1
|
Kroh K, te Marvelde MR, van Greuningen LW, Laksono BM, Koopmans MPG, Kuiken T, GeurtsvanKessel CH, Embregts CWE. A comparative analysis of the dendritic cell response upon exposure to different rabies virus strains. PLoS Negl Trop Dis 2025; 19:e0012994. [PMID: 40208887 PMCID: PMC12017532 DOI: 10.1371/journal.pntd.0012994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/23/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
Rabies is a viral zoonotic disease that causes over 60,000 human deaths annually worldwide. Natural infections lack a virus-specific immune response, leading to a near 100% fatality rate unless immediately treated. Rabies virus (RABV) is typically transmitted through bites from rabid dogs or other carnivores to humans and may initially interact with innate immune cells such as dendritic cells at the site of infection. This study investigates the in vitro response of human monocyte-derived dendritic cells (moDCs) exposed to two pathogenic RABV strains-silver-haired bat rabies virus (SHBRV) and dog-related rabies virus (dogRV)-and an attenuated vaccine strain (SAD P5). MoDCs were susceptible only to high doses of SHBRV and SAD P5, resulting in a more mature and migratory phenotype within the infected moDC populations. No infection was observed in moDCs exposed to dogRV. In co-culture with T cells, the presence of RABV-exposed moDCs, regardless of the strain, did not enhance T cell activation. Additionally, RABV exposure did not hinder LPS-induced moDC maturation; instead, high doses of SHBRV and SAD P5 even boosted activation levels. Overall, the findings suggest varied capabilities of RABV strains to infect and activate moDCs in vitro. However, exposure to any RABV strain did not provoke a clear antiviral state or suppression of moDC responsiveness. This lack of activation may contribute to the absence of an effective adaptive immune response in natural RABV infections.
Collapse
Affiliation(s)
- Keshia Kroh
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Brigitta M. Laksono
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
2
|
Winkler CW, Evans AB, Carmody AB, Lack JB, Woods TA, Peterson KE. C-C motif chemokine receptor 2 and 7 synergistically control inflammatory monocyte recruitment but the infecting virus dictates monocyte function in the brain. Commun Biol 2024; 7:494. [PMID: 38658802 PMCID: PMC11043336 DOI: 10.1038/s42003-024-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- Mice, Knockout
- Brain/virology
- Brain/metabolism
- Brain/immunology
- Herpesvirus 1, Human/physiology
- La Crosse virus/genetics
- La Crosse virus/physiology
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Encephalitis, California/virology
- Encephalitis, California/genetics
- Encephalitis, California/metabolism
- Encephalitis, California/immunology
- Mice, Inbred C57BL
- Inflammation/metabolism
- Inflammation/virology
- Female
- Male
Collapse
Affiliation(s)
- Clayton W Winkler
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Alyssa B Evans
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyson A Woods
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
3
|
Wolff CM, Singer D, Schmidt A, Bekeschus S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro- and nanoplastic of different types and sizes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132194. [PMID: 37572607 DOI: 10.1016/j.jhazmat.2023.132194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Environmental pollution by microplastics (MPs) is a growing concern regarding their impact on aquatic and terrestrial systems and human health. Typical exposure routes of MPs are dermal contact, digestion, and inhalation. Recent in vitro and in vivo studies observed alterations in immunity after MPs exposure, but systemic studies using primary human immune cells are scarce. In our investigation, we addressed the effect of polystyrene (PS) and poly methyl methacrylate (PMMA) in three different sizes (50-1100 nm) as well as amino-modified PS (PS-NH2; 50 nm) on cells of the adaptive and innate immune system. T-cells isolated from human peripheral blood mononuclear cells (PBMCs) were least affected regarding the cytotoxicity but displayed increased activation marker expression after 72 h, and strongly modulated cytokine secretion patterns. Conversely, phagocytic dendritic cells and macrophages derived from isolated monocytes were highly sensitive to pristine MPs. Their marker expression suggested a downregulation of the inflammatory phenotypes indicative of M2 macrophage induction after MPs exposure for 24 h. Our results showed that even pristine MPs affected immune cell function and inflammatory phenotype dependent on MPs polymers, size, and immune cell type.
Collapse
Affiliation(s)
- Christina M Wolff
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
4
|
Yang K, Liu J, Gong Y, Li Y, Liu Q. Bioinformatics and systems biology approaches to identify molecular targeting mechanism influenced by COVID-19 on heart failure. Front Immunol 2022; 13:1052850. [DOI: 10.3389/fimmu.2022.1052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a contemporary hazard to people. It has been known that COVID-19 can both induce heart failure (HF) and raise the risk of patient mortality. However, the mechanism underlying the association between COVID-19 and HF remains unclear. The common molecular pathways between COVID-19 and HF were identified using bioinformatic and systems biology techniques. Transcriptome analysis was performed to identify differentially expressed genes (DEGs). To identify gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, common DEGs were used for enrichment analysis. The results showed that COVID-19 and HF have several common immune mechanisms, including differentiation of T helper (Th) 1, Th 2, Th 17 cells; activation of lymphocytes; and binding of major histocompatibility complex class I and II protein complexes. Furthermore, a protein-protein interaction network was constructed to identify hub genes, and immune cell infiltration analysis was performed. Six hub genes (FCGR3A, CD69, IFNG, CCR7, CCL5, and CCL4) were closely associated with COVID-19 and HF. These targets were associated with immune cells (central memory CD8 T cells, T follicular helper cells, regulatory T cells, myeloid-derived suppressor cells, plasmacytoid dendritic cells, macrophages, eosinophils, and neutrophils). Additionally, transcription factors, microRNAs, drugs, and chemicals that are closely associated with COVID-19 and HF were identified through the interaction network.
Collapse
|
5
|
Qin T, Chen Y, Huangfu D, Yin Y, Miao X, Yin Y, Chen S, Peng D, Liu X. PA-X Protein of H1N1 Subtype Influenza Virus Disables the Nasal Mucosal Dendritic Cells for Strengthening Virulence. Virulence 2022; 13:1928-1942. [PMID: 36271710 DOI: 10.1080/21505594.2022.2139474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PA-X protein arises from a ribosomal frameshift in the PA of influenza A virus (IAV). However, the immune regulatory effect of the PA-X protein of H1N1 viruses on the nasal mucosal system remains unclear. Here, a PA-X deficient H1N1 rPR8 viral strain (rPR8-△PAX) was generated and its pathogenicity was determined. The results showed that PA-X was a pro-virulence factor in mice. Furthermore, it reduced the ability of H1N1 viruses to infect dendritic cells (DCs), the regulator of the mucosal immune system, but not non-immune cells (DF-1 and Calu-3). Following intranasal infection of mice, CCL20, a chemokine that monitors the recruitment of submucosal DCs, was downregulated by PA-X, resulting in an inhibition of the recruitment of CD11b+ DCs to submucosa. It also attenuated the migration of CCR7+ DCs to cervical lymph nodes and inhibited DC maturation with low MHC II and CD40 expression. Moreover, PA-X suppressed the maturation of phenotypic markers (CD80, CD86, CD40, and MHC II) and the levels of secreted pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) while enhancing endocytosis and levels of anti-inflammatory IL-10 in vitro, suggesting an impaired maturation of DCs that the key step for the activation of downstream immune responses. These findings suggested the PA-X protein played a critical role in escaping the immune response of nasal mucosal DCs for increasing the virulence of H1N1 viruses.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dandan Huangfu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
6
|
Qin T, Chen Y, Huangfu D, Yin Y, Miao X, Yin Y, Chen S, Peng D, Liu X. PA-X protein assists H9N2 subtype avian influenza virus in escaping immune response of mucosal dendritic cells. Transbound Emerg Dis 2022; 69:e3088-e3100. [PMID: 35855630 DOI: 10.1111/tbed.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
H9N2 subtype low pathogenicity avian influenza virus (AIV) poses a potential zoonotic risk. PA-X, a novel protein generated by PA gene ribosomal frameshift, is considered to be the virulence factor of H9N2 subtype AIVs. Our study found that rTX possessing PA-X protein enhanced the mammalian pathogenicity of H9N2 subtype AIVs compared with PA-X-deficient virus (rTX-FS). Furthermore, PA-X protein inhibited H9N2 subtype AIVs to infect dendritic cells (DCs), but not nonimmune cells (MDCK cells). Meanwhile, PA-X protein suppressed the phenotypic expression (CD80, CD86, CD40 and MHCII), early activation marker (CD69) and pro-inflammatory cytokines (IL-6 and TNF-α), whereas increased anti-inflammatory cytokine (IL-10) in DCs. After intranasally viral infection in mice, we found that PA-X protein of H9N2 subtype AIVs reduced CD11b+ and CD103+ subtype mucosal DCs recruitment to the nasal submucosa by inhibiting CCL20 expression. Moreover, PA-X protein abolished the migratory ability of CD11b+ and CD103+ DCs into draining cervical lymph nodes by down-regulating CCR7 expression. The rTX-infected DCs significantly impaired the allogeneic CD4+ T cell proliferation, suggesting PA-X protein suppressed the immune functions of DCs for hindering the downstream immune activation. These findings indicated that PA-X protein assisted H9N2 subtype AIVs in escaping immune response of mucosal DCs for enhancing the pathogenicity.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Huangfu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Vaghari-Tabari M, Mohammadzadeh I, Qujeq D, Majidinia M, Alemi F, Younesi S, Mahmoodpoor A, Maleki M, Yousefi B, Asemi Z. Vitamin D in respiratory viral infections: a key immune modulator? Crit Rev Food Sci Nutr 2021; 63:2231-2246. [PMID: 34470511 DOI: 10.1080/10408398.2021.1972407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory viral infections are common respiratory diseases. Influenza viruses, RSV and SARS-COV2 have the potential to cause severe respiratory infections. Numerous studies have shown that unregulated immune response to these viruses can cause excessive inflammation and tissue damage. Therefore, regulating the antiviral immune response in the respiratory tract is of importance. In this regard, recent years studies have emphasized the importance of vitamin D in respiratory viral infections. Although, the most well-known role of vitamin D is to regulate the metabolism of phosphorus and calcium, it has been shown that this vitamin has other important functions. One of these functions is immune regulation. Vitamin D can regulate the antiviral immune response in the respiratory tract in order to provide an effective defense against respiratory viral infections and prevention from excessive inflammatory response and tissue damage. In addition, this vitamin has preventive effects against respiratory viral infections. Some studies during the COVID-19 pandemic have shown that vitamin D deficiency may be associated with a higher risk of mortality and sever disease in patients with COVID-19. Since, more attention has recently been focused on vitamin D. In this article, after a brief overview of the antiviral immune response in the respiratory system, we will review the role of vitamin D in regulating the antiviral immune response comprehensively. Then we will discuss the importance of this vitamin in influenza, RSV, and COVID-19.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran
| | - Masomeh Maleki
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Bertram KM, Truong NR, Smith JB, Kim M, Sandgren KJ, Feng KL, Herbert JJ, Rana H, Danastas K, Miranda-Saksena M, Rhodes JW, Patrick E, Cohen RC, Lim J, Merten SL, Harman AN, Cunningham AL. Herpes Simplex Virus type 1 infects Langerhans cells and the novel epidermal dendritic cell, Epi-cDC2s, via different entry pathways. PLoS Pathog 2021; 17:e1009536. [PMID: 33905459 PMCID: PMC8104422 DOI: 10.1371/journal.ppat.1009536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/07/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.
Collapse
Affiliation(s)
- Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Min Kim
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Konrad L. Feng
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jake W. Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Ralph C. Cohen
- Department of Surgery, University of Sydney and The Children’s Hospital at Westmead, Westmead, Australia
| | - Jake Lim
- Department of Surgery, Westmead Private Hospital, Westmead, Australia
| | - Steven L. Merten
- Department of Surgery, Macquarie University Hospital, Macquarie Park, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- * E-mail:
| |
Collapse
|
9
|
Monocyte subset redistribution from blood to kidneys in patients with Puumala virus caused hemorrhagic fever with renal syndrome. PLoS Pathog 2021; 17:e1009400. [PMID: 33690725 PMCID: PMC7984619 DOI: 10.1371/journal.ppat.1009400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14-CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16- classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16- monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.
Collapse
|
10
|
Abstract
BACKGROUND Chemokine (C-C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. METHODS We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C-C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. RESULTS From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. CONCLUSIONS Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.
Collapse
|
11
|
Lack of Activation Marker Induction and Chemokine Receptor Switch in Human Neonatal Myeloid Dendritic Cells in Response to Human Respiratory Syncytial Virus. J Virol 2019; 93:JVI.01216-19. [PMID: 31484754 DOI: 10.1128/jvi.01216-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 02/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects and causes disease in infants and reinfects with reduced disease throughout life without significant antigenic change. In contrast, reinfection by influenza A virus (IAV) largely requires antigenic change. The adaptive immune response depends on antigen presentation by dendritic cells (DC), which may be too immature in young infants to induce a fully protective immune response against RSV reinfections. We therefore compared the ability of RSV and IAV to activate primary human cord blood (CB) and adult blood (AB) myeloid DC (mDC). While RSV and IAV infected with similar efficiencies, RSV poorly induced maturation and cytokine production in CB and AB mDC. This difference between RSV and IAV was more profound in CB mDC. While IAV activated CB mDC to some extent, RSV did not induce CB mDC to increase the maturation markers CD38 and CD86 or CCR7, which directs DC migration to lymphatic tissue. Low CCR7 surface expression was associated with high expression of CCR5, which keeps DC in inflamed peripheral tissues. To evaluate a possible inhibition by RSV, we subjected RSV-inoculated AB mDC to secondary IAV inoculation. While RSV-inoculated AB mDC responded to secondary IAV inoculation by efficiently upregulating activation markers and cytokine production, IAV-induced CCR5 downregulation was slightly inhibited in cells exhibiting robust RSV infection. Thus, suboptimal stimulation and weak and mostly reversible inhibition seem to be responsible for inefficient mDC activation by RSV. The inefficient mDC stimulation and immunological immaturity in young infants may contribute to reduced immune responses and incomplete protection against RSV reinfection.IMPORTANCE Respiratory syncytial virus (RSV) causes disease early in life and can reinfect symptomatically throughout life without undergoing significant antigenic change. In contrast, reinfection by influenza A virus (IAV) requires antigenic change. The adaptive immune response depends on antigen presentation by dendritic cells (DC). We used myeloid DC (mDC) from cord blood and adult blood donors to evaluate whether immunological immaturity contributes to the inability to mount a fully protective immune response to RSV. While IAV induced some activation and chemokine receptor switching in cord blood mDC, RSV did not. This appeared to be due to a lack of activation and a weak and mostly reversible inhibition of DC functions. Both viruses induced a stronger activation of mDC from adults than mDC from cord blood. Thus, inefficient stimulation of mDC by RSV and immunological immaturity may contribute to reduced immune responses and increased susceptibility to RSV disease and reinfection in young infants.
Collapse
|
12
|
Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, Hu Q. CCL19 and CCR7 Expression, Signaling Pathways, and Adjuvant Functions in Viral Infection and Prevention. Front Cell Dev Biol 2019; 7:212. [PMID: 31632965 PMCID: PMC6781769 DOI: 10.3389/fcell.2019.00212] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Chemokine (C–C motif) ligand 19 (CCL19) is a critical regulator of the induction of T cell activation, immune tolerance, and inflammatory responses during continuous immune surveillance, homeostasis, and development. Migration of CC-chemokine receptor 7 (CCR7)-expressing cells to secondary lymphoid organs is a crucial step in the onset of adaptive immunity, which is initiated by a complex interaction between CCR7 and its cognate ligands. Recent advances in knowledge regarding the response of the CCL19-CCR7 axis to viral infections have elucidated the complex network of interplay among the invading virus, target cells and host immune responses. Viruses use various strategies to evade or delay the cytokine response, gaining additional time to replicate in the host. In this review, we summarize the impacts of CCL19 and CCR7 expression on the regulation of viral pathogenesis with an emphasis on the corresponding signaling pathways and adjuvant mechanisms. We present and discuss the expression, signaling adaptor proteins and effects of CCL19 and CCR7 as these molecules differentially impact different viral infections and viral life cycles in host homeostatic strategies. The underlying mechanisms discussed in this review may assist in the design of novel agents to modulate chemokine activity for viral prevention.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China.,The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China
| | - Renfang Chen
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xu Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lihua Huang
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mengji Lu
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
13
|
Tognarelli EI, Bueno SM, González PA. Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells. Front Immunol 2019; 10:810. [PMID: 31057543 PMCID: PMC6478035 DOI: 10.3389/fimmu.2019.00810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of pneumonia in infants and produces a significant burden in the elderly. It can also infect and produce disease in otherwise healthy adults and recurrently infect those previously exposed to the virus. Importantly, recurrent infections are not necessarily a consequence of antigenic variability, as described for other respiratory viruses, but most likely due to the capacity of this virus to interfere with the host's immune response and the establishment of a protective and long-lasting immunity. Although some genes encoded by hRSV are known to have a direct participation in immune evasion, it seems that repeated infection is mainly given by its capacity to modulate immune components in such a way to promote non-optimal antiviral responses in the host. Importantly, hRSV is known to interfere with dendritic cell (DC) function, which are key cells involved in establishing and regulating protective virus-specific immunity. Notably, hRSV infects DCs, alters their maturation, migration to lymph nodes and their capacity to activate virus-specific T cells, which likely impacts the host antiviral response against this virus. Here, we review and discuss the most important and recent findings related to DC modulation by hRSV, which might be at the basis of recurrent infections in previously infected individuals and hRSV-induced disease. A focus on the interaction between DCs and hRSV will likely contribute to the development of effective prophylactic and antiviral strategies against this virus.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Soto JA, Gálvez NMS, Benavente FM, Pizarro-Ortega MS, Lay MK, Riedel C, Bueno SM, Gonzalez PA, Kalergis AM. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 2018; 9:2466. [PMID: 30405642 PMCID: PMC6207598 DOI: 10.3389/fimmu.2018.02466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus, first reported the year 2001. Since then, it has been described as one of the main etiological agents that causes acute lower respiratory tract infections (ALRTIs), which is characterized by symptoms such as bronchiolitis, wheezing and coughing. Susceptible population to hMPV-infection includes newborn, children, elderly and immunocompromised individuals. This viral agent is a negative-sense, single-stranded RNA enveloped virus, that belongs to the Pneumoviridae family and Metapneumovirus genus. Early reports—previous to 2001—state several cases of respiratory illness without clear identification of the responsible pathogen, which could be related to hMPV. Despite the similarities of hMPV with several other viruses, such as the human respiratory syncytial virus or influenza virus, mechanisms used by hMPV to avoid the host immune system are still unclear. In fact, evidence indicates that hMPV induces a poor innate immune response, thereby affecting the adaptive immunity. Among these mechanisms, is the promotion of an anergic state in T cells, instead of an effective polarization or activation, which could be induced by low levels of cytokine secretion. Further, the evidences support the notion that hMPV interferes with several pattern recognition receptors (PRRs) and cell signaling pathways triggered by interferon-associated genes. However, these mechanisms reported in hMPV are not like the ones reported for hRSV, as the latter has two non-structural proteins that are able to inhibit these pathways. Several reports suggest that viral glycoproteins, such as G and SH, could play immune-modulator roles during infection. In this work, we discuss the state of the art regarding the mechanisms that underlie the poor immunity elicited by hMPV. Importantly, these mechanisms will be compared with those elicited by other common respiratory viruses.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection, particularly in children, immunocompromised patients, and the elderly. HMPV, which is closely related to avian metapneumovirus subtype C, has circulated for at least 65 years, and nearly every child will be infected with HMPV by the age of 5. However, immunity is incomplete, and re-infections occur throughout adult life. Symptoms are similar to those of other respiratory viral infections, ranging from mild (cough, rhinorrhea, and fever) to more severe (bronchiolitis and pneumonia). The preferred method for diagnosis is reverse transcription-polymerase chain reaction as HMPV is difficult to culture. Although there have been many advances made in the past 16 years since its discovery, there are still no US Food and Drug Administration-approved antivirals or vaccines available to treat HMPV. Both small animal and non-human primate models have been established for the study of HMPV. This review will focus on the epidemiology, transmission, and clinical manifestations in humans as well as the animal models of HMPV pathogenesis and host immune response.
Collapse
Affiliation(s)
- Nazly Shafagati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Szulc-Dąbrowska L, Struzik J, Cymerys J, Winnicka A, Nowak Z, Toka FN, Gieryńska M. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent. Front Microbiol 2017; 8:2539. [PMID: 29312229 PMCID: PMC5742134 DOI: 10.3389/fmicb.2017.02539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Justyna Struzik
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Cymerys
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Nowak
- Department of Genetics and Animal Breeding, Faculty of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
18
|
Mehedi M, McCarty T, Martin SE, Le Nouën C, Buehler E, Chen YC, Smelkinson M, Ganesan S, Fischer ER, Brock LG, Liang B, Munir S, Collins PL, Buchholz UJ. Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread. PLoS Pathog 2016; 12:e1006062. [PMID: 27926942 PMCID: PMC5142808 DOI: 10.1371/journal.ppat.1006062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is an enveloped RNA virus that is the most important viral cause of acute pediatric lower respiratory tract illness worldwide, and lacks a vaccine or effective antiviral drug. The involvement of host factors in the RSV replicative cycle remains poorly characterized. A genome-wide siRNA screen in human lung epithelial A549 cells identified actin-related protein 2 (ARP2) as a host factor involved in RSV infection. ARP2 knockdown did not reduce RSV entry, and did not markedly reduce gene expression during the first 24 hr of infection, but decreased viral gene expression thereafter, an effect that appeared to be due to inhibition of viral spread to neighboring cells. Consistent with reduced spread, there was a 10-fold reduction in the release of infectious progeny virions in ARP2-depleted cells at 72 hr post-infection. In addition, we found that RSV infection induced filopodia formation and increased cell motility in A549 cells and that this phenotype was ARP2 dependent. Filopodia appeared to shuttle RSV to nearby uninfected cells, facilitating virus spread. Expression of the RSV F protein alone from a plasmid or heterologous viral vector in A549 cells induced filopodia, indicating a new role for the RSV F protein, driving filopodia induction and virus spread. Thus, this study identified roles for ARP2 and filopodia in RSV-induced cell motility, RSV production, and RSV cell-to-cell spread.
Collapse
Affiliation(s)
- Masfique Mehedi
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Scott E. Martin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eugen Buehler
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Yu-Chi Chen
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth R. Fischer
- Microscopy Unit, Rocky Mountain Laboratories, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Linda G. Brock
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bo Liang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter L. Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol 2016; 17:30-48. [PMID: 27890914 DOI: 10.1038/nri.2016.116] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and tissue homeostasis, and also in the pathogenesis of a range of diseases. In this Review, we summarize the anatomical, cellular and molecular factors that regulate the migration of different DC subsets in health and disease. In particular, we focus on new insights concerning the role of migratory DCs in the pathogenesis of diseases of the skin, intestine, lung, and brain, as well as in autoimmunity and atherosclerosis.
Collapse
Affiliation(s)
- Tim Worbs
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Swantje I Hammerschmidt
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
20
|
|
21
|
Immunological, Viral, Environmental, and Individual Factors Modulating Lung Immune Response to Respiratory Syncytial Virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:875723. [PMID: 26064963 PMCID: PMC4438160 DOI: 10.1155/2015/875723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus is a worldwide pathogen agent responsible for frequent respiratory tract infections that may become severe and potentially lethal in high risk infants and adults. Several studies have been performed to investigate the immune response that determines the clinical course of the infection. In the present paper, we review the literature on viral, environmental, and host factors influencing virus response; the mechanisms of the immune response; and the action of nonimmunological factors. These mechanisms have often been studied in animal models and in the present review we also summarize the main findings obtained from animal models as well as the limits of each of these models. Understanding the lung response involved in the pathogenesis of these respiratory infections could be useful in improving the preventive strategies against respiratory syncytial virus.
Collapse
|
22
|
CCL19/CCL21-Dependent Chemotaxis of Dendritic Cells in Healthy Individuals and Patients with Brain Tumors. Bull Exp Biol Med 2015; 158:785-8. [DOI: 10.1007/s10517-015-2862-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 10/23/2022]
|
23
|
Said A, Bock S, Müller G, Weindl G. Inflammatory conditions distinctively alter immunological functions of Langerhans-like cells and dendritic cells in vitro. Immunology 2015; 144:218-30. [PMID: 25059418 PMCID: PMC4298416 DOI: 10.1111/imm.12363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/26/2022] Open
Abstract
The specific function of human skin-resident dendritic cell (DC) subsets in the regulation of immunity or tolerance is still a matter of debate. Langerhans cells (LC) induce anti-viral immune responses but, conversely to dermal DC, maintain tolerance to bacteria. However, the definite function of epidermal LC and cutaneous DC appears even more complex under inflammatory conditions. Here we investigated the immune responses of human immature monocyte-derived DC (MoDC) and LC-like cells (MoLC) upon stimulation with different Toll-like receptor ligands in the presence or absence of pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In MoDC, bacterial antigens selectively up-regulated CD83 and CD86 expression and induced the release of T helper type 1 (Th1) and Th17 cytokines and led to a higher CCR7-dependent migratory capacity compared with a low responsiveness of MoLC. Importantly, MoLC activation with lipopolysaccharide under inflammatory conditions strongly enhanced a phenotypically mature state, increased IL-12p70, IL-23 and IL-6 production and Th1 cytokine secretion by CD4(+) T cells. Treatment with poly(I:C) specifically up-regulated surface expression of co-stimulatory molecules and increased release of IL-12p70 in MoLC and co-stimulation with TNF-α and IL-1β further elevated Th1 and Th17 cytokine production. Poly(I:C)-induced up-regulation of type I interferon mRNA levels in MoLC and MoDC was Toll-like receptor 3-dependent but not, or only weakly, modulated by pro-inflammatory cytokines. Our results indicate that inflammatory conditions greatly facilitate recognition of bacteria by MoLC. Furthermore, we suggest a critical involvement of both subsets in innate defence against viruses, whereas inflammatory skin environments additionally favour MoLC as potent inducers of Th1 and Th17 cytokines.
Collapse
Affiliation(s)
- André Said
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität BerlinBerlin, Germany
| | - Stephanie Bock
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität BerlinBerlin, Germany
| | - Gerrit Müller
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität BerlinBerlin, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität BerlinBerlin, Germany
| |
Collapse
|
24
|
Carvalho-Costa TM, Mendes MT, da Silva MV, da Costa TA, Tiburcio MGS, Anhê ACBM, Rodrigues V, Oliveira CJF. Immunosuppressive effects of Amblyomma cajennense tick saliva on murine bone marrow-derived dendritic cells. Parasit Vectors 2015; 8:22. [PMID: 25586117 PMCID: PMC4304185 DOI: 10.1186/s13071-015-0634-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022] Open
Abstract
Background Dendritic cells (DCs) are professional antigen-presenting cells with vital roles in the activation of host immunity. Ticks are bloodsucking arthropods that secrete bioactive compounds with immunomodulatory properties via their saliva. It is known that some tick species modulate the biology of DCs with different intensities; however, studies on Amblyomma cajennense, the Cayenne tick, have not yet been performed, although this species is considered one of the most capable of modulating immune responses of different hosts. Methods Engorged female ticks were stimulated with dopamine to induce salivation, and saliva was pooled. The effects of tick saliva on the biology of dendritic cells were assessed by examining DC differentiation, maturation, migration, cellular viability, cytokine production and expression of surface markers by flow cytometry and ELISA. Competitive enzyme immunoassays (EIA) were used to measure saliva prostaglandin-E2 (PGE2). Statistical significance was determined by ANOVA followed by Tukey’s post-test or by the Kruskal-Wallis test with the Dunns post-test. Results In this work, we demonstrated that the presence of A. cajennense saliva to bone marrow cultures inhibit DC differentiation. This inhibition was not accompanied by inhibition or induction of stimulatory and co-stimulatory molecules such as MHC-II, CD40, CD80 or CD86. Immature and mature DCs that were pre-exposed to saliva showed reduced migration toward the chemokines RANTES and MIP-3β. This inhibition was associated to a reduced expression of CCR5 (the receptor for RANTES) or CCR7 (the receptor for MIP-3β) induced by the presence of saliva in the cultures. Tick saliva also inhibited IL-12p40, IL-6 and TNF-α in a concentration-dependent manner while potentiating IL-10 cytokine production by DCs stimulated with Toll-like receptor-4 ligand. Additionally, A. cajennense tick saliva inhibited the expression of CD40 and CD86 in mature DCs while potentiating the expression of PD-L1. PGE2 was detected as one of the constituents of saliva at a concentration of ~ 80 ng/ml, and we believe that most of the results reported herein are due to the presence of PGE2. Conclusions These results help to understand the tick-host interaction and demonstrate that A. cajennense ticks appear to have mechanisms for modulating host immune cells, including DCs.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Graduate Course of Physiological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | - Maria Tays Mendes
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Marcos Vinicius da Silva
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Thiago Alvares da Costa
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Monique Gomes Salles Tiburcio
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | | | - Virmondes Rodrigues
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| | - Carlo Jose Freire Oliveira
- Graduate Course of Tropical Medicine and Infectology, Laboratory of Immunology, Federal University of Triângulo Mineiro, Av. Getúlio Guaritá S/N, Uberaba, Minas Gerais, 38015-050, Brazil.
| |
Collapse
|
25
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
26
|
Lambrecht BN, Neyt K, van Helden MJ. The Mucosal Immune Response to Respiratory Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
|
28
|
Barber BE, Bird E, Wilkes CS, William T, Grigg MJ, Paramaswaran U, Menon J, Jelip J, Yeo TW, Anstey NM. Plasmodium knowlesi malaria during pregnancy. J Infect Dis 2014; 211:1104-10. [PMID: 25301955 DOI: 10.1093/infdis/jiu562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is the commonest cause of malaria in Malaysia, but little is known regarding infection during pregnancy. METHODS To investigate comparative risk and consequences of knowlesi malaria during pregnancy, we reviewed (1) Sabah Health Department malaria-notification records created during 2012-2013, (2) prospectively collected data from all females with polymerase chain reaction (PCR)-confirmed malaria who were admitted to a Sabah tertiary care referral hospital during 2011-2014, and (3) malaria microscopy and clinical data recorded at a Sabah tertiary care women and children's hospital during 2010-2014. RESULTS During 2012-2013, 774 females with microscopy-diagnosed malaria were notified, including 252 (33%), 172 (20%), 333 (43%), and 17 (2%) with Plasmodium falciparum infection, Plasmodium vivax infection, Plasmodium malariae/Plasmodium knowlesi infection, and mixed infection, respectively. Among females aged 15-45 years, pregnancy was reported in 18 of 124 (14.5%), 9 of 93 (9.7%), and 4 of 151 (2.6%) P. falciparum, P. vivax, and P. malariae/P. knowlesi notifications respectively (P = .002). Three females with knowlesi malaria were confirmed as pregnant: 2 had moderate anemia, and 1 delivered a preterm low-birth-weight infant. There were 17, 7, and 0 pregnant women with falciparum, vivax, and knowlesi malaria, respectively, identified from the 2 referral hospitals. CONCLUSIONS Although P. knowlesi is the commonest malaria species among females in Sabah, P. knowlesi infection is relatively rare during pregnancy. It may however be associated with adverse maternal and pregnancy outcomes.
Collapse
Affiliation(s)
- Bridget E Barber
- Menzies School of Health Research, Charles Darwin University, Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Elspeth Bird
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Christopher S Wilkes
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit Infectious Diseases Unit
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Uma Paramaswaran
- Menzies School of Health Research, Charles Darwin University, Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Jayaram Menon
- Department of Medicine, Clinical Research Centre, Queen Elizabeth Hospital
| | | | - Tsin W Yeo
- Menzies School of Health Research, Charles Darwin University, Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Royal Darwin Hospital, Australia Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| |
Collapse
|
29
|
William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, Grigg MJ, Yeo TW, Anstey NM, Barber BE. Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi. Malar J 2014; 13:390. [PMID: 25272973 PMCID: PMC4195888 DOI: 10.1186/1475-2875-13-390] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain. METHODS To describe the changing epidemiology of malaria in Sabah, in particular the increasing incidence of P. knowlesi, a retrospective descriptive study was undertaken involving a review of Department of Health malaria notification data from 2012-2013, extending a previous review of these data from 1992-2011. In addition, malaria PCR and microscopy data from the State Public Health Laboratory were reviewed to estimate the accuracy of the microscopy-based notification data. RESULTS Notifications of P. malariae/P. knowlesi increased from 703 in 2011 to 815 in 2012 and 996 in 2013. Notifications of P. vivax and P. falciparum decreased from 605 and 628, respectively, in 2011, to 297 and 263 in 2013. In 2013, P. malariae/P. knowlesi accounted for 62% of all malaria notifications compared to 35% in 2011. Among 1,082 P. malariae/P. knowlesi blood slides referred for PCR testing during 2011-2013, there were 924 (85%) P. knowlesi mono-infections, 30 (2.8%) P. falciparum, 43 (4.0%) P. vivax, seven (0.6%) P. malariae, six (0.6%) mixed infections, 31 (2.9%) positive only for Plasmodium genus, and 41 (3.8%) Plasmodium-negative. Plasmodium knowlesi mono-infection accounted for 32/156 (21%) and 33/87 (38%) blood slides diagnosed by microscopy as P. falciparum and P. vivax, respectively. Twenty-six malaria deaths were reported during 2010-2013, including 12 with 'P. malariae/P. knowlesi' (all adults), 12 with P. falciparum (seven adults), and two adults with P. vivax. CONCLUSIONS Notifications of P. malariae/P. knowlesi in Sabah are increasing, with this trend likely reflecting a true increase in incidence of P. knowlesi and presenting a major threat to malaria control and elimination in Malaysia. With the decline of P. falciparum and P. vivax, control programmes need to incorporate measures to protect against P. knowlesi, with further research required to determine effective interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bridget E Barber
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88560, Sabah, Malaysia.
| |
Collapse
|
30
|
Neyt K, Lambrecht BN. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol Rev 2014; 255:57-67. [PMID: 23947347 DOI: 10.1111/imr.12100] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viral infections are a common cause of acute respiratory disease. The clinical course of infection and symptoms depend on the viral strain, the health status of the host, and the immunological status of the host. Dendritic cells (DCs) play a crucial role in recognizing and presenting viral antigens and in inducing adaptive immune responses that clear the virus. Because the lung is continuously exposed to the air, the lung is equipped with an elaborate network of DCs to sense incoming foreign pathogens. Increasing knowledge on DC biology has informed us that DCs are not a single cell type. In the steady state lung, three DC subsets can be defined: CD11b(+) or CD103(+) conventional DCs and plasmacytoid DCs. Upon inflammation, inflammatory monocyte-derived DCs are recruited to the lung. It is only recently that tools became available to allow DC subsets to be clearly studied. This review focuses on the activation of DCs and the function of lung DCs in the context of respiratory virus infection and highlights some cautionary points for interpreting older experiments.
Collapse
Affiliation(s)
- Katrijn Neyt
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium
| | | |
Collapse
|
31
|
Human metapneumovirus SH and G glycoproteins inhibit macropinocytosis-mediated entry into human dendritic cells and reduce CD4+ T cell activation. J Virol 2014; 88:6453-69. [PMID: 24672038 DOI: 10.1128/jvi.03261-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human metapneumovirus (HMPV) is a major etiologic agent of respiratory disease worldwide. HMPV reinfections are common in healthy adults and children, suggesting that the protective immune response to HMPV is incomplete and short-lived. We used gene-deletion viruses to evaluate the role of the attachment G and small hydrophobic SH glycoproteins on virus uptake by primary human monocyte-derived dendritic cells (MDDC) in vitro and on subsequent MDDC maturation and activation of autologous T cells. HMPV with deletion of G and SH (ΔSHG) exhibited increased infectivity but had little effect on MDDC maturation. However, MDDC stimulated with ΔSHG induced increased proliferation of autologous Th1-polarized CD4(+) T cells. This effect was independent of virus replication. Increased T cell proliferation was strictly dependent on contact between virus-stimulated MDDC and CD4(+) T cells. Confocal microscopy revealed that deletion of SH and G was associated with an increased number of immunological synapses between memory CD4(+) T cells and virus-stimulated MDDC. Uptake of HMPV by MDDC was found to be primarily by macropinocytosis. Uptake of wild-type (WT) virus was reduced compared to that of ΔSHG, indicative of inhibition by the SH and G glycoproteins. In addition, DC-SIGN-mediated endocytosis provided a minor alternative pathway that depended on SH and/or G and thus operated only for WT. Altogether, our results show that SH and G glycoproteins reduce the ability of HMPV to be internalized by MDDC, resulting in a reduced ability of the HMPV-stimulated MDDC to activate CD4(+) T cells. This study describes a previously unknown mechanism of virus immune evasion. IMPORTANCE Human metapneumovirus (HMPV) is a major etiologic agent of respiratory disease worldwide. HMPV reinfections are common in healthy adults and children, suggesting that the protective immune response to HMPV is incomplete and short-lived. We found that HMPV attachment G and small hydrophobic SH glycoproteins reduce the ability of HMPV to be internalized by macropinocytosis into human dendritic cells (DC). This results in a reduced ability of the HMPV-stimulated DC to activate Th1-polarized CD4(+) T cells. These results contribute to a better understanding of the nature of incomplete protection against this important human respiratory virus, provide new information on the entry of HMPV into human cells, and describe a new mechanism of virus immune evasion.
Collapse
|
32
|
Hillyer P, Raviv N, Gold DM, Dougherty D, Liu J, Johnson TR, Graham BS, Rabin RL. Subtypes of type I IFN differentially enhance cytokine expression by suboptimally stimulated CD4(+) T cells. Eur J Immunol 2013; 43:3197-208. [PMID: 24030809 DOI: 10.1002/eji.201243288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/17/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023]
Abstract
Human type I interferons (IFNs) include IFN-β and 12 subtypes of IFN-α. During viral infection, infiltrating memory CD4(+) T cells are exposed to IFNs, but their impact on memory T-cell function is poorly understood. To address this, we pretreated PBMCs with different IFNs for 16 h before stimulation with Staphylococcus aureus enterotoxin B and measured cytokine expression by flow cytometry. IFN-α8 and -α10 most potently enhanced expression of IFN-γ, IL-2, and IL-4. Potency among the subtypes differed most at doses between 10 and 100 U/mL. While enhancement of IL-2 and IL-4 correlated with the time of preincubation with type I IFN, IFN-γ production was enhanced best when IFN-α was added immediately preceding or simultaneously with T-cell stimulation. Comparison of T-cell responses to multiple doses of Staphylococcus aureus enterotoxin B and to peptide libraries from RSV or CMV demonstrated that IFN-α best enhanced cytokine expression when CD4(+) T cells were suboptimally stimulated. We conclude that type I IFNs enhance Th1 and Th2 function with dose dependency and subtype specificity, and best when T-cell stimulation is suboptimal. While type I IFNs may beneficially enhance CD4(+) T-cell memory responses to vaccines or viral pathogens, they may also enhance the function of resident Th2 cells and exacerbate allergic inflammation.
Collapse
Affiliation(s)
- Philippa Hillyer
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|
34
|
Garg R, Shrivastava P, van Drunen Littel-van den Hurk S. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development. Expert Rev Vaccines 2013; 11:1441-57. [PMID: 23252388 DOI: 10.1586/erv.12.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a common human pathogen that causes cold-like symptoms in most healthy adults and children. However, RSV often moves into the lower respiratory tract in infants and young children predisposed to respiratory illness, making it the most common cause of pediatric broncheolitis and pneumonia. The development of an appropriate balanced immune response is critical for recovery from RSV, while an unbalanced and/or excessively vigorous response may lead to immunopathogenesis. Different dendritic cell (DC) subsets influence the magnitude and quality of the host response to RSV infection, with myeloid DCs mediating and plasmacytoid DCs modulating immunopathology. Furthermore, stimulation of DCs through Toll-like receptors is essential for induction of protective immunity to RSV. These characteristics have implications for the rational design of a RSV vaccine.
Collapse
Affiliation(s)
- Ravendra Garg
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | | |
Collapse
|
35
|
Choi JH, Cheong TC, Ha NY, Ko Y, Cho CH, Jeon JH, So I, Kim IK, Choi MS, Kim IS, Cho NH. Orientia tsutsugamushi subverts dendritic cell functions by escaping from autophagy and impairing their migration. PLoS Negl Trop Dis 2013; 7:e1981. [PMID: 23301113 PMCID: PMC3536799 DOI: 10.1371/journal.pntd.0001981] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 11/05/2012] [Indexed: 11/26/2022] Open
Abstract
Background Dendritic cells (DCs) are the most potent antigen-presenting cells that link innate and adaptive immune responses, playing a pivotal role in triggering antigen-specific immunity. Antigen uptake by DCs induces maturational changes that include increased surface expression of major histocompatibility complex (MHC) and costimulatory molecules. In addition, DCs actively migrate to regional lymph nodes and activate antigen-specific naive T cells after capturing antigens. We characterize the functional changes of DCs infected with Orientia tsutsugamushi, the causative agent of scrub typhus, since there is limited knowledge of the role played by DCs in O. tsutsugamushi infection. Methodology/Principal Finding O. tsutsugamushi efficiently infected bone marrow-derived DCs and induced surface expression of MHC II and costimulatory molecules. In addition, O. tsutsugamushi induced autophagy activation, but actively escaped from this innate defense system. Infected DCs also secreted cytokines and chemokines such as IL-6, IL-12, MCP5, MIP-1α, and RANTES. Furthermore, in vitro migration of DCs in the presence of a CCL19 gradient within a 3D collagen matrix was drastically impaired when infected with O. tsutsugamushi. The infected cells migrated much less efficiently into lymphatic vessels of ear dermis ex vivo when compared to LPS-stimulated DCs. In vivo migration of O. tsutsugamushi-infected DCs to regional lymph nodes was significantly impaired and similar to that of immature DCs. Finally, we found that MAP kinases involved in chemotactic signaling were differentially activated in O. tsutsugamushi-infected DCs. Conclusion/Significance These results suggest that O. tsutsugamushi can target DCs to exploit these sentinel cells as replication reservoirs and delay or impair the functional maturation of DCs during the bacterial infection in mammals. Scrub typhus is an acute febrile illness caused by Orientia tsutsugamushi infection and is one of the main causes of febrile illness in the Asia-Pacific region. If not properly treated with antibiotics, patients often develop severe vasculitis that affects multiple organs, and the mortality rate of untreated patients reaches up to 30%. To understand the pathogenic mechanisms of the infectious disease, we characterized the functional changes of O. tsutsugamushi–infected dendritic cells (DCs), which play a pivotal role in orchestrating innate and adaptive immune responses. The obligate intracellular bacteria efficiently infected bone marrow-derived DCs and activated the cells as measured by induced surface expression of MHC II and costimulatory molecules, secretion of cytokines and chemokines, and autophagy induction. However, the live bacteria actively escaped from host autophagosomes and the migration of infected cells was severely impaired in vitro, ex vivo, and in vivo infection models. Finally, we found that MAP kinases involved in chemotactic signaling were differentially activated in O. tsutsugamushi-infected DCs. These results suggest that O. tsutsugamushi can target DCs to exploit these sentinel cells as replication reservoirs and delay or impair the functional maturation of DCs during the bacterial infection in mammals.
Collapse
Affiliation(s)
- Ji-Hye Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taek-Chin Cheong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngho Ko
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hong Jeon
- Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Kyu Kim
- Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Varga SM, Braciale TJ. The adaptive immune response to respiratory syncytial virus. Curr Top Microbiol Immunol 2013; 372:155-71. [PMID: 24362689 DOI: 10.1007/978-3-642-38919-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe respiratory disease in children, the elderly and immunocompromised individuals. The combined actions of CD4 and CD8 T cells play a critical role in terminating an acute RSV infection whereas antibodies can provide protection from re-infection. Despite eliciting an immune response that mediates clearance of the virus, immunity to the virus appears to wane over time and individuals remain susceptible to reinfection with RSV throughout their lifetime. The ineffectiveness of the natural infection to induce long-term immunity has hampered vaccine efforts and there is currently no licensed RSV vaccine. In this review, we summarize our current understanding of the adaptive immune response to RSV and its contribution to disease.
Collapse
Affiliation(s)
- Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA,
| | | |
Collapse
|
37
|
Barber BE, William T, Dhararaj P, Anderios F, Grigg MJ, Yeo TW, Anstey NM. Epidemiology of Plasmodium knowlesi malaria in north-east Sabah, Malaysia: family clusters and wide age distribution. Malar J 2012; 11:401. [PMID: 23216947 PMCID: PMC3528466 DOI: 10.1186/1475-2875-11-401] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo, with a particularly high incidence in Kudat, Sabah. Little is known however about the epidemiology in this substantially deforested region. METHODS Malaria microscopy records at Kudat District Hospital were retrospectively reviewed from January 2009-November 2011. Demographics, and PCR results if available, were recorded for each positive result. Medical records were reviewed for patients suspected of representing family clusters, and families contacted for further information. Rainfall data were obtained from the Malaysian Meteorological Department. RESULTS "Plasmodium malariae" mixed or mono-infection was diagnosed by microscopy in 517/653 (79%) patients. Of these, PCR was performed in 445 (86%) and was positive for P. knowlesi mono-infection in 339 (76%). Patients with knowlesi malaria demonstrated a wide age distribution (median 33, IQR 20-50, range 0.7-89 years) with P. knowlesi predominating in all age groups except those <5 years old, where numbers approximated those of Plasmodium falciparum and Plasmodium vivax. Two contemporaneous family clusters were identified: a father with two children (aged 10-11 years); and three brothers (aged one-11 years), all with PCR-confirmed knowlesi malaria. Cases of P. knowlesi demonstrated significant seasonal variation, and correlated with rainfall in the preceding three to five months. CONCLUSIONS Plasmodium knowlesi is the most common cause of malaria admissions to Kudat District Hospital. The wide age distribution and presence of family clusters suggest that transmission may be occurring close to or inside people's homes, in contrast to previous reports from densely forested areas of Sarawak. These findings have significant implications for malaria control. Prospective studies of risk factors, vectors and transmission dynamics of P. knowlesi in Sabah, including potential for human-to-human transmission, are needed.
Collapse
Affiliation(s)
- Bridget E Barber
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina 0810,, Northern Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Pathogenesis of respiratory syncytial virus. Curr Opin Virol 2012; 2:300-5. [PMID: 22709517 DOI: 10.1016/j.coviro.2012.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/29/2012] [Indexed: 01/12/2023]
Abstract
While affecting all age groups, respiratory syncytial virus (RSV) infections can be particularly severe in infants, who develop functionally distinct immune responses, as well as in immunocompromised individuals. The extent to which environmental, viral and host factors contribute to the pathogenesis of RSV varies considerably between infected individuals. A correlation between the level of virus replication and pathogenesis has been established, and several viral proteins, in particular NS1 and NS2, modulate the immune response. Host immunity clearly contributes to RSV pathogenesis, and a number of specific cell populations may be involved. Ultimately, whether the response induced by RSV is protective or pathogenic depends on a combination of host factors, young age being one of the most important ones.
Collapse
|
39
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|