin
- Department of R&D, SK bioscience, Pangyoro, 332, Bundang-gu, Republic of Korea
| | - Kyunghwa Baik
- Department of R&D, SK bioscience, Pangyoro, 332, Bundang-gu, Republic of Korea
| | - Minsun Kim
- Department of R&D, SK bioscience, Pangyoro, 332, Bundang-gu, Republic of Korea
| | - YongWook Park
- Department of R&D, SK bioscience, Pangyoro, 332, Bundang-gu, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Department of R&D, SMLbiopharm, Bucheon, 14662, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Department of R&D, SMLbiopharm, Bucheon, 14662, Republic of Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Department of R&D, SMLbiopharm, Bucheon, 14662, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hun Kim
- Department of R&D, SK bioscience, Pangyoro, 332, Bundang-gu, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Department of R&D, SMLbiopharm, Bucheon, 14662, Republic of Korea
| |
Collapse
|
9
|
Kaviany S, Bartkowiak T, Dulek DE, Khan YW, Hayes MJ, Schaefer SG, Ye X, Dahunsi DO, Connelly JA, Irish JM, Rathmell JC. Systems Immunology Analyses of STAT1 Gain-of-Function Immune Phenotypes Reveal Heterogeneous Response to IL-6 and Broad Immunometabolic Roles for STAT1. Immunohorizons 2022; 6:447-464. [PMID: 35840326 PMCID: PMC9623573 DOI: 10.4049/immunohorizons.2200041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with STAT1 gain-of-function (GOF) pathogenic variants have enhanced or prolonged STAT1 phosphorylation following cytokine stimulation and exhibit increased yet heterogeneous susceptibility to infections, autoimmunity, and cancer. Although disease phenotypes are diverse and other genetic factors contribute, how STAT1 GOF affects cytokine sensitivity and cell biology remains poorly defined. In this study, we analyzed the immune and immunometabolic profiles of two patients with known pathogenic heterozygous STAT1 GOF mutation variants. A systems immunology approach of peripheral blood cells from these patients revealed major changes in multiple immune cell compartments relative to healthy adult and pediatric donors. Although many phenotypes of STAT1 GOF donors were shared, including increased Th1 cells but decreased class-switched B cells and plasmacytoid dendritic cell populations, others were heterogeneous. Mechanistically, hypersensitivity for cytokine-induced STAT1 phosphorylation in memory T cell populations was particularly evident in response to IL-6 in one STAT1 GOF patient. Immune cell metabolism directly influences cell function, and the STAT1 GOF patients shared an immunometabolic phenotype of heightened glucose transporter 1 (GLUT1) and carnitine palmitoyl transferase 1A (CPT1a) expression across multiple immune cell lineages. Interestingly, the metabolic phenotypes of the pediatric STAT1 GOF donors more closely resembled or exceeded those of healthy adult than healthy age-similar pediatric donors, which had low expression of these metabolic markers. These results define new features of STAT1 GOF patients, including a differential hypersensitivity for IL-6 and a shared increase in markers of metabolism in many immune cell types that suggests a role for STAT1 in metabolic regulation of immunity.
Collapse
Affiliation(s)
- Saara Kaviany
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Todd Bartkowiak
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Daniel E Dulek
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Yasmin W Khan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Madeline J Hayes
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Samuel G Schaefer
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O Dahunsi
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - James A Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan M Irish
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN;
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Jeffrey C Rathmell
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
10
|
Yehia N, AbdelSabour MA, Erfan AM, Mohammed Ali Z, Soliman RA, Samy A, Mohamed Soliman M, Abd El-Hack ME, El-Saadony MT, Ahmed KA. Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J Biol Sci 2022; 29:2095-2111. [PMID: 35531142 PMCID: PMC9072940 DOI: 10.1016/j.sjbs.2021.11.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
A proper vaccination against avian influenza viruses in chicken can significantly reduce the risk of human infection. Egypt has the highest number of recorded humans highly pathogenic avian influenza (HPAI)-H5N1 infections worldwide despite the widespread use of homologous vaccines in poultry. Enhancing H5N1 vaccine efficacy is ultimately required to better control HPAI-H5N1. The aim of this study is to boost chicken immunity by combined with inactivated HPAI-H5N1 with selenium nanoparticles (SeNPs). The chickens groups 1-3 were fed diets supplemented with SeNPs concentrations (0.25, 0.5, and 1 mg/kg) for 3 weeks and then vaccinated (inactivated HPAI-H5N1). while groups 4,5 and 6 were fed with SeNPs free diets and administered with 0.5 ml of the vaccine combined with 0.02, 0.06, and 0.1 mg/dose of SeNPs and then all groups were challenged with homologous virus 3 weeks post-vaccination (WPV). Group 7, 8 were used as control positive and negative respectively. At 4, 5, and 6 WPV, antibody titer was considerably higher in the group fed a meal supplemented with 1 mg SeNPs/kg. In contrast, both methods of SeNPs supplementation significantly increased the Interleukin 2 (IL2), Interleukin 6 (IL6), and Interferon γ (IFNγ) expressions in the blood cells in a dose-dependent manner, with a higher expression observed in the group that was vaccinated with 0.1 mg/dose. After the challenge, all groups that received SeNPs via diet or vaccines dose showed significant reduction in viral shedding and milder inflammation in lung, trachea, spleen, and liver in addition to higher expression of IL2, IL6, and IFNγ, with the highest expression observed in the group that was vaccinated with 0.1 mg/dose compared the plain vaccinated group. The groups of 1 mg SeNPs/kg and combined vaccinated with 0.1 mg/dose showed the best vaccine efficacy. However, the group vaccinated with 0.1 mg/dose showed the earliest reduction in viral shedding. Overall, SeNPs supplementation in the diet and the administration of the vaccine formula with SeNPs could enhance vaccine efficacy and provide better protection against HPAI-H5N1 in chickens by enhancing cellular immunity and reducing inflammation. We recommend using SeNPs as a vaccine combination or feeding with diet to increase the immunity and vaccine efficacy against H5N1.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mohammed A AbdelSabour
- Poultry Viral Vaccines Production and Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Egypt
| | - Ahmed M Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Zeinab Mohammed Ali
- Poultry Viral Vaccines Production and Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Egypt
| | - Reem A Soliman
- Researcher in Department of Evaluation of Inactivated Viral Poultry Vaccines, Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Egypt
| | - Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944 Saudi Arabia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
11
|
Aliahmad P, Miyake-Stoner SJ, Geall AJ, Wang NS. Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Ther 2022:10.1038/s41417-022-00435-8. [PMID: 35194198 PMCID: PMC8861484 DOI: 10.1038/s41417-022-00435-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 01/06/2023]
Abstract
RNA technology has recently come to the forefront of innovative medicines and is being explored for a wide range of therapies, including prophylactic and therapeutic vaccines, biotherapeutic protein expression and gene therapy. In addition to conventional mRNA platforms now approved for prophylactic SARS-CoV2 vaccines, synthetic self-replicating RNA vaccines are currently being evaluated in the clinic for infectious disease and oncology. The prototypical srRNA vectors in clinical development are derived from alphaviruses, specifically Venezuelan Equine Encephalitis Virus (VEEV). While non-VEEV alphaviral strains have been explored as single cycle viral particles, their use as synthetic vectors largely remains under-utilized in clinical applications. Here we describe the potential commonalities and differences in synthetic alphaviral srRNA vectors in host cell interactions, immunogenicity, cellular delivery, and cargo expression. Thus, unlike the current thinking that VEEV-based srRNA is a one-size-fits-all platform, we argue that a new drug development approach leveraging panels of customizable, synthetic srRNA vectors will be required for clinical success.
Collapse
|
12
|
McDaniel MM, Chawla AS, Jain A, Meibers HE, Saha I, Gao Y, Jain V, Roskin K, Way SS, Pasare C. Effector memory CD4 + T cells induce damaging innate inflammation and autoimmune pathology by engaging CD40 and TNFR on myeloid cells. Sci Immunol 2022; 7:eabk0182. [PMID: 35061504 PMCID: PMC9036191 DOI: 10.1126/sciimmunol.abk0182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytokine storm and sterile inflammation are common features of T cell-mediated autoimmune diseases and T cell-targeted cancer immunotherapies. Although blocking individual cytokines can mitigate some pathology, the upstream mechanisms governing overabundant innate inflammatory cytokine production remain unknown. Here, we have identified a critical signaling node that is engaged by effector memory T cells (TEM) to mobilize a broad proinflammatory program in the innate immune system. Cognate interactions between TEM and myeloid cells led to induction of an inflammatory transcriptional profile that was reminiscent, yet entirely independent, of classical pattern recognition receptor (PRR) activation. This PRR-independent "de novo" inflammation was driven by preexisting TEM engagement of both CD40 and tumor necrosis factor receptor (TNFR) on myeloid cells. Cytokine toxicity and autoimmune pathology could be completely rescued by ablating these pathways genetically or pharmacologically in multiple models of T cell-driven inflammation, indicating that TEM instruction of the innate immune system is a primary driver of associated immunopathology. Thus, we have identified a previously unknown trigger of cytokine storm and autoimmune pathology that is amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Margaret M. McDaniel
- Immunology Graduate Program, University of Texas Southwestern Medical Center at Dallas, TX 75390,Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Aakanksha Jain
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Hannah E. Meibers
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Irene Saha
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Yajing Gao
- Immunology Graduate Program, University of Texas Southwestern Medical Center at Dallas, TX 75390
| | - Viral Jain
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Krishna Roskin
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220,Corresponding Author:
| |
Collapse
|
13
|
Al-Suhaimi EA, Aljafary MA, Alkhulaifi FM, Aldossary HA, Alshammari T, AL-Qaaneh A, Aldahhan R, Alkhalifah Z, Gaymalov ZZ, Shehzad A, Homeida AM. Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines (Basel) 2021; 9:1119. [PMID: 34696231 PMCID: PMC8539924 DOI: 10.3390/vaccines9101119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.
Collapse
Affiliation(s)
- Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Meneerah A. Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Fadwa M. Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Hanan A. Aldossary
- Epidemic Diseases Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; or
| | - Thamer Alshammari
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Ayman AL-Qaaneh
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Razan Aldahhan
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Zahra Alkhalifah
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Zagit Z. Gaymalov
- Earlystage OÜ, Lasnamäe Linnaosa, Sepapaja tn 6, Harju Maakond, 15551 Tallinn, Estonia;
| | - Adeeb Shehzad
- Clinical Pharmacy Research Department, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdelgadir M. Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| |
Collapse
|
14
|
McDonagh Hull P, Lashewicz BM, Fritzler MJ. High intelligence may exacerbate paediatric inflammatory response to SARS-CoV-2 infection. Med Hypotheses 2021; 155:110677. [PMID: 34560443 PMCID: PMC8426136 DOI: 10.1016/j.mehy.2021.110677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
The body's innate and acquiredimmunesystems are critical in responses to a wide spectrum of assaults, including SARS-CoV-2 infection. We identify studies of autoimmunity to support our hypothesis that a high intelligence quotient (IQ) may put children at increased risk for severe COVID-19 sequelae; especially those whose viral load is high and/or who develop multisystem inflammatory syndrome in children (MIS-C). MIS-C is associated with a higher risk of COVID-19 morbidity and death, even in otherwise healthy children. As information and evidence about SARS-CoV-2 infection continue to expand, our hypothesis suggests adding a potentially intriguing piece to the pandemic puzzle for further investigation. Drawing on a select review of published research and case reports, we discuss immune dysregulation in paediatric patients with a high IQ, including post-infection cytokine expression in the myocardium. Further, we provide a review of 27 paediatric (≤19 years; median age 16) cases of severe COVID-19 outcomes, drawn from media sources published between March and September 2020, in which we identify possible evidence of a 'hyper brain, hyper body' response to infection. We aver these cases are noteworthy given that paediatric death with COVID-19 disease is remarkably rare, and the estimated prevalence of a high IQ (or giftedness) is only 2% in the general population. These observations warrant prospective and retrospective studies of autoinflammatory markers and mechanisms to elucidate any special psychoneuroimmunological vulnerability in children with a high IQ, as such studies may raise implications for how and when prophylactic medical care is provided to children.
Collapse
Affiliation(s)
- Pauline McDonagh Hull
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Bonnie M Lashewicz
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Picchianti-Diamanti A, Aiello A, Laganà B, Agrati C, Castilletti C, Meschi S, Farroni C, Lapa D, Najafi Fard S, Cuzzi G, Cimini E, Grassi G, Vanini V, Di Rosa R, Salemi S, Nalli G, Salmi A, Repele F, Altera AMG, Maffongelli G, Palazzolo C, Vita S, Leone S, Puro V, Capobianchi MR, Ippolito G, Nicastri E, Goletti D. ImmunosuppressiveTherapies Differently Modulate Humoral- and T-Cell-Specific Responses to COVID-19 mRNA Vaccine in Rheumatoid Arthritis Patients. Front Immunol 2021; 12:740249. [PMID: 34594343 PMCID: PMC8477040 DOI: 10.3389/fimmu.2021.740249] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Objective To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity. Methods Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides. FACS analysis was performed to identify the cells responding to spike stimulation. RA disease activity was evaluated by clinical examination through the DAS28crp, and local and/or systemic clinical adverse events were registered. In RA patients, the ongoing therapeutic regimen was modified during the vaccination period according to the American College of Rheumatology indications. Results We prospectively enrolled 167 HCWs and 35 RA patients. Anti-RBD-antibodies were detected in almost all patients (34/35, 97%), although the titer was significantly reduced in patients under CTLA-4-inhibitors (median: 465 BAU/mL, IQR: 103-1189, p<0.001) or IL-6-inhibitors (median: 492 BAU/mL, IQR: 161-1007, p<0.001) compared to HCWs (median: 2351 BAU/mL, IQR: 1389-3748). T-cell-specific response scored positive in most of RA patients [24/35, (69%)] with significantly lower IFN-γ levels in patients under biological therapy such as IL-6-inhibitors (median: 33.2 pg/mL, IQR: 6.1-73.9, p<0.001), CTLA-4-inhibitors (median: 10.9 pg/mL, IQR: 3.7-36.7, p<0.001), and TNF-α-inhibitors (median: 89.6 pg/mL, IQR: 17.8-224, p=0.002) compared to HCWs (median: 343 pg/mL, IQR: 188-756). A significant correlation between the anti-RBD-antibody titer and spike-IFN-γ-specific T-cell response was found in RA patients (rho=0.432, p=0.009). IFN-γ T-cell response was mediated by CD4+ and CD8+ T cells. Finally, no significant increase in disease activity was found in RA patients following vaccination. Conclusion This study showed for the first time that antibody-specific and whole-blood spike-specific T-cell responses induced by the COVID-19 mRNA-vaccine were present in the majority of RA patients, who underwent a strategy of temporary suspension of immunosuppressive treatment during vaccine administration. However, the magnitude of specific responses was dependent on the immunosuppressive therapy administered. In RA patients, BNT162b2 vaccine was safe and disease activity remained stable.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Saeid Najafi Fard
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Germana Grassi
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Roberta Di Rosa
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Simonetta Salemi
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Gabriele Nalli
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Federica Repele
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gaetano Maffongelli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Claudia Palazzolo
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Sara Leone
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
16
|
Hill DG, Ward A, Nicholson LB, Jones GW. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures. Cytokine 2021; 146:155650. [PMID: 34343865 DOI: 10.1016/j.cyto.2021.155650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
IL-6 family cytokines display broad effects in haematopoietic and non-haematopoietic cells that regulate immune homeostasis, host defence, haematopoiesis, development, reproduction and wound healing. Dysregulation of these activities places this cytokine family as important mediators of autoimmunity, chronic inflammation and cancer. In this regard, ectopic lymphoid structures (ELS) are a pathological hallmark of many tissues affected by chronic disease. These inducible lymphoid aggregates form compartmentalised T cell and B cell zones, germinal centres, follicular dendritic cell networks and high endothelial venules, which are defining qualities of peripheral lymphoid organs. Accordingly, ELS can support local antigen-specific responses to self-antigens, alloantigens, pathogens and tumours. ELS often correlate with severe disease progression in autoimmune conditions, while tumour-associated ELS are associated with enhanced anti-tumour immunity and a favourable prognosis in cancer. Here, we discuss emerging roles for IL-6 family cytokines as regulators of ELS development, maintenance and activity and consider how modulation of these activities has the potential to aid the successful treatment of autoimmune conditions and cancers where ELS feature.
Collapse
Affiliation(s)
- David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
17
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Lu W, Yang L, Li X, Sun M, Zhang A, Qi S, Chen Z, Zhang L, Li J, Xiong H. Early immune responses and prognostic factors in children with COVID-19: a single-center retrospective analysis. BMC Pediatr 2021; 21:181. [PMID: 33865340 PMCID: PMC8052550 DOI: 10.1186/s12887-021-02561-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Early diagnostic indicators and the identification of possible progression to severe or critical COVID-19 in children are unknown. To investigate the immune characteristics of early SARS-CoV-2 infection in children and possible key prognostic factors for early identification of critical COVID-19, a retrospective study including 121 children with COVID-19 was conducted. Peripheral blood lymphocyte subset counts, T cell-derived cytokine concentrations, inflammatory factor concentrations, and routine blood counts were analyzed statistically at the initial presentation. RESULTS The T lymphocyte subset and natural killer cell counts decreased with increasing disease severity. Group III (critical cases) had a higher Th/Tc ratio than groups I and II (common and severe cases); group I had a higher B cell count than groups II and III. IL-6, IL-10, IFN-γ, SAA, and procalcitonin levels increased with increasing disease severity. Hemoglobin concentration, and RBC and eosinophil counts decreased with increasing disease severity. Groups II and III had significantly lower lymphocyte counts than group I. T, Th, Tc, IL-6, IL-10, RBC, and hemoglobin had relatively high contribution and area under the curve values. CONCLUSIONS Decreased T, Th, Tc, RBC, hemoglobin and increased IL-6 and IL-10 in early SARS-CoV-2 infection in children are valuable indices for early diagnosis of severe disease. The significantly reduced Th and Tc cells and significantly increased IL-6, IL-10, ferritin, procalcitonin, and SAA at this stage in children with critical COVID-19 may be closely associated with the systemic cytokine storm caused by immune dysregulation.
Collapse
Affiliation(s)
- Wenjie Lu
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Yang
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ming Sun
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiping Zhang
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Qi
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi Chen
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lannan Zhang
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianxin Li
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Xiong
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, Pawlak EA, Dhingra R, Noah TL, Jaspers I. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021; 64:126-137. [PMID: 33095645 PMCID: PMC7781000 DOI: 10.1165/rcmb.2020-0164oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function. Clinical trial registered with www.clinicaltrials.gov (NCT 02019745).
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | | | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences
| | | | | | - Adam M Speen
- Curriculum in Toxicology and Environmental Medicine
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, and
| | - Radhika Dhingra
- Institute for Environmental Health Solutions, and.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine.,Institute for Environmental Health Solutions, and
| |
Collapse
|
20
|
Colafrancesco S, Scrivo R, Barbati C, Conti F, Priori R. Targeting the Immune System for Pulmonary Inflammation and Cardiovascular Complications in COVID-19 Patients. Front Immunol 2020; 11:1439. [PMID: 32655577 PMCID: PMC7324709 DOI: 10.3389/fimmu.2020.01439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
In December 2019, following a cluster of pneumonia cases in China caused by a novel coronavirus (CoV), named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infection disseminated worldwide and, on March 11th, 2020, the World Health Organization officially declared the pandemic of the relevant disease named coronavirus disease 2019 (COVID-19). In Europe, Italy was the first country facing a true health policy emergency, and, as at 6.00 p.m. on May 2nd, 2020, there have been more than 209,300 confirmed cases of COVID-19. Due to the increasing number of patients experiencing a severe outcome, global scientific efforts are ongoing to find the most appropriate treatment. The usefulness of specific anti-rheumatic drugs came out as a promising treatment option together with antiviral drugs, anticoagulants, and symptomatic and respiratory support. For this reason, we feel a duty to share our experience and our knowledge on the use of these drugs in the immune-rheumatologic field, providing in this review the rationale for their use in the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
21
|
Knochelmann HM, Dwyer CJ, Smith AS, Bowers JS, Wyatt MM, Nelson MH, Rangel Rivera GO, Horton JD, Krieg C, Armeson K, Lesinski GB, Rubinstein MP, Li Z, Paulos CM. IL6 Fuels Durable Memory for Th17 Cell-Mediated Responses to Tumors. Cancer Res 2020; 80:3920-3932. [PMID: 32561531 DOI: 10.1158/0008-5472.can-19-3685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
The accessibility of adoptive T-cell transfer therapies (ACT) is hindered by the cost and time required for product development. Here we describe a streamlined ACT protocol using Th17 cells expanded only 4 days ex vivo. While shortening expansion compromised cell yield, this method licensed Th17 cells to eradicate large tumors to a greater extent than cells expanded longer term. Day 4 Th17 cells engrafted, induced release of multiple cytokines including IL6, IL17, MCP-1, and GM-CSF in the tumor-bearing host, and persisted as memory cells. IL6 was a critical component for efficacy of these therapies via its promotion of long-term immunity and resistance to tumor relapse. Mechanistically, IL6 diminished engraftment of FoxP3+ donor T cells, corresponding with robust tumor infiltration by donor effector over regulatory cells for the Day 4 Th17 cell product relative to cell products expanded longer durations ex vivo. Collectively, this work describes a method to rapidly generate therapeutic T-cell products for ACT and implicates IL6 in promoting durable immunity of Th17 cells against large, established solid tumors. SIGNIFICANCE: An abbreviated, 4-day ex vivo expansion method licenses Th17 cells to confer long-lived immunity against solid malignancies via induction of systemic IL6 in the host.See related commentary by Fiering and Ho, p. 3795.
Collapse
Affiliation(s)
- Hannah M Knochelmann
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina. .,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Connor J Dwyer
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Aubrey S Smith
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jacob S Bowers
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Megan M Wyatt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Michelle H Nelson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Guillermo O Rangel Rivera
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua D Horton
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Carsten Krieg
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Kent Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mark P Rubinstein
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio
| | - Chrystal M Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina. .,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
22
|
Magro G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the 'culprit lesion' of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X 2020; 2:100029. [PMID: 32421092 PMCID: PMC7224649 DOI: 10.1016/j.cytox.2020.100029] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Since the outbreak of COVID-19 many studies have been published showing possible therapies, here the author discusses the end of stage disease related drugs, like Tocilizumab which is currently being used in ARDS patients. In some patients, disease progression leads to an enormous secretion of cytokines, known as cytokine storm, among those cytokines IL-6 plays an important role. Here the author shows how IL-6 has both pro and anti-inflammatory properties, depending on the pathway of transduction: soluble (trans-signaling) or membrane-related (classic signaling), and suggests how targeting only the pro-inflammatory pathway, with SGP130Fc, could be a better option then targeting them both. Other possible IL-6 pathway inhibitors such as Ruxolitinib and Baricinitib are then analyzed, underlying how they lack the benefit of targeting only the pro-inflammatory pathway.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Italy
| |
Collapse
|
23
|
Buonaguro FM, Puzanov I, Ascierto PA. Anti-IL6R role in treatment of COVID-19-related ARDS. J Transl Med 2020; 18:165. [PMID: 32290847 PMCID: PMC7154570 DOI: 10.1186/s12967-020-02333-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Franco Maria Buonaguro
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|
24
|
Jordan SC, Ammerman N, Choi J, Kumar S, Huang E, Toyoda M, Kim I, Wu G, Vo A. Interleukin-6: An Important Mediator of Allograft Injury. Transplantation 2020; 104:2497-2506. [DOI: 10.1097/tp.0000000000003249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Gou X, Yuan J, Wang H, Wang X, Xiao J, Chen J, Liu S, Yin Y, Zhang X. IL-6 During Influenza- Streptococcus pneumoniae Co-Infected Pneumonia-A Protector. Front Immunol 2020; 10:3102. [PMID: 32038632 PMCID: PMC6985362 DOI: 10.3389/fimmu.2019.03102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding of pathogenesis and protection mechanisms underlying influenza-Streptococcus pneumoniae co-infection may provide potential strategies for decreasing its high morbidity and mortality. Interleukin-6 (IL-6) is an important cytokine that acts to limit infection-related inflammation; however, its role in co-infected pneumonia remains unclear. Here we show that the clinically relevant co-infected mice displayed dramatically elevated IL-6 levels; which was also observed in patients with co-infected pneumonia. IL-6−/− mice presented with increased bacterial burden, early dissemination of bacteria to extrapulmonary sites accompanied by aggravated pulmonary lesions and high mortality when co-infection. This protective function of IL-6 is associated with cellular death and macrophage function. Importantly, therapeutic administration of recombinant IL-6 protein reduced cells death in BALF, and enhanced macrophage phagocytosis through increased MARCO expression. This protective immune mechanism furthers our understanding of the potential impact of immune components during infection and provides potential therapeutic avenues for influenza-Streptococcus pneumoniae co-infected pneumonia.
Collapse
Affiliation(s)
- Xuemei Gou
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jun Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaofang Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiangming Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jingyi Chen
- Department of Laboratory Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Liu S, Yan R, Chen B, Pan Q, Chen Y, Hong J, Zhang L, Liu W, Wang S, Chen JL. Influenza Virus-Induced Robust Expression of SOCS3 Contributes to Excessive Production of IL-6. Front Immunol 2019; 10:1843. [PMID: 31474976 PMCID: PMC6706793 DOI: 10.3389/fimmu.2019.01843] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) remains a major public health threat in the world, as indicated by the severe pneumonia caused by its infection annually. Interleukin-6 (IL-6) involved excessive inflammatory response to IAV infection profoundly contributes to the virus pathogenesis. However, the precise mechanisms underlying such a response are poorly understood. Here we found from both in vivo and in vitro studies that IAV not only induced a surge of IL-6 release, but also greatly upregulated expression of suppressor of cytokine signaling-3 (SOCS3), the potent suppressor of IL-6-associated signal transducer and activator of transcription 3 (STAT3) signaling. Interestingly, there existed a cytokine-independent mechanism of the robust induction of SOCS3 by IAV at early stages of the infection. Furthermore, we employed SOCS3-knockdown transgenic mice (TG), and surprisingly observed from virus challenge experiments using these mice that disruption of SOCS3 expression provided significant protection against IAV infection, as evidenced by attenuated acute lung injury, a higher survival rate of infected animals and lower viral load in infected tissues as compared with those of wild-type littermates under the same condition. The activity of nuclear factor-kappa B (NFκB) and the expression of its target gene IL-6 were suppressed in SOCS3-knockdown A549 cells and the TG mice after infection with IAV. Moreover, we defined that enhanced STAT3 activity caused by SOCS3 silencing was important for the regulation of NFκB and IL-6. These findings establish a critical role for IL-6-STAT3-SOCS3 axis in the pathogenesis of IAV and suggest that influenza virus may have evolved a strategy to circumvent IL-6/STAT3-mediated immune response through upregulating SOCS3.
Collapse
Affiliation(s)
- Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxiang Yan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qidong Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinxuan Hong
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Wong KA, Harker JA, Dolgoter A, Marooki N, Zuniga EI. T Cell-Intrinsic IL-6R Signaling Is Required for Optimal ICOS Expression and Viral Control during Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1509-1520. [PMID: 31413107 DOI: 10.4049/jimmunol.1801567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
The pleiotropic cytokine IL-6 plays an integral role not only in innate inflammatory responses but also in the activation and differentiation of lymphocyte subsets. In this study, by using a conditional knockout (cKO) model with selective IL-6 receptor deletion in T cells (IL-6R-cKO), we demonstrated that T cell-specific IL-6R signaling is essential for viral control during persistent lymphocytic choriomeningitis virus clone 13 infection. Strikingly, we observed that in contrast to previous studies with ubiquitous IL-6 deletion or blockade, specific IL-6R deletion in T cells did not affect T follicular helper (Tfh) cell accumulation unless IL-6R-deficient T cells were competing with wild-type cells in mixed bone marrow chimeras. In contrast, Tfh cells from IL-6R-cKO-infected mice exhibited reduced ICOS expression in both chimeric and nonchimeric settings, and this sole identifiable Tfh defect was associated with reduced germinal centers, compromised Ig switch and low avidity of lymphocytic choriomeningitis virus-specific Abs despite intact IL-6R expression in B cells. We posit that IL-6R cis-signaling is absolutely required for appropriate ICOS expression in Tfh cells and provides a competitive advantage for Tfh accumulation, enabling generation of optimal B cell and Ab responses, and ultimately viral control during in vivo chronic infection.
Collapse
Affiliation(s)
- Kurt A Wong
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - James A Harker
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Aleksandr Dolgoter
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Nuha Marooki
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elina I Zuniga
- Division of Molecular Biology, Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
28
|
Activation of naïve CD4 + T cells re-tunes STAT1 signaling to deliver unique cytokine responses in memory CD4 + T cells. Nat Immunol 2019; 20:458-470. [PMID: 30890796 PMCID: PMC7610646 DOI: 10.1038/s41590-019-0350-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
The cytokine IL-6 controls the survival, proliferation and effector characteristics of lymphocytes through activation of the transcription factors STAT1 and STAT3. While STAT3 activity is an ever-present feature of IL-6 signaling in CD4+ T cells, prior T-cell receptor activation limits the IL-6 control of STAT1 in effector and memory populations. Here we show that STAT1 phosphorylation in response to IL-6 was regulated by protein tyrosine phosphatases (PTPN2, PTPN22) expressed in response to the activation of naïve CD4+ T cells. Transcriptomic and chromatin immunoprecipitation-sequencing of IL-6 responses in naïve and effector memory CD4+ T cells showed how the suppression of STAT1 activation shaped the functional identity and effector characteristics of memory CD4+ T cells. Thus, protein tyrosine phosphatases induced by activation of naïve T cells determined the way activated or memory CD4+ T cells sensed and interpreted cytokine signals.
Collapse
|
29
|
Percopo CM, Ma M, Brenner TA, Krumholz JO, Break TJ, Laky K, Rosenberg HF. Critical Adverse Impact of IL-6 in Acute Pneumovirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:871-882. [PMID: 30578308 PMCID: PMC6365009 DOI: 10.4049/jimmunol.1800927] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Severe respiratory virus infections feature robust local host responses that contribute to disease severity. Immunomodulatory strategies that limit virus-induced inflammation may be of critical importance, notably in the absence of antiviral vaccines. In this study, we examined the role of the pleiotropic cytokine IL-6 in acute infection with pneumonia virus of mice (PVM), a natural rodent pathogen that is related to respiratory syncytial virus and that generates local inflammation as a feature of severe infection. In contrast to Influenza A, PVM is substantially less lethal in IL-6 -/- mice than it is in wild-type, a finding associated with diminished neutrophil recruitment and reduced fluid accumulation in lung tissue. Ly6Chi proinflammatory monocytes are recruited in response to PVM via a CCR2-dependent mechanism, but they are not a major source of IL-6 nor do they contribute to lethal sequelae of infection. By contrast, alveolar macrophages are readily infected with PVM in vivo; ablation of alveolar macrophages results in prolonged survival in association with a reduction in virus-induced IL-6. Finally, as shown previously, administration of immunobiotic Lactobacillus plantarum to the respiratory tracts of PVM-infected mice promoted survival in association with diminished levels of IL-6. We demonstrated in this study that IL-6 suppression is a critical feature of the protective mechanism; PVM-infected IL-6 -/- mice responded to low doses of L. plantarum, and administration of IL-6 overcame L. plantarum-mediated protection in PVM-infected wild-type mice. Taken together, these results connect the actions of IL-6 to PVM pathogenesis and suggest cytokine blockade as a potential therapeutic modality in severe infection.
Collapse
Affiliation(s)
- Caroline M Percopo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Michelle Ma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Todd A Brenner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Julia O Krumholz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Timothy J Break
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Laky
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
30
|
Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers (Basel) 2018; 11:cancers11010024. [PMID: 30591653 PMCID: PMC6356226 DOI: 10.3390/cancers11010024] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.
Collapse
|
31
|
Li B, Jones LL, Geiger TL. IL-6 Promotes T Cell Proliferation and Expansion under Inflammatory Conditions in Association with Low-Level RORγt Expression. THE JOURNAL OF IMMUNOLOGY 2018; 201:2934-2946. [PMID: 30315140 DOI: 10.4049/jimmunol.1800016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
IL-6 is a critical driver of acute and chronic inflammation and has been reported to act as a T cell survival factor. The influence of IL-6 on T cell homeostasis is not well resolved. We demonstrate that IL-6 signaling drives T cell expansion under inflammatory conditions but not during normal homeostasis. During inflammation, IL-6Rα-deficient T cells are unable to effectively compete with wild type T cells. IL-6 promotes T cell proliferation, and this is associated with low-level expression of the RORγt transcription factor. T cells upregulate Rorc mRNA at levels substantially diminished from that seen in Th17 cells. Blockade of RORγt through genetic knockout or a small molecule inhibitor leads to T cell expansion defects comparable to those in IL-6Rα-deficient T cells. Our results indicate that IL-6 plays a key role in T cell expansion during inflammation and implicates a role for the transient induction of low-level RORγt.
Collapse
Affiliation(s)
- Bofeng Li
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and.,Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Lindsay L Jones
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| |
Collapse
|
32
|
Lücke K, Yan I, Krohn S, Volmari A, Klinge S, Schmid J, Schumacher V, Steinmetz OM, Rose-John S, Mittrücker HW. Control of Listeria monocytogenes infection requires classical IL-6 signaling in myeloid cells. PLoS One 2018; 13:e0203395. [PMID: 30169526 PMCID: PMC6118394 DOI: 10.1371/journal.pone.0203395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
IL-6 is required for the response of mice against Listeria monocytogenes. Control of infection depends on classical IL-6 signaling via membrane IL-6Rα, but IL-6 target cells and protective mechanisms remain unclear. We used mice with IL-6Rα-deficiency in T cells (Il6rafl/fl×CD4cre) or myeloid cells (Il6rafl/fl×LysMcre) to define the role of these cells in IL-6-mediated protection. Abrogation of IL-6Rα in T cells did not interfere with bacteria control and induction of TH1 and CD8+ T-cell responses. IL-6Rα-deficiency in myeloid cells caused significant defects in listeria control. This defect was not associated with reduced recruitment of granulocytes and inflammatory monocytes, and both cell populations were activated and not impaired in cytokine production. However, IL-6Rα-deficient inflammatory monocytes displayed diminished expression of IL-4Rα and of CD38, a protein required for phagocytosis and innate control of listeria. In vitro studies revealed that IL-4 and IL-6 cooperated in induction of CD38. In listeria-infected mice, phagocytic activity of inflammatory monocytes correlated with CD38 expression levels on cells and inflammatory monocytes of Il6rafl/fl×LysMcre mice were significantly impaired in phagocytosis. In conclusion, we demonstrate that inhibition of classical IL-6 signaling in myeloid cells causes alterations in differentiation and function of these cells, which subsequently prevent effective control of L. monocytogenes.
Collapse
Affiliation(s)
- Karsten Lücke
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Yan
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Krohn
- III. Medical Clinic and Polyclinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Volmari
- I. Medical Clinic and Polyclinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Klinge
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Schmid
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Valéa Schumacher
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver M. Steinmetz
- III. Medical Clinic and Polyclinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rose-John
- Institute for Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
34
|
Rogers MC, Williams JV. Quis Custodiet Ipsos Custodes? Regulation of Cell-Mediated Immune Responses Following Viral Lung Infections. Annu Rev Virol 2018; 5:363-383. [PMID: 30052492 DOI: 10.1146/annurev-virology-092917-043515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral lung infections are leading causes of morbidity and mortality. Effective immune responses to these infections require precise immune regulation to preserve lung function after viral clearance. One component of airway pathophysiology and lung injury associated with acute respiratory virus infection is effector T cells, yet these are the primary cells required for viral clearance. Accordingly, multiple immune mechanisms exist to regulate effector T cells, limiting immunopathology while permitting clearance of infection. Much has been learned in recent years about regulation of T cell function during chronic infection and cancer, and it is now clear that many of these mechanisms also control inflammation in acute lung infection. In this review, we focus on regulatory T cells, inhibitory receptors, and other cells and molecules that regulate cell-mediated immunity in the context of acute respiratory virus infection.
Collapse
Affiliation(s)
- Meredith C Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, USA;
| |
Collapse
|
35
|
Guo XZJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol 2017; 39:541-550. [PMID: 28555383 PMCID: PMC5580809 DOI: 10.1007/s00281-017-0636-y] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/23/2017] [Indexed: 12/17/2022]
Abstract
Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.
Collapse
Affiliation(s)
- Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
36
|
The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat Rev Rheumatol 2017; 13:399-409. [DOI: 10.1038/nrrheum.2017.83] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Liu K, He K, Xue T, Liu P, Xu LX. The cryo-thermal therapy-induced IL-6-rich acute pro-inflammatory response promoted DCs phenotypic maturation as the prerequisite to CD4 + T cell differentiation. Int J Hyperthermia 2017; 34:261-272. [PMID: 28540834 DOI: 10.1080/02656736.2017.1332394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In our previous studies, a novel tumour therapeutic modality of the cryo-thermal therapy has been developed leading to long-term survival in 4T1 murine mammary carcinoma model. The cryo-thermal therapy induced the strong acute inflammatory response and IL-6 was identified in an acute profile. In this study, we found that the cryo-thermal therapy triggered robust acute inflammatory response with high expression of IL-6 locally and systemically. The phenotypic maturation of dendritic cells (DCs) was induced by acute IL-6 following the treatment. The mature DCs promoted CD4+ T cell differentiation. Moreover, the production of interferon γ (IFN γ) in the serum and CD4+ T cells were both abrogated by IL-6 neutralisation following the treatment. Our findings revealed that the cryo-thermal therapy-induced acute IL-6 played an important role in initiating the cascading innate and adaptive anti-tumour immune responses, resulting in CD4+ T cell differentiation. It would be interesting to investigate acute IL-6 as an early indicator in predicating tumour therapeutic effect.
Collapse
Affiliation(s)
- Kun Liu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Kun He
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Ting Xue
- b Shanghai Key Laboratory of Psychotic Disorders , Shanghai Mental Health Center , Shanghai , People's Republic of China
| | - Ping Liu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China.,c School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Lisa X Xu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China.,c School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
38
|
Interleukin-6, A Cytokine Critical to Mediation of Inflammation, Autoimmunity and Allograft Rejection: Therapeutic Implications of IL-6 Receptor Blockade. Transplantation 2017; 101:32-44. [PMID: 27547870 DOI: 10.1097/tp.0000000000001452] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of kidney transplants is limited by the lack of robust improvements in long-term survival. It is now recognized that alloimmune responses are responsible for the majority of allograft failures. Development of novel therapies to decrease allosensitization is critical. The lack of new drug development in kidney transplantation necessitated repurposing drugs initially developed in oncology and autoimmunity. Among these is tocilizumab (anti-IL-6 receptor [IL-6R]) which holds promise for modulating multiple immune pathways responsible for allograft injury and loss. Interleukin-6 is a cytokine critical to proinflammatory and immune regulatory cascades. Emerging data have identified important roles for IL-6 in innate immune responses and adaptive immunity. Excessive IL-6 production is associated with activation of T-helper 17 cell and inhibition of regulatory T cell with attendant inflammation. Plasmablast production of IL-6 is critical for initiation of T follicular helper cells and production of high-affinity IgG. Tocilizumab is the first-in-class drug developed to treat diseases mediated by IL-6. Data are emerging from animal and human studies indicating a critical role for IL-6 in mediation of cell-mediated rejection, antibody-mediated rejection, and chronic allograft vasculopathy. This suggests that anti-IL-6/IL-6R blockade could be effective in modifying T- and B-cell responses to allografts. Initial data from our group suggest anti-IL-6R therapy is of value in desensitization and prevention and treatment of antibody-mediated rejection. In addition, human trials have shown benefits in treatment of graft versus host disease in matched or mismatched stem cell transplants. Here, we explore the biology of IL-6/IL-6R interactions and the evidence for an important role of IL-6 in mediating allograft rejection.
Collapse
|
39
|
IL-6 ameliorates acute lung injury in influenza virus infection. Sci Rep 2017; 7:43829. [PMID: 28262742 PMCID: PMC5338329 DOI: 10.1038/srep43829] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Interleukin 6 (IL-6) is involved in innate and adaptive immune responses to defend against pathogens. It also participates in the process of influenza infection by affecting viral clearance and immune cell responses. However, whether IL-6 impacts lung repair in influenza pathogenesis remains unclear. Here, we studied the role of IL-6 in acute influenza infection in mice. IL-6-deficient mice infected with influenza virus exhibited higher lethality, lost more body weight and had higher fibroblast accumulation and lower extracellular matrix (ECM) turnover in the lung than their wild-type counterparts. Deficiency in IL-6 enhanced proliferation, migration and survival of lung fibroblasts, as well as increased virus-induced apoptosis of lung epithelial cells. IL-6-deficient lung fibroblasts produced elevated levels of TGF-β, which may contribute to their survival. Furthermore, macrophage recruitment to the lung and phagocytic activities of macrophages during influenza infection were reduced in IL-6-deficient mice. Collectively, our results indicate that IL-6 is crucial for lung repair after influenza-induced lung injury through reducing fibroblast accumulation, promoting epithelial cell survival, increasing macrophage recruitment to the lung and enhancing phagocytosis of viruses by macrophages. This study suggests that IL-6 may be exploited for lung repair during influenza infection.
Collapse
|
40
|
Abstract
A portable kinetics fluorometer is developed to detect viable cells which may be contaminating various samples. The portable device acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye and plots it. The slope of the plot depends on the number of colony forming units per milliliter. The device uses resazurin as the indicator dye. Viable cells reduce resazurin to resorufin, which is more fluorescent. Photodiode is used to detect fluorescence change. The photodiode generated current proportional to the intensity of the light that reached it, and an op-amp is used in a transimpedance differential configuration to ensure amplification of the photodiode's signal. A microfluidic chip is designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the resazurin reduction rate. In tests, the E. coli-containing media are injected into the microfluidic chip and the device is able to detect the presence of E. coli in LB media based on the fluorescence change that occurred in the indicator dye. The device provides fast, accurate, and inexpensive means to optical detection of the presence of viable cells and could be used in the field in place of more complex methods, i.e., loop-meditated isothermal amplification of DNA (LAMP) to detect bacteria in pharmaceutical samples (Jimenez et al., J Microbiol Methods 41(3):259-265, 2000) or measuring the intrinsic fluorescence of the bacterial or yeast chromophores (Estes et al., Biosens Bioelectron 18(5):511-519, 2003).
Collapse
|
41
|
Strutt TM, McKinstry KK, Kuang Y, Finn CM, Hwang JH, Dhume K, Sell S, Swain SL. Direct IL-6 Signals Maximize Protective Secondary CD4 T Cell Responses against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3260-3270. [PMID: 27647834 PMCID: PMC5101150 DOI: 10.4049/jimmunol.1600033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Memory T cells can often respond against pathogens that have evaded neutralizing Abs and are thus key to vaccine-induced protection, yet the signals needed to optimize their responses are unclear. In this study, we identify a dramatic and selective requirement for IL-6 to achieve optimal memory CD4 T cell recall following heterosubtypic influenza A virus (IAV) challenge of mice primed previously with wild-type or attenuated IAV strains. Through analysis of endogenous T cell responses and adoptive transfer of IAV-specific memory T cell populations, we find that without IL-6, CD4+, but not CD8+, secondary effector populations expand less and have blunted function and antiviral impact. Early and direct IL-6 signals to memory CD4 T cells are required to program maximal secondary effector responses at the site of infection during heterosubtypic challenge, indicating a novel role for a costimulatory cytokine in recall responses.
Collapse
Affiliation(s)
- Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827;
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827;
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Caroline M Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Ji Hae Hwang
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
42
|
Xue T, Liu P, Zhou Y, Liu K, Yang L, Moritz RL, Yan W, Xu LX. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics. Am J Cancer Res 2016; 6:773-94. [PMID: 27162549 PMCID: PMC4860887 DOI: 10.7150/thno.14394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an “acute” phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated “acute” phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86+MHCII+ dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such “acute” environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest “acute” response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated “acute” microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of “acute” and “danger” signals play a key role in determining the efficacy of anti-tumor activity.
Collapse
|
43
|
Yan W, Wei J, Deng X, Shi Z, Zhu Z, Shao D, Li B, Wang S, Tong G, Ma Z. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Med Genomics 2015; 8:52. [PMID: 26282854 PMCID: PMC4539693 DOI: 10.1186/s12920-015-0127-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. Methods p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. Results p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Conclusion Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0127-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjun Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Xufang Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zixue Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zixiang Zhu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| |
Collapse
|
44
|
Harker JA, Wong KA, Dolgoter A, Zuniga EI. Cell-Intrinsic gp130 Signaling on CD4+ T Cells Shapes Long-Lasting Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:1071-81. [PMID: 26085685 DOI: 10.4049/jimmunol.1402402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
Abstract
The IL-6 cytokine family utilizes the common signal transduction molecule gp130, which can mediate a diverse range of outcomes. To clarify the role of gp130 signaling in vivo during acute viral infection, we infected Cd4-cre Il6st(fl/fl) mice, in which gp130 is conditionally ablated in T cells, with acute lymphocytic choriomeningitis virus. We found that by day 12, but not at day 8, after infection the number of virus-specific CD4(+) T cells was reduced in the absence of gp130, and this was sustained for up to 2 mo postinfection. Additionally, gp130-deficient T follicular helper cells had lower expression of Maf, IL-21, and ICOS, and this was accompanied by a reduction in the proportion of germinal center B cells and plasmablasts. Remarkably, at 2 mo postinfection the proportion of IgG2a/c(+) memory B cells and the systemic levels of lymphocytic choriomeningitis virus-specific IgG2 Abs were dramatically decreased, whereas there was a corresponding increase in IgG1(+) memory B cells and virus-specific IgG1 Abs. In the same animals gp130-deficient virus-specific CD8(+) T cells showed a reduced proportion of memory cells, which expressed lower levels of Tcf7, and displayed diminished recall responses on secondary infection. Mixed bone marrow chimeras revealed that the aforementioned gp130 effects on CD4(+) T cells were cell intrinsic. Overall, our data show that gp130 signaling in T cells influences the quantity and quality of long-lasting CD4(+) T cell responses as well as CD8(+) T cell- and Ab-mediated immunity after acute viral infection.
Collapse
Affiliation(s)
- James A Harker
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Kurt A Wong
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Aleksandr Dolgoter
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Elina I Zuniga
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
45
|
Barroso SPC, Nico D, Nascimento D, Santos ACV, Couceiro JNSS, Bozza FA, Ferreira AMA, Ferreira DF, Palatnik-de-Sousa CB, Souza TML, Gomes AMO, Silva JL, Oliveira AC. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice. PLoS One 2015; 10:e0128785. [PMID: 26056825 PMCID: PMC4461174 DOI: 10.1371/journal.pone.0128785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 04/30/2015] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.
Collapse
Affiliation(s)
- Shana P. C. Barroso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Laboratório de Vírus Respiratórios, WHO/NIC, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Danielle Nascimento
- Fundação de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Clara V. Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - José Nelson S. S. Couceiro
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Fernando A. Bozza
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Fundação de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana M. A. Ferreira
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Davis F. Ferreira
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Thiago Moreno L. Souza
- Laboratório de Vírus Respiratórios, WHO/NIC, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Andréa C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
46
|
TLR ligand induced IL-6 counter-regulates the anti-viral CD8(+) T cell response during an acute retrovirus infection. Sci Rep 2015; 5:10501. [PMID: 25994622 PMCID: PMC4440206 DOI: 10.1038/srep10501] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8+ T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8+ T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8+ T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8+ T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8+ T cells in vitro. This effect was mediated by a direct stimulation of CD8+ T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8+ T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections.
Collapse
|
47
|
Abstract
Interleukin 6 (IL-6) has a broad effect on cells of the immune system and those not of the immune system and often displays hormone-like characteristics that affect homeostatic processes. IL-6 has context-dependent pro- and anti-inflammatory properties and is now regarded as a prominent target for clinical intervention. However, the signaling cassette that controls the activity of IL-6 is complicated, and distinct intervention strategies can inhibit this pathway. Clinical experience with antagonists of IL-6 has raised new questions about how and when to block this cytokine to improve disease outcome and patient wellbeing. Here we discuss the effect of IL-6 on innate and adaptive immunity and the possible advantages of various antagonists of IL-6 and consider how the immunobiology of IL-6 may inform clinical decisions.
Collapse
Affiliation(s)
- Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon A Jones
- Cardiff Institute of Infection and Immunity, The School of Medicine, Cardiff University, Heath Campus, Cardiff, UK
| |
Collapse
|
48
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1715] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
49
|
Lerret NM, Li T, Wang JJ, Kang HK, Wang S, Wang X, Jie C, Kanwar YS, Abecassis MM, Luo X, Zhang Z. Recipient Myd88 Deficiency Promotes Spontaneous Resolution of Kidney Allograft Rejection. J Am Soc Nephrol 2015; 26:2753-64. [PMID: 25788530 DOI: 10.1681/asn.2014080813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/12/2015] [Indexed: 11/03/2022] Open
Abstract
The myeloid differentiation protein 88 (MyD88) adapter protein is an important mediator of kidney allograft rejection, yet the precise role of MyD88 signaling in directing the host immune response toward the development of kidney allograft rejection remains unclear. Using a stringent mouse model of allogeneic kidney transplantation, we demonstrated that acute allograft rejection occurred equally in MyD88-sufficient (wild-type [WT]) and MyD88(-/-) recipients. However, MyD88 deficiency resulted in spontaneous diminution of graft infiltrating effector cells, including CD11b(-)Gr-1(+) cells and activated CD8 T cells, as well as subsequent restoration of near-normal renal graft function, leading to long-term kidney allograft acceptance. Compared with T cells from WT recipients, T cells from MyD88(-/-) recipients failed to mount a robust recall response upon donor antigen restimulation in mixed lymphocyte cultures ex vivo. Notably, exogenous IL-6 restored the proliferation rate of T cells, particularly CD8 T cells, from MyD88(-/-) recipients to the proliferation rate of cells from WT recipients. Furthermore, MyD88(-/-) T cells exhibited diminished expression of chemokine receptors, specifically CCR4 and CXCR3, and the impaired ability to accumulate in the kidney allografts despite an otherwise MyD88-sufficient environment. These results provide a mechanism linking the lack of intrinsic MyD88 signaling in T cells to the effective control of the rejection response that results in spontaneous resolution of acute rejection and long-term graft protection.
Collapse
Affiliation(s)
- Nadine M Lerret
- Division of Nephrology and Hypertension, Department of Medicine
| | - Ting Li
- Comprehensive Transplant Center
| | | | - Hee-Kap Kang
- Division of Nephrology and Hypertension, Department of Medicine
| | | | | | | | - Yashpal S Kanwar
- Division of Nephrology and Hypertension, Department of Medicine, Comprehensive Transplant Center, Department of Pathology
| | - Michael M Abecassis
- Comprehensive Transplant Center, Department of Surgery, and Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Department of Medicine, Comprehensive Transplant Center, Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zheng Zhang
- Comprehensive Transplant Center, Department of Surgery, and
| |
Collapse
|
50
|
Song JA, Kim HJ, Hong SK, Lee DH, Lee SW, Song CS, Kim KT, Choi IS, Lee JB, Park SY. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:16-23. [PMID: 25304268 DOI: 10.1016/j.jmii.2014.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 03/20/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Influenza viruses cause acute respiratory disease. Because of the high genetic variability of viruses, effective vaccines and antiviral agents are limited. Considering the fact that the site of influenza virus entry is the mucosa of the upper respiratory tract, probiotics that can enhance mucosal immunity as well as systemic immunity could be an important source of treatment against influenza infection. METHODS Mice were fed with Lactobacillus rhamnosus M21 or skim milk and were challenged with influenza virus. The resulting survival rate, lung inflammation, and changes in the cytokine and secretory immunoglobulin A (sIgA) levels were examined. RESULTS Because of infection (influenza virus), all the mice in the control group and 60% of the mice in the L. rhamnosus M21 group died; however, the remaining 40% of the mice fed with L. rhamnosus M21 survived the infection. Pneumonia was severe in the control group but moderate in the group treated with L. rhamnosus M21. Although there were no significant changes in the proinflammatory cytokines in the lung lysates of mice collected from both groups, levels of interferon-γ and interleukin-2, which are representative cytokines of type I helper T cells, were significantly increased in the L. rhamnosus M21-treated group. An increase in sIgA as well as the diminution of inflammatory cells in bronchoalveolar lavage fluid was also observed in the L. rhamnosus M21-treated group. CONCLUSION These results demonstrate that orally administered L. rhamnosus M21 activates humoral as well as cellular immune responses, conferring increased resistance to the host against influenza virus infection.
Collapse
Affiliation(s)
- Jeong Ah Song
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Inhalation Toxicology Center, KIT Jeongeup Campus, 1051, Shinjeong-dong, Jeongeup, 580-185, Republic of Korea
| | - Hee Joo Kim
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Seong Keun Hong
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Dong Hoon Lee
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Sang Won Lee
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Chang Seon Song
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Ki Taek Kim
- M21 Company Limited, 649-27 Samjon-ri, Songsan-myeon, Hwaseong-si, Kyungki-do, 445-871, Republic of Korea
| | - In Soo Choi
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Joong Bok Lee
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Seung Yong Park
- Department of Veterinary Immunology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea.
| |
Collapse
|