1
|
Baber H, Aghajani A, Gallimore BH, Bethel C, Hyatt JG, King EFB, Price HP, Maciej-Hulme ML, Sari S, Winter A. Galactokinase-like protein from Leishmania donovani: Biochemical and structural characterization of a recombinant protein. Biochimie 2024; 223:31-40. [PMID: 38579894 DOI: 10.1016/j.biochi.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 μM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.
Collapse
Affiliation(s)
- Hasana Baber
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Arega Aghajani
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - B Harold Gallimore
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Cassandra Bethel
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - James G Hyatt
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Elizabeth F B King
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Helen P Price
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Marissa L Maciej-Hulme
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| | - Anja Winter
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
2
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
3
|
Hendrickx S, Caljon G. The effect of the sugar metabolism on Leishmania infantum promastigotes inside the gut of Lutzomyia longipalpis: A sweet relationship? PLoS Negl Trop Dis 2022; 16:e0010293. [PMID: 35385472 PMCID: PMC8985994 DOI: 10.1371/journal.pntd.0010293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
It is well-known that Leishmania parasites can alter the behavior of the sand fly vector in order to increase their transmission potential. However, little is known about the contribution of the infecting host’s blood composition on subsequent sand fly infection and survival. This study focused on the host’s glucose metabolism and the insulin/insulin-like growth factor 1 (IGF-1) pathway as both metabolic processes are known to impact vector-parasite interactions of other protozoa and insect species. The focus of this study was inspired by the observation that the glycemic levels in the blood of infected Syrian golden hamsters inversely correlated to splenic and hepatic parasite burdens. To evaluate the biological impact of these findings on further transmission, Lutzomyia longipalpis sand flies were infected with blood that was artificially supplemented with different physiological concentrations of several monosaccharides, insulin or IGF-1. Normoglycemic levels resulted in transiently higher parasite loads and faster appearance of metacyclics, whereas higher carbohydrate and insulin/IGF-1 levels favored sand fly survival. Although the recorded effects were modest or transient of nature, these observations support the concept that the host blood biochemistry may affect Leishmania transmission and sand fly longevity. Past research on the interaction between the Leishmania parasite and the sand fly vector has revealed that Leishmania is capable of changing vector behavior to favor transmission of parasites in the environment. Little is known about the impact of host blood composition on parasite development inside the vector and on vector survival. Here, we showed that parasite burdens in the spleen and the liver inversely correlated to the serum blood glucose levels of infected animals, which triggered us to further investigate the effect of blood monosaccharides, insulin and insulin-like growth factor 1 (IGF-1) on sand fly infection and survival. We demonstrated that normal serum glucose levels in the initial parasitized blood meal resulted in transiently higher parasite loads and a faster appearance of infectious parasites, whereas higher sugar and insulin/IGF-1 levels favored sand fly survival, which supports the concept that the host blood biochemistry may affect Leishmania transmission and sand fly longevity.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail: (SH); (GC)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail: (SH); (GC)
| |
Collapse
|
4
|
N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering (Basel) 2022; 9:bioengineering9020064. [PMID: 35200417 PMCID: PMC8869657 DOI: 10.3390/bioengineering9020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
During evolution, both human and plant pathogens have evolved to utilize a diverse range of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting its possible role in cell signaling. Over the last few decades, many studies have been performed to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in pathogenesis in order to identify new drug targets. In this review, we provide recent insights into GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic pathway can be targeted to reduce the pathogens’ virulence in order to control the disease prevalence and crop productivity.
Collapse
|
5
|
Gomes MT, Paes-Vieira L, Gomes-Vieira AL, Cosentino-Gomes D, da Silva APP, Giarola NLL, Da Silva D, Sola-Penna M, Galina A, Meyer-Fernandes JR. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 2021; 229:108154. [PMID: 34481863 DOI: 10.1016/j.exppara.2021.108154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.
Collapse
Affiliation(s)
- Marta Teixeira Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA; Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ana Paula Pereira da Silva
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Naira Ligia Lima Giarola
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Galina
- Laboratorio de Bioenergética e Fisiologia Mitocondrial, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Medica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its " Candidatus Pandoraea novymonadis" Endosymbiont. mBio 2021; 12:e0160621. [PMID: 34399629 PMCID: PMC8406214 DOI: 10.1128/mbio.01606-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont “Candidatus Pandoraea novymonadis.” Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the “Ca. Pandoraea novymonadis” genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches.
Collapse
|
7
|
Functional characterization of the LdNAGD gene in Leishmania donovani. Microbiol Res 2021; 251:126830. [PMID: 34385082 DOI: 10.1016/j.micres.2021.126830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
The N-acetyl glucosamine catabolic pathway has been well established as a critically essential pathway for the survival and pathogenesis of several intracellular pathogens. The intracellular form of Leishmania donovani resides inside the parasitophorous vacuole of macrophages. Recent studies have shown that amino sugars, such as N-acetyl glucosamine, are released from the turnover of host macromolecules, such as glycosaminoglycans, glycoproteins, and proteoglycans, inside the parasitophorous vacuole. Three enzymes, hexokinase (Hxk), N-acetyl glucosamine-6-phosphate deacetylase (NAGD) and glucosamine-6-phosphate deaminase (GND), are sequentially involved in the catabolism of GlcNAc. The Leishmania donovani genome encodes all enzymes of the GlcNAc catabolic pathway. Here, we investigated the role of the GlcNAc catabolic pathway in the proliferation and survival of L. donovani by characterizing the NAGD gene of this pathway. Recombinant LdNAGD displayed deacetylation activity and was localized inside the glycosomes. LdNAGD gene deletion impaired GlcNAc catabolism and was indispensable for the viability of L. donovani in media containing GlcNAc as the sole carbon source. Furthermore, these Δnagd cells showed attenuated virulence in THP-1 cells and a significantly reduced proliferation rate compared to wild type (WT) cells inside THP-1 cells. Our data suggested that LdNAGD is important for the intracellular proliferation of L. donovani and may represent a potential drug target.
Collapse
|
8
|
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 2021; 224:108102. [PMID: 33775649 DOI: 10.1016/j.exppara.2021.108102] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Oriana Villafraz
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Mayke B Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| | - Ariel M Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France.
| |
Collapse
|
9
|
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Front Chem 2021; 9:607139. [PMID: 33987166 PMCID: PMC8111926 DOI: 10.3389/fchem.2021.607139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.
Collapse
Affiliation(s)
- Crhisllane Rafaele dos Santos Vasconcelos
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Mauro Rezende
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
10
|
Bichiou H, Bouabid C, Rabhi I, Guizani-Tabbane L. Transcription Factors Interplay Orchestrates the Immune-Metabolic Response of Leishmania Infected Macrophages. Front Cell Infect Microbiol 2021; 11:660415. [PMID: 33898331 PMCID: PMC8058464 DOI: 10.3389/fcimb.2021.660415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a group of heterogenous diseases considered as an important public health problem in several countries. This neglected disease is caused by over 20 parasite species of the protozoa belonging to the Leishmania genus and is spread by the bite of a female phlebotomine sandfly. Depending on the parasite specie and the immune status of the patient, leishmaniasis can present a wide spectrum of clinical manifestations. As an obligate intracellular parasite, Leishmania colonize phagocytic cells, mainly the macrophages that orchestrate the host immune response and determine the fate of the infection. Once inside macrophages, Leishmania triggers different signaling pathways that regulate the immune and metabolic response of the host cells. Various transcription factors regulate such immune-metabolic responses and the associated leishmanicidal and inflammatory reaction against the invading parasite. In this review, we will highlight the most important transcription factors involved in these responses, their interactions and their impact on the establishment and the progression of the immune response along with their effect on the physiopathology of the disease.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Biotechnology Department, Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechpole Sidi-Thabet- University of Manouba, Tunis, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
11
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
12
|
Mondal DK, Pal DS, Abbasi M, Datta R. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in
Leishmania major. FEBS J 2021; 288:4129-4152. [DOI: 10.1111/febs.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Dipon Kumar Mondal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Dhiman Sankar Pal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Mazharul Abbasi
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Rupak Datta
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| |
Collapse
|
13
|
da Silva NS, Araújo NK, Daniele-Silva A, Oliveira JWDF, de Medeiros JM, Araújo RM, Ferreira LDS, Rocha HAO, Silva-Junior AA, Silva MS, Fernandes-Pedrosa MDF. Antimicrobial Activity of Chitosan Oligosaccharides with Special Attention to Antiparasitic Potential. Mar Drugs 2021; 19:md19020110. [PMID: 33673266 PMCID: PMC7917997 DOI: 10.3390/md19020110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise of infectious disease outbreaks and the progression of microbial resistance reinforce the importance of researching new biomolecules. Obtained from the hydrolysis of chitosan, chitooligosaccharides (COSs) have demonstrated several biological properties, including antimicrobial, and greater advantage over chitosan due to their higher solubility and lower viscosity. Despite the evidence of the biotechnological potential of COSs, their effects on trypanosomatids are still scarce. The objectives of this study were the enzymatic production, characterization, and in vitro evaluation of the cytotoxic, antibacterial, antifungal, and antiparasitic effects of COSs. NMR and mass spectrometry analyses indicated the presence of a mixture with 81% deacetylated COS and acetylated hexamers. COSs demonstrated no evidence of cytotoxicity upon 2 mg/mL. In addition, COSs showed interesting activity against bacteria and yeasts and a time-dependent parasitic inhibition. Scanning electron microscopy images indicated a parasite aggregation ability of COSs. Thus, the broad biological effect of COSs makes them a promising molecule for the biomedical industry.
Collapse
Affiliation(s)
- Nayara Sousa da Silva
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Nathália Kelly Araújo
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Alessandra Daniele-Silva
- Postgraduate Program in Development and Technological Innovation in Medicines, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | | | - Júlia Maria de Medeiros
- Postgraduate Program in Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Renata Mendonça Araújo
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Leandro De Santis Ferreira
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | | | - Arnóbio Antônio Silva-Junior
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, University of Nova Lisboa, 1099-085 Lisbon, Portugal
| | - Matheus de Freitas Fernandes-Pedrosa
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
- Correspondence: ; Tel.: +55-84-3342-9820
| |
Collapse
|
14
|
Barazandeh AF, Mou Z, Ikeogu N, Mejia EM, Edechi CA, Zhang WW, Alizadeh J, Hatch GM, Ghavami S, Matlashewski G, Marshall AJ, Uzonna JE. The Phosphoenolpyruvate Carboxykinase Is a Key Metabolic Enzyme and Critical Virulence Factor of Leishmania major. THE JOURNAL OF IMMUNOLOGY 2021; 206:1013-1026. [PMID: 33462138 DOI: 10.4049/jimmunol.2000517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
There is currently no effective vaccine against leishmaniasis because of the lack of sufficient knowledge about the Ags that stimulate host-protective and long-lasting T cell-mediated immunity. We previously identified Leishmania phosphoenolpyruvate carboxykinase (PEPCK, a gluconeogenic enzyme) as an immunodominant Ag that is expressed by both the insect (promastigote) and mammalian (amastigote) stages of the parasite. In this study, we investigated the role of PEPCK in metabolism, virulence, and immunopathogenicity of Leishmania major We show that targeted loss of PEPCK results in impaired proliferation of L. major in axenic culture and bone marrow-derived macrophages. Furthermore, the deficiency of PEPCK results in highly attenuated pathology in vivo. BALB/c mice infected with PEPCK-deficient parasites failed to develop any cutaneous lesions despite harboring parasites at the cutaneous site of infection. This was associated with a dramatic reduction in the frequency of cytokine (IFN-γ, IL-4, and IL-10)-producing CD4+ T cells in spleens and lymph nodes draining the infection site. Cells from mice infected with PEPCK-deficient parasites also produced significantly low levels of these cytokines into the culture supernatant following in vitro restimulation with soluble Leishmania Ag. PEPCK-deficient parasites exhibited significantly greater extracellular acidification rate, increased proton leak, and decreased ATP-coupling efficiency and oxygen consumption rates in comparison with their wild-type and addback counterparts. Taken together, these results show that PEPCK is a critical metabolic enzyme for Leishmania, and its deletion results in altered metabolic activity and attenuation of virulence.
Collapse
Affiliation(s)
- Aida Feiz Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Nnamdi Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Edgard M Mejia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0F4, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; and.,Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0F4, Canada
| | - Aaron J Marshall
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada;
| |
Collapse
|
15
|
Samaddar S, Marnin L, Butler LR, Pedra JHF. Immunometabolism in Arthropod Vectors: Redefining Interspecies Relationships. Trends Parasitol 2020; 36:807-815. [PMID: 32819827 PMCID: PMC7897511 DOI: 10.1016/j.pt.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 02/08/2023]
Abstract
Metabolism influences biochemical networks, and arthropod vectors are endowed with an immune system that affects microbial acquisition, persistence, and transmission to humans and other animals. Here, we aim to persuade the scientific community to expand their interests in immunometabolism beyond mammalian hosts and towards arthropod vectors. Immunometabolism investigates the interplay of metabolism and immunology. We provide a conceptual framework for investigators from diverse disciplines and indicate that relationships between microbes, mammalian hosts and their hematophagous arthropods may result in cost-effective (mutualism) or energetically expensive (parasitism) interactions. We argue that disparate resource allocations between species may partially explain why some microbes act as pathogens when infecting humans and behave as mutualistic or commensal organisms when colonizing arthropod vectors.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
16
|
Bodhale N, Ohms M, Ferreira C, Mesquita I, Mukherjee A, André S, Sarkar A, Estaquier J, Laskay T, Saha B, Silvestre R. Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine 2020; 147:155267. [PMID: 32917471 DOI: 10.1016/j.cyto.2020.155267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Leishmania, a protozoan parasite inflicting the complex of diseases called Leishmaniases, resides and replicates as amastigotes within mammalian macrophages. As macrophages are metabolically highly active and can generate free radicals that can destroy this parasite, Leishmania also devise strategies to modulate the host cell metabolism. However, the metabolic changes can also be influenced by the anti-leishmanial immune response mediated by cytokines. This bidirectional, dynamic and complex metabolic coupling established between Leishmania and its host is the result of a long co-evolutionary process. Due to the continuous alterations imposed by the host microenvironment, such metabolic coupling continues to be dynamically regulated. The constant pursuit and competition for nutrients in the host-Leishmania duet alter the host metabolic pathways with major consequences for its nutritional reserves, eventually affecting the phenotype and functionality of the host cell. Altered phenotype and functions of macrophages are particularly relevant to immune cells, as perturbed metabolic fluxes can crucially affect the activation, differentiation, and functions of host immune cells. All these changes can deterministically direct the outcome of an infection. Cytokines and metabolic fluxes can bidirectionally influence each other through molecular sensors and regulators to dictate the final infection outcome. Our studies along with those from others have now identified the metabolic nodes that can be targeted for therapy.
Collapse
Affiliation(s)
- Neelam Bodhale
- National Centre for Cell Science, 411007 Pune, India; Jagadis Bose National Science Talent Search (JBNSTS), Kolkata 700107 India
| | - Mareike Ohms
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM U1124, Université Paris Descartes, 75006 Paris, France
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Descartes, 75006 Paris, France; Centre de Recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Shen Q, Ray SC, Evans HM, Deepe GS, Rappleye CA. Metabolism of Gluconeogenic Substrates by an Intracellular Fungal Pathogen Circumvents Nutritional Limitations within Macrophages. mBio 2020; 11:e02712-19. [PMID: 32265333 PMCID: PMC7157778 DOI: 10.1128/mbio.02712-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Microbial pathogens exploit host nutrients to proliferate and cause disease. Intracellular pathogens, particularly those exclusively living in the phagosome such as Histoplasma capsulatum, must adapt and acquire nutrients within the nutrient-limited phagosomal environment. In this study, we investigated which host nutrients could be utilized by Histoplasma as carbon sources to proliferate within macrophages. Histoplasma yeasts can grow on hexoses and amino acids but not fatty acids as the carbon source in vitro Transcriptional analysis and metabolism profiling showed that Histoplasma yeasts downregulate glycolysis and fatty acid utilization but upregulate gluconeogenesis within macrophages. Depletion of glycolysis or fatty acid utilization pathways does not prevent Histoplasma growth within macrophages or impair virulence in vivo However, loss of function in Pck1, the enzyme catalyzing the first committed step of gluconeogenesis, impairs Histoplasma growth within macrophages and severely attenuates virulence in vivo, indicating that Histoplasma yeasts rely on catabolism of gluconeogenic substrates (e.g., amino acids) to proliferate within macrophages.IMPORTANCEHistoplasma is a primary human fungal pathogen that survives and proliferates within host immune cells, particularly within the macrophage phagosome compartment. The phagosome compartment is a nutrient-limited environment, requiring Histoplasma yeasts to be able to assimilate available carbon sources within the phagosome to meet their nutritional needs. In this study, we showed that Histoplasma yeasts do not utilize fatty acids or hexoses for growth within macrophages. Instead, Histoplasma yeasts consume gluconeogenic substrates to proliferate in macrophages. These findings reveal the phagosome composition from a nutrient standpoint and highlight essential metabolic pathways that are required for a phagosomal pathogen to proliferate in this intracellular environment.
Collapse
Affiliation(s)
- Qian Shen
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie C Ray
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chad A Rappleye
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Costa CHSD, Bichara TW, Gomes GC, Dos Santos AM, da Costa KS, Lima AHLE, Alves CN, Lameira J. Unraveling the conformational dynamics of glycerol 3-phosphate dehydrogenase, a nicotinamide adenine dinucleotide-dependent enzyme of Leishmania mexicana. J Biomol Struct Dyn 2020; 39:2044-2055. [PMID: 32174264 DOI: 10.1080/07391102.2020.1742206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allosteric changes modulate the enzymatic activity, leading to activation or inhibition of the molecular target. Understanding the induced fit accommodation mechanism of a ligand in its lowest-free energy state and the subsequent conformational changes induced in the protein are important questions for drug design. In the present study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were applied to analyze the glycerol-3-phosphate dehydrogenase of Leishmania mexicana (LmGPDH) conformational changes induced by its cofactor and substrate binding. GPDH is a nicotinamide adenine dinucleotide (NAD)-dependent enzyme, which has been reported as an interesting target for drug discovery and development against leishmaniasis. Despite its relevance for glycolysis and pentose phosphate pathways, the structural flexibility and conformational motions of LmGPDH in complex with NADH and dihydroxyacetone phosphate (DHAP) remain unexplored. Here, we analyzed the conformational dynamics of the enzyme-NADH complex (cofactor), and the enzyme-NADH-DHAP complex (adduct), mapped the hydrogen-bond interactions for the complexes and pointed some structural determinants of the enzyme that emerge from these contacts to NADH and DHAP. Finally, we proposed a consistent mechanism for the conformational changes on the first step of the reversible redox conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, indicating key residues and interactions that could be further explored in drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
19
|
Lander N, Cruz-Bustos T, Docampo R. A CRISPR/Cas9-riboswitch-Based Method for Downregulation of Gene Expression in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:68. [PMID: 32175288 PMCID: PMC7056841 DOI: 10.3389/fcimb.2020.00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Few genetic tools were available to work with Trypanosoma cruzi until the recent introduction of the CRISPR/Cas9 technique for gene knockout, gene knock-in, gene complementation, and endogenous gene tagging. Riboswitches are naturally occurring self-cleaving RNAs (ribozymes) that can be ligand-activated. Results from our laboratory recently demonstrated the usefulness of the glmS ribozyme from Bacillus subtilis, which has been shown to control reporter gene expression in response to exogenous glucosamine, for gene silencing in Trypanosoma brucei. In this work we used the CRISPR/Cas9 system for endogenously tagging T. cruzi glycoprotein 72 (TcGP72) and vacuolar proton pyrophosphatase (TcVP1) with the active (glmS) or inactive (M9) ribozyme. Gene tagging was confirmed by PCR and protein downregulation was verified by western blot analyses. Further phenotypic characterization was performed by immunofluorescence analysis and quantification of growth in vitro. Our results indicate that the method was successful in silencing the expression of both genes without the need of glucosamine in the medium, suggesting that T. cruzi produces enough levels of endogenous glucosamine 6-phosphate to stimulate the glmS ribozyme activity under normal growth conditions. This method could be useful to obtain knockdowns of essential genes in T. cruzi and to validate potential drug targets in this parasite.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Teresa Cruz-Bustos
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States.,Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Mule SN, Saad JS, Fernandes LR, Stolf BS, Cortez M, Palmisano G. Protein glycosylation inLeishmaniaspp. Mol Omics 2020; 16:407-424. [DOI: 10.1039/d0mo00043d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation is a co- and post-translational modification that, inLeishmaniaparasites, plays key roles in vector–parasite–vertebrate host interaction.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Joyce Silva Saad
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Livia Rosa Fernandes
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Beatriz S. Stolf
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Mauro Cortez
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| |
Collapse
|
21
|
Min K, Naseem S, Konopka JB. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J Fungi (Basel) 2019; 6:jof6010008. [PMID: 31878148 PMCID: PMC7151181 DOI: 10.3390/jof6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is being increasingly recognized for its ability to stimulate cell signaling. This amino sugar is best known as a component of cell wall peptidoglycan in bacteria, cell wall chitin in fungi and parasites, exoskeletons of arthropods, and the extracellular matrix of animal cells. In addition to these structural roles, GlcNAc is now known to stimulate morphological and stress responses in a wide range of organisms. In fungi, the model organisms Saccharomyces cerevisiae and Schizosaccharomyces pombe lack the ability to respond to GlcNAc or catabolize it, so studies with the human pathogen Candida albicans have been providing new insights into the ability of GlcNAc to stimulate cellular responses. GlcNAc potently induces C. albicans to transition from budding to filamentous hyphal growth. It also promotes an epigenetic switch from White to Opaque cells, which differ in morphology, metabolism, and virulence properties. These studies have led to new discoveries, such as the identification of the first eukaryotic GlcNAc transporter. Other results have shown that GlcNAc can induce signaling in C. albicans in two ways. One is to act as a signaling molecule independent of its catabolism, and the other is that its catabolism can cause the alkalinization of the extracellular environment, which provides an additional stimulus to form hyphae. GlcNAc also induces the expression of virulence genes in the C. albicans, indicating it can influence pathogenesis. Therefore, this review will describe the recent advances in understanding the role of GlcNAc signaling pathways in regulating C. albicans morphogenesis and virulence.
Collapse
|
22
|
A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host Microbe 2019; 26:385-399.e9. [DOI: 10.1016/j.chom.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
|
23
|
Wang J, Ji X, Liu J, Zhang X. Serine/Threonine Protein Kinase STK16. Int J Mol Sci 2019; 20:ijms20071760. [PMID: 30974739 PMCID: PMC6480182 DOI: 10.3390/ijms20071760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
STK16 (Ser/Thr kinase 16, also known as Krct/PKL12/MPSK1/TSF-1) is a myristoylated and palmitoylated Ser/Thr protein kinase that is ubiquitously expressed and conserved among all eukaryotes. STK16 is distantly related to the other kinases and belongs to the NAK kinase family that has an atypical activation loop architecture. As a membrane-associated protein that is primarily localized to the Golgi, STK16 has been shown to participate in the TGF-β signaling pathway, TGN protein secretion and sorting, as well as cell cycle and Golgi assembly regulation. This review aims to provide a comprehensive summary of the progress made in recent research about STK16, ranging from its distribution, molecular characterization, post-translational modification (fatty acylation and phosphorylation), interactors (GlcNAcK/DRG1/MAL2/Actin/WDR1), and related functions. As a relatively underexplored kinase, more studies are encouraged to unravel its regulation mechanisms and cellular functions.
Collapse
Affiliation(s)
- Junjun Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
24
|
Mukherjee S, Basu S, Zhang K. Farnesyl pyrophosphate synthase is essential for the promastigote and amastigote stages in Leishmania major. Mol Biochem Parasitol 2019; 230:8-15. [PMID: 30926449 DOI: 10.1016/j.molbiopara.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
Isoprenoid synthesis provides a diverse class of biomolecules including sterols, dolichols, ubiquinones and prenyl groups. The enzyme farnesyl pyrophosphate synthase (FPPS) catalyzes the formation of farnesyl pyrophosphate, a key intermediate for the biosynthesis of all isoprenoids. In Leishmania, FPPS is considered the main target of nitrogen containing bisphosphonates, yet the essentiality of this enzyme remains untested. Using a facilitated knockout approach, we carried out the genetic analysis of FPPS in Leishmania major. Our data indicated that chromosomal null mutants for FPPS could only be generated in presence of an episomally expressed FPPS. Long-term retention of the episome by the chromosomal FPPS-null mutants in culture and in infected BALB/c mice suggests that FPPS is indispensable. In addition, applying negative selection pressure failed to induce the loss of ectopic FPPS in the chromosomal FPPS-null mutants, although it led to significant growth delay in culture and in mice. Together, our findings have confirmed the essentiality of FPPS in both promastigotes and amastigotes in L. major and thus validate its potential as a drug target for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
25
|
Abstract
Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana. However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals. Glucose transporters are important for viability and infectivity of the disease-causing amastigote stages of Leishmania mexicana. The Δgt1-3 null mutant, in which the 3 clustered glucose transporter genes, GT1, GT2, and GT3, have been deleted, is strongly impaired in growth inside macrophages in vitro. We have now demonstrated that this null mutant is also impaired in virulence in the BALB/c murine model of infection and forms lesions considerably more slowly than wild-type parasites. Previously, we established that amplification of the PIFTC3 gene, which encodes an intraflagellar transport protein, both facilitated and accompanied the isolation of the original Δgt1-3 null mutant generated in extracellular insect-stage promastigotes. We have now isolated Δgt1-3 null mutants without coamplification of PIFTC3. These amplicon-negative null mutants are further impaired in growth as promastigotes, compared to the previously described null mutants containing the PIFTC3 amplification. In contrast, the GT3 glucose transporter plays an especially important role in promoting amastigote viability. A line that expresses only the single glucose transporter GT3 grows as well inside macrophages and induces lesions in animals as robustly as do wild-type amastigotes, but lines expressing only the GT1 or GT2 transporters replicate poorly in macrophages. Strikingly, GT3 is restricted largely to the endoplasmic reticulum in intracellular amastigotes. This observation raises the possibility that GT3 may play an important role as an intracellular glucose transporter in the infectious stage of the parasite life cycle. IMPORTANCE Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana. However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals.
Collapse
|
26
|
Wang X, Hybiske K, Stephens RS. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity. Pathog Dis 2018; 75:4411801. [PMID: 29040458 DOI: 10.1093/femspd/ftx108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
Chlamydia are gram-negative obligate intracellular bacteria that replicate within a discrete cellular vacuole, called an inclusion. Although it is known that Chlamydia require essential nutrients from host cells to support their intracellular growth, the molecular mechanisms for acquiring these macromolecules remain uncharacterized. In the present study, it was found that the expression of mammalian cell glucose transporter proteins 1 (GLUT1) and glucose transporter proteins 3 (GLUT3) were up-regulated during chlamydial infection. Up-regulation was dependent on bacterial protein synthesis and Chlamydia-induced MAPK kinase activation. GLUT1, but not GLUT3, was observed in close proximity to the inclusion membrane throughout the chlamydial developmental cycle. The proximity of GLUT1 to the inclusion was dependent on a brefeldin A-sensitive pathway. Knockdown of GLUT1 and GLUT3 with specific siRNA significantly impaired chlamydial development and infectivity. It was discovered that the GLUT1 protein was stabilized during infection by inhibition of host-dependent ubiquitination of GLUT1, and this effect was associated with the chlamydial deubiquitinase effector protein CT868. This report demonstrates that Chlamydia exploits host-derived transporter proteins altering their expression, turnover and localization. Consequently, host cell transporter proteins are manipulated during infection as a transport system to fulfill the carbon source requirements for Chlamydia.
Collapse
Affiliation(s)
- Xiaogang Wang
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, 51 Koshland Hall, CA 94720, USA.,Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA
| | - Richard S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, 51 Koshland Hall, CA 94720, USA
| |
Collapse
|
27
|
Taira T, Gushiken C, Sugata K, Ohnuma T, Fukamizo T. Unique GH18 chitinase from Euglena gracilis: full-length cDNA cloning and characterization of its catalytic domain. Biosci Biotechnol Biochem 2018; 82:1090-1100. [PMID: 29621939 DOI: 10.1080/09168451.2018.1459463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A cDNA of putative chitinase from Euglena gracilis, designated EgChiA, encoded 960 amino acid residues, which is arranged from N-terminus in the order of signal peptide, glycoside hydrolase family 18 (GH18) domain, carbohydrate binding module family 18 (CBM18) domain, GH18 domain, CBM18 domain, and transmembrane helix. It is likely that EgChiA is anchored on the cell surface. The recombinant second GH18 domain of EgChiA, designated as CatD2, displayed optimal catalytic activity at pH 3.0 and 50 °C. The lower the polymerization degree of the chitin oligosaccharides [(GlcNAc)4-6] used as the substrates, the higher was the rate of degradation by CatD2. CatD2 degraded chitin nanofibers as an insoluble substrate, and it produced only (GlcNAc)2 and GlcNAc. Therefore, we speculated that EgChiA localizes to the cell surface of E. gracilis and is involved in degradation of chitin polymers into (GlcNAc)2 or GlcNAc, which are easily taken up by the cells.
Collapse
Affiliation(s)
- Toki Taira
- a Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Chika Gushiken
- a Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Kobeni Sugata
- a Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Takayuki Ohnuma
- b Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Tamo Fukamizo
- b Department of Advanced Bioscience , Kinki University , Nara , Japan
| |
Collapse
|
28
|
Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana. PLoS Pathog 2018; 14:e1006953. [PMID: 29554142 PMCID: PMC5882173 DOI: 10.1371/journal.ppat.1006953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/03/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not virulent in mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both. Leishmania parasites endanger over 1 billion people worldwide, infecting 300,000 people and causing 20,000 deaths annually. In this study, we scrutinized metabolism in Leishmania mexicana after deletion of the gene encoding transketolase (TKT), an enzyme involved in sugar metabolism via the pentose phosphate pathway which plays key roles in creating ribose 5-phosphate for nucleotide synthesis and also defence against oxidative stress. The insect stage of the parasite, grown in culture medium, did not suffer from any obvious growth defect after the gene was deleted. However, its metabolism changed dramatically, with metabolomics indicating profound changes to flux through the pentose phosphate pathway: decreased glucose consumption, and generally enhanced efficiency in using metabolic substrates with reduced secretion of partially oxidised end products of metabolism. This ‘stringent’ metabolism is reminiscent of the mammalian stage parasites. The cells were also more sensitive to oxidative stress inducing agents and leishmanicidal drugs. Crucially, mice inoculated with the TKT knock-out parasites did not develop an infection pointing to the enzyme playing a key role in allowing the parasites to remain viable in the host, indicating that TKT may be considered a useful target for development of new drugs against leishmaniasis.
Collapse
|
29
|
Saunders EC, Naderer T, Chambers J, Landfear SM, McConville MJ. Leishmania mexicana can utilize amino acids as major carbon sources in macrophages but not in animal models. Mol Microbiol 2018; 108:143-158. [PMID: 29411460 DOI: 10.1111/mmi.13923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1-3 mutant which lacks the major glucose transporters LmxGT1-3. We identified a novel suppressor line (Δlmxgt1-3s2 ) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1-3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non-essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia
| | - Jenny Chambers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
The role of membrane transporters in Leishmania virulence. Emerg Top Life Sci 2017; 1:601-611. [DOI: 10.1042/etls20170119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 11/17/2022]
Abstract
Leishmania are parasitic protozoa which infect humans and cause severe morbidity and mortality. Leishmania parasitise as extracellular promastigotes in the insect vector and as intracellular amastigotes in the mammalian host. Cycling between hosts involves implementation of stringent and co-ordinated responses to shifting environmental conditions. One of the key dynamic aspects of Leishmania biology is substrate acquisition and metabolism. Genomic analyses have revealed that Leishmania encode many putative membrane transporters, many of which are differentially expressed during the parasite life cycle. Only a small fraction of these transporters, however, have been functionally characterised. Currently, most information is available about nutrient transporters, mainly involved in carbohydrate, amino acid, nucleobase and nucleoside, cofactor, and ion acquisition. Several have apparent roles in Leishmania virulence and will be discussed in this perspective.
Collapse
|
31
|
Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum. Sci Rep 2017; 7:10262. [PMID: 28860532 PMCID: PMC5579285 DOI: 10.1038/s41598-017-10743-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Human macrophage phagolysosome and sandfly midgut provide antagonistic ecological niches for Leishmania parasites to survive and proliferate. Parasites optimize their metabolism to utilize the available inadequate resources by adapting to those environments. Lately, a number of metabolomics studies have revived the interest to understand metabolic strategies utilized by the Leishmania parasite for optimal survival within its hosts. For the first time, we propose a reconstructed genome-scale metabolic model for Leishmania infantum JPCM5, the analyses of which not only captures observations reported by metabolomics studies in other Leishmania species but also divulges novel features of the L. infantum metabolome. Our results indicate that Leishmania metabolism is organized in such a way that the parasite can select appropriate alternatives to compensate for limited external substrates. A dynamic non-essential amino acid motif exists within the network that promotes a restricted redistribution of resources to yield required essential metabolites. Further, subcellular compartments regulate this metabolic re-routing by reinforcing the physiological coupling of specific reactions. This unique metabolic organization is robust against accidental errors and provides a wide array of choices for the parasite to achieve optimal survival.
Collapse
|
32
|
|
33
|
Saini S, Kumar Ghosh A, Singh R, Das S, Abhishek K, Kumar A, Verma S, Mandal A, Hasan Sardar A, Purkait B, Kumar A, Kumar Sinha K, Das P. Glucose deprivation induced upregulation of phosphoenolpyruvate carboxykinase modulates virulence in Leishmania donovani. Mol Microbiol 2016; 102:1020-1042. [PMID: 27664030 DOI: 10.1111/mmi.13534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/20/2023]
Abstract
Various physiological stimuli trigger the conversion of noninfective Leishmania donovani promastigotes to the infective form. Here, we present the first evidence of the effect of glucose starvation, on virulence and survival of these parasites. Glucose starvation resulted in a decrease in metabolically active parasites and their proliferation. However, this was reversed by supplementation of gluconeogenic amino acids. Glucose starvation induced metacyclogenesis and enhanced virulence through protein kinase A regulatory subunit (LdPKAR1) mediated autophagy. Glucose starvation driven oxidative stress upregulated the antioxidant machinery, culminating in increased infectivity and greater parasitic load in primary macrophages. Interestingly, phosphoenolpyruvate carboxykinase (LdPEPCK), a gluconeogenic enzyme, exhibited the highest activity under glucose starvation to regulate growth of L. donovani by alternatively utilising amino acids. Deletion of LdPEPCK (Δpepck) decreased virulent traits and parasitic load in primary macrophages but increased autophagosome formation in the mutant parasites. Furthermore, Δpepck parasites failed to activate the Pentose Phosphate Pathway shunt, abrogating NADPH/NADP+ homoeostasis, conferring increased susceptibility towards oxidants following glucose starvation. In conclusion, this study showed that L. donovani undertakes metabolic rearrangements via gluconeogenesis under glucose starvation for acquiring virulence and its survival in the hostile environment.
Collapse
Affiliation(s)
- Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.,Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ayan Kumar Ghosh
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ruby Singh
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Abul Hasan Sardar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Bidyut Purkait
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ashish Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Kislay Kumar Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Pradeep Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.,Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| |
Collapse
|
34
|
Using metabolomics to dissect host–parasite interactions. Curr Opin Microbiol 2016; 32:59-65. [DOI: 10.1016/j.mib.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
35
|
Alcolea PJ, Alonso A, Domínguez M, Parro V, Jiménez M, Molina R, Larraga V. Influence of the Microenvironment in the Transcriptome of Leishmania infantum Promastigotes: Sand Fly versus Culture. PLoS Negl Trop Dis 2016; 10:e0004693. [PMID: 27163123 PMCID: PMC4862625 DOI: 10.1371/journal.pntd.0004693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation. The protozoan parasite Leishmania infantum causes visceral leishmaniasis in humans and is responsible for a recent outbreak reported in central Spain. Domestic dogs and wild canids are the main reservoirs. The life cycle of the parasite involves two stages and two hosts. The motile promastigote stage differentiates within the gut of the sand fly vector host and develops into non-motile amastigotes within phagocytes of the mammalian host. Promastigotes are routinely cultured in liquid media because it is assumed that they mimic the conditions within the gut of the insect. Therefore, the culture model is used in most studies about the biology of the parasite, pathogenesis and development of vaccines and new compounds for treatment. Isolating promastigotes from the natural microenvironment (i.e. the vector host) is desirable but technically challenging. We were able to perform a high-throughput analysis of gene expression thanks to mRNA amplification. The over-expressed genes detected may influence life cycle progression depending on the promastigote microenvironment (i.e. culture or vector host). Upcoming studies based on these results may reveal new therapeutic targets or vaccine candidates. Our results suggest that evaluating the influence of cultures in experimentation is convenient.
Collapse
Affiliation(s)
- Pedro J. Alcolea
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| | - Ana Alonso
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Víctor Parro
- Laboratorio de Ecología Molecular, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial “Esteban Terradas”—Consejo Superior de Investigaciones Científicas, Torrejón de Ardoz, Madrid, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
36
|
Kumar A, Ghosh S, Bhatt DN, Narula A, Datta A. Magnaporthe oryzaeaminosugar metabolism is essential for successful host colonization. Environ Microbiol 2016; 18:1063-77. [DOI: 10.1111/1462-2920.13215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/03/2016] [Accepted: 01/07/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Anil Kumar
- National Institute of Plant Genome Research; New Delhi 110067 India
| | - Sumit Ghosh
- National Institute of Plant Genome Research; New Delhi 110067 India
| | | | - Alka Narula
- National Institute of Plant Genome Research; New Delhi 110067 India
| | - Asis Datta
- National Institute of Plant Genome Research; New Delhi 110067 India
| |
Collapse
|
37
|
Liévin-Le Moal V, Loiseau PM. Leishmania hijacking of the macrophage intracellular compartments. FEBS J 2015; 283:598-607. [PMID: 26588037 DOI: 10.1111/febs.13601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| | - Philippe M Loiseau
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| |
Collapse
|
38
|
Cova M, Rodrigues JA, Smith TK, Izquierdo L. Sugar activation and glycosylation in Plasmodium. Malar J 2015; 14:427. [PMID: 26520586 PMCID: PMC4628283 DOI: 10.1186/s12936-015-0949-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugates are important mediators of host-pathogen interactions and are usually very abundant in the surface of many protozoan parasites. However, in the particular case of Plasmodium species, previous works show that glycosylphosphatidylinositol anchor modifications, and to an unknown extent, a severely truncated N-glycosylation are the only glycosylation processes taking place in the parasite. Nevertheless, a detailed analysis of the parasite genome and the recent identification of the sugar nucleotide precursors biosynthesized by Plasmodium falciparum support a picture in which several overlooked, albeit not very prominent glycosylations may be occurring during the parasite life cycle. In this work,
the authors review recent developments in the characterization of the biosynthesis of glycosylation precursors in the parasite, focusing on the outline of the possible fates of these precursors.
Collapse
Affiliation(s)
- Marta Cova
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
39
|
McConville MJ, Saunders EC, Kloehn J, Dagley MJ. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine? F1000Res 2015; 4:938. [PMID: 26594352 PMCID: PMC4648189 DOI: 10.12688/f1000research.6724.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus
Leishmania, proliferate long-term within mature lysosome compartments. How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that
Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in
Leishmania.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| | - Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| | - Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| | - Michael J Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| |
Collapse
|
40
|
Naderer T, Heng J, Saunders EC, Kloehn J, Rupasinghe TW, Brown TJ, McConville MJ. Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages. PLoS Pathog 2015; 11:e1005136. [PMID: 26334531 PMCID: PMC4559419 DOI: 10.1371/journal.ppat.1005136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites.
Collapse
Affiliation(s)
- Thomas Naderer
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Joanne Heng
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor C. Saunders
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Joachim Kloehn
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Tracey J. Brown
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Malcolm J. McConville
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Tfp1 is required for ion homeostasis, fluconazole resistance and N-Acetylglucosamine utilization in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2731-44. [PMID: 26255859 DOI: 10.1016/j.bbamcr.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is crucial for the maintenance of ion homeostasis. Dysregulation of ion homeostasis affects various aspects of cellular processes. However, the importance of V-ATPase in Candida albicans is not totally clear. In this study, we demonstrated the essential roles of V-ATPase through Tfp1, a putative V-ATPase subunit. Deletion of TFP1 led to generation of an iron starvation signal and reduced total iron content, which was associated with mislocalization of Fet34p that was finally due to disorders in copper homeostasis. Furthermore, the tfp1∆/∆ mutant exhibited weaker growth and lower aconitase activity on nonfermentable carbon sources, and iron or copper addition partially rescued the growth defect. In addition, the tfp1∆/∆ mutant also showed elevated cytosolic calcium levels in normal or low calcium medium that were relevant to calcium release from vacuole. Kinetics of cytosolic calcium response to an alkaline pulse and VCX1 (VCX1 encodes a putative vacuolar Ca2+/H+ exchanger) overexpression assays indicated that the cytosolic calcium status was in relation to Vcx1 activity. Spot assay and concentration-kill curve demonstrated that the tfp1∆/∆ mutant was hypersensitive to fluconazole, which was attributed to reduced ergosterol biosynthesis and CDR1 efflux pump activity, and iron/calcium dysregulation. Interestingly, carbon source utilization tests found the tfp1∆/∆ mutant was defective for growth on N-Acetylglucosamine (GlcNAc) plate, which was associated with ATP depletion due to the decreased ability to catabolize GlcNAc. Taken together, our study gives new insights into functions of Tfp1, and provides the potential to better exploit V-ATPase as an antifungal target.
Collapse
|
42
|
|
43
|
Ruhela D, Kamthan M, Saha P, Majumdar SS, Datta K, Abdin MZ, Datta A. In vivo role of Candida albicans β-hexosaminidase (HEX1) in carbon scavenging. Microbiologyopen 2015; 4:730-42. [PMID: 26177944 PMCID: PMC4618606 DOI: 10.1002/mbo3.274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022] Open
Abstract
The capability to utilize of N-acetylglucosamine (GlcNAc) as a carbon source is an important virulence attribute of Candida albicans. But there is a lack of information about the in vivo source of GlcNAc for the pathogen within the host environment. Here, we have characterized the GlcNAc-inducible β-hexosaminidase gene (HEX1) of C. albicans showing a role in carbon scavenging. In contrast to earlier studies, we have reported HEX1 to be a nonessential gene as shown by homozygous trisomy test. Virulence study in the systemic mouse murine model showed that Δhex1 strain is significantly less virulent in comparison to the wild-type strain. Moreover, Δhex1 strain also showed a higher susceptibility to peritoneal macrophages. In an attempt to determine possible substrates of Hex1, hyaluronic acid (HA) was treated with purified Hex1 enzyme. A significant release of GlcNAc was observed by gas chromatography-mass spectrometry analysis analysis suggesting HA degradation. Interestingly, immunohistochemistry analysis showed significant accumulation of HA in the mice kidney infected with the wild-type strain of C. albicans. Northern blot analysis showed that C. albicans HEX1 is expressed during mice renal colonization. Thus, C. albicans can obtain GlcNAc during organ colonization by secreting Hex1 via degradation of host HA.
Collapse
Affiliation(s)
- Deepa Ruhela
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Paramita Saha
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Kasturi Datta
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malik Zainul Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard University, New Delhi, 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
44
|
Rajasekaran R, Chen YPP. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov Today 2015; 20:958-68. [PMID: 25936844 DOI: 10.1016/j.drudis.2015.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is the most prevalent pathogenic disease in many countries around the world, but there are few drugs available to treat it. Most antileishmanial drugs available are highly toxic, have resistance issues or require hospitalization for their use; therefore, they are not suitable for use in most of the affected countries. Over the past decade, the completion of the genomes of many human pathogens, including that of Leishmania spp., has opened new doors for target identification and validation. Here, we focus on the potential drug targets that can be used for the treatment of leishmaniasis and bring to light how recent technological advances, such as structure-based drug design, structural genomics, and molecular dynamics (MD), can be used to our advantage to develop potent and affordable antileishmanial drugs.
Collapse
Affiliation(s)
| | - Yi-Ping Phoebe Chen
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Kloehn J, Saunders EC, O’Callaghan S, Dagley MJ, McConville MJ. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog 2015; 11:e1004683. [PMID: 25714830 PMCID: PMC4340956 DOI: 10.1371/journal.ppat.1004683] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/14/2015] [Indexed: 12/29/2022] Open
Abstract
Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days), but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ. Microbial pathogens can adapt to changing conditions in their hosts by switching between different growth and physiological states. However, current methods for measuring microbial physiology in vivo are limited, hampering detailed dissection of host-pathogen interactions. Here we have used heavy water labeling to measure the growth rate and physiological state of Leishmania parasites in murine lesions. Based on the rate of in situ labeling of parasite DNA, RNA, protein, and lipids, we show that the growth rate of intracellular parasite stages is very slow, and that these stages enter a semi-quiescent state characterized by very low rates of RNA, protein, and membrane turnover. These changes in parasite growth and physiology are more pronounced than in in vitro differentiated parasites, suggesting that they are induced in part by the lesion environment. Despite their slow growth, the parasite burden in these lesions progressively increases as a result of low rates of parasite death and host cell turnover. We propose that these changes in Leishmania growth and physiology contribute to the development of a relatively benign tissue environment that is permissive for long term parasite expansion. This approach is suitable for studying the dynamics of other host-pathogen systems.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor C. Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Sean O’Callaghan
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
46
|
Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 2014; 10:e1003888. [PMID: 24465208 PMCID: PMC3900632 DOI: 10.1371/journal.ppat.1003888] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/02/2013] [Indexed: 01/16/2023] Open
Abstract
Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using 13C-stable isotope resolved metabolomics and 2H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate) and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA) cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism. Leishmania are sandfly-transmitted parasitic protozoa that cause a spectrum of important diseases in humans. While the core metabolism of the readily cultivated insect (promastigote) stage has been studied, much less is known about the metabolism of the obligate intracellular amastigote stage, which proliferates within the mature lysosome of mammalian macrophages and is the target of anti-parasite therapies. We have used 13C-tracing experiments to delineate the major pathways of carbon metabolism in different promastigote stages, as well as amastigote stages generated in culture and isolated from animal lesions. Both dividing and non-dividing promastigotes exhibited high metabolic activity, with excessive rates of glucose and amino acid consumption and secretion of metabolic end-products. In contrast, both amastigote stages exhibited a stringent metabolic phenotype, characterized by low levels of glucose and amino acid uptake and catabolism and increased catabolism of fatty acids. This phenotype was not induced by nutrient limitation, but is hard-wired into amastigote differentiation. This response may lead to increased dependence on hexose catabolism for anabolic pathways, as chemical inhibition of de novo glutamate and glutamine biosynthesis inhibited parasite growth in macrophages. This study highlights key aspects of amastigote metabolism that underpin their capacity to survive in macrophage phagolysosomes.
Collapse
|
47
|
Gilmore SA, Naseem S, Konopka JB, Sil A. N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. PLoS Genet 2013; 9:e1003799. [PMID: 24068964 PMCID: PMC3778022 DOI: 10.1371/journal.pgen.1003799] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/30/2013] [Indexed: 01/24/2023] Open
Abstract
The monosaccharide N-acetylglucosamine (GlcNAc) is a major component of microbial cell walls and is ubiquitous in the environment. GlcNAc stimulates developmental pathways in the fungal pathogen Candida albicans, which is a commensal organism that colonizes the mammalian gut and causes disease in the setting of host immunodeficiency. Here we investigate GlcNAc signaling in thermally dimorphic human fungal pathogens, a group of fungi that are highly evolutionarily diverged from C. albicans and cause disease even in healthy individuals. These soil organisms grow as polarized, multicellular hyphal filaments that transition into a unicellular, pathogenic yeast form when inhaled by a human host. Temperature is the primary environmental cue that promotes reversible cellular differentiation into either yeast or filaments; however, a shift to a lower temperature in vitro induces filamentous growth in an inefficient and asynchronous manner. We found GlcNAc to be a potent and specific inducer of the yeast-to-filament transition in two thermally dimorphic fungi, Histoplasma capsulatum and Blastomyces dermatitidis. In addition to increasing the rate of filamentous growth, micromolar concentrations of GlcNAc induced a robust morphological transition of H. capsulatum after temperature shift that was independent of GlcNAc catabolism, indicating that fungal cells sense GlcNAc to promote filamentation. Whole-genome expression profiling to identify candidate genes involved in establishing the filamentous growth program uncovered two genes encoding GlcNAc transporters, NGT1 and NGT2, that were necessary for H. capsulatum cells to robustly filament in response to GlcNAc. Unexpectedly, NGT1 and NGT2 were important for efficient H. capsulatum yeast-to-filament conversion in standard glucose medium, suggesting that Ngt1 and Ngt2 monitor endogenous levels of GlcNAc to control multicellular filamentous growth in response to temperature. Overall, our work indicates that GlcNAc functions as a highly conserved cue of morphogenesis in fungi, which further enhances the significance of this ubiquitous sugar in cellular signaling in eukaryotes.
Collapse
Affiliation(s)
- Sarah A. Gilmore
- Department of Microbiology and Immunology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Feng X, Rodriguez-Contreras D, Polley T, Lye LF, Scott D, Burchmore RJS, Beverley SM, Landfear SM. 'Transient' genetic suppression facilitates generation of hexose transporter null mutants in Leishmania mexicana. Mol Microbiol 2012; 87:412-29. [PMID: 23170981 DOI: 10.1111/mmi.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2 and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in wild type parasites. These data suggested a model where this 29-40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed open reading frames covering the 29-40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Role of cytosolic glyceraldehyde-3-phosphate dehydrogenase in visceral organ infection by Leishmania donovani. EUKARYOTIC CELL 2012; 12:70-7. [PMID: 23125352 DOI: 10.1128/ec.00263-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The initial 7 steps of the glycolytic pathway from glucose to 3-phosphoglycerate are localized in the glycosomes in Leishmania, including step 6, catalyzed by the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In L. donovani and L. mexicana, there exists a second GAPDH enzyme present in the cytosol that is absent in L. braziliensis and that has become a pseudogene in L. major. To investigate the role of the cytosolic GAPDH (cGAPDH), an L. donovani cGAPDH-null mutant was generated, and conversely, the functional L. donovani cGAPDH was introduced into L. major and the resulting engineered parasites were characterized. The L. donovani cGAPDH-null mutant was able to proliferate at the same rate as the wild-type parasite in glucose-deficient medium. However, in the presence of glucose, the L. donovani cGAPDH-null mutant consumed less glucose and proliferated more slowly than the wild-type parasite and displayed reduced infectivity in visceral organs of experimentally infected mice. This demonstrates that cGAPDH is functional in L. donovani and is required for survival in visceral organs. Restoration of cGAPDH activity in L. major, in contrast, had an adverse effect on L. major proliferation in glucose-containing medium, providing a possible explanation of why it has evolved into a pseudogene in L. major. This study indicates that there is a difference in glucose metabolism between L. donovani and L. major, and this may represent an important factor in the ability of L. donovani to cause visceral disease.
Collapse
|
50
|
Abstract
SUMMARYLeishmaniaare obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlyingLeishmaniadevelopment inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding ofLeishmaniapromastigote to amastigote differentiation, highlighting the data generated by proteomics.
Collapse
|