1
|
Su QY, Zheng XX, Han XT, Li Q, Gao YR, Zhang SX, Li XF. The role of age-associated B cells in systemic lupus erythematosus. J Autoimmun 2025; 154:103433. [PMID: 40334618 DOI: 10.1016/j.jaut.2025.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Age-associated B cells (ABCs) are a distinct subset of B cells. This B-cell population expands in the elderly but is also abnormally expanded in patients with autoimmune diseases like systemic lupus erythematosus (SLE). ABC differentiation requires unique signaling stimuli, including BCR stimulation, TLR7 and TLR9 signaling, and the action of cytokines. The role of ABCs in the pathogenesis and treatment strategies of SLE has been a research hotspot in recent years. Possible pathogenic mechanisms include the production of autoantibodies and cytokines, as well as stimulation of spontaneous germinal center. Specifically targeting ABCs is a promising strategy for treating SLE. This article reviews the role of ABCs in SLE. Understanding the origin and differentiation of ABCs and their role in SLE will facilitate the discovery of novel drug targets for the treatment of SLE.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Xin Zheng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Ting Han
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Qian Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ya-Ru Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xiao-Feng Li
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Allanach JR, Fettig NM, Hardman BK, Rosen AR, Fan V, Chung C, Goldberg EJ, Morse ZJ, Shanina I, Vorobeychik G, Osborne LC, Horwitz MS. Epstein-Barr virus infection promotes T cell dysregulation in a humanized mouse model of multiple sclerosis. SCIENCE ADVANCES 2025; 11:eadu5110. [PMID: 40043135 PMCID: PMC11881922 DOI: 10.1126/sciadv.adu5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
Latent infection with Epstein-Barr virus (EBV) is a strong risk factor for the development of multiple sclerosis (MS), although the underlying mechanisms remain unclear. To investigate this association, we induced experimental autoimmune encephalomyelitis (EAE) in immunodeficient mice reconstituted with peripheral blood mononuclear cells (PBMCs) from individuals with or without a history of EBV infection and/or relapsing MS (RRMS). HuPBMC EAE mice generated from EBV-seronegative healthy donors were less susceptible to developing severe neurological symptoms than healthy EBV-seropositive and RRMS donor groups. Donor EBV seropositivity and RRMS diagnosis were associated with a significant increase in the number of central nervous system (CNS) infiltrating effector T cells due to enhanced proliferation of proinflammatory T cells and limited expansion of regulatory T cells. The data indicate that a history of EBV infection, further compounded by a diagnosis of RRMS, promotes T cell-mediated xenogeneic CNS disease in a humanized mouse model of MS.
Collapse
Affiliation(s)
- Jessica R. Allanach
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Blair K. Hardman
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Ariel R. Rosen
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Vina Fan
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Cynthia Chung
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Erin J. Goldberg
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Zachary J. Morse
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Galina Vorobeychik
- Fraser Health Multiple Sclerosis Clinic, Burnaby, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Li V, McKay FC, Tscharke DC, Smith C, Khanna R, Lechner-Scott J, Rawlinson WD, Lloyd AR, Taylor BV, Morahan JM, Steinman L, Giovannoni G, Bar-Or A, Levy M, Drosu N, Potter A, Caswell N, Smith L, Brady EC, Frost B, Hodgkinson S, Hardy TA, Broadley SA. Repurposing Licensed Drugs with Activity Against Epstein-Barr Virus for Treatment of Multiple Sclerosis: A Systematic Approach. CNS Drugs 2025; 39:305-320. [PMID: 39792343 DOI: 10.1007/s40263-024-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS. METHODS A list of therapies with anti-EBV effects was developed from existing reviews. A detailed review of pre-clinical and clinical data was undertaken to assess these candidates for potential usefulness and possible harm in MS. A 'drug-CV' and a plain language version focusing on tolerability aspects was created for each candidate. We used validated criteria to score each candidate with an international scientific panel and people living with MS. RESULTS A preliminary list of 11 drug candidates was generated. Following review by the scientific and lived experience expert panels, six yielded the same highest score. A further review by the expert panel shortlisted four drugs (famciclovir, tenofovir alafenamide, maribavir and spironolactone) deemed to have the best balance of efficacy, safety and tolerability for use in MS. CONCLUSIONS Scientific and lived experience expert panel review of anti-EBV therapies selected four candidates with evidence for efficacy against EBV and acceptable safety and tolerability for potential use in phase III clinical trials for MS.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fiona C McKay
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia.
| | - David C Tscharke
- Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Corey Smith
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Rajiv Khanna
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jeannette Lechner-Scott
- University of Newcastle, School of Medicine and Public Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), Microbiology NSW Health Pathology, Randwick, NSW, 2031, Australia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Julia M Morahan
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Lawrence Steinman
- Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 9305-5101, USA
| | - Gavin Giovannoni
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew Potter
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Nigel Caswell
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Lynne Smith
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Erin C Brady
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Bruce Frost
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Suzanne Hodgkinson
- School of Clinical Medicine, University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, University of Sydney, Concord West, NSW, 2039, Australia
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| |
Collapse
|
4
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024; 57:e13705. [PMID: 38992867 PMCID: PMC11628752 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Mu Yang
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
5
|
Deffenbaugh JL, Jung KJ, Murphy SP, Liu Y, Rau CN, Petersen-Cherubini CL, Collins PL, Chung D, Lovett-Racke AE. Novel model of multiple sclerosis induced by EBV-like virus generates a unique B cell population. J Neuroimmunol 2024; 394:578408. [PMID: 39098102 DOI: 10.1016/j.jneuroim.2024.578408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Epstein-Barr virus (EBV) is deemed a necessary, yet insufficient factor in the development of multiple sclerosis (MS). In this study, myelin basic protein-specific transgenic T cell receptor mice were infected with murid gammaherpesvirus 68 virus (MHV68), an EBV-like virus that infects mice, resulting in the onset neurological deficits at a significantly higher frequency than influenza or mock-infected mice. MHV68 infected mice exhibited signs including optic neuritis and ataxia which are frequently observed in MS patients but not in experimental autoimmune encephalomyelitis mice. MHV68-infected mice exhibited increased focal immune cell infiltration in the central nervous system. Single cell RNA sequencing identified the emergence of a population of B cells that express genes associated with antigen presentation and costimulation, indicating that gammaherpesvirus infection drives a distinct, pro-inflammatory transcriptional program in B cells that may promote autoreactive T cell responses in MS.
Collapse
Affiliation(s)
- Joshua L Deffenbaugh
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Kyeong-Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, USA.
| | - Shawn P Murphy
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Yue Liu
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Christina N Rau
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Neuroscience Graduate Program, The Ohio State University, USA
| | - Patrick L Collins
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, USA.
| | - Amy E Lovett-Racke
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
6
|
van de Waterweg Berends A, Broux B, Machiels B, Gillet L, Hellings N. The EBV-MS connection: the enigma remains. Front Immunol 2024; 15:1466339. [PMID: 39267757 PMCID: PMC11390381 DOI: 10.3389/fimmu.2024.1466339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
- A van de Waterweg Berends
- Neuro-Immune Connections and Repair Lab, Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health (FARAH), ULiège, Liège, Belgium
| | - B Broux
- Neuro-Immune Connections and Repair Lab, Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - B Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health (FARAH), ULiège, Liège, Belgium
| | - L Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health (FARAH), ULiège, Liège, Belgium
| | - N Hellings
- Neuro-Immune Connections and Repair Lab, Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| |
Collapse
|
7
|
Holt EA, Waytashek CM, Sessions KJ, Asarian L, Lahue KG, Usherwood EJ, Teuscher C, Krementsov DN. Host Genetic Variation Has a Profound Impact on Immune Responses Mediating Control of Viral Load in Chronic Gammaherpesvirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1526-1539. [PMID: 37819784 PMCID: PMC10841120 DOI: 10.4049/jimmunol.2300294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.
Collapse
Affiliation(s)
- Emily A. Holt
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Courtney M. Waytashek
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Katherine J. Sessions
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Loredana Asarian
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
8
|
Smolders J, Steelman AJ, Inoue M. Editorial: Environmental factors influencing the immune functions during multiple sclerosis. Front Immunol 2023; 14:1141014. [PMID: 36793707 PMCID: PMC9923231 DOI: 10.3389/fimmu.2023.1141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joost Smolders
- Department of Neurology, MS center ErasMS, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Immunology, MS center ErasMS, Erasmus Medical Center, Rotterdam, Netherlands.,Neuroimmunology Research group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign Urbana, Urbana, IL, United States
| | - Makoto Inoue
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| |
Collapse
|
9
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
10
|
Mouat IC, Allanach JR, Fettig NM, Fan V, Girard AM, Shanina I, Osborne LC, Vorobeychik G, Horwitz MS. Gammaherpesvirus infection drives age-associated B cells toward pathogenicity in EAE and MS. SCIENCE ADVANCES 2022; 8:eade6844. [PMID: 36427301 PMCID: PMC9699667 DOI: 10.1126/sciadv.ade6844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
While age-associated B cells (ABCs) are known to expand and persist following viral infection and during autoimmunity, their interactions are yet to be studied together in these contexts. Here, we directly compared CD11c+T-bet+ ABCs using models of Epstein-Barr virus (EBV), gammaherpesvirus 68 (γHV68), multiple sclerosis (MS), and experimental autoimmune encephalomyelitis (EAE), and found that each drives the ABC population to opposing phenotypes. EBV infection has long been implicated in MS, and we have previously shown that latent γHV68 infection exacerbates EAE. Here, we demonstrate that ABCs are required for γHV68-enhanced disease. We then show that the circulating ABC population is expanded and phenotypically altered in people with relapsing MS. In this study, we show that viral infection and autoimmunity differentially affect the phenotype of ABCs in humans and mice, and we identify ABCs as functional mediators of viral-enhanced autoimmunity.
Collapse
Affiliation(s)
- Isobel C. Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica R. Allanach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vina Fan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna M. Girard
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Galina Vorobeychik
- Fraser Health Multiple Sclerosis Clinic, Burnaby, British Columbia, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author.
| |
Collapse
|
11
|
Hassani A, Khan G. What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis? Front Immunol 2022; 13:1036155. [PMID: 36466898 PMCID: PMC9712437 DOI: 10.3389/fimmu.2022.1036155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/02/2022] [Indexed: 02/20/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), marked primarily by demyelination, inflammation, and neurodegeneration. While the prevalence and incidence rates of MS are on the rise, the etiology of the disease remains enigmatic. Nevertheless, it is widely acknowledged that MS develops in persons who are both genetically predisposed and exposed to a certain set of environmental factors. One of the most plausible environmental culprits is Epstein-Barr virus (EBV), a common herpesvirus asymptomatically carried by more than 90% of the adult population. How EBV induces MS pathogenesis remains unknown. A comprehensive understanding of the biology of EBV infection and how it contributes to dysfunction of the immune system and CNS, requires an appreciation of the viral dynamics within the host. Here, we aim to outline the different animal models, including nonhuman primates (NHP), rodents, and rabbits, that have been used to elucidate the link between EBV and MS. This review particularly focuses on how the disruption in virus-immune interaction plays a role in viral pathogenesis and promotes neuroinflammation. We also summarize the effects of virus titers, age of animals, and route of inoculation on the neuroinvasiveness and neuropathogenic potential of the virus. Reviewing the rich data generated from these animal models could provide directions for future studies aimed to understand the mechanism(s) by which EBV induces MS pathology and insights for the development of prophylactic and therapeutic interventions that could ameliorate the disease.
Collapse
Affiliation(s)
- Asma Hassani
- Dept of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Molecular Mimicry Analyses Unveiled the Human Herpes Simplex and Poxvirus Epitopes as Possible Candidates to Incite Autoimmunity. Pathogens 2022; 11:pathogens11111362. [PMID: 36422613 PMCID: PMC9696880 DOI: 10.3390/pathogens11111362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical epidemiological studies have reported that viral infections cause autoimmune pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry cause autoreactive T cells to cross-activate. The aim of the current study was to implement immunoinformatics approaches to infer sequence- and structure-based molecular mimicry between viral and human proteomic datasets. The protein sequences of all the so far known human-infecting viruses were obtained from the VIPR database, and complete human proteome data were retrieved from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence analyses, 24 viral proteins were identified with significant sequence similarity to human proteins. PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and 3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and poxvirus infection-mediated autoimmune disorders in humans.
Collapse
|
13
|
Cardani‐Boulton A, Boylan BT, Stetsenko V, Bergmann CC. B cells going viral in the CNS: Dynamics, complexities, and functions of B cells responding to viral encephalitis. Immunol Rev 2022; 311:75-89. [PMID: 35984298 PMCID: PMC9804320 DOI: 10.1111/imr.13124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A diverse number of DNA and RNA viruses have the potential to invade the central nervous system (CNS), causing inflammation and injury to cells that have a limited capacity for repair and regeneration. While rare, viral encephalitis in humans is often fatal and survivors commonly suffer from permanent neurological sequelae including seizures. Established treatment options are extremely limited, predominantly relying on vaccines, antivirals, or supportive care. Many viral CNS infections are characterized by the presence of antiviral antibodies in the cerebral spinal fluid (CSF), indicating local maintenance of protective antibody secreting cells. However, the mechanisms maintaining these humoral responses are poorly characterized. Furthermore, while both viral and autoimmune encephalitis are associated with the recruitment of diverse B cell subsets to the CNS, their protective and pathogenic roles aside from antibody production are just beginning to be understood. This review will focus on the relevance of B cell responses to viral CNS infections, with an emphasis on the importance of intrathecal immunity and the potential contribution to autoimmunity. Specifically, it will summarize the newest data characterizing B cell activation, differentiation, migration, and localization in clinical samples as well as experimental models of acute and persistent viral encephalitis.
Collapse
Affiliation(s)
| | - Brendan T. Boylan
- Cleveland Clinic Lerner Research Institute, NeuroscienceClevelandOhioUSA,Case Western Reserve University School of Medicine, PathologyClevelandOhioUSA
| | - Volodymyr Stetsenko
- Cleveland Clinic Lerner Research Institute, NeuroscienceClevelandOhioUSA,Kent State University, School of Biomedical SciencesKentOhioUSA
| | | |
Collapse
|
14
|
Márquez AC, Croft C, Shanina I, Horwitz MS. Influence of Type I Interferons in Gammaherpesvirus-68 and Its Influence on EAE Enhancement. Front Immunol 2022; 13:858583. [PMID: 35874728 PMCID: PMC9301468 DOI: 10.3389/fimmu.2022.858583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) has been identified as a putative trigger of multiple sclerosis (MS). Previously, we reported that mice latently infected with murine gammaherpesvirus 68 (γHV-68), the murine homolog to EBV, and induced for experimental autoimmune encephalomyelitis (EAE), developed an enhanced disease more reminiscent of MS. These prior results showed that expression of CD40 on CD11b+CD11c+ cells in latently infected mice was required to prime the strong Th1 response driving disease as well as decreasing Treg frequencies in the periphery and CNS. Subsequent work demonstrated that transfer of B cells from latently infected mice was sufficient to enhance disease. Herein, we show that B cells from infected mice do not need type I IFN signaling to drive a strong Th1 response, yet are important in driving infiltration of the CNS by CD8+ T cells. Given the importance of type I IFNs in MS, we used IFNARko mice in order to determine if type I IFN signaling was important in the enhancement of EAE in latently infected mice. We found that while type I IFNs are important for the control of γHV-68 infection and maintenance of latency, they do not have a direct effect in the development of enhanced EAE.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carys Croft
- Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marc Steven Horwitz,
| |
Collapse
|
15
|
Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci 2022; 79:402. [PMID: 35798993 PMCID: PMC9263041 DOI: 10.1007/s00018-022-04433-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Age-associated B cells (ABCs) are a transcriptionally and functionally unique B cell population. In addition to arising with age and following infection, ABCs are expanded during autoimmune disease, including those with systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. The exact nature of how ABCs impact disease remains unclear. Here, we review what is known regarding ABC development and distribution during diseases including systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. We discuss possible mechanisms by which ABCs could contribute to disease, including the production of cytokines and autoantibodies or stimulation of T cells. Finally, we speculate on how ABCs might act as mediators between sex, infection, and autoimmune disease, and discuss avenues for further research.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin Goldberg
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Pham HPT, Gupta R, Lindsey JW. The cellular immune response against Epstein-Barr virus decreases during ocrelizumab treatment. Mult Scler Relat Disord 2021; 56:103282. [PMID: 34624646 DOI: 10.1016/j.msard.2021.103282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) is strongly associated with multiple sclerosis (MS). After initial infection, EBV maintains a life-long latent infection in B lymphocytes. Depletion of B lymphocytes from the blood with the anti-CD20 antibody ocrelizumab markedly reduces disease activity in MS. Our objective was to measure the effect of ocrelizumab treatment on the cellular immune response to EBV. METHODS Blood was collected from MS patients before and during ocrelizumab treatment. Peripheral blood mononuclear cells were stimulated with various antigens, and the response was measured using tritiated thymidine for proliferation and ELIspot for number of interferon-γ producing cells. RESULTS The proliferation to autologous EBV-infected cells (LCL) was decreased after both 6 and 12 months of treatment. The number of interferon-γ producing cells on ELIspot in response to stimulation with either LCL or EBV also decreased. Responses to varicella zoster virus, influenza virus, and a mitogen did not change significantly. CONCLUSION The cellular immune response to EBV and LCL decreases during treatment with ocrelizumab. The benefit of ocrelizumab for MS may be through removal of EBV antigenic stimulus.
Collapse
Affiliation(s)
- H Phuong T Pham
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Resmi Gupta
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J William Lindsey
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Abstract
A mouse model supports the hypothesis that latent Epstein-Barr virus exacerbates the symptoms of rheumatoid arthritis.
Collapse
Affiliation(s)
- David Taussig
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yariv Wine
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Mouat IC, Morse ZJ, Shanina I, Brown KL, Horwitz MS. Latent gammaherpesvirus exacerbates arthritis through modification of age-associated B cells. eLife 2021; 10:e67024. [PMID: 34080972 PMCID: PMC8337075 DOI: 10.7554/elife.67024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with rheumatoid arthritis (RA) in adults, though the nature of the relationship remains unknown. Herein, we have examined the contribution of viral infection to the severity of arthritis in mice. We have provided the first evidence that latent gammaherpesvirus infection enhances clinical arthritis, modeling EBV's role in RA. Mice latently infected with a murine analog of EBV, gammaherpesvirus 68 (γHV68), develop more severe collagen-induced arthritis and a Th1-skewed immune profile reminiscent of human disease. We demonstrate that disease enhancement requires viral latency and is not due to active virus stimulation of the immune response. Age-associated B cells (ABCs) are associated with several human autoimmune diseases, including arthritis, though their contribution to disease is not well understood. Using ABC knockout mice, we have provided the first evidence that ABCs are mechanistically required for viral enhancement of disease, thereby establishing that ABCs are impacted by latent gammaherpesvirus infection and provoke arthritis.
Collapse
Affiliation(s)
- Isobel C Mouat
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| | - Zachary J Morse
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| | - Kelly L Brown
- Department of Pediatrics, Division of Rheumatology, and British Columbia Children's Hospital Research Institute, The University of British ColumbiaVancouverCanada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| |
Collapse
|
19
|
Duarte LF, Altamirano-Lagos MJ, Tabares-Guevara JH, Opazo MC, Díaz M, Navarrete R, Muza C, Vallejos OP, Riedel CA, Bueno SM, Kalergis AM, González PA. Asymptomatic Herpes Simplex Virus Type 1 Infection Causes an Earlier Onset and More Severe Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:635257. [PMID: 33679788 PMCID: PMC7928309 DOI: 10.3389/fimmu.2021.635257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an increasingly prevalent progressive autoimmune and debilitating chronic disease that involves the detrimental recognition of central nervous system (CNS) antigens by the immune system. Although significant progress has been made in the last decades on the biology of MS and the identification of novel therapies to treat its symptoms, the etiology of this disease remains unknown. However, recent studies have suggested that viral infections may contribute to disease onset. Interestingly, a potential association between herpes simplex virus type 1 (HSV-1) infection and MS has been reported, yet a direct relationship among both has not been conclusively demonstrated. Experimental autoimmune encephalomyelitis (EAE) recapitulates several aspects of MS in humans and is widely used to study this disease. Here, we evaluated the effect of asymptomatic brain infection by HSV-1 on the onset and severity of EAE in C57BL/6 mice. We also evaluated the effect of infection with an HSV-1-mutant that is attenuated in neurovirulence and does not cause encephalitis. Importantly, we observed more severe EAE in mice previously infected either, with the wild-type (WT) or the mutant HSV-1, as compared to uninfected control mice. Also, earlier EAE onset was seen after WT virus inoculation. These findings support the notion that a previous exposure to HSV-1 can accelerate and enhance EAE, which suggests a potential contribution of asymptomatic HSV-1 to the onset and severity of MS.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Asymptomatic Diseases
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/virology
- Capillary Permeability
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/virology
- Female
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Mutation
- Severity of Illness Index
- Time Factors
- Virulence
- Mice
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J. Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge H. Tabares-Guevara
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Máximo Díaz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Romina Navarrete
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Muza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Márquez AC, Shanina I, Horwitz MS. Multiple Sclerosis-Like Symptoms in Mice Are Driven by Latent γHerpesvirus-68 Infected B Cells. Front Immunol 2020; 11:584297. [PMID: 33329556 PMCID: PMC7711133 DOI: 10.3389/fimmu.2020.584297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a combination of genetic and environmental factors. It is believed that previous infection with Epstein Barr Virus (EBV) plays an important role in the development of MS. Previously, we developed a murine model where latent infection with gamma herpesvirus 68 (γHV-68), a murine homolog to EBV, enhanced the symptoms of experimental autoimmune encephalomyelitis (EAE), resulting in disease that more closely resembles MS in humans. Here, we explored the conditions that were necessary for EAE enhancement. We showed that latently infected CD19+IgD− B cells were capable of enhancing EAE symptoms when transferred from mice previously infected with γHV-68 into uninfected mice. We also observed a prevention of enhancement when B cells were depleted before infection. However, depletion after the establishment of latency only partially reduced EAE. This indicated the existence of a mechanism where B cells play an important role as antigen presenting cells (APCs) prior to EAE induction for the priming of Th1 cells. It is possible that these signals persist even after B cell depletion, strongly suggesting a paracrine signaling modulation of non-B cell APCs. These results strongly support the concept that EBV contributes to the development of autoimmunity and highlights the need for a vaccine against EBV that could limit or prevent multiple sclerosis development.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Steinbach K, Vincenti I, Egervari K, Kreutzfeldt M, van der Meer F, Page N, Klimek B, Rossitto-Borlat I, Di Liberto G, Muschaweckh A, Wagner I, Hammad K, Stadelmann C, Korn T, Hartley O, Pinschewer DD, Merkler D. Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Sci Transl Med 2020; 11:11/498/eaav5519. [PMID: 31243152 DOI: 10.1126/scitranslmed.aav5519] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/13/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Epidemiological studies associate viral infections during childhood with the risk of developing autoimmune disease during adulthood. However, the mechanistic link between these events remains elusive. We report that transient viral infection of the brain in early life, but not at a later age, precipitates brain autoimmune disease elicited by adoptive transfer of myelin-specific CD4+ T cells at sites of previous infection in adult mice. Early-life infection of mouse brains imprinted a chronic inflammatory signature that consisted of brain-resident memory T cells expressing the chemokine (C-C motif) ligand 5 (CCL5). Blockade of CCL5 signaling via C-C chemokine receptor type 5 prevented the formation of brain lesions in a mouse model of autoimmune disease. In mouse and human brain, CCL5+ TRM were located predominantly to sites of microglial activation. This study uncovers how transient brain viral infections in a critical window in life might leave persisting chemotactic cues and create a long-lived permissive environment for autoimmunity.
Collapse
Affiliation(s)
- Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Franziska van der Meer
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Irène Rossitto-Borlat
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Andreas Muschaweckh
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University Munich, 81675 Munich, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Karim Hammad
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Christine Stadelmann
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University Munich, 81675 Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), 80539 Munich, Germany
| | - Oliver Hartley
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Mintaka Foundation for Medical Research, 1205 Geneva, Switzerland
| | - Daniel D Pinschewer
- Department of Biomedicine-Haus Petersplatz, University of Basel, 4031 Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland. .,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
22
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
23
|
Blackman MA. From Superantigens to "Real" Viral Antigens. Viral Immunol 2020; 33:211-214. [PMID: 32286177 PMCID: PMC7185356 DOI: 10.1089/vim.2019.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Studies inspired by Dr. Peter Doherty led to over 16 years of research into the mouse gamma-herpesvirus, γHV68, in the Blackman laboratory. Progress on our understanding of γHV68 biology include insight into the establishment of latency, immune control of the acute and latent stages of infection and experimental vaccines, is described here.
Collapse
|
24
|
Abstract
The etiology and pathogenesis of MS is likely to involve multiple factors interacting with each other, and the role of infectious and viral agents is still under debate, however a consistent amount of studies suggests that some viruses are associated with the disease. The strongest documentation has come from the detection of viral nucleic acid or antigen or of an anti-viral antibody response in MS patients. A further step for the study of the mechanism viruses might be involved in can be made using in vitro and in vivo models. While in vitro models, based on glial and neural cell lines from various sources are widely used, in vivo animal models present challenges. Indeed neurotropic animal viruses are currently used to study demyelination in well-established models, but animal models of demyelination by human virus infection have only recently been developed, using animal gammaherpesviruses closely related to Epstein Barr virus (EBV), or using marmosets expressing the specific viral receptor for Human Herpesvirus 6 (HHV-6). The present review will illustrate the main potential mechanisms of MS pathogenesis possibly associated with viral infections and viruses currently used to study demyelination in animal models. Then the viruses most strongly linked with MS will be discussed, in the perspective that more than one virus might have a role, with varying degrees of interaction, contributing to MS heterogeneity.
Collapse
Affiliation(s)
- Donatella Donati
- Neurologia e Neurofisiologia Clinica, Azienda Ospedaliera Universitaria Senese I 53100 Siena, Italy
| |
Collapse
|
25
|
Lupia T, Milia MG, Atzori C, Gianella S, Audagnotto S, Imperiale D, Mighetto L, Pirriatore V, Gregori G, Lipani F, Ghisetti V, Bonora S, Di Perri G, Calcagno A. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 2020; 34:373-380. [PMID: 31764071 PMCID: PMC7773520 DOI: 10.1097/qad.0000000000002442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The current study aimed to investigate whether cerebrospinal fluid (CSF) Epstein-Barr virus (EBV) or cytomegalovirus (CMV) DNA was associated with viral, inflammatory and neuronal damage biomarkers in people living with HIV (PLWH). DESIGN A cross-sectional diagnostic study on CSF fluid samples in patients undergoing lumbar punctures for clinical reasons, to better understand the role of EBV and CMV in the CNS on HIV RNA replication, blood-brain-barrier (BBB) damage and biomarkers of neuronal damage/inflammation. METHODS EBV, CMV DNA and HIV RNA were measured on CSF, through real time (RT)-PCR, from PLWHs undergoing lumbar punctures for clinical reasons (excluding oncho-haematological comorbidities). Immune-enzymatic assays evaluated blood-brain barrier inflammation and damage. Patients were stratified according to plasma HIV RNA levels in viremic (≥50 copies/ml) and aviremic (<50 copies/ml). RESULTS We included 297 participants. Among 167 viremic patients CSF EBV and CMV DNA were detectable in 42 (25.1%) and 10 (6.3%) participants; among 130 aviremic individuals CSF EBV and CMV DNA were detectable in 12 (9.2%) and 0 (0%) participants, respectively. In viremic group detectable CSF EBV DNA was associated with CSF pleocytosis (P < 0.001), higher CSF HIV RNA (P < 0.001) and neopterin levels (P = 0.002). In aviremic participants detectable EBV DNA was associated with pleocytosis (P = 0.056), higher neopterin (P = 0.027) and immune globulins (P = 0.016) in the CSF; CSF escape was more common in those with detectable EBV DNA (50 vs. 21.2%, P = 0.036). CONCLUSION EBV DNA was frequently detected in the CSF of viremic and fewer aviremic patients on antiretroviral treatment. In PLWH without clinical evidence of encephalitis CSF EBV DNA was associated with higher biomarkers levels of neuronal damage/inflammation. The role of EBV reactivation in HIV-associated central nervous system disorders warrants further studies.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Maria Grazia Milia
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Cristiana Atzori
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Sara Gianella
- University of California San Diego, La Jolla, California, USA
| | - Sabrina Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Daniele Imperiale
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Lorenzo Mighetto
- Laboratory of Immunology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Veronica Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Gabriella Gregori
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Filippo Lipani
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Valeria Ghisetti
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| |
Collapse
|
26
|
Animal Models for Gammaherpesvirus Infections: Recent Development in the Analysis of Virus-Induced Pathogenesis. Pathogens 2020; 9:pathogens9020116. [PMID: 32059472 PMCID: PMC7167833 DOI: 10.3390/pathogens9020116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV) is involved in the pathogenesis of various lymphomas and carcinomas, whereas Kaposi’s sarcoma-associated herpesvirus (KSHV) participates in the pathogenesis of endothelial sarcoma and lymphomas. EBV and KSHV are responsible for 120,000 and 44,000 annual new cases of cancer, respectively. Despite this clinical importance, no chemotherapies or vaccines have been developed for virus-specific treatment and prevention of these viruses. Humans are the only natural host for both EBV and KSHV, and only a limited species of laboratory animals are susceptible to their experimental infection; this strict host tropism has hampered the development of their animal models and thereby impeded the study of therapeutic and prophylactic strategies. To overcome this difficulty, three main approaches have been used to develop animal models for human gammaherpesvirus infections. The first is experimental infection of laboratory animals with EBV or KSHV. New-world non-human primates (NHPs) and rabbits have been mainly used in this approach. The second is experimental infection of laboratory animals with their own inherent gammaherpesviruses. NHPs and mice have been mainly used here. The third, a recent trend, employs experimental infection of EBV or KSHV or both to immunodeficient mice reconstituted with human immune system components (humanized mice). This review will discuss how these three approaches have been used to reproduce human clinical conditions associated with gammaherpesviruses and to analyze the mechanisms of their pathogenesis.
Collapse
|
27
|
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med 2019; 26:296-310. [PMID: 31862243 PMCID: PMC7106557 DOI: 10.1016/j.molmed.2019.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
New treatments for multiple sclerosis (MS) focused on B cells have created an atmosphere of excitement in the MS community. B cells are now known to play a major role in disease, demonstrated by the highly impactful effect of a B cell-depleting antibody on controlling MS. The idea that a virus may play a role in the development of MS has a long history and is supported mostly by studies demonstrating a link between B cell-tropic Epstein–Barr virus (EBV) and disease onset. Efforts to develop antiviral strategies for treating MS are underway. Although gaps remain in our understanding of the etiology of MS, the role, if any, of viruses in propagating pathogenic immune responses deserves attention.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Pender
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tap Maniar
- Clinical Development, Torque Therapeutics, Boston, MA, USA
| | - Ed Croze
- IRIS-Bay, San Francisco, CA, USA.
| | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University London, Barts and the London School of Medicine, London, UK
| | - Manher A Joshi
- Medical Affairs, Atara Biotherapeutics, South San Francisco, CA, USA
| |
Collapse
|
28
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Leibovitch EC, Caruso B, Ha SK, Schindler MK, Lee NJ, Luciano NJ, Billioux BJ, Guy JR, Yen C, Sati P, Silva AC, Reich DS, Jacobson S. Herpesvirus trigger accelerates neuroinflammation in a nonhuman primate model of multiple sclerosis. Proc Natl Acad Sci U S A 2018; 115:11292-11297. [PMID: 30322946 PMCID: PMC6217390 DOI: 10.1073/pnas.1811974115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathogens, particularly human herpesviruses (HHVs), are implicated as triggers of disease onset/progression in multiple sclerosis (MS) and other neuroinflammatory disorders. However, the time between viral acquisition in childhood and disease onset in adulthood complicates the study of this association. Using nonhuman primates, we demonstrate that intranasal inoculations with HHV-6A and HHV-6B accelerate an MS-like neuroinflammatory disease, experimental autoimmune encephalomyelitis (EAE). Although animals inoculated intranasally with HHV-6 (virus/EAE marmosets) were asymptomatic, they exhibited significantly accelerated clinical EAE compared with control animals. Expansion of a proinflammatory CD8 subset correlated with post-EAE survival in virus/EAE marmosets, suggesting that a peripheral (viral?) antigen-driven expansion may have occurred post-EAE induction. HHV-6 viral antigen in virus/EAE marmosets was markedly elevated and concentrated in brain lesions, similar to previously reported localizations of HHV-6 in MS brain lesions. Collectively, we demonstrate that asymptomatic intranasal viral acquisition accelerates subsequent neuroinflammation in a nonhuman primate model of MS.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Breanna Caruso
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Seung Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Bridgette J Billioux
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph R Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Cecil Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
30
|
Chen X, Zhou S, Li H. Evodiamine alleviates severe pneumonia induced by methicillin-susceptible Staphylococcus aureus following cytomegalovirus reactivation through suppressing NF-κB and MAPKs. Int J Mol Med 2018; 42:3247-3255. [PMID: 30320369 PMCID: PMC6202108 DOI: 10.3892/ijmm.2018.3929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/25/2018] [Indexed: 01/11/2023] Open
Abstract
Viral and bacterial severe pneumonia are leading causes of mortality across the globe. Evodiamine (Evo), a botanical alkaloid, has anti-inflammatory and antibacterial properties. In the present study, the effect of Evo on severe pneumonia induced by methicillin-susceptible Staphylococcus aureus (MSSA) following cytomegalovirus (CMV) reactivation, and its mechanism, were evaluated. In vitro, the protein and mRNA expression levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay and reverse transcription-quantitative polymerase chain reaction analysis, respectively. The expression levels of associated proteins of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways were measured by western blot analysis. In vivo, mortality rate, weight loss, histological changes, lung bacteria count, inflammatory cytokines, and the expression proteins of associated with the NF-κB and MAPK signaling pathways were examined. The results revealed that Evo dose-dependently reduced the protein and mRNA expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, and inhibited the levels of phosphorylated (p-) inhibitor of NF-κBα, p-extracellular signal-regulated kinase, p-c-Jun N-terminal kinase and p-p38, and decreased the nuclear trans-location of NF-κB/p65 in BEAS-2B cells infected with MSSA. Furthermore, Evo markedly improved survival rate, decreased body weight loss and bacterial count, and attenuated lung histological alterations and the levels of inflammatory factors. In addition, the NF-κB and MAPK signaling pathways were significantly inhibited. Taken together, Evo effectively alleviated pneumonia via the NF-κB and MAPK pathways and may be a potential therapeutic agent for treating severe pneumonia.
Collapse
Affiliation(s)
- Xin Chen
- Department of Emergency, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Hui Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
31
|
Cruz-Muñoz ME, Fuentes-Pananá EM. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol 2018; 8:2521. [PMID: 29354096 PMCID: PMC5760548 DOI: 10.3389/fmicb.2017.02521] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system.
Collapse
Affiliation(s)
- Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
32
|
Burnard S, Lechner-Scott J, Scott RJ. EBV and MS: Major cause, minor contribution or red-herring? Mult Scler Relat Disord 2017; 16:24-30. [DOI: 10.1016/j.msard.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
33
|
Vanheusden M, Broux B, Welten SPM, Peeters LM, Panagioti E, Van Wijmeersch B, Somers V, Stinissen P, Arens R, Hellings N. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci Rep 2017; 7:663. [PMID: 28386103 PMCID: PMC5428769 DOI: 10.1038/s41598-017-00645-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Cytomegalovirus (CMV) is a latent virus which causes chronic activation of the immune system. Here, we demonstrate that cytotoxic and pro-inflammatory CD4+CD28null T cells are only present in CMV seropositive donors and that CMV-specific Immunoglobulin (Ig) G titers correlate with the percentage of these cells. In vitro stimulation of peripheral blood mononuclear cells with CMVpp65 peptide resulted in the expansion of pre-existing CD4+CD28null T cells. In vivo, we observed de novo formation, as well as expansion of CD4+CD28null T cells in two different chronic inflammation models, namely the murine CMV (MCMV) model and the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis (MS). In EAE, the percentage of peripheral CD4+CD28null T cells correlated with disease severity. Pre-exposure to MCMV further aggravated EAE symptoms, which was paralleled by peripheral expansion of CD4+CD28null T cells, increased splenocyte MOG reactivity and higher levels of spinal cord demyelination. Cytotoxic CD4+ T cells were identified in demyelinated spinal cord regions, suggesting that peripherally expanded CD4+CD28null T cells migrate towards the central nervous system to inflict damage. Taken together, we demonstrate that CMV drives the expansion of CD4+CD28null T cells, thereby boosting the activation of disease-specific CD4+ T cells and aggravating autoimmune mediated inflammation and demyelination.
Collapse
Affiliation(s)
- Marjan Vanheusden
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Bieke Broux
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Suzanne P M Welten
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Liesbet M Peeters
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Eleni Panagioti
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Bart Van Wijmeersch
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.,Rehabilitation and Multiple Sclerosis Centre, Overpelt, Belgium
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Ramon Arens
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Niels Hellings
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.
| |
Collapse
|
34
|
Milovanovic J, Popovic B, Milovanovic M, Kvestak D, Arsenijevic A, Stojanovic B, Tanaskovic I, Krmpotic A, Arsenijevic N, Jonjic S, Lukic ML. Murine Cytomegalovirus Infection Induces Susceptibility to EAE in Resistant BALB/c Mice. Front Immunol 2017; 8:192. [PMID: 28289417 PMCID: PMC5326788 DOI: 10.3389/fimmu.2017.00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
In contrast to C57BL/6 mice, BALB/c mice are relatively resistant to the induction of experimental autoimmune encephalomyelitis (EAE) after challenge with MOG35–55 peptide. Here, we provide the first evidence that infection with murine cytomegalovirus (MCMV) in adulthood abrogates this resistance. Infected BALB/c mice developed clinical and histological signs similar to those seen in susceptible C57BL/6 mice. In addition to CD4+ cells, large proportion of cells in the infiltrate of diseased BALB/c mice was CD8+, similar with findings in multiple sclerosis. CD8+ cells that responded to ex vivo restimulation with MOG35–55 were not specific for viral epitopes pp89 and m164. MCMV infection favors proinflammatory type of dendritic cells (CD86+CD40+CD11c+) in the peripheral lymph organs, M1 type of microglia in central nervous system, and increases development of Th1/Th17 encephalitogenic cells. This study indicates that MCMV may enhance autoimmune neuropathology and abrogate inherent resistance to EAE in mouse strain by enhancing proinflammatory phenotype of antigen-presenting cells, Th1/Th17, and CD8 response to MOG35–55.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Faculty of Medical Sciences, Institute of Histology, University of Kragujevac, Kragujevac, Serbia
| | - Branka Popovic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Daria Kvestak
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Faculty of Medical Sciences, Institute of Pathophysiology, University of Kragujevac, Kragujevac, Serbia
| | - Irena Tanaskovic
- Faculty of Medical Sciences, Institute of Histology, University of Kragujevac , Kragujevac , Serbia
| | - Astrid Krmpotic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
35
|
Vaitaitis GM, Yussman MG, Waid DM, Wagner DH. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS One 2017; 12:e0172037. [PMID: 28192476 PMCID: PMC5305068 DOI: 10.1371/journal.pone.0172037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund's adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Martin G. Yussman
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Dan M. Waid
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David H. Wagner
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Tao L, Reese TA. Making Mouse Models That Reflect Human Immune Responses. Trends Immunol 2017; 38:181-193. [PMID: 28161189 DOI: 10.1016/j.it.2016.12.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 02/08/2023]
Abstract
Humans are infected with a variety of acute and chronic pathogens over the course of their lives, and pathogen-driven selection has shaped the immune system of humans. The same is likely true for mice. However, laboratory mice we use for most biomedical studies are bred in ultra-hygienic environments, and are kept free of specific pathogens. We review recent studies that indicate that pathogen infections are important for the basal level of activation and the function of the immune system. Consideration of these environmental exposures of both humans and mice can potentially improve mouse models of human disease.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Dong S, Forrest JC, Liang X. Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:225-236. [DOI: 10.1007/978-981-10-5765-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
McKay KA, Kowalec K, Brinkman F, Finlay BB, Horwitz M, Manges AR, Osborne L, Tremlett H. From bugs to brains: The microbiome in neurological health. Mult Scler Relat Disord 2016; 12:1-3. [PMID: 28283098 DOI: 10.1016/j.msard.2016.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/17/2016] [Indexed: 12/24/2022]
Abstract
Knowledge surrounding the trillions of microbes that inhabit the human gut has bloomed exponentially in recent years, and the emerging concept of a gut-brain axis represents a major shift in how we think about neurological health. A recent workshop at the University of British Columbia, Canada brought together multi-disciplinary leaders in the field of microbiomics and brain health and aimed to serve as a springboard for future combined endeavors in these areas. This article provides the motivation for, and overview of, the workshop, and the next steps in establishing a cross-disciplinary initiative on Brain Health and the Microbiome.
Collapse
Affiliation(s)
- Kyla A McKay
- Division of Neurology, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kaarina Kowalec
- Division of Neurology, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Fiona Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, and the Departments of Microbiology & Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Marc Horwitz
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Osborne
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Helen Tremlett
- Division of Neurology, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Filyk HA, Osborne LC. The Multibiome: The Intestinal Ecosystem's Influence on Immune Homeostasis, Health, and Disease. EBioMedicine 2016; 13:46-54. [PMID: 27863931 PMCID: PMC5264270 DOI: 10.1016/j.ebiom.2016.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
Mammalian evolution has occurred in the presence of mutualistic, commensal, and pathogenic micro- and macro-organisms for millennia. The presence of these organisms during mammalian evolution has allowed for intimate crosstalk between these colonizing species and the host immune system. In this review, we introduce the concept of the ‘multibiome’ to holistically refer to the biodiverse collection of bacteria, viruses, fungi and multicellular helminthic worms colonizing the mammalian intestine. Furthermore, we discuss new insights into multibiome-host interactions in the context of host-protective immunity and immune-mediated diseases, including inflammatory bowel disease and multiple sclerosis. Finally, we provide reasons to account for the multibiome in experimental design, analysis and in therapeutic applications. The intestinal multibiome is composed of bacteria, viruses, fungi, and eukaryotes. Mammals evolved alongside a complex and biodiverse multibiome. Cross-talk between the multibiome and the host regulates immunity and inflammation.
Collapse
Affiliation(s)
- Heather A Filyk
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
40
|
Abstract
Chronic viruses, such as herpesviruses, shape host physiology. These viruses modulate the inflammatory state of the immune system and have evolved to harness inflammation as a mechanism to regulate viral latency and reactivation. In this review, I examine some of the recent work demonstrating the important role of inflammation in the regulation of the herpesvirus life cycle and discuss recent work that implicates coinfection in the regulation of herpesvirus latency.
Collapse
|
41
|
Márquez AC, Horwitz MS. The Role of Latently Infected B Cells in CNS Autoimmunity. Front Immunol 2015; 6:544. [PMID: 26579121 PMCID: PMC4623415 DOI: 10.3389/fimmu.2015.00544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022] Open
Abstract
The onset of multiple sclerosis (MS) is caused by both genetic and environmental factors. Among the environmental factors, it is believed that previous infection with Epstein–Barr virus (EBV) may contribute in the development of MS. EBV has been associated with other autoimmune diseases, such as systemic lupus erythematous, and cancers like Burkitt’s lymphoma. EBV establishes a life-long latency in B cells with occasional reactivation of the virus throughout the individual’s life. The role played by B cells in MS pathology has been largely studied, yet is not clearly understood. In MS patients, Rituximab, a novel treatment that targets CD20+ B cells, has proven to have successful results in diminishing the number of relapses in remitting relapsing MS; however, the mechanism of how this drug acts has not been clearly established. In this review, we analyze the evidence of how B cells latently infected with EBV might be altering the immune system response and helping in the development of MS. We will also discuss how animal models, such as experimental autoimmune encephalomyelitis (EAE) and murine gammaherpesvirus-68 (γHV-68), can be used as powerful tools in the study of the relationship between EBV, MS, and B cells.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia , Vancouver, BC , Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
42
|
Steelman AJ. Infection as an Environmental Trigger of Multiple Sclerosis Disease Exacerbation. Front Immunol 2015; 6:520. [PMID: 26539193 PMCID: PMC4609887 DOI: 10.3389/fimmu.2015.00520] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 01/19/2023] Open
Abstract
Over the past several decades, significant advances have been made in identifying factors that contribute to the pathogenesis of multiple sclerosis (MS) and have culminated in the approval of some effective therapeutic strategies for disease intervention. However, the mechanisms by which environmental factors, such as infection, contribute to the pathogenesis and/or symptom exacerbation remain to be fully elucidated. Relapse frequency in MS patients contributes to neurological impairment and, in the initial phases of disease, serves as a predictor of poor disease prognosis. The purpose of this review is to examine the evidence that supports a role for peripheral infection in modulating the natural history of this disease. Evidence supporting a role for infection in promoting exacerbation in animal models of MS is also reviewed. Finally, a few mechanisms by which infection may exacerbate symptoms of MS and other neurological diseases are discussed. Those who comprise the majority of MS patients acquire approximately two upper-respiratory infections per year; furthermore, this type of infection doubles the risk for MS relapse, underscoring the contribution of this relationship as being potentially important and particularly detrimental.
Collapse
Affiliation(s)
- Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign , Urbana, IL , USA ; Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, IL , USA ; Division of Nutritional Sciences, University of Illinois Urbana-Champaign , Urbana, IL , USA
| |
Collapse
|
43
|
Latent virus infection upregulates CD40 expression facilitating enhanced autoimmunity in a model of multiple sclerosis. Sci Rep 2015; 5:13995. [PMID: 26356194 PMCID: PMC4564856 DOI: 10.1038/srep13995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS) by multiple groups working worldwide. Previously, we reported that when experimental autoimmune encephalomyelitis (EAE) was induced in mice latently infected with murine γ-herpesvirus 68 (γHV-68), the murine homolog to EBV, a disease more reminiscent of MS developed. Specifically, MS-like lesions developed in the brain that included equal numbers of IFN-γ producing CD4+ and CD8+ T cells and demyelination, none of which is observed in MOG induced EAE. Herein, we demonstrate that this enhanced disease was dependent on the γHV-68 latent life cycle and was associated with STAT1 and CD40 upregulation on uninfected dendritic cells. Importantly, we also show that, during viral latency, the frequency of regulatory T cells is reduced via a CD40 dependent mechanism and this contributes towards a strong T helper 1 response that resolves in severe EAE disease pathology. Latent γ-herpesvirus infection established a long-lasting impact that enhances subsequent adaptive autoimmune responses.
Collapse
|
44
|
Dunn SE, Gunde E, Lee H. Sex-Based Differences in Multiple Sclerosis (MS): Part II: Rising Incidence of Multiple Sclerosis in Women and the Vulnerability of Men to Progression of this Disease. Curr Top Behav Neurosci 2015; 26:57-86. [PMID: 25690592 DOI: 10.1007/7854_2015_370] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well known that a number of autoimmune diseases including multiple sclerosis (MS) predominantly affect women and there has been much attention directed toward understanding why this is the case. Past research has revealed a number of sex differences in autoimmune responses that can account for the female bias in MS. However, much less is known about why the incidence of MS has increased exclusively in women over the past half century. The recency of this increase suggests that changing environmental or lifestyle factors are interacting with biological sex to increase MS risk predominantly in females. Indeed, a number of recent studies have identified sex-specific differences in the effect of environmental factors on MS incidence. The first part of this chapter will overview this evidence and will discuss the possible scenarios of how the environment may be interacting with autoimmune mechanisms to contribute to the preferential rise in MS incidence in women. Despite the strong female bias in MS incidence, culminating evidence from natural history studies, and imaging and pathology studies suggests that males who develop MS may exhibit a more rapid decline in disability and cognitive functioning than women. Very little is known about the biological basis of this more rapid deterioration, but some insights have been provided by studies in rodent models of demyelination/remyelination. The second part of this chapter will overview the evidence that males with relapsing-onset MS undergo a more rapid progression of disease than females and will discuss potential biological mechanisms that account for this sex difference.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON, Canada. .,General Research Institute, University Health Network, Women's College Research Institute, Toronto, ON, Canada.
| | - Eva Gunde
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.
| | - Hyunwoo Lee
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
45
|
Vanheusden M, Stinissen P, ’t Hart BA, Hellings N. Cytomegalovirus: a culprit or protector in multiple sclerosis? Trends Mol Med 2015; 21:16-23. [DOI: 10.1016/j.molmed.2014.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
|
46
|
Gammaherpesvirus latency differentially impacts the generation of primary versus secondary memory CD8+ T cells during subsequent infection. J Virol 2014; 88:12740-51. [PMID: 25142586 DOI: 10.1128/jvi.02106-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Unlike laboratory animals, humans are infected with multiple pathogens, including the highly prevalent herpesviruses. The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. Mice were first infected with murine gammaherpesvirus 68 (MHV68), a model of Epstein-Barr virus (EBV) infection, and then after latency was established, they were challenged with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV). The initial replication of LCMV was lower in latently infected mice, and the maturation of dendritic cells was abated. Although the number of LCMV-specific effector CD8(+) T cells was not altered, they were skewed to a memory phenotype. In contrast, LCMV-specific effector CD4(+) T cells were increased in latently infected mice compared to those in mice infected solely with LCMV. When the memory phase was reached, latently infected mice had an LCMV-specific memory T cell pool that was increased relative to that found in singly infected mice. Importantly, LCMV-specific memory CD8(+) T cells had decreased CD27 and increased killer cell lectin-like receptor G1 (KLRG1) expression. Upon secondary challenge, LCMV-specific secondary effector CD8(+) T cells expanded and cleared the infection. However, the LCMV-specific secondary memory CD8(+) T cell pool was decreased in latently infected animals, abrogating the boosting effect normally observed following rechallenge. Taken together, these results demonstrate that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. IMPORTANCE CD8(+) T cells are critical for the clearance of intracellular pathogens, including viruses, certain bacteria, and tumors. However, current models for memory CD8(+) T cell differentiation are derived from pathogen-free laboratory mice challenged with a single pathogen or vaccine vector. Unlike laboratory animals, all humans are infected with multiple acute and chronic pathogens, including the highly prevalent herpesviruses Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV), and varicella-zoster virus (VZV). The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. We observed that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. These results suggest that unlike pathogen-free laboratory mice, infection or immunization of latently infected humans may result in the generation of T cells with limited potential for long-term protection.
Collapse
|
47
|
Khsheibun R, Paperna T, Volkowich A, Lejbkowicz I, Avidan N, Miller A. Gene expression profiling of the response to interferon beta in Epstein-Barr-transformed and primary B cells of patients with multiple sclerosis. PLoS One 2014; 9:e102331. [PMID: 25025430 PMCID: PMC4099420 DOI: 10.1371/journal.pone.0102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
The effects of interferon-beta (IFN-β), one of the key immunotherapies used in multiple sclerosis (MS), on peripheral blood leukocytes and T cells have been extensively studied. B cells are a less abundant leukocyte type, and accordingly less is known about the B cell-specific response to IFN-β. To identify gene expression changes and pathways induced by IFN-β in B cells, we studied the in vitro response of human Epstein Barr-transformed B cells (lymphoblast cell lines-LCLs), and validated our results in primary B cells. LCLs were derived from an MS patient repository. Whole genome expression analysis identified 115 genes that were more than two-fold differentially up-regulated following IFN-β exposure, with over 50 previously unrecognized as IFN-β response genes. Pathways analysis demonstrated that IFN-β affected LCLs in a similar manner to other cell types by activating known IFN-β canonical pathways. Additionally, IFN-β increased the expression of innate immune response genes, while down-regulating many B cell receptor pathway genes and genes involved in adaptive immune responses. Novel response genes identified herein, NEXN, DDX60L, IGFBP4, and HAPLN3, B cell receptor pathway genes, CD79B and SYK, and lymphocyte activation genes, LAG3 and IL27RA, were validated as IFN-β response genes in primary B cells. In this study new IFN-β response genes were identified in B cells, with possible implications to B cell-specific functions. The study's results emphasize the applicability of LCLs for studies of human B cell drug response. The usage of LCLs from patient-based repositories may facilitate future studies of drug response in MS and other immune-mediated disorders with a B cell component.
Collapse
Affiliation(s)
- Rana Khsheibun
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Paperna
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anat Volkowich
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
| | - Izabella Lejbkowicz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- * E-mail:
| |
Collapse
|
48
|
Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 2014; 146:1459-69. [PMID: 24508599 PMCID: PMC4009354 DOI: 10.1053/j.gastro.2014.02.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
Advanced sequencing techniques have shown that bacteria are not the only complex and important microbes in the human intestine. Nonbacterial organisms, particularly the virome and the mycobiome, are important regulators of intestinal immunity and inflammation. The virome is mucosal and systemic; it can alter the host response to bacteria and interact with host genes and bacteria to contribute to disease pathogenesis. The human mycobiome is also complex and can contribute to intestinal inflammation. We review what has recently been learned about the nonbacterial and nonarchaeal microbes in the gastrointestinal tract, discussing their potential effects on health and disease and analytical approaches for their study. Studies of associations between the microbiome and intestinal pathology should incorporate kingdom-agnostic approaches if we are to fully understand intestinal health and disease.
Collapse
Affiliation(s)
| | | | - Herbert W. Virgin
- Reprint requests Address requests for reprints to: Herbert W. Virgin, MD, PhD, Washington University School of Medicine, Box 8118, 660 South Euclid Avenue, St Louis, Missouri 63110.
| |
Collapse
|
49
|
Hammerstad SS, Jahnsen FL, Tauriainen S, Hyöty H, Paulsen T, Norheim I, Dahl-Jørgensen K. Immunological changes and increased expression of myxovirus resistance protein a in thyroid tissue of patients with recent onset and untreated Graves' disease. Thyroid 2014; 24:537-44. [PMID: 24032645 DOI: 10.1089/thy.2013.0287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Few studies have systematically examined the immune cells that infiltrate thyroid tissue at the time of the onset of Graves' disease (GD). The role of viruses in the pathogenesis of autoimmune thyroid diseases is controversial. The present study analyzed inflammatory responses with respect to signs of virus infection. METHODS Thyroid tissue was obtained from 22 patients with newly diagnosed and untreated GD, 24 patients with chronic GD, and 24 controls. Inflammation was assessed by immunostaining for CD4+ and CD8+ T cells, plasma cells (CD138+), and plasmacytoid dendritic cells (PDCs). The production of interferon-inducible myxovirus resistance protein A (MxA) was analyzed as a sign of virus infection. RESULTS The degree of thyroid inflammation and fibrosis was significantly higher in both patient groups compared with that in controls. The number of CD4+ T cells and plasma cells (activated B cells) was significantly higher in both patient groups. CD8+ cells were only present in patients with chronic disease. MxA expression and the number of PDCs increased only in patients with newly diagnosed GD. There was a strong positive correlation between the number of PDCs and the number of MxA+ leucocytes. CONCLUSION The increase in CD8+ T cells during the chronic stage of GD suggests that they may play a role in progression of the autoimmune process from early to chronic thyroiditis. Upregulation of MxA expression during the early stages of the disease, and the positive correlation between the number of PDCs and the number of MxA+ leucocytes, suggests that activated PDCs secrete type I IFNs at the lesion site, possibly in response to viral infection.
Collapse
|
50
|
Cieniewicz B, Carpino N, Krug LT. Enhanced response of T cells from murine gammaherpesvirus 68-infected mice lacking the suppressor of T cell receptor signaling molecules Sts-1 and Sts-2. PLoS One 2014; 9:e90196. [PMID: 24587276 PMCID: PMC3938662 DOI: 10.1371/journal.pone.0090196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
The human gammaherpesviruses establish life-long infections that are associated with the development of lymphomas and neoplasms, especially in immunocompromised individuals. T cells play a crucial role in the control of gammaherpesvirus infection through multiple functions, including the direct killing of infected cells, production of cytokines such as interferon-γ (IFN-γ), and costimulation of B cells. Impaired T cell function in mice infected with murine gammaherpesvirus 68 (MHV68) leads to increased reactivation and pathologies, including a higher incidence of lymphoid hyperplasia. Here we report that the absence of Suppressor of TCR signaling −1 and −2 (Sts-1-/-/2-/-) during MHV68 infection leads to the generation of T cells with significantly heightened responses. Transient differences in the T and B cell response of infected Sts-1-/-/2-/- (Sts dKO) mice were also observed when compared to WT mice. However, these alterations in the immune response and the overall absence of Sts-1 and Sts-2 did not impact viral pathogenesis or lead to pathology. Acute lytic replication in the lungs, establishment of latency in the spleen and reactivation from latency in the spleen in the Sts dKO mice were comparable to WT mice. Our studies indicate that Sts-1 and Sts-2 are not required for the immune control of MHV68 in a normal course of gammaherpesvirus infection, but suggest that interference with negative regulators of T cell responses might be further explored as a safe and efficacious strategy to improve adoptive T cell therapy.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas Carpino
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|