1
|
Chen Z, Xiao C, Zhang J, Jian S, Li P, Lin J, He C, Chen Z, Qi Y, Shi J, Chen Q, Chen J, Bo H. The Impact of Diet on the Colonization of Beneficial Microbes from an Ecological Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10069-10092. [PMID: 40234746 DOI: 10.1021/acs.jafc.5c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
With growing recognition of the pivotal role of gut microbiota in human health, probiotics have gained widespread attention for their potential to restore microbial homeostasis. However, a critical challenge persists: limited colonization efficiency among most probiotic strains compromises their therapeutic efficacy. This overview synthesizes ecological principles with cutting-edge microbiome research to elucidate the dynamic interplay between dietary components and probiotic colonization within the intestinal niche. This overview systematically analyzes: (1) stage-specific colonization mechanisms spanning microbial introduction, establishment, and proliferation; (2) nutrient-driven modulation of gut microbiota composition and function; and (3) the dual role of common dietary patterns as both facilitators and disruptors of probiotic persistence. Notably, this overview identifies key dietary strategies, including precision delivery of prebiotic fibers and polyphenol-microbiota crosstalk, that enhance niche adaptation through pH optimization, adhesion potentiation, and competitive exclusion of pathogens. Furthermore, this overview critically evaluates current limitations in probiotic research, particularly strain-specific variability and methodological constraints in simulating host-microbe-diet tripartite interactions. To bridge these gaps, this overview proposes an interdisciplinary framework integrating omics-driven strain selection, engineered delivery systems, and personalized nutrition models. Collectively, this work advances a mechanistic understanding of diet-microbiota interactions while providing actionable insights for developing targeted probiotic therapies and evidence-based dietary interventions to optimize gut ecosystem resilience.
Collapse
Affiliation(s)
- Zelin Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Chuntao Xiao
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jiantang Zhang
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Shiqi Jian
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Pinyue Li
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jiayi Lin
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Cai He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Zixia Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Yutong Qi
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jingwen Shi
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| |
Collapse
|
2
|
Ye X, Shalev O, Ratzke C. Biotic resistance predictably shifts microbial invasion regimes. Nat Commun 2025; 16:3952. [PMID: 40289122 PMCID: PMC12034811 DOI: 10.1038/s41467-025-59285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Invading new territory is a central aspect of the microbial lifestyle. However, invading microbes rarely find novel territories uninhabited; resident microbes can interact with the newcomers and, in many cases, impede their invasion - an effect known as 'biotic resistance'. Accordingly, invasions are shaped by the interplay between dispersal and resistance. However, these two factors are difficult to disentangle or manipulate in natural systems, making their interplay challenging to understand. To address this challenge, we track microbial invasions in the lab over space and time - first in a model system of two interacting microbes, then in a multi-strain system involving a pathogen invading resident communities. In the presence of biotic resistance, we observe three qualitatively different invasion regimes: 'consistent', 'pulsed', and 'pinned', where, in the third regime, strong biotic resistance stalls the invasion entirely despite ongoing invader dispersal. These rich invasion dynamics could be qualitatively predicted with a simple, parameter-free framework that ignores individual species interactions, even for rather complex communities. Moreover, we show that this simple framework could accurately predict simulated invasions from different mechanistic models, indicating its broad applicability. Our work offers an understanding of how biotic resistance impacts invasions and introduces a predictive tool to identify invasion-resistant communities.
Collapse
Affiliation(s)
- Xiaozhou Ye
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Tübingen, Germany
| | - Or Shalev
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Tübingen, Germany
| | - Christoph Ratzke
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Lentsch V, Woller A, Rocker A, Aslani S, Moresi C, Ruoho N, Larsson L, Fattinger SA, Wenner N, Barazzone EC, Hardt WD, Loverdo C, Diard M, Slack E. Vaccine-enhanced competition permits rational bacterial strain replacement in the gut. Science 2025; 388:74-81. [PMID: 40179176 DOI: 10.1126/science.adp5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Colonization of the intestinal lumen precedes invasive infection for a wide range of enteropathogenic and opportunistic pathogenic bacteria. We show that combining oral vaccination with engineered or selected niche-competitor strains permits pathogen exclusion and strain replacement in the mouse gut lumen. This approach can be applied either prophylactically to prevent invasion of nontyphoidal Salmonella strains, or therapeutically to displace an established Escherichia coli. Both intact adaptive immunity and metabolic niche competition are necessary for efficient vaccine-enhanced competition. Our findings imply that mucosal antibodies have evolved to work in the context of gut microbial ecology by influencing the outcome of competition. This has broad implications for the elimination of pathogenic and antibiotic-resistant bacterial reservoirs and for rational microbiota engineering.
Collapse
Affiliation(s)
- Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Medical Research Council (MRC) Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Aurore Woller
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Selma Aslani
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Claudia Moresi
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Niina Ruoho
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Louise Larsson
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Stefan A Fattinger
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Wolf-Dietrich Hardt
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Soh M, Er S, Low A, Jaafar Z, de Boucher R, Seedorf H. Spatial and temporal changes in gut microbiota composition of farmed Asian seabass ( Lates calcarifer) in different aquaculture settings. Microbiol Spectr 2025; 13:e0198924. [PMID: 40084873 PMCID: PMC12054105 DOI: 10.1128/spectrum.01989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/09/2025] [Indexed: 03/16/2025] Open
Abstract
The microbiota composition of healthy farmed fishes remains poorly characterized for many species. This study explores the influence of the external environment and innate factors that may shape the gut microbiota of farmed Asian seabass, Lates calcarifer. The α-diversity based on Shannon, Simpson, and Chao1 indices was lower for fishes reared in sea cages and tanks than for fishes that experienced a transfer from sea cages to tanks. Longitudinal analyses of gut segments revealed no significant differences in alpha diversity between segments within the same containment type, except for the Chao1 index between the stomach and pyloric cecum of sea-caged fishes. β-diversity analysis using weighted UniFrac distance and Bray-Curtis dissimilarity demonstrated that fish reared in the same containment type shared similar microbial communities. PERMANOVA tests confirmed that containment type, farm, and batch significantly influenced these distances. Containment type accounted for 10.4% of the observed diversity, farm for 29.8%, and batch for 10.7%. Genera comprising potential pathogens such as Aeromonas, Flavobacterium, and Vibrio were differentially abundant along the guts of fish from different containment types and particularly increased in tanks. Microbiota changes were observed with host age and gut segment, with differentially abundant microbial genera identified along the gut and as the seabass grew. Comparing the hindgut microbiota of Asian seabass to other species of farmed fishes revealed host-specific clustering as indicated by PERMANOVA. Overall, these findings underscore the significance of containment conditions on the gut microbiota of Asian seabass, with broad implications for aquaculture practices. IMPORTANCE Understanding the microbiota composition of healthy farmed fishes is crucial for optimizing aquaculture practices. This study highlights the significant influence of containment conditions on the gut microbiota of farmed Asian seabass (Lates calcarifer). By demonstrating that gut microbiota diversity and community composition are shaped by containment type, farm location, and batch, the research provides valuable insights into how external environmental factors and innate host factors interact to influence fish health. The findings, particularly the differential abundance of potential pathogens in various containment types, underscore the need for tailored management strategies in aquaculture. This research not only advances our knowledge of fish microbiota but also has broad implications for improving the sustainability and productivity of aquaculture practices.
Collapse
Affiliation(s)
- Melissa Soh
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Shuan Er
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Adrian Low
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Henning Seedorf
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025; 33:358-372.e4. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
6
|
Vayena E, Fuchs L, Peyhani HM, Lagoda K, Nguyen B, Hardt WD, Hatzimanikatis V. Metabolic network reconstruction as a resource for analyzing Salmonella Typhimurium SL1344 growth in the mouse intestine. PLoS Comput Biol 2025; 21:e1012869. [PMID: 40067815 PMCID: PMC11925469 DOI: 10.1371/journal.pcbi.1012869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/20/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Nontyphoidal Salmonella strains (NTS) are among the most common foodborne enteropathogens and constitute a major cause of global morbidity and mortality, imposing a substantial burden on global health. The increasing antibiotic resistance of NTS bacteria has attracted a lot of research on understanding their modus operandi during infection. Growth in the gut lumen is a critical phase of the NTS infection. This might offer opportunities for intervention. However, the metabolic richness of the gut lumen environment and the inherent complexity and robustness of the metabolism of NTS bacteria call for modeling approaches to guide research efforts. In this study, we reconstructed a thermodynamically constrained and context-specific genome-scale metabolic model (GEM) for S. Typhimurium SL1344, a model strain well-studied in infection research. We combined sequence annotation, optimization methods and in vitro and in vivo experimental data. We used GEM to explore the nutritional requirements, the growth limiting metabolic genes, and the metabolic pathway usage of NTS bacteria in a rich environment simulating the murine gut. This work provides insight and hypotheses on the biochemical capabilities and requirements of SL1344 beyond the knowledge acquired through conventional sequence annotation and can inform future research aimed at better understanding NTS metabolism and identifying potential targets for infection prevention.
Collapse
Affiliation(s)
- Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, EPFL, Lausanne, Switzerland
| | - Lea Fuchs
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | | - Konrad Lagoda
- Laboratory of Computational Systems Biotechnology, EPFL, Lausanne, Switzerland
| | - Bidong Nguyen
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
8
|
Schubert C, Nguyen BD, Sichert A, Näpflin N, Sintsova A, Feer L, Näf J, Daniel BBJ, Steiger Y, von Mering C, Sauer U, Hardt WD. Monosaccharides drive Salmonella gut colonization in a context-dependent or -independent manner. Nat Commun 2025; 16:1735. [PMID: 39966379 PMCID: PMC11836396 DOI: 10.1038/s41467-025-56890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
The carbohydrates that fuel gut colonization by S. Typhimurium are not fully known. To investigate this, we designed a quality-controlled mutant pool to probe the metabolic capabilities of this enteric pathogen. Using neutral genetic barcodes, we tested 35 metabolic mutants across five different mouse models with varying microbiome complexities, allowing us to differentiate between context-dependent and context-independent nutrient sources. Results showed that S. Typhimurium uses D-mannose, D-fructose and likely D-glucose as context-independent carbohydrates across all five mouse models. The utilization of D-galactose, N-acetylglucosamine and hexuronates, on the other hand, was context-dependent. Furthermore, we showed that D-fructose is important in strain-to-strain competition between Salmonella serovars. Complementary experiments confirmed that D-glucose, D-fructose, and D-galactose are excellent niches for S. Typhimurium to exploit during colonization. Quantitative measurements revealed sufficient amounts of carbohydrates, such as D-glucose or D-galactose, in the murine cecum to drive S. Typhimurium colonization. Understanding these key substrates and their context-dependent or -independent use by enteric pathogens will inform the future design of probiotics and therapeutics to prevent diarrheal infections such as non-typhoidal salmonellosis.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Nicolas Näpflin
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lilith Feer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jana Näf
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Benjamin B J Daniel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Siguenza N, Bailey S, Sadegi M, Gootin H, Tiu M, Price JD, Ramer-Tait A, Zarrinpar A. Gut Competition Dynamics of Live Bacterial Therapeutics Are Shaped by Microbiome Complexity, Diet, and Therapeutic Transgenes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634159. [PMID: 39896492 PMCID: PMC11785071 DOI: 10.1101/2025.01.21.634159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Competitive exclusion is conventionally believed to prevent the establishment of a secondary strain of the same bacterial species in the gut microbiome, raising concerns for the deployment of live bacterial therapeutics (LBTs), especially if the bacterial chassis is a strain native to the gut. In this study, we investigated factors influencing competition dynamics in the murine gut using isogenic native Escherichia coli strains. We found that competition outcomes are context-dependent, modulated by microbiome complexity, LBT transgene expression, intestinal inflammation, and host diet. Furthermore, we demonstrated that native LBTs can establish long-term engraftment in the gut alongside a parental strain, with transgene-associated fitness effects influencing competition. We identified various interventions, including strategic dosing and dietary modulation, that significantly enhanced LBT colonization levels by 2 to 3 orders of magnitude. These insights provide a framework for optimizing LBT engraftment and efficacy, supporting their potential translation for human therapeutic applications.
Collapse
Affiliation(s)
- Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sharyl Bailey
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Sadegi
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Hanna Gootin
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Maria Tiu
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA
- The Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA, USA
- Institute of Diabetes and Metabolic Health, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Albuquerque Pereira MDF, Morais de Ávila LG, Dos Santos Cruz BC, Almeida LF, Macedo Simões J, Campos Silva B, Pereira Aguilar A, de Oliveira LL, Vilela Gonçalves R, Ribon ADOB, Mendes TADO, Gouveia Peluzio MDC. Daily intake of household-produced milk kefir on Salmonella Typhimurium infection in C57BL/6 mice: mortality, microbiota modulation, and immunological implications. J Appl Microbiol 2024; 135:lxae249. [PMID: 39317667 DOI: 10.1093/jambio/lxae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
AIMS Salmonellosis, a major global cause of diarrheal diseases, significantly impacts the intestinal microbiome. Probiotic-rich beverages, such as kefir, are increasingly utilized as alternative health-promoting beverages associated with various microbiota benefits. This study investigated the repercussions of daily consumption of household-produced milk kefir on Salmonella enterica serovar Typhimurium infection in C57BL-6 mice. METHODS AND RESULTS Kefir consumption pre-infection reduced the presence of inflammatory cells in the colon and altered the cytokine profile by reducing IL-10 and increasing IFN-γ. Despite reducing intestinal inflammation, kefir intake did not yield a prompt response to an acute infection caused by the aggressive pathogen Salmonella. This contributed to increased mortality in the mice, evidenced by higher fecal Salmonella counts post-infection. Metabarcoding analysis demonstrated that the use of kefir before infection increases butyric acid by the higher abundance of Lachnospiraceae and Prevotellaceae families and genus in feces, coupled with an increase in Muribaculaceae family and Bacteroides genus among infected kefir-treated mice. While kefir hinted at microbiota alterations reducing enterobacteria (Helicobacter), decrease IL-10, and increased IFN-γ, butyric acid on pre-infection, the beverage potentially facilitated the systemic translocation of pathogens, intensifying the infection's severity by altering the immune response. CONCLUSIONS The use of kefir in the dosage of 10% w/v (109 CFU), for acute infections with Salmonella Typhimurium, may not be enough to combat the infection and worsen the prognosis, leaving the intestine less inflamed, favoring the replication and translocation of the pathogen. These findings underscore the importance of prudently evaluating the widespread use of probiotics and probiotic-rich beverages, especially during acute infections, given their potential association with adverse effects during these diseases.
Collapse
Affiliation(s)
| | - Larissa Gabriela Morais de Ávila
- Institute of Biological Science - Interunit Postgraduate Program in Bioinformatics, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Cristina Dos Santos Cruz
- Institute of Biological Sciences and Health, Universidade Federal de Viçosa - Campus Rio Paranaíba, Km 7, Rural area, 38810-000, Rio Paranaíba, Minas Gerais, Brazil
| | - Lucas Filipe Almeida
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jordana Macedo Simões
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Bruno Campos Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Reggiani Vilela Gonçalves
- Department of Animal Biology, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n., 36570-900,Viçosa, Minas Gerais, Brazil
| | - Andréa de Oliveira Barros Ribon
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Institute of Biological Science - Interunit Postgraduate Program in Bioinformatics, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
12
|
Uva A, Cavalera MA, Gernone F, Nasar S, Ghergo P, Cordisco M, Corrente M, Zatelli A. Occurrence of bacteremia, bacteriuria and bacteriuria-related bacteremia in dogs and cats with chronic kidney disease. A pilot study. Res Vet Sci 2024; 179:105382. [PMID: 39191142 DOI: 10.1016/j.rvsc.2024.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In human medicine, major infections are the most significant and critical non-cardiovascular complications in patients affected by chronic kidney disease (CKD), with bacteriuria being the primary source of bloodstream infections and its evolution toward sepsis. The availability of data on prevalence of bacteremia and its association with bacteriuria in dogs and cats with CKD is limited. The aim of this observational cross-sectional study was to determine the occurrence of bacteremia, bacteriuria, and bacteriuria-related bacteremia in dogs and cats affected by CKD. Client-owned dogs and cats with a documented history of CKD undergoing disease follow-up were enrolled. Each included animal underwent a comprehensive physical examination, clinico-pathological and microbiological analyses of blood and urine, along with molecular detection of the 16S rRNA bacterial gene in blood. Aseptically collected blood and urine were obtained through jugular venipuncture and cystocentesis, respectively. After collection, blood and urine samples underwent bacteriological culture within one hour. In the population enrolled, 2/47 dogs and 1/41 cats presented bacteriemia. Moreover, 8/47 dogs and 6/41 cats presented a positive urine culture. Additionally, in one out of the 47 dogs, the same pathogen was identified from blood and urine samples, with a final diagnosis of urosepsis. No instances of bacteriuria-related bacteriemia were observed in the cat population. In conclusion, this study shows a low prevalence of bacteremia and confirms a high prevalence of bacteriuria in companion animals affected by CKD. Moreover, a low prevalence of bacteriuria-related bacteremia was also found.
Collapse
Affiliation(s)
- Annamaria Uva
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Floriana Gernone
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Souad Nasar
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Marco Cordisco
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| |
Collapse
|
13
|
Nguyen BD, Sintsova A, Schubert C, Sichert A, Scheidegger C, Näf J, Huttman J, Lentsch V, Keys T, Rutschmann C, Christen P, Kiefer P, Keller P, Barthel M, Cuenca M, Christen B, Sauer U, Slack E, Vorholt JA, Sunagawa S, Hardt WD. Salmonella Typhimurium screen identifies shifts in mixed-acid fermentation during gut colonization. Cell Host Microbe 2024; 32:1758-1773.e4. [PMID: 39293436 DOI: 10.1016/j.chom.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
How enteric pathogens adapt their metabolism to a dynamic gut environment is not yet fully understood. To investigate how Salmonella enterica Typhimurium (S.Tm) colonizes the gut, we conducted an in vivo transposon mutagenesis screen in a gnotobiotic mouse model. Our data implicate mixed-acid fermentation in efficient gut-luminal growth and energy conservation throughout infection. During initial growth, the pathogen utilizes acetate fermentation and fumarate respiration. After the onset of gut inflammation, hexoses appear to become limiting, as indicated by carbohydrate analytics and the increased need for gluconeogenesis. In response, S.Tm adapts by ramping up ethanol fermentation for redox balancing and supplying the TCA cycle with α-ketoglutarate for additional energy. Our findings illustrate how S.Tm flexibly adapts mixed fermentation and its use of the TCA cycle to thrive in the changing gut environment. Similar metabolic wiring in other pathogenic Enterobacteriaceae may suggest a broadly conserved mechanism for gut colonization.
Collapse
Affiliation(s)
- Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Clio Scheidegger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jana Näf
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland; Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Julien Huttman
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Tim Keys
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | | | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Miguelangel Cuenca
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Beat Christen
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland; Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Richards PJ, Almutrafy A, Liang L, Flaujac Lafontaine GM, King E, Fish NM, Connerton AJ, Connerton PL, Connerton IF. Prebiotic galactooligosaccharide feed modifies the chicken gut microbiota to efficiently clear Salmonella. mSystems 2024; 9:e0075424. [PMID: 39082804 PMCID: PMC11334501 DOI: 10.1128/msystems.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Chicken meat is contaminated with Salmonella from the gut of infected chickens during slaughter. Eradication of Salmonella from broiler chickens through hygiene measures and/or vaccination is not cost-effective; complementary approaches are required. A mature gut microbiota obstructs Salmonella infection in chickens, and deliberate fortification of colonization resistance through prebiotic feed formulations would benefit public health and poultry production. Prebiotic galactooligosaccharides hastens Salmonella clearance from the gut of infected chickens. To better understand the role of galactooligosaccharides in colonization resistance, broiler chickens were raised on a wheat-soybean meal-based feed, with or without galactooligosaccharides for the first 24 days of life. Chickens were orally challenged with Salmonella enterica serovar Enteritidis at 20 days and the effect of supplementary galactooligosaccharides characterized by profiling Salmonella colonization, gut microbiota, innate immune response, and cecal short-chain fatty acid concentrations. Exposure to dietary galactooligosaccharides shortened the time to clear S. Enteritidis from the ceca. Differential abundance analysis of the cecal microbiota associated Salmonella challenge with a bacterial taxon belonging to the Acidaminococcaceae family (P < 0.005). Increased cecal concentrations of the short-chain fatty acids propionate and valerate were measured in Salmonella-challenged chickens sustained on either control or galactooligosaccharide-supplemented feed relative to mock-challenged controls; but far greater concentrations were detected in chickens fed a galactooligosaccharide-supplemented diet in early life. The abundance of the Acidaminococcaceae taxon exhibited a positive correlation with the cecal concentrations of propionate (ρ = 0.724, P = 0.008) and valerate (ρ = 0.71, P = 0.013). The absence of cecal pro-inflammatory transcriptional responses suggest that the rapid Salmonella clearance observed for the galactooligosaccharide-supplemented diet was not linked to innate immune function. IMPORTANCE Work presented here identifies bacterial taxa responsible for colonization resistance to Salmonella in broiler chickens. Deliberate cultivation of these taxa with prebiotic galactooligosaccharide has potential as a straight-forward, safe, and cost-effective intervention against Salmonella. We hypothesize that catabolism of galactooligosaccharide and its breakdown products by indigenous microorganisms colonizing the chicken gut produce excess levels of propionate. In the absence of gross inflammation, propionate is inimical to Salmonella and hastens intestinal clearance.
Collapse
Affiliation(s)
- Philip J. Richards
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Abeer Almutrafy
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Lu Liang
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Geraldine M. Flaujac Lafontaine
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Elizabeth King
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Neville M. Fish
- Saputo Dairy UK (c/o Simon Hunt), Saputo Dairy UK Innovation Centre, Harper Adams University, Edgmond, Newport, United Kingdom
| | - Amber J. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
15
|
Rothrock MJ, Zwirzitz B, Al Hakeem WG, Oladeinde A, Guard JY, Li X. 16S amplicon-based microbiome biomapping of a commercial broiler hatchery. Anim Microbiome 2024; 6:46. [PMID: 39123264 PMCID: PMC11312677 DOI: 10.1186/s42523-024-00334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Hatcheries, where eggs from multiple breeder farms are incubated and hatched before being sent to different broiler farms, represent a nexus point in the commercial production of broilers in the United States. Considering all downstream microbial quality and safety aspects of broiler production (live production, processing, consumer use) can be potentially affected by the hatchery, a better understanding of microbial ecology within commercial hatcheries is essential. Therefore, a commercial broiler hatchery was biomapped using 16S rRNA amplicon-based microbiome analyses of four sample type categories (Air, Egg, Water, Facility) across five different places in the pre-hatch, hatch, and post-hatch areas. While distinct microbiota were found for each sample type category and hatchery area, microbial community analyses revealed that Egg microbiota trended towards clustering with the facility-related samples when moving from the prehatch to post-hatch areas, highlighting the potential effect of the hatchery environment in shaping the pre-harvest broiler-related microbiota. Prevalence analyses revealed 20 ASVs (Core20) present in the core microbiota of all sample types and areas, with each ASV possessing a unique distribution throughout the hatchery. Interestingly, three Enterobacteriaceae ASVs were in the Core20, including Salmonella. Subsequent analyses showed that Salmonella, while a minor prehatch and hatch Core20ASV, dominated the Enterobacteriaceae niche and total microbiota in the chick pad feces in the post-hatch area of the hatchery, and the presence of this Salmonella ASV in the post-hatch feces was associated with swabs of breakroom tables. These findings highlight the complexity of commercial hatchery microbiota, including identifying chick pad feces and breakroom tables as potentially important sampling or disinfection targets for hatchery managers to focus their Salmonella mitigation efforts to reduce loads entering live production farms.
Collapse
Affiliation(s)
- Michael J Rothrock
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA.
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Walid G Al Hakeem
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
- Oak Ridge Institute for Science and Education, US-DOE, Oak Ridge, Tennessee, USA
| | - Adelumola Oladeinde
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
| | - Jean Y Guard
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
| | - Xiang Li
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
| |
Collapse
|
16
|
Du X, Zhou Y, Schümperlin D, Laganenka L, Lee SS, Blugan G, Hardt WD, Persson C, Ferguson SJ. Fabrication and characterization of sodium alginate-silicon nitride-PVA composite biomaterials with damping properties. J Mech Behav Biomed Mater 2024; 155:106579. [PMID: 38749266 DOI: 10.1016/j.jmbbm.2024.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Silicon nitride is utilized clinically as a bioceramic for spinal fusion cages, owing to its high strength, osteoconductivity, and antibacterial effects. Nevertheless, silicon nitride exhibits suboptimal damping properties, a critical factor in mitigating traumatic bone injuries and fractures. In fact, there is a scarcity of spinal implants that simultaneously demonstrate proficient damping performance and support osteogenesis. In our study, we fabricated a novel sodium alginate-silicon nitride/poly(vinyl alcohol) (SA-SiN/PVA) composite scaffold, enabling enhanced energy absorption and rapid elastic recovery under quasi-static and impact loading scenarios. Furthermore, the study demonstrated that the incorporation of physical and chemical cross-linking significantly improved stiffness and recoverable energy dissipation. Concerning the interaction between cells and materials, our findings suggest that the addition of silicon nitride stimulated osteogenic differentiation while inhibiting Staphylococcus aureus growth. Collectively, the amalgamation of ceramics and tough hydrogels facilitates the development of advanced composites for spinal implants, manifesting superior damping, osteogenic potential, and antibacterial properties. This approach holds broader implications for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoyu Du
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Yijun Zhou
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | | | - Leanid Laganenka
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Seunghun S Lee
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Biomedical Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Gurdial Blugan
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
17
|
Osbelt L, Almási ÉDH, Wende M, Kienesberger S, Voltz A, Lesker TR, Muthukumarasamy U, Knischewski N, Nordmann E, Bielecka AA, Giralt-Zúñiga M, Kaganovitch E, Kühne C, Baier C, Pietsch M, Müsken M, Greweling-Pils MC, Breinbauer R, Flieger A, Schlüter D, Müller R, Erhardt M, Zechner EL, Strowig T. Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms. Nat Microbiol 2024; 9:1792-1811. [PMID: 38862602 PMCID: PMC11222139 DOI: 10.1038/s41564-024-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.
Collapse
Affiliation(s)
- Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Éva D H Almási
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Alexander Voltz
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Nele Knischewski
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Elke Nordmann
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Agata A Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Caroline Kühne
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claas Baier
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Pietsch
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Rolf Breinbauer
- BioTechMed-Graz, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Dirk Schlüter
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marc Erhardt
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany.
- Center for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
18
|
Han J, Balasubramanian I, Flores JA, Bandyopadhyay S, Yang J, Liu Y, Singh R, Setty P, Kiela P, Ferraris R, Gao N. Intestinal lysozyme engagement of Salmonella Typhimurium stimulates the release of barrier-impairing InvE and Lpp1. J Biol Chem 2024; 300:107424. [PMID: 38823640 PMCID: PMC11255904 DOI: 10.1016/j.jbc.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
Lysozyme is a β-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells. However, it remains unclear how a gain- or loss-of-function in host lysozyme may impact the host inflammatory responses to pathogenic infection. We challenged Lyz1-/- and ectopic Lyz1-expressing (Villin-Lyz1TG) mice with S. Typhimurium and then comprehensively assessed the inflammatory disease progression. We conducted proteomics analysis to identify molecules derived from human lysozyme-mediated processing of live Salmonella. We examined the barrier-impairing effects of these identified molecules in human intestinal epithelial cell monolayer and enteroids. Lyz1-/- mice are protected from infection in terms of morbidity, mortality, and barrier integrity, whereas Villin-Lyz1TG mice demonstrate exacerbated infection and inflammation. The growth and invasion of Salmonella in vitro are not affected by human or chicken lysozyme, whereas lysozyme encountering of live Salmonella stimulates the release of barrier-disrupting factors, InvE-sipC and Lpp1, which directly or indirectly impair the tight junctions. The direct engagement of host intestinal lysozyme with an enteric pathogen such as Salmonella promotes the release of virulence factors that are barrier-impairing and pro-inflammatory. Controlling lysozyme function may help alleviate the inflammatory progression.
Collapse
Affiliation(s)
- Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Jiaxing Yang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Prashanth Setty
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
| |
Collapse
|
19
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
20
|
Leoni C, Vinci L, Marzano M, D’Erchia AM, Dellino M, Cox SN, Vitagliano A, Visci G, Notario E, Filomena E, Cicinelli E, Pesole G, Ceci LR. Endometrial Cancer: A Pilot Study of the Tissue Microbiota. Microorganisms 2024; 12:1090. [PMID: 38930472 PMCID: PMC11205883 DOI: 10.3390/microorganisms12061090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The endometrium remains a difficult tissue for the analysis of microbiota, mainly due to the low bacterial presence and the sampling procedures. Among its pathologies, endometrial cancer has not yet been completely investigated for its relationship with microbiota composition. In this work, we report on possible correlations between endometrial microbiota dysbiosis and endometrial cancer. METHODS Women with endometrial cancer at various stages of tumor progression were enrolled together with women with a benign polymyomatous uterus as the control. Analyses were performed using biopsies collected at two specific endometrial sites during the surgery. This study adopted two approaches: the absolute quantification of the bacterial load, using droplet digital PCR (ddPCR), and the analysis of the bacterial composition, using a deep metabarcoding NGS procedure. RESULTS ddPCR provided the first-ever assessment of the absolute quantification of bacterial DNA in the endometrium, confirming a generally low microbial abundance. Metabarcoding analysis revealed a different microbiota distribution in the two endometrial sites, regardless of pathology, accompanied by an overall higher prevalence of pathogenic bacterial genera in cancerous tissues. CONCLUSIONS These results pave the way for future studies aimed at identifying potential biomarkers and gaining a deeper understanding of the role of bacteria associated with tumors.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Amendola n. 122/O, 70126 Bari, Italy; (M.M.); (E.N.)
| | - Lorenzo Vinci
- 2nd Unit of Obstetrics and Gynaecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (L.V.); (M.D.); (A.V.); (E.C.)
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Amendola n. 122/O, 70126 Bari, Italy; (M.M.); (E.N.)
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari A. Moro, Via Orabona n. 4, 70126 Bari, Italy; (A.M.D.); (S.N.C.); (G.V.); (E.F.); (G.P.)
| | - Miriam Dellino
- 2nd Unit of Obstetrics and Gynaecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (L.V.); (M.D.); (A.V.); (E.C.)
| | - Sharon Natasha Cox
- Department of Biosciences, Biotechnologies and Environment, University of Bari A. Moro, Via Orabona n. 4, 70126 Bari, Italy; (A.M.D.); (S.N.C.); (G.V.); (E.F.); (G.P.)
| | - Amerigo Vitagliano
- 2nd Unit of Obstetrics and Gynaecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (L.V.); (M.D.); (A.V.); (E.C.)
| | - Grazia Visci
- Department of Biosciences, Biotechnologies and Environment, University of Bari A. Moro, Via Orabona n. 4, 70126 Bari, Italy; (A.M.D.); (S.N.C.); (G.V.); (E.F.); (G.P.)
| | - Elisabetta Notario
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Amendola n. 122/O, 70126 Bari, Italy; (M.M.); (E.N.)
| | - Ermes Filomena
- Department of Biosciences, Biotechnologies and Environment, University of Bari A. Moro, Via Orabona n. 4, 70126 Bari, Italy; (A.M.D.); (S.N.C.); (G.V.); (E.F.); (G.P.)
| | - Ettore Cicinelli
- 2nd Unit of Obstetrics and Gynaecology, Department of Biomedical Science and Human Oncology, University of Bari “A. Moro”, Piazza G. Cesare, 70124 Bari, Italy; (L.V.); (M.D.); (A.V.); (E.C.)
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari A. Moro, Via Orabona n. 4, 70126 Bari, Italy; (A.M.D.); (S.N.C.); (G.V.); (E.F.); (G.P.)
| | - Luigi Ruggiero Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Via Amendola n. 122/O, 70126 Bari, Italy; (M.M.); (E.N.)
| |
Collapse
|
21
|
Beutler M, Eberl C, Garzetti D, Herp S, Münch P, Ring D, Dolowschiak T, Brugiroux S, Schiller P, Hussain S, Basic M, Bleich A, Stecher B. Contribution of bacterial and host factors to pathogen "blooming" in a gnotobiotic mouse model for Salmonella enterica serovar Typhimurium-induced enterocolitis. Infect Immun 2024; 92:e0031823. [PMID: 38189339 PMCID: PMC10863408 DOI: 10.1128/iai.00318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.
Collapse
Affiliation(s)
- Markus Beutler
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Claudia Eberl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Simone Herp
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Philipp Münch
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tamas Dolowschiak
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zürich, Switzerland
| | - Sandrine Brugiroux
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Patrick Schiller
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Saib Hussain
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
22
|
Nilsson A, D'Alvise P, Milbrath MO, Forsgren E. Lactic acid bacteria in Swedish honey bees during outbreaks of American foulbrood. Ecol Evol 2024; 14:e10964. [PMID: 39959658 PMCID: PMC11827578 DOI: 10.1002/ece3.10964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2025] Open
Abstract
The honey bee microbiota is involved in several important functions, and alterations in the composition could have a severe effect on honey bee health. Among the bacteria identified in the honey bee microbiome are a group of non-pathogenic honey bee-specific lactic acid bacteria (hbs-LAB) that have been shown to inhibit the growth of bacterial pathogens such as Paenibacillus larvae, the causative agent of American foulbrood (AFB). While P. larvae only causes disease in larvae and not in adult honey bees, there are reports of the pathogen causing changes in the microbiota composition of the adults. The aim of this study was to investigate how AFB in the colony affect the hbs-LAB composition in adult honey bees. Adult bees were collected from colonies with and without AFB during three outbreaks of AFB in Sweden. The hbs-LAB was analyzed using qPCR to detect and quantify the number of ten hbs-LAB (five Lactobacilli, two Apilactobacilli, one Bombilactobacilli, and two Bifidobacterium). The hbs-LAB composition was compared between AFB outbreaks and depending on the AFB status of the honeybee colony at the time of sampling. The data analyses revealed differences in the abundance of individual hbs-LAB between outbreaks and an overall difference in bacterial community composition depending on AFB status. Also, a higher hbs-LAB diversity was observed in samples that were P. larvae culture positive.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Paul D'Alvise
- Institute for Clinical Microbiology and HygieneUniversity Hospital TübingenTubingenGermany
| | - Meghan O. Milbrath
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Eva Forsgren
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
23
|
Molinaro M, Torrente Y, Villa C, Farini A. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review. Int J Mol Sci 2024; 25:631. [PMID: 38203802 PMCID: PMC10778889 DOI: 10.3390/ijms25010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.
Collapse
Affiliation(s)
- Monica Molinaro
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| |
Collapse
|
24
|
Deng L, Wang S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024; 16:2424914. [PMID: 39514544 PMCID: PMC11552263 DOI: 10.1080/19490976.2024.2424914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The human gastrointestinal tract is colonized by a complex microbial ecosystem, the gut microbiota, which is pivotal in maintaining host health and mediating resistance to diseases. This review delineates colonization resistance (CR), a critical defensive mechanism employed by the gut microbiota to safeguard against pathogenic bacterial invasions, notably by Salmonella. We detail the mechanisms through which the gut microbiota impedes Salmonella colonization, including nutrient competition, production of antimicrobial peptides, synthesis of microbial-derived metabolites, and modulation of the host immune response. Additionally, we examine how dietary interventions can influence these mechanisms, thereby augmenting the protective role of the gut microbiota. The review also discusses the sophisticated strategies utilized by Salmonella to overcome these microbial defenses. A thorough understanding of these complex interactions between microbial symbionts and pathogens is crucial for the development of innovative therapeutic strategies that enhance CR, aiming to prevent or treat microbial infections effectively.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
25
|
Burz SD, Causevic S, Dal Co A, Dmitrijeva M, Engel P, Garrido-Sanz D, Greub G, Hapfelmeier S, Hardt WD, Hatzimanikatis V, Heiman CM, Herzog MKM, Hockenberry A, Keel C, Keppler A, Lee SJ, Luneau J, Malfertheiner L, Mitri S, Ngyuen B, Oftadeh O, Pacheco AR, Peaudecerf F, Resch G, Ruscheweyh HJ, Sahin A, Sanders IR, Slack E, Sunagawa S, Tackmann J, Tecon R, Ugolini GS, Vacheron J, van der Meer JR, Vayena E, Vonaesch P, Vorholt JA. From microbiome composition to functional engineering, one step at a time. Microbiol Mol Biol Rev 2023; 87:e0006323. [PMID: 37947420 PMCID: PMC10732080 DOI: 10.1128/mmbr.00063-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.
Collapse
Affiliation(s)
- Sebastian Dan Burz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Senka Causevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Alma Dal Co
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Marija Dmitrijeva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institut de microbiologie, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | | | | | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Julien Luneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Bidong Ngyuen
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | | | | | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | - Asli Sahin
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Janko Tackmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
26
|
Lanave G, Pellegrini F, Palermo G, Zini E, Mercuriali E, Zagarella P, Bányai K, Camero M, Martella V. Identification of Prototheca from the Cerebrospinal Fluid of a Cat with Neurological Signs. Vet Sci 2023; 10:681. [PMID: 38133232 PMCID: PMC10747436 DOI: 10.3390/vetsci10120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Prototheca infections are rare in cats, and they are usually associated with cutaneous or subcutaneous infections by P. wickerhamii, with no evidence of neurological signs or systemic disease. In this study, we report the identification of prototheca in the cerebrospinal fluid (CSF) of a cat with neurological symptoms. Fourteen CSF samples were gathered from cats presented with neurological disease between 2012 and 2014. The inclusion criteria for the samples were an increase in CSF protein and cell number (pleocytosis), suggestive of an infectious inflammatory status of the central nervous system (CNS). Nine samples fulfilled the inclusion criteria (inflammatory samples), while five samples, used as control, did not (non-inflammatory samples). All the samples were screened molecularly for different pathogens associated with CNS disease in cats, including prototheca. Out of 14 CSF samples, only one inflammatory sample tested positive for prototheca. Upon sequence and phylogenetic analysis of the amplicon, the strain was characterized as P. bovis. This report is the first documented evidence of prototheca in the cerebrospinal fluid of a cat with neurological signs. Prototheca should be considered in the diagnostics procedures on the CNS of cats presented with infectious diseases.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (G.L.); (F.P.); (V.M.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (G.L.); (F.P.); (V.M.)
| | - Giuseppe Palermo
- Veterinary Orthopaedic Traumatologic Centre of Arenzano, Arenzano, 16011 Genova, Italy; (G.P.); (E.M.); (P.Z.)
| | - Eric Zini
- Veterinary Institute of Novara, Granozzo con Monticello, 20060 Novara, Italy;
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Edy Mercuriali
- Veterinary Orthopaedic Traumatologic Centre of Arenzano, Arenzano, 16011 Genova, Italy; (G.P.); (E.M.); (P.Z.)
- Veterinary Institute of Novara, Granozzo con Monticello, 20060 Novara, Italy;
| | - Paolo Zagarella
- Veterinary Orthopaedic Traumatologic Centre of Arenzano, Arenzano, 16011 Genova, Italy; (G.P.); (E.M.); (P.Z.)
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1143 Budapest, Hungary;
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (G.L.); (F.P.); (V.M.)
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (G.L.); (F.P.); (V.M.)
| |
Collapse
|
27
|
Amieva-Balmori M, García-Mazcorro JF, Martínez-Conejo A, Hernández-Ramírez GA, García-Zermeño KR, Rodríguez-Aguilera O, Aja-Cadena M, Barradas-Cortés M, Quigley EMM, Remes-Troche JM. Fecal bacterial microbiota in constipated patients before and after eight weeks of daily Bifidobacterium infantis 35624 administration. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2023; 88:369-380. [PMID: 35810091 DOI: 10.1016/j.rgmxen.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION AND AIM In recent years, probiotics have been used in functional gastrointestinal disorders, including chronic constipation (CC). The effect of Bifidobacterium infantis strain 35624 on the gut microbiota of CC patients has not been previously studied. Our aim was to analyze the fecal microbiota of constipated patients, before and after consuming a single-strain probiotic (B. infantis strain 35624). MATERIALS AND METHODS We used 16S rRNA gene high-throughput sequencing to analyze the fecal microbiota of female patients (n=13) with CC. Patients were instructed to ingest one capsule of Alflorex® (containing 1×109 CFUs/g B. infantis strain 35624) daily for eight weeks. Fecal samples were obtained at the baseline and end (final) of probiotic administration. RESULTS Alpha diversity metrics did not differ between the baseline and final periods. The butyrate producer, Oscillospira, was the taxon most strongly correlated with amplicon sequence variants (R2=0.55, p<0.0001). Except for a few bacterial taxa, there were no significant differences in relative abundance between the baseline and final periods. Beta-diversity measures also showed limited evidence for the differences between the two time periods. CONCLUSIONS The results suggest that the fecal bacterial microbiota remains stable in constipated women consuming a single-strain probiotic. Those findings may be helpful in better understanding probiotic functioning in patients with digestive disorders.
Collapse
Affiliation(s)
- M Amieva-Balmori
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - J F García-Mazcorro
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - A Martínez-Conejo
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - G A Hernández-Ramírez
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - K R García-Zermeño
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - O Rodríguez-Aguilera
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - M Aja-Cadena
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - M Barradas-Cortés
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - E M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - J M Remes-Troche
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México.
| |
Collapse
|
28
|
Xia Y, Xiao Y, Wang ZH, Liu X, Alam AM, Haran JP, McCormick BA, Shu X, Wang X, Ye K. Bacteroides Fragilis in the gut microbiomes of Alzheimer's disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat Commun 2023; 14:5471. [PMID: 37673907 PMCID: PMC10482867 DOI: 10.1038/s41467-023-41283-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Gut dysbiosis contributes to Alzheimer's disease (AD) pathogenesis, and Bacteroides strains are selectively elevated in AD gut microbiota. However, it remains unknown which Bacteroides species and how their metabolites trigger AD pathologies. Here we show that Bacteroides fragilis and their metabolites 12-hydroxy-heptadecatrienoic acid (12-HHTrE) and Prostaglandin E2 (PGE2) activate microglia and induce AD pathogenesis in neuronal C/EBPβ transgenic mice. Recolonization of antibiotics cocktail-pretreated Thy1-C/EBPβ transgenic mice with AD patient fecal samples elicits AD pathologies, associated with C/EBPβ/Asparaginyl endopeptidase (AEP) pathway upregulation, microglia activation, and cognitive disorders compared to mice receiving healthy donors' fecal microbiota transplantation (FMT). Microbial 16S rRNA sequencing analysis shows higher abundance of proinflammatory Bacteroides fragilis in AD-FMT mice. Active components characterization from the sera and brains of the transplanted mice revealed that both 12-HHTrE and PGE2 activate primary microglia, fitting with poly-unsaturated fatty acid (PUFA) metabolites enrichment identified by metabolomics. Strikingly, recolonization with live but not dead Bacteroides fragilis elicited AD pathologies in Thy1-C/EBPβ transgenic mice, so did 12-HHTrE or PGE2 treatment alone. Collectively, our findings support a causal role for Bacteroides fragilis and the PUFA metabolites in activating microglia and inducing AD pathologies in Thy1- C/EBPβ transgenic mice.
Collapse
Affiliation(s)
- Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- School of Medicine, Jianghan University, Wuhan, HB, 430056, China
| | - Yifan Xiao
- School of Medicine, Jianghan University, Wuhan, HB, 430056, China
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ashfaqul M Alam
- University of Kentucky, Microbiology, Immunology & Molecular Genetics Office - MN 376, Medical Science Building, 800 Rose Street, Lexington, KY, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Beth A McCormick
- Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiji Shu
- School of Medicine, Jianghan University, Wuhan, HB, 430056, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, Jiangsu, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
29
|
Li H, Hill N, Wallace J. A perennial living mulch system fosters a more diverse and balanced soil bacterial community. PLoS One 2023; 18:e0290608. [PMID: 37643167 PMCID: PMC10464973 DOI: 10.1371/journal.pone.0290608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Cover crops are known to positively impact soil health, both at a physical level (through erosion control and organic matter enhancement) and at a biological level (by fostering more diverse microbial communities). However, most research in this area has been conducted in the context of annual cover crops that are terminated when the main crop is planted. We have previously demonstrated that a continuous "living mulch" cover crop system can enhance the physical and chemical aspects of soil health; In this study, we reveal its effect on the soil bacterial community and compare it to two different annual cover crops and a conventional control without cover crops. We examined the effect of a living-mulch (LM) system using perennial white clover (Trifolium pratense L), annual cereal rye (Secale cereale L.) (CR), annual crimson clover (Trifolium incarnatum L.) (CC), and a no-cover (NC) control at three time points during the 2018 growing season. 16S rRNA amplicon analysis of the soil bacterial community revealed that the community composition in cover crop systems was significantly different from the NC control, and that LM and CR accommodated more heterogeneous and even bacterial communities compared to the NC control. The difference in bacterial composition between cover crop systems appears to be partly influenced by soil nitrogen concentration and lime buffer capacity. Overall community diversity was associated with nitrogen and metal ion concentrations, and these associations were both stronger and more numerous later in the season. These results elucidate how a perennial cover crop system affects the soil bacterial community and advance our understanding of the interactions between crops, management practices, and soil microbiomes in sustainable agriculture.
Collapse
Affiliation(s)
- Hanxia Li
- Institute of Bioinformatics, The University of Georgia, Athens, GA, United States of America
| | - Nicholas Hill
- Crop and Soil Sciences, The University of Georgia, Athens, GA, United States of America
| | - Jason Wallace
- Crop and Soil Sciences, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
30
|
Gül E, Bakkeren E, Salazar G, Steiger Y, Abi Younes A, Clerc M, Christen P, Fattinger SA, Nguyen BD, Kiefer P, Slack E, Ackermann M, Vorholt JA, Sunagawa S, Diard M, Hardt WD. The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. PLoS Biol 2023; 21:e3002253. [PMID: 37651408 PMCID: PMC10499267 DOI: 10.1371/journal.pbio.3002253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Guillem Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Li L, Renaud DL, Goetz HM, Jessop E, Costa MC, Gamsjäger L, Gomez DE. Effect of time of sample collection after onset of diarrhea on fecal microbiota composition of calves. J Vet Intern Med 2023; 37:1588-1593. [PMID: 37366337 PMCID: PMC10365057 DOI: 10.1111/jvim.16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The effect of time of sample collection after onset of diarrhea on the fecal microbiota composition of calves is unknown. OBJECTIVE Compare the fecal microbiota of calves with diarrhea onset on the day of sampling (D <24h), and calves having had diarrhea for >24 to 48 hours (D 24-48h). ANIMALS Thirty-one diarrheic calves (20 D <24h and 11 D 24-48h), 3 to 7 days of age. METHODS Cross-sectional study. Diarrhea was defined as a calf with loose feces or watery feces. Assessment of the fecal microbiota was performed by sequencing of 16S ribosomal RNA gene amplicons. RESULTS Richness and diversity were not statistically different between D <24h and D 24-48h (P > .05), but bacterial membership and structure differed significantly (AMOVA, P < .001 for both comparisons). Linear discriminant analysis effect size (LefSe) showed an enrichment of Faecalibacterium, Phocaeicola, Lachnospiracea, and Lactobacillus in the feces of D <24h calves, whereas Escherichia/Shigella, Ligilactobacillus, Clostridium_Sensu_Stricto, Clostridium_Incerta_Sedis, and Enterococcus were enriched in the D 24-48h calves. CONCLUSION AND CLINICAL IMPORTANCE Rapid changes in fecal microbiota occur during the first 48 hours of diarrhea with an enrichment of lactic acid-producing bacteria in D <24h followed by an enrichment in Escherichia/Shigella and Clostridium spp. in D 24-48h. The time from diarrhea onset to sampling appears to affect the bacterial composition. Researchers should standardize times for fecal collection based on the time of diarrhea.
Collapse
Affiliation(s)
- Lynna Li
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Present address:
College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - David L. Renaud
- Department of Population Medicine, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Hanne M. Goetz
- Department of Population Medicine, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Emma Jessop
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Marcio C. Costa
- Faculté de Médecine Vétérinaire, Département de Biomédecine VétérinaireUniversity of MontrealSaint‐HyacintheQuebecCanada
| | - Lisa Gamsjäger
- Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
32
|
Abstract
The pathogen Salmonella enterica encompasses a range of bacterial serovars that cause intestinal inflammation and systemic infections in humans. Mice are a widely used infection model due to their relative simplicity and versatility. Here, we provide standardized protocols for culturing the prolific zoonotic pathogen S. enterica serovar Typhimurium for intragastric inoculation of mice to model colitis or systemic dissemination, along with techniques for direct extraintestinal infection. Furthermore, we present procedures for quantifying pathogen burden and for characterizing the immune response by analyzing tissue pathology, inflammatory markers, and immune cells from intestinal tissues. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Murine colitis model utilizing oral streptomycin pretreatment and oral S. Typhimurium administration Basic Protocol 2: Intraperitoneal injection of S. Typhimurium for modeling extraintestinal infection Support Protocol 1: Preparation of S. Typhimurium inoculum Support Protocol 2: Preparation of mixed S. Typhimurium inoculum for competitive infection Basic Protocol 3: Assessment of S. Typhimurium burden Support Protocol 3: Preservation and pathological assessment of S. Typhimurium-infected tissues Support Protocol 4: Measurement of inflammatory marker expression in intestinal tissues by qPCR Support Protocol 5: Preparation of intestinal content for inflammatory marker quantification by ELISA Support Protocol 6: Immune cell isolation from Salmonella-infected intestinal tissues.
Collapse
Affiliation(s)
- Gregory T. Walker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Romana R. Gerner
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Technical University Munich, TUM School of Life Sciences Weihenstephan, ZIEL – Institute for Food & Health, Freising, Germany
- Department of Internal Medicine III, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
35
|
Lubin JB, Green J, Maddux S, Denu L, Duranova T, Lanza M, Wynosky-Dolfi M, Flores JN, Grimes LP, Brodsky IE, Planet PJ, Silverman MA. Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host Microbe 2023; 31:554-570.e7. [PMID: 36996818 PMCID: PMC10935632 DOI: 10.1016/j.chom.2023.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Disruptions to the intestinal microbiome during weaning lead to negative effects on host immune function. However, the critical host-microbe interactions during weaning that are required for immune system development remain poorly understood. We find that restricting microbiome maturation during weaning stunts immune system development and increases susceptibility to enteric infection. We developed a gnotobiotic mouse model of the early-life microbiome Pediatric Community (PedsCom). These mice develop fewer peripheral regulatory T cells and less IgA, hallmarks of microbiota-driven immune system development. Furthermore, adult PedsCom mice retain high susceptibility to Salmonella infection, which is characteristic of young mice and children. Altogether, our work illustrates how the post-weaning transition in microbiome composition contributes to normal immune maturation and protection from infection. Accurate modeling of the pre-weaning microbiome provides a window into the microbial requirements for healthy development and suggests an opportunity to design microbial interventions at weaning to improve immune development in human infants.
Collapse
Affiliation(s)
- Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jamal Green
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Maddux
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lidiya Denu
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tereza Duranova
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Lanza
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | - Julia N Flores
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Logan P Grimes
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, IFI, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul J Planet
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael A Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Research Unit, GlaxoSmithKline, Collegeville, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Hoces D, Greter G, Arnoldini M, Stäubli ML, Moresi C, Sintsova A, Berent S, Kolinko I, Bansept F, Woller A, Häfliger J, Martens E, Hardt WD, Sunagawa S, Loverdo C, Slack E. Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide in the mouse gut depends on the resident microbiota. eLife 2023; 12:81212. [PMID: 36757366 PMCID: PMC10014078 DOI: 10.7554/elife.81212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
Many microbiota-based therapeutics rely on our ability to introduce a microbe of choice into an already-colonized intestine. In this study, we used genetically barcoded Bacteroides thetaiotaomicron (B. theta) strains to quantify population bottlenecks experienced by a B. theta population during colonization of the mouse gut. As expected, this reveals an inverse relationship between microbiota complexity and the probability that an individual wildtype B. theta clone will colonize the gut. The polysaccharide capsule of B. theta is important for resistance against attacks from other bacteria, phage, and the host immune system, and correspondingly acapsular B. theta loses in competitive colonization against the wildtype strain. Surprisingly, the acapsular strain did not show a colonization defect in mice with a low-complexity microbiota, as we found that acapsular strains have an indistinguishable colonization probability to the wildtype strain on single-strain colonization. This discrepancy could be resolved by tracking in vivo growth dynamics of both strains: acapsular B.theta shows a longer lag phase in the gut lumen as well as a slightly slower net growth rate. Therefore, as long as there is no niche competitor for the acapsular strain, this has only a small influence on colonization probability. However, the presence of a strong niche competitor (i.e., wildtype B. theta, SPF microbiota) rapidly excludes the acapsular strain during competitive colonization. Correspondingly, the acapsular strain shows a similarly low colonization probability in the context of a co-colonization with the wildtype strain or a complete microbiota. In summary, neutral tagging and detailed analysis of bacterial growth kinetics can therefore quantify the mechanisms of colonization resistance in differently-colonized animals.
Collapse
Affiliation(s)
- Daniel Hoces
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Giorgia Greter
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Markus Arnoldini
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Melanie L Stäubli
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Claudia Moresi
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Sara Berent
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Isabel Kolinko
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Florence Bansept
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP)ParisFrance
| | - Aurore Woller
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP)ParisFrance
| | - Janine Häfliger
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Eric Martens
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP)ParisFrance
| | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| |
Collapse
|
37
|
ESBL Displace: A Protocol for an Observational Study to Identify Displacing Escherichia coli Strain Candidates from ESBL-Colonized Travel Returners Using Phenotypic, Genomic Sequencing and Metagenome Analysis. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Introduction: Invading extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-PE), non-ESBL E. coli, and other bacteria form a complex environment in the gut. The duration and dynamics of ESBL-PE colonization varies among individuals. Understanding the factors associated with colonization may lead to decolonization strategies. In this study, we aim to identify (i) single E. coli strains and (ii) microbiome networks that correlate with retention or decline of colonization, and (iii) pan-sensitive E. coli strains that potentially could be used to displace ESBL-PE during colonization. Methods and analysis: We recruit healthy travellers to Southeast Asia for a one-year prospective observational follow-up study. We collect and biobank stool, serum, and peripheral blood mononuclear cells (PBMCs) at predefined timepoints. Additional information is collected with questionnaires. We determine the colonization status with ESBL-PE and non-ESBL E. coli and quantify cell densities in stools and ratios over time. We characterize multiple single bacterial isolates per patient and timepoint using whole genome sequencing (WGS) and 16S/ITS amplicon-based and shotgun metagenomics. We determine phylogenetic relationships between isolates, antimicrobial resistance (AMR; phenotypic and genotypic), and virulence genes. We describe the bacterial and fungal stool microbiome alpha and beta diversity on 16S/ITS metagenomic data. We describe patterns in microbiome dynamics to identify features associated with protection or risk of ESBL-PE colonization. Ethics and dissemination: The study is registered (clinicaltrials.gov; NCT04764500 on 09/02/2019) and approved by the Ethics Committee (EKNZ project ID 2019-00044). We will present anonymized results at conferences and in scientific journals. Bacterial sequencing data will be shared via publicly accessible databases according to FAIR principles.
Collapse
|
38
|
Galacto-Oligosaccharides Increase the Abundance of Beneficial Probiotic Bacteria and Improve Gut Architecture and Goblet Cell Expression in Poorly Performing Piglets, but Not Performance. Animals (Basel) 2023; 13:ani13020230. [PMID: 36670770 PMCID: PMC9854465 DOI: 10.3390/ani13020230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Poorly performing piglets receiving commercial milk replacers do not benefit from the naturally occurring probiotic galacto-oligosaccharides otherwise found in sow milk. Study objectives were to investigate the effects of complete milk replacer supplemented with galacto-oligosaccharides on the microbiome, gut architecture and immunomodulatory goblet cell expression of poorly performing piglets that could benefit from milk replacement feeding when separated from sows and housed with fit siblings in environmentally controlled pens. The study is novel in that it is one of the first to investigate the effects of supplementing complete milk replacer with galacto-oligosaccharides in poorly performing piglets. Gastrointestinal tract samples were collected from piglets, and the microbiome composition was assessed by 16s ribosomal ribonucleic acid gene sequencing. Gut architectural features, villus/crypt ratio and enumeration of goblet cells in tissues were assessed by histopathological techniques. The most abundant taxa identified at the genus level were Lactobacillus, Streptococcus, Prevotella, Lactococcus and Leuconostoc. Milk replacer plus galacto-oligosaccharides significantly improved gut architectural features and villus/crypt ratio throughout the gastrointestinal tract, increased the number of goblet cells and revealed a differential abundance of beneficial probiotic bacteria, particularly Lactobacillus and Bifidobacterium. In these respects, galacto-oligosaccharide-supplemented milk replacer may be a useful addition to animal husbandry in poorly performing, non-thriving animals when moved to environmentally controlled pens away from sows and fit siblings, thereby modulating the microbiome and gastrointestinal tract performance.
Collapse
|
39
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Muhammad AY, Amonov M, Murugaiah C, Baig AA, Yusoff M. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms. AIMS Microbiol 2023; 9:346-374. [PMID: 37091815 PMCID: PMC10113163 DOI: 10.3934/microbiol.2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Collapse
Affiliation(s)
| | - Malik Amonov
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
- * Correspondence: ; Tel: +60189164478
| | | | - Atif Amin Baig
- University Institute of Public Health, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Marina Yusoff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| |
Collapse
|
41
|
Uva A, Gernone F, Cavalera MA, Carelli G, Cordisco M, Trotta A, Donghia R, Corrente M, Zatelli A. Prevalence of bacteriuria in cats with neurogenic bladder. Vet Res Commun 2022; 46:1075-1084. [PMID: 35835971 DOI: 10.1007/s11259-022-09973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Urinary tract infections are defined as the adherence, multiplication, and persistence of an infectious agent within the urogenital system, causing an associated inflammatory response and clinical signs; instead, the presence of bacteria in urine as determined by positive bacterial culture (PUC) from a properly collected urine specimen, in the absence of clinical signs, is defined subclinical bacteriuria. Limited information on the prevalence of PUC in spinal cord injury cats affected by neurogenic bladder (NB) is available. On contrary, in NB dogs and humans the prevalence of bacteriuria is well documented. Moreover, while in humans information about bacteriemia associated with NB is already available, this aspect has never been studied in NB cats. The aim of this prospective study was to determine the prevalence of PUC in cats with NB, compared to animals affected by chronic kidney disease (CKD) and healthy cats. Furthermore, the prevalence of bacteriemia in cats with NB was evaluated. Fifty-one cats met the inclusion criteria: 12 cats were affected by NB, 22 had CKD and 17 were healthy. The prevalence of PUC was 58.33% and 18% in NB and CKD cat populations, respectively. All blood cultures were negative. The incomplete bladder emptying and the decreased resistance in the bladder wall could be considered predisposing elements to PUC in the NB feline population. The results of this study highlight, for the first time, an high prevalence of PUC in cats affected by NB, which was not found to be associated with bacteriemia.
Collapse
Affiliation(s)
- Annamaria Uva
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| | - Floriana Gernone
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy.
| | - Maria Alfonsa Cavalera
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| | - Grazia Carelli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| | - Marco Cordisco
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| | - Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| | - Rossella Donghia
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale per Casamassima km.3, 70010, Valenzano, Italy
| |
Collapse
|
42
|
Proctor A, Parvinroo S, Richie T, Jia X, Lee STM, Karp PD, Paley S, Kostic AD, Pierre JF, Wannemuehler MJ, Phillips GJ. Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function. mSystems 2022; 7:e0029322. [PMID: 35968975 PMCID: PMC9600240 DOI: 10.1128/msystems.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.
Collapse
Affiliation(s)
- Alexandra Proctor
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Shadi Parvinroo
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tanner Richie
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Xinglin Jia
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Aleksandar D. Kostic
- Department of Microbiology and Immunology, Joslin Diabetes Center, Harvard University, Cambridge Massachusetts, USA
| | - Joseph F. Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | | | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
43
|
Brugiroux S, Berry D, Ring D, Barnich N, Daims H, Stecher B. Specific Localization and Quantification of the Oligo-Mouse-Microbiota (OMM 12 ) by Fluorescence In Situ Hybridization (FISH). Curr Protoc 2022; 2:e548. [PMID: 36094300 DOI: 10.1002/cpz1.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oligo-mouse-microbiota (OMM12 ) is a widely used syncom that colonizes gnotobiotic mice in a stable manner. It provides several fundamental functions to its murine host, including colonization resistance against enteric pathogens. Here, we designed and validated specific fluorescence in situ hybridization (FISH) probes to detect and quantify OMM12 strains on intestinal tissue cross sections. 16S rRNA-specific probes were designed, and specificity was validated on fixed pure cultures. A hybridization protocol was optimized for sensitive detection of the individual bacterial cells in cryosections. Using this method, we showed that the intestinal mucosal niche of Akkermansia muciniphila can be influenced by global gut microbial community context. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Localization and quantification of OMM12 single strains in mouse cecum cross section Support Protocol: Establishment of specific FISH probe set for OMM12 syncom.
Collapse
Affiliation(s)
- Sandrine Brugiroux
- Max von Pettenkofer Institute, LMU Munich, Munich, Germany
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Diana Ring
- Max von Pettenkofer Institute, LMU Munich, Munich, Germany
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bärbel Stecher
- Max von Pettenkofer Institute, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Germany
| |
Collapse
|
44
|
Sha H, Li L, Lu J, Xiong J. High nutrient induces virulence in the AHPND-causing Vibrio parahaemolyticus, interpretation from the ecological assembly of shrimp gut microbiota. FISH & SHELLFISH IMMUNOLOGY 2022; 127:758-765. [PMID: 35835385 DOI: 10.1016/j.fsi.2022.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Shrimp diseases frequently occur during the later farming stages, when the rearing water is eutrophic. This observation provides clue that the virulence of pathogens could be induced by elevated nutrient, whereas the underlying ecological mechanism remains limited. To address this pressing knowledge, we explored how gut microbiota responded to the infection of oligotrophic (OVp) or eutrophic (EVp) pre-cultured Vibrio parahaemolyticus, a causing pathogen of shrimp acute hepatopancreatic necrosis disease (AHPND). Resulted revealed that OVp and EVp infections caused dysbiosis in the gut microbiota and compromised shrimp immunity, while the later infection led to earlier and higher mortality. Significant associations were detected between the gut microbiota and each of the measured immune activities. Neutral community model showed that the assembly of gut microbiota was more strongly governed by deterministic processes in EVp infection, followed by EVp infected and control shrimp. Additionally, there were significantly lower temporal turnover rate and average variation degree in the gut microbiota in EVp infected shrimp compared with control individuals. Notably, we identified 22 infection-discriminatory taxa after ruling out the ontogenic effect. Using profiles of the 22 indicators as independent variables, the diagnosis model accurately distinguished (an overall 85.9% accuracy) the infected status (control, OVp or EVp infected shrimp), with 81.3% accuracy at the initial infection stage. The convergent and deterministic gut microbiota in EVp infected shrimp could partially explain why it is challenge to cure APHND from an ecological viewpoint. In addition, we provided a sensitive approach for diagnosing the onset of infection, when disease symptom is unobservable.
Collapse
Affiliation(s)
- Haonan Sha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Luyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
45
|
Ke A, Parreira VR, Farber JM, Goodridge L. Inhibition of Cronobacter sakazakii in an infant simulator of the human intestinal microbial ecosystem using a potential synbiotic. Front Microbiol 2022; 13:947624. [PMID: 35910651 PMCID: PMC9335077 DOI: 10.3389/fmicb.2022.947624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Powdered infant formula (PIF) can be contaminated with Cronobacter sakazakii, which can cause severe illnesses in infants. Synbiotics, a combination of probiotics and prebiotics, could act as an alternative control measure for C. sakazakii contamination in PIF and within the infant gut, but synbiotics have not been well studied for their ability to inhibit C. sakazakii. Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) inoculated with infant fecal matter, we demonstrated that a potential synbiotic, consisting of six lactic acid bacteria (LAB) strains and Vivinal GOS, can inhibit the growth of C. sakazakii in an infant possibly through either the production of antimicrobial metabolites like acetate, increasing species diversity within the SHIME compartments to compete for nutrients or a combination of mechanisms. Using a triple SHIME set-up, i.e., three identical SHIME compartments, the first SHIME (SHIME 1) was designated as the control SHIME in the absence of a treatment, whereas SHIME 2 and 3 were the treated SHIME over 2, 1-week treatment periods. The addition of the potential synbiotic (LAB + VGOS) resulted in a significant decrease in C. sakazakii levels within 1 week (p < 0.05), but in the absence of a treatment the significant decline took 2 weeks (p < 0.05), and the LAB treatment did not decrease C. sakazakii levels (p ≥ 0.05). The principal component analysis showed a distinction between metabolomic profiles for the control and LAB treatment, but similar profiles for the LAB + VGOS treatment. The addition of the potential synbiotic (LAB + VGOS) in the first treatment period slightly increased species diversity (p ≥ 0.05) compared to the control and LAB, which may have had an effect on the survival of C. sakazakii throughout the treatment period. Our results also revealed that the relative abundance of Bifidobacterium was negatively correlated with Cronobacter when no treatments were added (ρ = −0.96; p < 0.05). These findings suggest that C. sakazakii could be inhibited by the native gut microbiota, and inhibition can be accelerated by the potential synbiotic treatment.
Collapse
|
46
|
Segura Munoz RR, Mantz S, Martínez I, Li F, Schmaltz RJ, Pudlo NA, Urs K, Martens EC, Walter J, Ramer-Tait AE. Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. THE ISME JOURNAL 2022; 16:1594-1604. [PMID: 35210551 PMCID: PMC9122919 DOI: 10.1038/s41396-022-01208-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species, indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were detected for both species as strains’ competitive fitness increased when colonizing first, which resulted in stable persistence of the A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a basis for their modulation.
Collapse
Affiliation(s)
- Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sara Mantz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ines Martínez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karthik Urs
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, Canada. .,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland.
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA. .,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
47
|
Navarro-López V, Méndez-Miralles MÁ, Vela-Yebra R, Fríes-Ramos A, Sánchez-Pellicer P, Ruzafa-Costas B, Núñez-Delegido E, Gómez-Gómez H, Chumillas-Lidón S, Picó-Monllor JA, Navarro-Moratalla L. Gut Microbiota as a Potential Predictive Biomarker in Relapsing-Remitting Multiple Sclerosis. Genes (Basel) 2022; 13:genes13050930. [PMID: 35627315 PMCID: PMC9140870 DOI: 10.3390/genes13050930] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The influence of the microbiome on neurological diseases has been studied for years. Recent findings have shown a different composition of gut microbiota detected in patients with multiple sclerosis (MS). The role of this dysbiosis is still unknown. OBJECTIVE We analyzed the gut microbiota of 15 patients with active relapsing-remitting multiple sclerosis (RRMS), comparing with diet-matched healthy controls. METHOD To determine the composition of the gut microbiota, we performed high-throughput sequencing of the 16S ribosomal RNA gene. The specific amplified sequences were in the V3 and V4 regions of the 16S ribosomal RNA gene. RESULTS The gut microbiota of RRMS patients differed from healthy controls in the levels of the Lachnospiraceae, Ezakiella, Ruminococcaceae, Hungatella, Roseburia, Clostridium, Shuttleworthia, Poephyromonas, and Bilophila genera. All these genera were included in a logistic regression analysis to determine the sensitivity and the specificity of the test. Finally, the ROC (receiver operating characteristic) and AUC with a 95% CI were calculated and best-matched for Ezakiella (AUC of 75.0 and CI from 60.6 to 89.4) and Bilophila (AUC of 70.2 and CI from 50.1 to 90.4). CONCLUSIONS There is a dysbiosis in the gut microbiota of RRMS patients. An analysis of the components of the microbiota suggests the role of some genera as a predictive factor of RRMS prognosis and diagnosis.
Collapse
Affiliation(s)
- Vicente Navarro-López
- Ph.D. Program in Health Sciences, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
- Infectious Disease Unit, University Hospital Vinalopó, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain
- Correspondence: (V.N.-L.); (M.Á.M.-M.)
| | - María Ángeles Méndez-Miralles
- Ph.D. Program in Health Sciences, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
- Department of Neurology, University Hospital of Torrevieja, Carretera CV95, s/n, 03186 Alicante, Spain;
- Correspondence: (V.N.-L.); (M.Á.M.-M.)
| | - Rosa Vela-Yebra
- Department of Neurology, University Hospital of Torrevieja, Carretera CV95, s/n, 03186 Alicante, Spain;
| | - Ana Fríes-Ramos
- Department of Neurology, University Hospital of Vinalopó, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain;
| | - Pedro Sánchez-Pellicer
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Beatriz Ruzafa-Costas
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Humberto Gómez-Gómez
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Sara Chumillas-Lidón
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| | - Jose A. Picó-Monllor
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
- Department of Pharmacology, Pediatrics and Organic Chemistry, Faculty of Pharmacy, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Department of Clinical Medicine, Campus de los Jerónimos 135, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain; (P.S.-P.); (B.R.-C.); (E.N.-D.); (H.G.-G.); (S.C.-L.); (J.A.P.-M.); (L.N.-M.)
| |
Collapse
|
48
|
Abstract
The gastrointestinal ecosystem is formed from interactions between the host, indigenous gut microbiota, and external world. When colonizing the gut, bacteria must overcome barriers imposed by the intestinal environment, such as host immune responses and microbiota-mediated nutrient limitation. Thus, understanding bacterial colonization requires determining how the gut landscape interacts with microbes attempting to establish within the ecosystem. However, the complicated network of interactions between elements of the intestinal environment makes it challenging to uncover emergent properties of the system using only reductionist methods. A systems biology approach, which aims to investigate complex systems by examining the behavior and relationships of all elements of the system, may afford a more holistic perspective of the colonization process. Here, we examine the confluence between the gut landscape and bacterial colonization through the lens of systems biology. We offer an overview of the conceptual and methodological underpinnings of systems biology, followed by a discussion of key elements of the gut ecosystem as they pertain to bacterial establishment and growth. We conclude by reintegrating these elements to guide future comprehensive investigations of the ecosystem in the context of bacterial intestinal colonization.
Collapse
Affiliation(s)
- Madeline R. Barron
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
50
|
Kondo T, Sakamoto K, Morinaga Y, Miyata Y, Yanagihara K, Sakai H. Escherichia coli ST131 isolated from urological patients can acquire plasmid-mediated extended spectrum β-lactamase from other bacteria with high frequency. Int J Urol 2022; 29:587-594. [PMID: 35288997 DOI: 10.1111/iju.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the prevalence of the clonal group Escherichia coli ST131 in urologic patients, and to clarify the mechanisms underlying the high prevalence of the antimicrobial resistant genes in ST131. METHODS We used 65 Escherichia coli strains collected from the Department of Urology, Nagasaki University Hospital, between January 2018 and December 2018. All of them underwent multilocus sequence typing and were analyzed for genes associated with quinolone resistance and extended-spectrum β-lactamases. To compare ST131 and non-ST131 strains, bacterial conjugation experiments and intestinal colonization evaluations were performed. RESULTS ST131 was the most dominant among all the strains, along with levofloxacin resistant strains, and extended-spectrum β-lactamases positive strains (32%, 63%, and 73%, respectively). 12 out of 15 extended-spectrum β-lactamases-producing Escherichia coli strains harbored CTX-M-9. In particular, all extended-spectrum β-lactamases-producing ST131 strains possessed CTX-M-9. The proportions of ST131 strains with or without quinolone resistance-determining region mutations were significantly higher and lower, respectively, than that of non-ST131 strains (P = 0.0002 and P < 0.0001, respectively). When Klebsiella pneumoniae was used as a donor, three ST131 strains acquired extended-spectrum β-lactamases a total of 16 times (six, four, and six times each), which was significantly more than that in one of the non-ST131 strains (two times). The amount of bacteria was significantly lower in the ST131 strains than in the non-ST131 strains administered to mice. Both the ST131 and non-ST131 strains increased again after the administration of vancomycin, even after the colony was not detected. CONCLUSIONS These results support the mechanisms underlying the prevalence of ST131 strains in hospitals, particularly in urologic patients.
Collapse
Affiliation(s)
- Tsubasa Kondo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kei Sakamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|