1
|
Sengupta S, Zhang J, Reed MC, Yu J, Kim A, Boronina TN, Board NL, Wrabl JO, Shenderov K, Welsh RA, Yang W, Timmons AE, Hoh R, Cole RN, Deeks SG, Siliciano JD, Siliciano RF, Sadegh-Nasseri S. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. J Exp Med 2023; 220:e20221654. [PMID: 37058141 PMCID: PMC10114365 DOI: 10.1084/jem.20221654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josephine Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madison C. Reed
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanna Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aeryon Kim
- Department of Inflammation and Oncology and Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan L. Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Shenderov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A. Welsh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | | |
Collapse
|
2
|
Muvarak N, Li H, Lahusen T, Galvin JA, Kumar PN, Pauza CD, Bordon J. Safety and durability of AGT103-T autologous T cell therapy for HIV infection in a Phase 1 trial. Front Med (Lausanne) 2022; 9:1044713. [PMID: 36452901 PMCID: PMC9701732 DOI: 10.3389/fmed.2022.1044713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 08/19/2023] Open
Abstract
UNLABELLED The cell and gene therapy product AGT103-T was designed to restore the Gag-specific CD4+ T cell response in persons with chronic HIV disease who are receiving antiretroviral therapy. This autologous, genetically engineered cell product is under investigation in a Phase 1 clinical trial (NCT03215004). Trial participants were conditioned with cyclophosphamide approximately 1 week before receiving a one-time low (< 109 genetically modified CD4+ T cells) or high (≥109 genetically modified CD4+ T cells) dose of AGT103-T, delivering between 2 and 21 million genetically modified cells per kilogram (kg) body weight. There were no serious adverse events (SAEs) and all adverse events (AEs) were mild. Genetically modified AGT103-T cells were detected in most of the participant blood samples collected 6 months after infusion, which was the last scheduled monitoring visit. Peripheral blood mononuclear cells (PBMC) collected after cell product infusion were tested to determine the abundance of Gag-specific T cells as a measure of objective responses to therapy. Gag-specific CD4+ T cells were detected in all treated individuals and were substantially increased by 9 to 300-fold compared to baseline, by 14 days after cell product infusion. Gag-specific CD8+ T cells were increased by 1.7 to 10-fold relative to baseline, by 28 days after cell product infusion. Levels of Gag-specific CD4+ T cells remained high (~2 to 70-fold higher relative to baseline) throughout 3-6 months after infusion. AGT103-T at low or high doses was safe and effective for improving host T cell immunity to HIV. Further studies, including antiretroviral treatment interruption, are warranted to evaluate the product's efficacy in HIV disease. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, identifier: NCT03215004.
Collapse
Affiliation(s)
- Nidal Muvarak
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Haishan Li
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Jeffrey A. Galvin
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - Princy N. Kumar
- Georgetown University School of Medicine, Washington, DC, United States
| | - C. David Pauza
- American Gene Technologies International, Inc., Rockville, MD, United States
| | - José Bordon
- Washington Health Institute, Washington, DC, United States
| |
Collapse
|
3
|
A role for CD4 + helper cells in HIV control and progression. AIDS 2022; 36:1501-1510. [PMID: 35730394 DOI: 10.1097/qad.0000000000003296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It remains unclear why HIV persists in most untreated individuals, and why a small minority of individuals can control the virus, either spontaneously or after an early treatment. Striking differences have been discovered between patient cohorts in CD4 + T-cell avidity but not in CD8 + T-cell avidity. The present work has the aim to explain the diverse outcome of infection and identify the key virological and immunological parameters predicting the outcome. DESIGN AND METHOD A mathematical model informed by these experiments and taking into account the details of HIV virology is developed. RESULTS The model predicts an arms race between viral dissemination and the proliferation of HIV-specific CD4 + helper cells leading to one of two states: a low-viremia state (controller) or a high-viremia state (progressor). Helper CD4 + cells with a higher avidity favor virus control. The parameter segregating spontaneous and posttreatment controllers is the infectivity difference between activated and resting CD4 + T cells. The model is shown to have a better connection to experiment than a previous model based on T-cell 'exhaustion'. CONCLUSION Using the model informed by patient data, the timing of antiretroviral therapy can be optimized.
Collapse
|
4
|
Enhanced Cross-Reactive and Polyfunctional Effector-Memory T Cell Responses by ICVAX-a Human PD1-Based Bivalent HIV-1 Gag-p41 Mosaic DNA Vaccine. J Virol 2022; 96:e0216121. [PMID: 35297660 PMCID: PMC9006887 DOI: 10.1128/jvi.02161-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced protective T cell immunity is necessary for HIV-1 functional cure. We previously reported that rhesus PD1-Gag-based DNA vaccination sustained simian-human immunodeficiency virus (SHIV) suppression by inducing effector-memory CD8+ T cells. Here, we investigated a human PD1-Gag-based DNA vaccine, namely, ICVAX, for clinical translation. PD1-based dendritic cell targeting and mosaic antigenic designs were combined to generate the ICVAX by fusing the human soluble PD1 domain with a bivalent HIV-1 Gag-p41 mosaic antigen. The mosaic antigen was cross-reactive with patients infected with B, CRF07/08_BC, and CRF01_AE variants. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses than mosaic Gag-p41 alone, and suppressed EcoHIV infection more efficiently. In macaques, ICVAX elicited polyfunctional effector-memory T cell responses that targeted multiple nonoverlapping epitopes of the Gag-p41 antigen. Furthermore, ICVAX manufactured following good manufacturing practices proved potent immunogenicity in macaques after biannual homologous vaccination, warranting clinical evaluation of ICVAX as an immunotherapy against HIV-1. IMPORTANCE This study presents that ICVAX, a PD1-based DNA vaccine against HIV-1, could induce broad and polyfunctional T cell responses against different HIV-1 subtypes. ICVAX encodes a recombinant antigen consisting of the human soluble PD1 domain fused with two mosaic Gag-p41 antigens. The mosaic antigens cover more than 500 HIV-1 strains circulating in China including the subtypes B/B’, CRF01_AE, and CRF07/08_BC. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses, with better EcoHIV suppression than the nontargeting mosaic Gag-p41 DNA vaccine. Moreover, both lab-generated and GMP-grade ICVAX also elicited strong polyfunctional effector-memory T cell responses in rhesus macaques with good immunogenicity against multiple nonoverlapping epitopes of the Gag-p41 antigen. This study therefore highlights the great potential to translate the PD1-based DNA vaccine approach into clinical use, and opens up new avenues for alternative HIV-1 vaccine design for HIV-1 preventive and functional cure.
Collapse
|
5
|
Claireaux M, Robinot R, Kervevan J, Patgaonkar M, Staropoli I, Brelot A, Nouël A, Gellenoncourt S, Tang X, Héry M, Volant S, Perthame E, Avettand-Fenoël V, Buchrieser J, Cokelaer T, Bouchier C, Ma L, Boufassa F, Hendou S, Libri V, Hasan M, Zucman D, de Truchis P, Schwartz O, Lambotte O, Chakrabarti LA. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. Nat Commun 2022; 13:521. [PMID: 35082297 PMCID: PMC8792008 DOI: 10.1038/s41467-022-28130-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of β-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Rémy Robinot
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Jérôme Kervevan
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Mandar Patgaonkar
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Anne Brelot
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Alexandre Nouël
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Stacy Gellenoncourt
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Xian Tang
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Mélanie Héry
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université de Paris, Paris, France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université de Paris, Paris, France
| | - Véronique Avettand-Fenoël
- AP-HP Hôpital Necker-Enfants Malades, Laboratoire de Microbiologie clinique, Paris, France.,CNRS 8104, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Thomas Cokelaer
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université de Paris, Paris, France.,Biomics Platform, C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Christiane Bouchier
- Biomics Platform, C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Laurence Ma
- Biomics Platform, C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Faroudy Boufassa
- INSERM U1018, Center for Research in Epidemiology and Population Health (CESP), Le Kremlin-Bicêtre, France
| | - Samia Hendou
- INSERM U1018, Center for Research in Epidemiology and Population Health (CESP), Le Kremlin-Bicêtre, France
| | - Valentina Libri
- Cytometry and Biomarkers (CB UTechS), Translational Research Center, Institut Pasteur, Université de Paris, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers (CB UTechS), Translational Research Center, Institut Pasteur, Université de Paris, Paris, France
| | | | - Pierre de Truchis
- AP-HP, Infectious and Tropical Diseases Department, Raymond Poincaré Hospital, Garches, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Olivier Lambotte
- INSERM U1184, Université Paris Sud, CEA, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,AP-HP, Department of Internal Medicine and Clinical Immunology, University Hospital Paris Sud, Le Kremlin-Bicêtre, France
| | - Lisa A Chakrabarti
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France. .,CNRS UMR3569, Paris, France.
| |
Collapse
|
6
|
Loucif H, Dagenais-Lussier X, Avizonis D, Choinière L, Beji C, Cassin L, Routy JP, Fritz JH, Olagnier D, van Grevenynghe J. Autophagy-dependent glutaminolysis drives superior IL21 production in HIV-1-specific CD4 T cells. Autophagy 2021; 18:1256-1273. [PMID: 34612140 DOI: 10.1080/15548627.2021.1972403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The maintenance of a strong IL21 production in memory CD4 T cells, especially in HIV-1-specific cells, represents a major correlate of natural immune protection against the virus. However, the molecular mechanisms underlying IL21 production during HIV-1 infection, which is only elevated among the naturally protected elite controllers (EC), are still unknown. We recently found out that lipophagy is a critical immune mediator that control an antiviral metabolic state following CD8A T cell receptor engagement, playing an important role in the natural control of HIV-1 infection. This led us to investigate whether the beneficial role of a strong macroautophagy/autophagy, could also be used to ensure effective IL21 production as well. Herein, we confirm that after both polyclonal and HIV-1-specific activation, memory CD4 T cells (Mem) from EC display enhanced activity of the autophagy-mediated proteolysis compared to ART. Our results indicate that the enhanced autophagy activity in EC was controlled by the energy-sensing PRKAA1 (protein kinase AMP-activated catalytic subunit alpha 1). We further confirmed the critical role of the autophagy-mediated proteolysis in the strong IL21 production in EC by using BECN1 gene silencing as well as protease, PRKAA1, and lysosomal inhibitors. Finally, we established that high autophagy-mediated proteolysis in EC fuels their cellular rates of mitochondrial respiration due to glutaminolysis. Our data confirm the critical role of autophagy in dictating the metabolic input, which is required not only to ensure protective cytotoxic CD8A T cell responses, but also to provide strong IL21 production among antiviral CD4 T cells.Abbreviations: AKG: alpha-ketoglutarate; ART: patients under antiretroviral therapy; ATG7: autophagy related 7; BaF: bafilomycin A1; BECN1: beclin 1; Chloro.: chloroquine; EC: elite controllers; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FOXO3: forkhead box O3; GLS: glutaminase; GLUD1: glutamate dehydrogenase 1; HIVneg: HIV-1-uninfected control donors; IFNG/IFN-γ: interferon gamma; IL21: interleukin 21; MTOR: mechanistic target of rapamycin kinase; PBMC: peripheral blood mononuclear cells; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; SQSTM1: sequestosome 1; TCA: tricarboxylic acid cycle; ULK1: unc-51 like autophagy activating kinase.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Daina Avizonis
- Metabolomics Innovation Resource, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Luc Choinière
- Metabolomics Innovation Resource, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Cherifa Beji
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Léna Cassin
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
7
|
Slingluff CL, Zarour HM, Tawbi HAH, Kirkwood JM, Postow MA, Friedlander P, Devoe CE, Gaughan EM, Mauldin IS, Olson WC, Smith KT, Macri MJ, Ricciardi T, Ryan A, Venhaus R, Wolchok JD. A phase 1 study of NY-ESO-1 vaccine + anti-CTLA4 antibody Ipilimumab (IPI) in patients with unresectable or metastatic melanoma. Oncoimmunology 2021; 10:1898105. [PMID: 33796406 PMCID: PMC8007150 DOI: 10.1080/2162402x.2021.1898105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ipilimumab (IPI) can enhance immunity to the cancer-testis antigen NY-ESO-1. A clinical trial was designed to assess safety, immunogenicity, and clinical responses with IPI + NY-ESO-1 vaccines and effects on the tumor microenvironment (TME). Patients with measurable NY-ESO-1+ tumors were enrolled among three arms: A) IPI + NY-ESO-1 protein + poly-ICLC (pICLC) + incomplete Freund’s adjuvant (IFA); B) IPI + NY-ESO-1 overlapping long peptides (OLP) + pICLC + IFA; and C) IPI + NY-ESO-1 OLP + pICLC. Clinical responses were assessed by irRC. T cell and Ab responses were assessed by ex vivo IFN-gamma ELIspot and ELISA. Tumor biopsies pre- and post-treatment were evaluated for immune infiltrates. Eight patients were enrolled: 5, 2, and 1 in Arms A-C, respectively. There were no DLTs. Best clinical responses were SD (4) and PD (4). T-cell and antibody (Ab) responses to NY-ESO-1 were detected in 6 (75%) and 7 (88%) patients, respectively, and were associated with SD. The breadth of Ab responses was greater for patients with SD than PD (p = .036). For five patients evaluable in the TME, treatment was associated with increases in proliferating (Ki67+) CD8+ T cells and decreases in RORγt+ CD4+ T cells. T cell densities increased for those with SD. Detection of T cell responses to NY-ESO-1 ex vivo in most patients suggests that IPI may have enhanced those responses. Proliferating intratumoral CD8+ T cells increased after vaccination plus IPI suggesting favorable impact of IPI plus NY-ESO-1 vaccines on the TME. List of Abbreviations: Ab = antibody; CTCAE = NCI Common Terminology Criteria for Adverse Events; DHFR/DHRP = dihydrofolate reductase; DLT = Dose-limiting toxicity; ELISA = enzyme-linked immunosorbent assay; IFA = incomplete Freund’s adjuvant (Montanide ISA-51); IFNγ = Interferon gamma; IPI = Ipilimumab; irRC = immune-related response criteria; mIFH = multispectral immunofluorescence histology; OLP = NY-ESO-1 overlapping long peptides; PBMC = peripheral blood mononuclear cells; PD = Progressive disease; pICLC = poly-ICLC (Hiltonol), a TLR3/MDA-5 agonist; RLT = Regimen-limiting Toxicity; ROI = regions of interest; RT = room temperature; SAE = serious adverse event; SD = stable disease; TEAE = treatment-emergent adverse events; TLR = toll-like receptor; TME = tumor microenvironment; TRAE = treatment-related adverse events.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Hassane M Zarour
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein Abdul-Hassan Tawbi
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - John M Kirkwood
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Philip Friedlander
- Department of Medicine, Hematology, and Medical Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Craig E Devoe
- Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Elizabeth M Gaughan
- Department of Medicine/Division of Hematology Oncology, University of Virginia, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Walter C Olson
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kelly T Smith
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Mary J Macri
- Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - Aileen Ryan
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center.,Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
8
|
Slingluff CL, Petroni GR, Chianese-Bullock KA, Wages NA, Olson WC, Smith KT, Haden K, Dengel LT, Dickinson A, Reed C, Gaughan EM, Grosh WW, Kaur V, Varhegyi N, Smolkin M, Galeassi NV, Deacon D, Hall EH. Trial to evaluate the immunogenicity and safety of a melanoma helper peptide vaccine plus incomplete Freund's adjuvant, cyclophosphamide, and polyICLC (Mel63). J Immunother Cancer 2021; 9:jitc-2020-000934. [PMID: 33479025 PMCID: PMC7825263 DOI: 10.1136/jitc-2020-000934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Background Peptide vaccines designed to stimulate melanoma-reactive CD4+ T cells can induce T cell and antibody (Ab) responses, associated with enhanced overall survival. We hypothesized that adding toll-like receptor 3 agonist polyICLC to an incomplete Freund’s adjuvant (IFA) would be safe and would support strong, durable CD4+ T cell and Ab responses. We also hypothesized that oral low-dose metronomic cyclophosphamide (mCy) would be safe, would reduce circulating regulatory T cells (T-regs) and would further enhance immunogenicity. Participants and methods An adaptive design based on toxicity and durable CD4+ T cell immune response (dRsp) was used to assign participants with resected stage IIA-IV melanoma to one of four study regimens. The regimens included a vaccine comprising six melanoma peptides restricted by Class II MHC (6MHP) in an emulsion with IFA alone (Arm A), with IFA plus systemic mCy (Arm B), with IFA+ local polyICLC (Arm C), or with IFA+ polyICLC+ mCy (Arm D). Toxicities were recorded (CTCAE V.4.03). T cell responses were measured by interferon γ ELIspot assay ex vivo. Serum Ab responses to 6MHP were measured by ELISA. Circulating T-regs were assessed by flow cytometry. Results Forty-eight eligible participants were enrolled and treated. Early data on safety and dRsp favored enrollment on arm D. Total enrollment on Arms A-D were 3, 7, 6, and 32, respectively. Treatment-related dose-limiting toxicities (DLTs) were observed in 1/7 (14%) participants on arm B and 2/32 (6%) on arm D. None exceeded the 25% DLT threshold for early closure to enrollment for any arm. Strong durable T cell responses to 6MHP were detected ex vivo in 0%, 29%, 67%, and 47% of participants on arms A-D, respectively. IgG Ab responses were greatest for arms C and D. Circulating T-regs frequencies were not altered by mCy. Conclusions 6MHP vaccines administered with IFA, polyICLC, and mCy were well tolerated. The dRsp rate for arm D of 47% (90% CI 32 to 63) exceeded the 18% (90% CI 11 to 26) rate previously observed with 6MHP in IFA alone. Vaccination with IFA+ polyICLC (arm C) also showed promise for enhancing T cell and Ab responses.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA .,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Gina R Petroni
- University of Virginia Cancer Center, Charlottesville, Virginia, USA.,Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kimberly A Chianese-Bullock
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Nolan A Wages
- University of Virginia Cancer Center, Charlottesville, Virginia, USA.,Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kelly T Smith
- Office of Research Cores Administration, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kathleen Haden
- University of Virginia Cancer Center, Charlottesville, Virginia, USA.,University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Lynn T Dengel
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Anna Dickinson
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Caroline Reed
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Elizabeth M Gaughan
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William W Grosh
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Varinder Kaur
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nikole Varhegyi
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark Smolkin
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nadejda V Galeassi
- Cardiovascular Imaging Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Donna Deacon
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emily H Hall
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Kervevan J, Chakrabarti LA. Role of CD4+ T Cells in the Control of Viral Infections: Recent Advances and Open Questions. Int J Mol Sci 2021; 22:E523. [PMID: 33430234 PMCID: PMC7825705 DOI: 10.3390/ijms22020523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.
Collapse
Affiliation(s)
- Jérôme Kervevan
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| |
Collapse
|
10
|
Coombs J, Ben Hassen L, Leclerc M, Tamagne M, Pannetier L, Khelfa M, Delorme A, Bocquet T, Maury S, Pirenne F, Ansart‐Pirenne H, Vingert B. Dominant immune response to HLA‐B57/B58 molecules after platelet transfusion. Transfusion 2020; 60:2807-2814. [DOI: 10.1111/trf.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Justine Coombs
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Latifa Ben Hassen
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Mathieu Leclerc
- AP‐HP ‐ Hôpital Henri Mondor Créteil France
- Université Paris Est Faculté de médecine Créteil France
| | - Marie Tamagne
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Louise Pannetier
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Mehdi Khelfa
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Adèle Delorme
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | | | - Sébastien Maury
- AP‐HP ‐ Hôpital Henri Mondor Créteil France
- Université Paris Est Faculté de médecine Créteil France
| | - France Pirenne
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Université Paris Est Faculté de médecine Créteil France
| | | | - Benoît Vingert
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| |
Collapse
|
11
|
Nyanhete TE, Frisbee AL, Bradley T, Faison WJ, Robins E, Payne T, Freel SA, Sawant S, Weinhold KJ, Wiehe K, Haynes BF, Ferrari G, Li QJ, Moody MA, Tomaras GD. HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers. Sci Rep 2019; 9:10165. [PMID: 31308388 PMCID: PMC6629643 DOI: 10.1038/s41598-019-46462-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
A paradigm shifting study demonstrated that induction of MHC class E and II-restricted CD8+ T cells was associated with the clearance of SIV infection in rhesus macaques. Another recent study highlighted the presence of HIV-1-specific class II-restricted CD8+ T cells in HIV-1 patients who naturally control infection (virus controllers; VCs). However, questions regarding class II-restricted CD8+ T cells ontogeny, distribution across different HIV-1 disease states and their role in viral control remain unclear. In this study, we investigated the distribution and anti-viral properties of HLA-DRB1*0701 and DQB1*0501 class II-restricted CD8+ T cells in different HIV-1 patient cohorts; and whether class II-restricted CD8+ T cells represent a unique T cell subset. We show that memory class II-restricted CD8+ T cell responses were more often detectable in VCs than in chronically infected patients, but not in healthy seronegative donors. We also demonstrate that VC CD8+ T cells inhibit virus replication in both a class I- and class II-dependent manner, and that in two VC patients the class II-restricted CD8+ T cells with an anti-viral gene signature expressed both CD4+ and CD8+ T cell lineage-specific genes. These data demonstrated that anti-viral memory class II-restricted CD8+ T cells with hybrid CD4+ and CD8+ features are present during natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E Nyanhete
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alyse L Frisbee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,University of Virginia Department of Microbiology, Immunology and Cancer Biology, 345 Crispell Drive, University of Virginia Health System, Charlottesville, Virginia, 22908, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William J Faison
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elizabeth Robins
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tamika Payne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Stephanie A Freel
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kent J Weinhold
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, Tan LL, Ciacchi L, Reid HH, Rossjohn J, Chakrabarti LA, Gras S. CD4 + T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol 2019; 3:3/24/eaat0687. [PMID: 29884618 DOI: 10.1126/sciimmunol.aat0687] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.
Collapse
Affiliation(s)
- Moran Galperin
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Daniela Benati
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France
| | - Li Lynn Tan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Lisa A Chakrabarti
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France.,INSERM, U1108, Paris, France
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
A High Frequency of HIV-Specific Circulating Follicular Helper T Cells Is Associated with Preserved Memory B Cell Responses in HIV Controllers. mBio 2018; 9:mBio.00317-18. [PMID: 29739909 PMCID: PMC5941072 DOI: 10.1128/mbio.00317-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Follicular helper T cells (Tfh) play an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4+ T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh) in patients from the ANRS CO21 CODEX cohort who naturally controlled HIV-1 replication to undetectable levels and compared them to treated patients with similarly low viral loads. HIV-specific cTfh (Tet+), detected by Gag-major histocompatibility complex class II (MHC-II) tetramer labeling in the CD45RA− CXCR5+ CD4+ T cell population, proved more frequent in the controller group (P = 0.002). The frequency of PD-1 expression in Tet+ cTfh was increased in both groups (median, >75%) compared to total cTfh (<30%), but the intensity of PD-1 expression per cell remained higher in the treated patient group (P = 0.02), pointing to the persistence of abnormal immune activation in treated patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production but proved significantly more efficient in the controller group when measuring HIV-specific IgG production. The frequency of Tet+ cTfh correlated with HIV-specific IgG production (R = 0.71 for Gag-specific and R = 0.79 for Env-specific IgG, respectively). Taken together, our findings indicate that key cTfh-B cell interactions are preserved in controlled HIV infection, resulting in potent memory B cell responses that may play an underappreciated role in HIV control. The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently considered to play only a minor role in viral control. However, emerging evidence suggests that HIV controllers maintain a significant but “silent” antiviral memory B cell population that can be reactivated upon antigenic stimulation. We report that cTfh help likely contributes to the persistence of controller memory B cell responses, as the frequency of HIV-specific cTfh correlated with the induction of HIV-specific antibodies in functional assays. These findings suggest that T follicular help may contribute to HIV control and highlight the need for inducing such help in HIV vaccine strategies that aim at eliciting persistent B cell responses.
Collapse
|
14
|
Buggert M, Nguyen S, McLane LM, Steblyanko M, Anikeeva N, Paquin-Proulx D, Del Rio Estrada PM, Ablanedo-Terrazas Y, Noyan K, Reuter MA, Demers K, Sandberg JK, Eller MA, Streeck H, Jansson M, Nowak P, Sönnerborg A, Canaday DH, Naji A, Wherry EJ, Robb ML, Deeks SG, Reyes-Teran G, Sykulev Y, Karlsson AC, Betts MR. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease. PLoS Pathog 2018; 14:e1006973. [PMID: 29652923 PMCID: PMC5919077 DOI: 10.1371/journal.ppat.1006973] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. CD4+ T cells have classically been divided into different subsets based on their different abilities to help and regulate specific parts of the immune system. Recent work in the HIV field has demonstrated that HIV-specific CD4+ T cells with unique effector functions, such as cytolytic activity and β-chemokine production, can play a direct role in control of HIV replication. However, HIV infection is generally considered to be a disease centered in lymphoid tissues, where unique CD4+ T helper cell subsets are present to orchestrate the maturation and priming of adaptive immunity. In this study, we identify that two specific transcription factors, T-bet and Eomes, mark cytolytic and β-chemokine producing CD4+ T cells. While this effector CD4+ T cell population is part of immunosurveillance mechanisms in blood, we find that lymph nodes largely lack this effector population–independent of HIV infection or disease progression status. These results indicate that current effector CD4+ T cell mediated correlates of HIV control are limited to blood and not representative of potential correlates of control in lymphoid tissues.
Collapse
Affiliation(s)
- Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (MRB)
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Laura M. McLane
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maria Steblyanko
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nadia Anikeeva
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Dominic Paquin-Proulx
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Perla M. Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Morgan A. Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Korey Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Johan K. Sandberg
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Hendrik Streeck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- Geriatric Research, Education and Clinical Center, Louis Stokes VA Medical Center, Cleveland, OH, United States of America
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - E. John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA, United States of America
| | - Gustavo Reyes-Teran
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yuri Sykulev
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MB); (MRB)
| |
Collapse
|
15
|
Pina AF, Matos VTGD, Bonin CM, Dal Fabbro MMFJ, Tozetti IA. Non-polarized cytokine profile of a long-term non-progressor HIV infected patient. Braz J Infect Dis 2018; 22:142-145. [PMID: 29476708 PMCID: PMC9428230 DOI: 10.1016/j.bjid.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 initial viral infection may present diverse clinical and laboratory course and lead to rapid, intermediate, or long-term progression. Among the group of non-progressors, the elite controllers are those who control the infection most effectively, in the absence of antiretroviral therapy (ART). In this paper, the TH1, TH2 and TH17 cytokines profiles are described, as well as clinical and laboratory aspects of an HIV-infected patient with undetectable viral load without antiretroviral therapy. Production of IL-6, IL-10, TNF-α, IFN-γ, and IL-17 was detected; in contrast IL-4 was identified. Host-related factors could help explain such a level of infection control, namely the differentiated modulation of the cellular immune response and a non-polarized cytokine response of the TH1 and TH2 profiles.
Collapse
Affiliation(s)
- Ana Flávia Pina
- Universidade Federal do Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, MS, Brazil
| | | | - Camila Mareti Bonin
- Universidade Federal do Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, Campo Grande, MS, Brazil
| | | | - Inês Aparecida Tozetti
- Universidade Federal do Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, Campo Grande, MS, Brazil
| |
Collapse
|
16
|
Gonzalez SM, Taborda NA, Correa LA, Castro GA, Hernandez JC, Montoya CJ, Rugeles MT. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS. Immunol Res 2017; 64:765-74. [PMID: 26724942 DOI: 10.1007/s12026-015-8775-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The spontaneous control of HIV replication in HIV-controllers underlines the importance of these subjects for exploring factors related to delayed progression. Several studies have revealed fewer immune alterations and effector mechanisms related to viral control, mainly in peripheral blood, in these individuals compared to normal progressors. However, immune characterization of gut-associated lymphoid tissue (GALT), the major target of infection, has not been thoroughly explored in these subjects. We evaluated the following parameters in GALT samples from 11 HIV-controllers and 15 HIV-progressors: (i) frequency and activation phenotype of T cells; (ii) expression of transcription factors associated with immune response profiles; and (iii) frequency of apoptotic cells. Interestingly, HIV-controllers exhibited a particular activation phenotype, with predominance of T cells expressing HLA-DR but not CD38 in GALT. This phenotype, previously associated with better control of infection, was correlated with low viral load and higher CD4(+) T cell count. Furthermore, a positive correlation of this activation phenotype with higher expression of Foxp3 and RORγT transcription factors suggested a key role for Treg and Th17 cells in the control of the immune activation and in the maintenance of gut mucosal integrity. Although we evaluated apoptosis by measuring expression of cleaved caspase-3 in GALT, we did not find differences between HIV-controllers and HIV-progressors. Taken together, our findings suggest that predominance of HLA-DR(+) T cells, along with lower immune activation and higher expression of transcription factors required for the development of Treg and Th17 cells, is associated with better viral control and delayed progression to AIDS.
Collapse
Affiliation(s)
- Sandra M Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo de Investigación en Salud Familiar y Comunitaria (GISAFACO), Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Luis A Correa
- Sección de Dermatología, Departamento de Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Laboratorio de Patología, Laboratorio Clínico VID, Obra de la Congregación Mariana, Medellín, Colombia
| | - Gustavo A Castro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Carlos J Montoya
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
17
|
Mukhopadhyay M, Galperin M, Patgaonkar M, Vasan S, Ho DD, Nouël A, Claireaux M, Benati D, Lambotte O, Huang Y, Chakrabarti LA. DNA Vaccination by Electroporation Amplifies Broadly Cross-Restricted Public TCR Clonotypes Shared with HIV Controllers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3437-3452. [PMID: 28993513 PMCID: PMC5675813 DOI: 10.4049/jimmunol.1700953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023]
Abstract
Rare patients who spontaneously control HIV replication provide a useful model to inform HIV vaccine development. HIV controllers develop particularly efficient antiviral CD4+ T cell responses mediated by shared high-affinity TCRs. To determine whether the candidate DNA vaccine ADVAX could induce similar responses, we analyzed Gag-specific primary CD4+ T cells from healthy volunteers who received ADVAX DNA by electroporation. Vaccinated volunteers had an immunodominant response to the Gag293 epitope with a functional avidity intermediate between that of controllers and treated patients. The TCR repertoire of Gag293-specific CD4+ T cells proved highly biased, with a predominant usage of the TCRβ variable gene 2 (TRBV2) in vaccinees as well as controllers. TCRα variable gene (TRAV) gene usage was more diverse, with the dominance of TRAV29 over TRAV24 genes in vaccinees, whereas TRAV24 predominated in controllers. Sequence analysis revealed an unexpected degree of overlap between the specific repertoires of vaccinees and controllers, with the sharing of TRAV24 and TRBV2 public motifs (>30%) and of public clonotypes characteristic of high-affinity TCRs. MHC class II tetramer binding revealed a broad HLA-DR cross-restriction, explaining how Gag293-specific public clonotypes could be selected in individuals with diverse genetic backgrounds. TRAV29 clonotypes also proved cross-restricted, but conferred responses of lower functional avidity upon TCR transfer. In conclusion, DNA vaccination by electroporation primed for TCR clonotypes that were associated with HIV control, highlighting the potential of this vaccine delivery method. To our knowledge, this study provides the first proof-of-concept that clonotypic analysis may be used as a tool to monitor the quality of vaccine-induced responses and modulate these toward "controller-like" responses.
Collapse
Affiliation(s)
- Madhura Mukhopadhyay
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Moran Galperin
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Mandar Patgaonkar
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Sandhya Vasan
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - Alexandre Nouël
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Mathieu Claireaux
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Daniela Benati
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Olivier Lambotte
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre, France
- Université Paris Sud, UMR 1184, 94276 Le Kremlin-Bicêtre, France
- DSV/iMETI, IDMIT, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France; and
- INSERM U1184, Centre d'Immunologie des Infections Virales et Maladies Autoimmunes, 94276 Le Kremlin-Bicêtre, France
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - Lisa A Chakrabarti
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France;
- INSERM U1108, 75015 Paris, France
| |
Collapse
|
18
|
Poston TB, Qu Y, Girardi J, O'Connell CM, Frazer LC, Russell AN, Wall M, Nagarajan UM, Darville T. A Chlamydia-Specific TCR-Transgenic Mouse Demonstrates Th1 Polyfunctionality with Enhanced Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2845-2854. [PMID: 28855311 PMCID: PMC5770186 DOI: 10.4049/jimmunol.1700914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Chlamydia is responsible for millions of new infections annually, and current efforts focus on understanding cellular immunity for targeted vaccine development. The Chlamydia-specific CD4 T cell response is characterized by the production of IFN-γ, and polyfunctional Th1 responses are associated with enhanced protection. A major limitation in studying these responses is the paucity of tools available for detection, quantification, and characterization of polyfunctional Ag-specific T cells. We addressed this problem by developing a TCR-transgenic (Tg) mouse with CD4 T cells that respond to a common Ag in Chlamydia muridarum and Chlamydia trachomatis Using an adoptive-transfer approach, we show that naive Tg CD4 T cells become activated, proliferate, migrate to the infected tissue, and acquire a polyfunctional Th1 phenotype in infected mice. Polyfunctional Tg Th1 effectors demonstrated enhanced IFN-γ production compared with polyclonal cells, protected immune-deficient mice against lethality, mediated bacterial clearance, and orchestrated an anamnestic response. Adoptive transfer of Chlamydia-specific CD4 TCR-Tg T cells with polyfunctional capacity offers a powerful approach for analysis of protective effector and memory responses against chlamydial infection and demonstrates that an effective monoclonal CD4 T cell response may successfully guide subunit vaccination strategies.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yanyan Qu
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Lauren C Frazer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ali N Russell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - McKensie Wall
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
19
|
Abana CO, Pilkinton MA, Gaudieri S, Chopra A, McDonnell WJ, Wanjalla C, Barnett L, Gangula R, Hager C, Jung DK, Engelhardt BG, Jagasia MH, Klenerman P, Phillips EJ, Koelle DM, Kalams SA, Mallal SA. Cytomegalovirus (CMV) Epitope-Specific CD4 + T Cells Are Inflated in HIV + CMV + Subjects. THE JOURNAL OF IMMUNOLOGY 2017; 199:3187-3201. [PMID: 28972094 DOI: 10.4049/jimmunol.1700851] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Select CMV epitopes drive life-long CD8+ T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4+ T cells specific for human CMV (HCMV) are elevated in HIV+ HCMV+ subjects. To determine whether HCMV epitope-specific CD4+ T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4+ T cells in coinfected HLA-DR7+ long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4+ T cells were inflated among these HIV+ subjects compared with those from an HIV- HCMV+ HLA-DR7+ cohort or with HLA-DR7-restricted CD4+ T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4+ T cells consisted of effector memory or effector memory-RA+ subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX3CR1, CD38, or HLA-DR but less often coexpressed CD38+ and HLA-DR+ The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4+ T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease.
Collapse
Affiliation(s)
- Chike O Abana
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mark A Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Silvana Gaudieri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,School of Human Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Celestine Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Cindy Hager
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dae K Jung
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Brian G Engelhardt
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Madan H Jagasia
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Elizabeth J Phillips
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David M Koelle
- Department of Medicine, Laboratory Medicine, and Global Health, University of Washington, Seattle, WA 98195
| | - Spyros A Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
20
|
Expansion and retention of pulmonary CD4 + T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia. Vaccine 2017; 35:2575-2581. [PMID: 28372827 DOI: 10.1016/j.vaccine.2017.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 01/19/2023]
Abstract
Francisella tularensis subsp. tularensis strain SchuS4 (Ftt) is a highly virulent intracellular bacterium. Inhalation of 10 or fewer organisms results in an acute and potentially lethal disease called pneumonic tularemia. Ftt infections occur naturally in the U.S. and Ftt was developed as a bioweapon. Thus, there is a need for vaccines that protect against this deadly pathogen. Although a live vaccine strain of Francisella tularensis (LVS) exists, LVS fails to generate long-lived protective immunity against modest challenge doses of Ftt. We recently identified an important role for high avidity CD4+ T cells in short-term protection and hypothesized that expanding this pool of cells would improve overall vaccine efficacy with regard to longevity and challenge dose. In support of our hypothesis, application of a prime/boost vaccination strategy increased the pool of high avidity CD4+ T cells which correlated with improved survival following challenge with either increased doses of virulent Ftt or at late time points after vaccination. In summary, we demonstrate that both epitope selection and vaccination strategies that expand antigen-specific T cells correlate with superior immunity to Ftt as measured by survival.
Collapse
|
21
|
Billeskov R, Wang Y, Solaymani-Mohammadi S, Frey B, Kulkarni S, Andersen P, Agger EM, Sui Y, Berzofsky JA. Low Antigen Dose in Adjuvant-Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and Protective Efficacy. THE JOURNAL OF IMMUNOLOGY 2017; 198:3494-3506. [PMID: 28348274 DOI: 10.4049/jimmunol.1600965] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
T cells with high functional avidity can sense and respond to low levels of cognate Ag, a characteristic that is associated with more potent responses against tumors and many infections, including HIV. Although an important determinant of T cell efficacy, it has proven difficult to selectively induce T cells of high functional avidity through vaccination. Attempts to induce high-avidity T cells by low-dose in vivo vaccination failed because this strategy simply gave no response. Instead, selective induction of high-avidity T cells has required in vitro culturing of specific T cells with low Ag concentrations. In this study, we combined low vaccine Ag doses with a novel potent cationic liposomal adjuvant, cationic adjuvant formulation 09, consisting of dimethyldioctadecylammonium liposomes incorporating two immunomodulators (monomycolyl glycerol analog and polyinosinic-polycytidylic acid) that efficiently induces CD4 Th cells, as well as cross-primes CD8 CTL responses. We show that vaccination with low Ag dose selectively primes CD4 T cells of higher functional avidity, whereas CD8 T cell functional avidity was unrelated to vaccine dose in mice. Importantly, CD4 T cells of higher functional avidity induced by low-dose vaccinations showed higher cytokine release per cell and lower inhibitory receptor expression (PD-1, CTLA-4, and the apoptosis-inducing Fas death receptor) compared with their lower-avidity CD4 counterparts. Notably, increased functional CD4 T cell avidity improved antiviral efficacy of CD8 T cells. These data suggest that potent adjuvants, such as cationic adjuvant formulation 09, render low-dose vaccination a feasible and promising approach for generating high-avidity T cells through vaccination.
Collapse
Affiliation(s)
- Rolf Billeskov
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; .,Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, DK-2300, Denmark; and
| | - Yichuan Wang
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Corporation, Frederick, MD 21702
| | - Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Blake Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shweta Kulkarni
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, DK-2300, Denmark; and
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, DK-2300, Denmark; and
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
22
|
Sun M, Zheng H, Xie Y, Li B, Long H, Guo G, Guo L, Wang J, Ning R, Li Y, Liu L. Functional effector memory T cells contribute to protection from superinfection with heterologous simian immunodeficiency virus or simian-human immunodeficiency virus isolates in Chinese rhesus macaques. Arch Virol 2017; 162:1211-1221. [PMID: 28110425 DOI: 10.1007/s00705-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Many studies have revealed a protective effect of infection of an individual with an immunodeficiency virus against subsequent infection with a heterologous strain. However, the extent of protection against superinfection conferred by the first infection and the biological consequences of superinfection are not well understood. Here, we report that a rhesus monkey model of mucosal superinfection was established to investigate the protective immune response. Protection against superinfection was shown to correlate with the extent of the polyfunctionality of CD4+ effector memory T cells, whereas neutralizing antibody responses did not protect against superinfection in this model. Notably, immunodeficiency-virus-associated effector memory T-cell responses might significantly contribute to the suppression of virus superinfection. This provides a potential theoretical basis for the development of an HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yingpeng Xie
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Bingxiang Li
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Haiting Long
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ge Guo
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lei Guo
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ruotong Ning
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Longding Liu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
23
|
Hamimi C, David A, Versmisse P, Weiss L, Bruel T, Zucman D, Appay V, Moris A, Ungeheuer MN, Lascoux-Combe C, Barré-Sinoussi F, Muller-Trutwin M, Boufassa F, Lambotte O, Pancino G, Sáez-Cirión A. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles. PLoS One 2016; 11:e0160251. [PMID: 27505169 PMCID: PMC4978443 DOI: 10.1371/journal.pone.0160251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia.
Collapse
Affiliation(s)
- Chiraz Hamimi
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
| | - Annie David
- Institut Pasteur, HIV Inflammation et Persistance, Paris, France
| | - Pierre Versmisse
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
| | - Laurence Weiss
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
- AP-HP Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | - Timothée Bruel
- Université Paris Sud, UMR-1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses, France
| | - David Zucman
- Hopital Foch, Service de médecine interne, Suresnes, France
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Marie-Noëlle Ungeheuer
- Institut Pasteur, Plate-forme Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Paris, France
| | | | | | | | - Faroudy Boufassa
- INSERM U1018, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR-1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses, France
- Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Le Kremlin-Bicêtre, France
- APHP, Hôpitaux Universitaires Paris Sud, Service de Médecine Interne–Immunologie Clinique, le Kremlin Bicêtre, France
| | | | - Asier Sáez-Cirión
- Institut Pasteur, HIV Inflammation et Persistance, Paris, France
- * E-mail:
| | | |
Collapse
|
24
|
Benati D, Galperin M, Lambotte O, Gras S, Lim A, Mukhopadhyay M, Nouël A, Campbell KA, Lemercier B, Claireaux M, Hendou S, Lechat P, de Truchis P, Boufassa F, Rossjohn J, Delfraissy JF, Arenzana-Seisdedos F, Chakrabarti LA. Public T cell receptors confer high-avidity CD4 responses to HIV controllers. J Clin Invest 2016; 126:2093-108. [PMID: 27111229 DOI: 10.1172/jci83792] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.
Collapse
|
25
|
Zurawski G, Zurawski S, Flamar AL, Richert L, Wagner R, Tomaras GD, Montefiori DC, Roederer M, Ferrari G, Lacabaratz C, Bonnabau H, Klucar P, Wang Z, Foulds KE, Kao SF, Yates NL, LaBranche C, Jacobs BL, Kibler K, Asbach B, Kliche A, Salazar A, Reed S, Self S, Gottardo R, Galmin L, Weiss D, Cristillo A, Thiebaut R, Pantaleo G, Levy Y. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS One 2016; 11:e0153484. [PMID: 27077384 PMCID: PMC4831750 DOI: 10.1371/journal.pone.0153484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/19/2016] [Indexed: 12/30/2022] Open
Abstract
Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1.
Collapse
Affiliation(s)
- Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
- * E-mail:
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Anne-Laure Flamar
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Laura Richert
- INSERM U897, INRIA SISTM, Université Bordeaux Segalen, Bordeaux, France
| | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Georgia D. Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mario Roederer
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christine Lacabaratz
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
| | - Henri Bonnabau
- INSERM U897, INRIA SISTM, Université Bordeaux Segalen, Bordeaux, France
| | - Peter Klucar
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Zhiqing Wang
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Kathryn E. Foulds
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Shing-Fen Kao
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Nicole L. Yates
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bertram L. Jacobs
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Karen Kibler
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Benedikt Asbach
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Alexander Kliche
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - Steve Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steve Self
- Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Deborah Weiss
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Anthony Cristillo
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Rodolphe Thiebaut
- INSERM U897, INRIA SISTM, Université Bordeaux Segalen, Bordeaux, France
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois, CH-101, Lausanne, Switzerland
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, and Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert- Chenevier, service d’immunologie clinique, INRIA SISTM, Créteil, France
| |
Collapse
|
26
|
TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol 2016; 16:77-85. [PMID: 26874617 DOI: 10.1016/j.coviro.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Because of the enormous complexity and breadth of the overall HIV-specific CD8(+) T-cell response, invaluable information regarding important aspects of T-cell efficacy against HIV can be sourced from studies performed on individual clonotypes. Data gathered from ex vivo and in vitro analyses of T-cell responses and viral evolution bring us one step closer towards deciphering the correlates of protection against HIV. HIV-responsive CD8(+) T-cell populations are characterized by specific clonotypic immunodominance patterns and public TCRs. The TCR endows T-cells with two key features, important for the effective control of HIV: avidity and crossreactivity. While TCR avidity is a major determinant of CD8(+) T-cell functional efficacy against the virus, crossreactivity towards wildtype and mutant viral epitopes is crucial for adaptation to HIV evolution. The properties of CD4(+) T-cell responses in HIV controllers appear also to be shaped by high avidity public TCR clonotypes. The molecular nature of the TCR, together with the clonotypic composition of the HIV-specific T-cell response, emerge as major determinants of anti-viral efficacy.
Collapse
|
27
|
Stepwise B-cell-dependent expansion of T helper clonotypes diversifies the T-cell response. Nat Commun 2016; 7:10281. [PMID: 26728651 PMCID: PMC4728444 DOI: 10.1038/ncomms10281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal selection of lymphocytes with the appropriate antigen reactivity. Current models attribute T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either foreign or self peptides. Here, we report that clonal selection of CD4(+) T cells is also extrinsically regulated by B cells. In response to viral infection, the antigen-specific TCR repertoire is progressively diversified by staggered clonotypic expansion, according to functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by B-cell activation. B cells clonotypically diversify the CD4(+) T-cell response also to vaccination or tumour challenge, revealing a common effect.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW HIV-specific T cell responses are likely to have an important role in HIV cure strategies that aim for long-lasting viral control without antiretroviral therapy (ART). An important issue in enhancing virus-specific T cell responses is whether timing of ART can influence their magnitude and breadth. RECENT FINDINGS Early ART is associated with lower T cell activation, preservation of T cell numbers, smaller DNA and RNA reservoir size, and, in a single study (VISCONTI), control of plasma viremia after treatment interruption. The prevention of T cell destruction by early ART is associated with relatively low anti-HIV CD8⁺ T cell responses but stronger CD4⁺ T helper function. The relatively lower CD8⁺T cell response, which is presumably due to rapid lowering of HIV antigen burden after early ART, appears sufficient to control residual viral replication as well as viral rebound upon treatment interruption. SUMMARY Available evidence of starting ART during acute or early HIV infection has shown benefit in both virologic and immunologic parameters despite the lower HIV-specific CD8⁺ T cell responses observed. Encouraging as this is, more extensive data are necessary to evaluate its role in combination with immunotherapeutic and latency activation strategies that are being assessed in various HIV cure-related studies.
Collapse
|
29
|
Immunologic and Virologic Progression in HIV Controllers: The Role of Viral "Blips" and Immune Activation in the ANRS CO21 CODEX Study. PLoS One 2015; 10:e0131922. [PMID: 26146823 PMCID: PMC4493076 DOI: 10.1371/journal.pone.0131922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
Some HIV controllers (HICs) experience CD4+T cell count loss and/or lose their ability to control HIV. In this study, we investigated the rate of immunologic and/or virologic progression (ImmP/VirP) and its determinants in the ANRS CO21/CODEX cohort. Immunologic progression was defined as a lasting fall in CD4+T cell count below 350/mm(3) or more than 200/mm(3) with a baseline count below 600/mm(3). Virologic progression was defined as a HIV viral load (VL) above 2000 copies/mL on two consecutive determinations. Clinical characteristics, immune activation, ultrasensitive HIV VL and total HIV DNA were analyzed. Disease progression was observed in 15 of the 217 patients followed up between 2009 and 2013 (ImmP, n = 10; VirP, n = 5). Progressors had higher ultrasensitive HIV RNA levels at inclusion (i.e. 1-2 years before progression) than non-progressors. ImmP had also lower CD4+T cell nadir and CD4+T cell count at inclusion, and VirP had higher HIV DNA levels in blood. T cell activation and IP10 levels at inclusion were significantly higher in ImmP than in non-progressors. In summary, the lasting loss of CD4+T cells, residual HIV replication and basal levels of immune activation appear to be major determinants of progression in HICs. These factors should be considered for adjusting their follow-up.
Collapse
|
30
|
Oyarzun P, Ellis JJ, Gonzalez-Galarza FF, Jones AR, Middleton D, Boden M, Kobe B. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases. Vaccine 2015; 33:1267-73. [PMID: 25629524 DOI: 10.1016/j.vaccine.2015.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/11/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peptide vaccination based on multiple T-cell epitopes can be used to target well-defined ethnic populations. Because the response to T-cell epitopes is restricted by HLA proteins, the HLA specificity of T-cell epitopes becomes a major consideration for epitope-based vaccine design. We have previously shown that CD4+ T-cell epitopes restricted by 95% of human MHC class II proteins can be predicted with high-specificity. METHODS We describe here the integration of epitope prediction with population coverage and epitope selection algorithms. The population coverage assessment makes use of the Allele Frequency Net Database. We present the computational platform Predivac-2.0 for HLA class II-restricted epitope-based vaccine design, which accounts comprehensively for human genetic diversity. RESULTS We validated the performance of the tool on the identification of promiscuous and immunodominant CD4+ T-cell epitopes from the human immunodeficiency virus (HIV) protein Gag. We further describe an application for epitope-based vaccine design in the context of emerging infectious diseases associated with Lassa, Nipah and Hendra viruses. Putative CD4+ T-cell epitopes were mapped on the surface glycoproteins of these pathogens and are good candidates to be experimentally tested, as they hold potential to provide cognate help in vaccination settings in their respective target populations. CONCLUSION Predivac-2.0 is a novel approach in epitope-based vaccine design, particularly suited to be applied to virus-related emerging infectious diseases, because the geographic distributions of the viruses are well defined and ethnic populations in need of vaccination can be determined ("ethnicity-oriented approach"). Predivac-2.0 is accessible through the website http://predivac.biosci.uq.edu.au/.
Collapse
Affiliation(s)
- Patricio Oyarzun
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia; Biotechnology Centre, Universidad San Sebastián, Concepción, Chile.
| | - Jonathan J Ellis
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia
| | | | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital & School of Infection and Host Defence University of Liverpool, United Kingdom
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia; School of Information Technology and Electrical Engineering, University of Queensland, Queensland 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia.
| |
Collapse
|
31
|
Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity. PLoS One 2014; 9:e107524. [PMID: 25215887 PMCID: PMC4162600 DOI: 10.1371/journal.pone.0107524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022] Open
Abstract
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.
Collapse
|
32
|
Thorborn G, Ploquin MJ, Eksmond U, Pike R, Bayer W, Dittmer U, Hasenkrug KJ, Pepper M, Kassiotis G. Clonotypic composition of the CD4+ T cell response to a vectored retroviral antigen is determined by its speed. THE JOURNAL OF IMMUNOLOGY 2014; 193:1567-77. [PMID: 25000983 DOI: 10.4049/jimmunol.1400667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms whereby different vaccines may expand distinct Ag-specific T cell clonotypes or induce disparate degrees of protection are incompletely understood. We found that several delivery modes of a model retroviral Ag, including natural infection, preferentially expanded initially rare high-avidity CD4(+) T cell clonotypes, known to mediate protection. In contrast, the same Ag vectored by human adenovirus serotype 5 induced clonotypic expansion irrespective of avidity, eliciting a predominantly low-avidity response. Nonselective clonotypic expansion was caused by relatively weak adenovirus serotype 5-vectored Ag presentation and was reproduced by replication-attenuated retroviral vaccines. Mechanistically, the potency of Ag presentation determined the speed and, consequently, completion of the CD4(+) T cell response. Whereas faster completion retained the initial advantage of high-avidity clonotypes, slower completion permitted uninhibited accumulation of low-avidity clonotypes. These results highlighted the importance of Ag presentation patterns in determining the clonotypic composition of vaccine-induced T cell responses and ultimately the efficacy of vaccination.
Collapse
Affiliation(s)
- Georgina Thorborn
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Mickaël J Ploquin
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Urszula Eksmond
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Rebecca Pike
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98195; and
| | - George Kassiotis
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
33
|
Comparative analysis of the capacity of elite suppressor CD4+ and CD8+ T cells to inhibit HIV-1 replication in monocyte-derived macrophages. J Virol 2014; 88:9789-98. [PMID: 24942573 DOI: 10.1128/jvi.00860-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Elite controllers or suppressors (ESs) are HIV-1-infected individuals who are able to maintain viral loads below the limit of detection of clinical assays without antiretroviral therapy. The mechanisms of virologic control are not fully understood, but ESs have been shown to have a more effective CD8+ T cell response to infected CD4+ T cells than chronic progressors (CPs). While macrophages are another cell type productively infected by HIV-1, few studies have examined the ability of primary effector T cells to suppress HIV-1 replication in these target cells. Here, we compared the ability of unstimulated primary CD4+ and CD8+ effector T cells to suppress viral replication in monocyte-derived macrophages (MDMs) in ESs and CPs. While CD4+ effector T cells were capable of inhibiting viral replication in MDMs, the magnitude of this response was not significantly different between ESs and CPs. In contrast, the CD8+ T cells from ESs were significantly more effective than those from CPs at inhibiting viral replication in MDMs. The CD4+ T cell response was partially mediated by soluble factors, while the CD8+ T cell response required cell-to-cell interaction. Our results suggest that the individual contributions of various effector cells should be considered in rational vaccine design and in ongoing eradication efforts. IMPORTANCE Elite suppressors are individuals capable of maintaining low-level viremia in HIV-1 infection without antiretroviral drugs. Their T cell responses have been implicated in eliminating infected CD4+ T cells, and as such, elite suppressors may represent a model of a functional cure of HIV-1 infection. Here, we sought to determine whether the suppressive T cell responses against infected CD4+ T cells also apply to infected macrophages by comparing the responses of elite suppressors and HIV-1-positive individuals on highly active antiretroviral therapy (HAART). Our results show that the CD8+ cells but not CD4+ T cells from elite suppressors have a response against infected macrophages superior to the response of CD8+ cells from patients on HAART. Our results suggest that the induction of a CD8+ T cell response effective against infected macrophages is an outcome to consider in rational vaccine design.
Collapse
|
34
|
Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130436. [PMID: 24821922 PMCID: PMC4024229 DOI: 10.1098/rstb.2013.0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
Collapse
Affiliation(s)
| | | | | | - M. Müller-Trutwin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| |
Collapse
|
35
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Major advances have been made in the delineation of HIV-specific immune response and in the mechanisms of virus escape. The kinetics of the immunological and virological events occurring during primary HIV infection indicate that the establishment of the latent HIV reservoir, the major obstacle to HIV eradication likely occurs during the very early stages of primary infection, that is, the 'eclipse phase', prior to the development of the HIV-specific immune response which has limited efficacy in the control of the early events of infection. Therefore, the window of opportunity to develop effective interventions either to clear HIV during primary infection or to prevent rebound of HIV in patients successfully treated who stop antiretroviral therapy is very narrow. RECENT FINDINGS Genetic factors most strongly associated with nonprogressive infection are human leukocyte antigen (HLA) class I alleles and particularly HLA-B5701. CD4 and CD8 T-cell responses with polyfunctional profile are associated with nonprogressive infection. Broader neutralizing antibodies are detected 3-4 years after infection, generated only in 20% of individuals but show no efficacy in the control of HIV replication. SUMMARY In the present review, we shall discuss the different components of the HIV-specific immune response elicited by the infection, the kinetics of these responses during primary infection and the changes following transition to the chronic phase of infection, and the functional profile of 'effective' versus 'noneffective' HIV-specific immune responses.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To discuss the recent major advances in the understanding of how host immune defenses contribute to HIV reservoir control. RECENT FINDINGS Immune control of HIV-1 reservoirs is a two-step process: viral replication activation from latent reservoirs followed by elimination of virus-expressing cells by the host. Environmental factors, such as pro-inflammatory type-I interferon, chemokines or cytokines, can facilitate HIV-1 replication, confer dormancy in CD4 cells or confer resistance to cytopathogenic effects of cytotoxic CD8 T cells. Therefore, they constitute a double-edged sword for immune control of HIV reservoirs. Concomitantly, adaptive immunity takes advantage of CD4 T-cell homeostatic mechanisms and can expose HIV-1 antigen-expressing cells to HIV-specific cytotoxic CD8 T cells, and limit virus spreading. These highly interconnected phenomena can lead to quasi-equilibrium between the HIV-1 reservoirs and host immune control that can serve as a model for the 'shock and kill' immune-based therapeutic strategies in play in the course of finding an HIV cure. SUMMARY Immune control of HIV reservoirs in CD4 T cells involves modulation of both HIV-1 latency and the continuous reseeding of the reservoir offering conceptual models that may advance HIV cure strategies.
Collapse
|
38
|
Abstract
Untreated HIV-1 infection typically progresses to AIDS within 10 years, but less than 1% of infected individuals remain healthy and have normal CD4(+) T cell counts and undetectable viral loads; some individuals have remained this way for 35 years and counting. Through a combination of large population studies of cohorts of these 'HIV-1 controllers' and detailed studies of individual patients, a heterogeneous picture has emerged regarding the basis for this remarkable resistance to AIDS progression. In this Review, we highlight the host genetic factors, the viral genetic factors and the immunological factors that are associated with the controller phenotype, we discuss emerging methodological approaches that could facilitate a better understanding of spontaneous HIV-1 immune control in the future, and we delineate implications for a 'functional cure' of HIV-1 infection.
Collapse
Affiliation(s)
- Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
39
|
Shasha D, Walker BD. Lessons to be Learned from Natural Control of HIV - Future Directions, Therapeutic, and Preventive Implications. Front Immunol 2013; 4:162. [PMID: 23805139 PMCID: PMC3691556 DOI: 10.3389/fimmu.2013.00162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022] Open
Abstract
Accumulating data generated from persons who naturally control HIV without the need for antiretroviral treatment has led to significant insights into the possible mechanisms of durable control of AIDS virus infection. At the center of this control is the HIV-specific CD8 T cell response, and the basis for this CD8-mediated control is gradually being revealed. Genome wide association studies coupled with HLA sequence data implicate the nature of the HLA-viral peptide interaction as the major genetic factor modulating durable control of HIV, but host genetic factors account for only around 20% of the variability in control. Other factors including specific functional characteristics of the TCR clonotypes generated in vivo, targeting of vulnerable regions of the virus that lead to fitness impairing mutations, immune exhaustion, and host restriction factors that limit HIV replication all have been shown to additionally contribute to control. Moreover, emerging data indicate that the CD8+ T cell response may be critical for attempts to purge virus infected cells following activation of the latent reservoir, and thus lessons learned from elite controllers (ECs) are likely to impact the eradication agenda. On-going efforts are also needed to understand and address the role of immune activation in disease progression, as it becomes increasingly clear that durable immune control in ECs comes at a cost. Taken together, the research achievements in the attempt to unlock the mechanisms behind natural control of HIV will continue to be an important source of insights and ideas in the continuous search after an effective HIV vaccine, and for the attempts to achieve a sterilizing or functional cure in HIV positive patients with progressive infection.
Collapse
Affiliation(s)
- David Shasha
- The Ragon Institute of MGH, MIT and Harvard , Cambridge, MA , USA
| | | |
Collapse
|
40
|
Sáez-Cirión A, Pancino G. HIV controllers: a genetically determined or inducible phenotype? Immunol Rev 2013; 254:281-94. [DOI: 10.1111/imr.12076] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Asier Sáez-Cirión
- Institut Pasteur; Unité de Régulation des Infections Rétrovirales; Paris; France
| | | |
Collapse
|
41
|
|
42
|
Castelli FA, Szely N, Olivain A, Casartelli N, Grygar C, Schneider A, Besse A, Levy Y, Schwartz O, Maillère B. Hierarchy of CD4 T cell epitopes of the ANRS Lipo5 synthetic vaccine relies on the frequencies of pre-existing peptide-specific T cells in healthy donors. THE JOURNAL OF IMMUNOLOGY 2013; 190:5757-63. [PMID: 23636059 DOI: 10.4049/jimmunol.1300145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Agence National de Recherche sur le SIDA et les hepatitis Lipo5 vaccine is composed by five long fragments of HIV proteins and was recently shown to induce in seronegative volunteers a CD4 T cell response largely dominated by the G2 fragment. To understand this response profile, we submitted the five HIV fragments to HLA-DR-binding assays and evaluated the frequency of naive Lipo5-specific CD4 T lymphocytes in the blood of 22 healthy individuals. We enumerated the Lipo5-specific T cell lines induced in vitro by weekly rounds of specific stimulation. Four peptides and hence not only G2 exhibited a broad specificity for HLA-DR molecules. In contrast, most of the T cell lines specific for Lipo5 reacted with G2, revealing a G2-specific T cell repertoire superior to 2 cells per million, whereas it is close to 0.4 for the other peptides. We also found good cross-reactivity of all the peptides with clade B and C variants and that G2 and P1 are able to recruit T cells that recognize HIV-infected cells. We therefore mainly observed very good concordance between the frequency to individual Lipo5 peptides among vaccinees in a large-scale vaccine trial and the distribution of peptide specificity of the in vitro induced T cell lines. These findings underline the role of the size of the epitope-specific naive repertoire in shaping the CD4 T cell response after vaccination and highlight the value of evaluating the naive repertoire to predict vaccine immunogenicity.
Collapse
Affiliation(s)
- Florence Anne Castelli
- Commissariat à l'Energie Atomique, Institut de Biologie et de Technologies, Service d'Ingénierie Moléculaire des Protéines, F-91191 Gif Sur Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zaunders J, van Bockel D. Innate and Adaptive Immunity in Long-Term Non-Progression in HIV Disease. Front Immunol 2013; 4:95. [PMID: 23630526 PMCID: PMC3633949 DOI: 10.3389/fimmu.2013.00095] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long-term non-progressors (LTNP) were identified after 10-15 years of the epidemic, and have been the subject of intense investigation ever since. In a small minority of cases, infection with nef/3'LTR deleted attenuated viral strains allowed control over viral replication. A common feature of LTNP is the readily detected proliferation of CD4 T-cells in vitro, in response to p24. In some cases, the responding CD4 T-cells have cytotoxic effector function and may target conserved p24 epitopes, similar to the CD8 T-cells described below. LTNP may also carry much lower HIV DNA burden in key CD4 subsets, presumably resulting from lower viral replication during primary infection. Some studies, but not others, suggest that LTNP have CD4 T-cells that are relatively resistant to HIV infection in vitro. One possible mechanism may involve up-regulation of the cell cycle regulator p21/waf in CD4 T-cells from LTNP. Delayed progression in Caucasian LTNP is also partly associated with heterozygosity of the Δ32 CCR5 allele, probably through decreased expression of CCR5 co-receptor on CD4 T-cells. However, in approximately half of Caucasian LTNP, two host genotypes, namely HLA-B57 and HLA-B27, are associated with viral control. Immunodominant CD8 T-cells from these individuals target epitopes in p24 that are highly conserved, and escape mutations have significant fitness costs to the virus. Furthermore, recent studies have suggested that these CD8 T-cells from LTNP, but not from HLA-B27 or HLA-B57 progressors, can cross-react with intermediate escape mutations, preventing full escape via compensatory mutations. Humoral immunity appears to play little part in LTNP subjects, since broadly neutralizing antibodies are rare, even amongst slow progressors. Recent genome-wide comparisons between LTNP and progressors have confirmed the HLA-B57, HLA-B27, and delta32 CCR5 allelic associations, plus indicated a role for HLA-C/KIR interactions, but have not revealed any new genotypes so far. Nevertheless, it is hoped that studying the mechanisms of intracellular restriction factors, such as the recently identified SAMHD1, will lead to a better understanding of non-progression.
Collapse
Affiliation(s)
- John Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital Darlinghurst, NSW, Australia
| | | |
Collapse
|
44
|
Genovese L, Nebuloni M, Alfano M. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load. Front Immunol 2013; 4:86. [PMID: 23577012 PMCID: PMC3620550 DOI: 10.3389/fimmu.2013.00086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/26/2013] [Indexed: 12/26/2022] Open
Abstract
The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as “elite controllers (EC) or suppressors” and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC.
Collapse
Affiliation(s)
- Luca Genovese
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute Milan, Italy
| | | | | |
Collapse
|
45
|
Sanjuán R, Nebot MR, Peris JB, Alcamí J. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1. PLoS Biol 2013; 11:e1001523. [PMID: 23565057 PMCID: PMC3614509 DOI: 10.1371/journal.pbio.1001523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023] Open
Abstract
HIV, unlike other viruses, may benefit from immune recognition by preserving the sequence of its T cell epitopes, thereby enhancing transmission between cells. The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4+ helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive. A key component of the immune response against viruses and other pathogens is the recognition of short foreign protein sequences called epitopes. However, viruses can escape the immune system by mutating, so epitopes should accumulate high levels of genetic variability. This has been documented in several human viruses, but in HIV, unexpectedly, epitopes tend to be relatively conserved. Here, we propose that this is a consequence of the peculiar interactions that occur between HIV and the immune system. As with other viruses, recognition of HIV epitopes promotes the activation of cytotoxic and helper T lymphocytes, which then orchestrate a cellular immune response. However, HIV infects helper T lymphocytes as their target cell in the body and does so more efficiently when these cells have been activated to participate in an immune response. Mathematical modeling showed that, in some cases, HIV may take advantage of immune activation, thus favoring epitope conservation. This should be more likely to occur with epitopes that trigger more vigorous T-cell responses, and during the process known as “trans-infection,” in which helper T lymphocytes are infected while being activated. Our results highlight the potential advantages of an HIV vaccination strategy based on epitopes that stimulate cytotoxic T lymphocytes without specifically stimulating helper T lymphocytes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain.
| | | | | | | |
Collapse
|
46
|
Characteristics of plasmacytoid dendritic cell and CD4+ T cell in HIV elite controllers. Clin Dev Immunol 2012; 2012:869505. [PMID: 23243424 PMCID: PMC3517220 DOI: 10.1155/2012/869505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022]
Abstract
Despite variability, the majority of HIV-1-infected individuals progress to AIDS characterized by high viral load and massive CD4+ T-cell depletion. However, there is a subset of HIV-1-positive individuals that does not progress and spontaneously maintains an undetectable viral load. This infrequent patient population is defined as HIV-1 controllers (HIV controllers), and represents less than 1% of HIV-1-infected patients. HIV-1-specific CD4+ T cells and the pool of central memory CD4+ T cells are also preserved despite immune activation due to HIV-1 infection. The majority of HIV controllers are also defined by the absence of massive CD4+ T-cell depletion, even after 10 years of infection. However, the mechanisms involved in protection against HIV-1 disease progression have not been elucidated yet. Controllers represent a heterogeneous population; we describe in this paper some common characteristics concerning innate immune response and CD4+ T cells of HIV controllers.
Collapse
|
47
|
Single-Cell Level Response of HIV-Specific and Cytomegalovirus-Specific CD4 T Cells Correlate With Viral Control in Chronic HIV-1 Subtype A Infection. J Acquir Immune Defic Syndr 2012; 61:9-18. [DOI: 10.1097/qai.0b013e31825c1217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Antoine P, Olislagers V, Huygens A, Lecomte S, Liesnard C, Donner C, Marchant A. Functional exhaustion of CD4+ T lymphocytes during primary cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2665-72. [PMID: 22865914 DOI: 10.4049/jimmunol.1101165] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human CMV establishes lifelong persistence after primary infection. Chronic CMV infection is associated with intermittent viral reactivation inducing high frequencies of CD4+ T lymphocytes with potent antiviral and helper properties. Primary CMV infection is characterized by an intense viral replication lasting for several months. The impact of this prolonged exposure to high Ag loads on the functionality of CD4+ T cells remains incompletely understood. In pregnant women with primary CMV infection, we observed that CMV-specific CD4+ T lymphocytes had a decreased capacity to proliferate and to produce IL-2. A very large proportion of CMV-specific CD4+ T cells had downregulated the expression of CD28, a costimulatory molecule centrally involved in the production of IL-2. Unexpectedly, both CD28+ and CD28+ CD4+ T cells produced low levels of IL-2. This defective production of IL-2 was part of a larger downregulation of cytokine production. Indeed, CMV-specific CD4+ T cells produced lower amounts of IFN-γ and TNF-α and showed lower functional avidity during primary as compared with chronic infection. Increased programmed death-1 expression was observed in CD28+ CMV-specific CD4+ T cells, and programmed death-1 inhibition increased proliferative responses. These results indicate that primary CMV infection is associated with the exhaustion of CMV-specific CD4+ T cells displaying low functional avidity for viral Ags.
Collapse
Affiliation(s)
- Pierre Antoine
- Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Bozzacco L, Yu H, Dengjel J, Trumpfheller C, Zebroski HA, Zhang N, Küttner V, Ueberheide BM, Deng H, Chait BT, Steinman RM, Mojsov S, Fenyö D. Strategy for identifying dendritic cell-processed CD4+ T cell epitopes from the HIV gag p24 protein. PLoS One 2012; 7:e41897. [PMID: 22860026 PMCID: PMC3408443 DOI: 10.1371/journal.pone.0041897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
Mass Spectrometry (MS) is becoming a preferred method to identify class I and class II peptides presented on major histocompability complexes (MHC) on antigen presenting cells (APC). We describe a combined computational and MS approach to identify exogenous MHC II peptides presented on mouse spleen dendritic cells (DCs). This approach enables rapid, effective screening of a large number of possible peptides by a computer-assisted strategy that utilizes the extraordinary human ability for pattern recognition. To test the efficacy of the approach, a mixture of epitope peptide mimics (mimetopes) from HIV gag p24 sequence were added exogenously to Fms-like tyrosine kinase 3 ligand (Flt3L)-mobilized splenic DCs. We identified the exogenously added peptide, VDRFYKTLRAEQASQ, and a second peptide, DRFYKLTRAEQASQ, derived from the original exogenously added 15-mer peptide. Furthermore, we demonstrated that our strategy works efficiently with HIV gag p24 protein when delivered, as vaccine protein, to Flt3L expanded mouse splenic DCs in vitro through the DEC-205 receptor. We found that the same MHC II-bound HIV gag p24 peptides, VDRFYKTLRAEQASQ and DRFYKLTRAEQASQ, were naturally processed from anti-DEC-205 HIV gag p24 protein and presented on DCs. The two identified VDRFYKTLRAEQASQ and DRFYKLTRAEQASQ MHC II-bound HIV gag p24 peptides elicited CD4+ T-cell mediated responses in vitro. Their presentation by DCs to antigen-specific T cells was inhibited by chloroquine (CQ), indicating that optimal presentation of these exogenously added peptides required uptake and vesicular trafficking in mature DCs. These results support the application of our strategy to identify and characterize peptide epitopes derived from vaccine proteins processed by DCs and thus has the potential to greatly accelerate DC-based vaccine development.
Collapse
Affiliation(s)
- Leonia Bozzacco
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Haiqiang Yu
- Proteomics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Jörn Dengjel
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Christine Trumpfheller
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center, The Rockefeller University, New York, New York, United States of America
| | - Henry A. Zebroski
- Proteomics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Nawei Zhang
- Proteomics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Victoria Küttner
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Beatrix M. Ueberheide
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Haiteng Deng
- Proteomics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center, The Rockefeller University, New York, New York, United States of America
| | - Svetlana Mojsov
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center, The Rockefeller University, New York, New York, United States of America
| | - David Fenyö
- Laboratory of Computational Proteomics, Center for Health Informatics and Bioinformatics, New York University Medical Center, New York, New York, United States of America
| |
Collapse
|
50
|
HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term. J Virol 2012; 86:10661-74. [PMID: 22837194 DOI: 10.1128/jvi.00056-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HIV controllers are rare individuals who spontaneously control HIV replication in the absence of antiretroviral therapy. To identify parameters of the CD4 response that may contribute to viral control rather than merely reflect a persistently low viremia, we compared the T helper profiles in two groups of patients with more than 10 years of viral suppression: HIV controllers from the Agence Nationale de Recherche sur le SIDA et les Hépatites Virales (ANRS) CO18 cohort (n = 26) and efficiently treated patients (n = 16). Cells specific for immunodominant Gag and cytomegalovirus (CMV) peptides were evaluated for the production of 10 cytokines and cytotoxicity markers and were also directly quantified ex vivo by major histocompatibility complex (MHC) class II tetramer staining. HIV controller CD4(+) T cells were characterized by a higher frequency of gamma interferon (IFN-γ) production, perforin(+)/CD107a(+) expression, and polyfunctionality in response to Gag peptides. While interleukin 4 (IL-4), IL-17, and IL-21 production did not differ between groups, the cells of treated patients produced more IL-10 in response to Gag and CMV peptides, pointing to persistent negative immunoregulation after long-term antiretroviral therapy. Gag293 tetramer-positive cells were detected at a high frequency (0.12%) and correlated positively with IFN-γ-producing CD4(+) T cells in the controller group (R = 0.73; P = 0.003). Tetramer-positive cells were fewer in the highly active antiretroviral therapy (HAART) group (0.04%) and did not correlate with IFN-γ production, supporting the notion of a persistent immune dysfunction in HIV-specific CD4(+) T cells of treated patients. In conclusion, HIV controllers maintained a population of highly efficient Th1 effectors directed against Gag in spite of a persistently low antigenemia, while patients treated in the long term showed a loss of CD4 effector functions.
Collapse
|