1
|
Dummunee K, Parry RH, Redecke L, Varjak M, Brennan B, Kohl A, McFarlane M. The catalytic tetrad of Aedes aegypti argonaute 2 is critical for the antiviral activity of the exogenous siRNA pathway. J Biol Chem 2025; 301:108332. [PMID: 39984048 PMCID: PMC11968273 DOI: 10.1016/j.jbc.2025.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Viruses transmitted by biting arthropods, arboviruses, pose a significant global health and economic threat. Climate change is exacerbating this issue by expanding the range of disease-carrying vectors. Effective control of arbovirus transmission often relies on targeting the vectors, making it crucial to understand the interactions between the virus and its vector. The exogenous siRNA (exo-siRNA) pathway is a key antiviral defense mechanism in mosquitoes such as Aedes aegypti. Argonaute 2 (Ago2) is a central protein in this pathway, responsible for antiviral activity. While the PIWI domain of Ago proteins is known to mediate slicing activity, not all Ago proteins possess this slicing function. To understand the antiviral mechanism of Ago2 in Ae. aegypti, we aimed to confirm the presence of the catalytic tetrad, a group of amino acids known to be crucial for slicing activity. Here, we confirmed the tetrad (D740, E780, D812, and H950) in Ae. aegypti Ago2 and demonstrated its essential role in antiviral and siRNA pathway activity. Our findings show that the catalytic tetrad is necessary for the degradation of siRNA passenger strands. When the tetrad is absent, siRNA duplexes accumulate, leading to a loss of siRNA pathway function. This underscores the critical role of the tetrad in the antiviral defense mechanism of Ae. aegypti.
Collapse
Affiliation(s)
- Krittika Dummunee
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Rhys H Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Lars Redecke
- University of Lübeck, Institute of Biochemistry, Lübeck, Germany; Deutsches Elektronen Synchrotron (DESY), Photon Science, Hamburg, Germany
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Dhungana P, Wei X, Kang DS, Sim C. A Head-Specific Transcriptomic Study Reveals Key Regulatory Pathways for Winter Diapause in the Mosquito Culex pipiens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70032. [PMID: 39898769 DOI: 10.1002/arch.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
The primary vector of the West Nile virus, Culex pipiens, undergoes reproductive dormancy during the adverse winter season. While our current understanding has mainly focused on cellular signals and phenotypic shifts occurring at a global scale during diapause, information on tissue-specific transcriptomic changes remains limited. This knowledge gap is a major challenge in interpreting the regulatory mechanisms at the tissue level. To address this, the present work utilized RNA-seq technology to investigate the transcriptional changes in the head that house the brain and crucial endocrinal organs such as corpora allata. We obtained RNA samples from the heads of diapausing and nondiapausing female mosquitoes at two specific time intervals, ZT0 and ZT16, and then subjected them to sequencing. Our results revealed differences in differentially expressed genes between diapause and non-diapause at ZT0 and ZT16, highlighting the phenotypic and diel variations in gene expression. We also selected twelve genes associated with the diapause phenotype and examined the transcript abundance at six different time points over 24 h. qRT-PCR analysis showed similar up- and downregulation of transcripts between the diapause and nondiapause phenotypes thus validating the results of RNA-seq. In summary, our study identified new genes with phenotypic and diel differentiation in their expression, potentially linking photoperiod to seasonal reproductive dormancy in insects. The newly presented information will significantly advance our understanding of head-specific genes crucial for insect diapause.
Collapse
Affiliation(s)
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, Texas, USA
| | - David S Kang
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
3
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Demirtürk Z, Uçkan F, Mert S. Interactions of alumina and polystyrene nanoparticles with the innate immune system of Galleria mellonella. Drug Chem Toxicol 2024; 47:483-495. [PMID: 37259574 DOI: 10.1080/01480545.2023.2217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
Nowadays, particularly metallic, and polymeric nanoparticles (NPs) are widely produced and used in many fields. Due to the increase in both their usage and diversity, their release and accumulation in the environment are also accelerating. Therefore, their interactions with cells, especially immune cells, and their health risks are not fully understood. The impacts of metallic alumina (Al) NPs and polystyrene (PS) NPs obtained after the polymerization of carcinogenic styrene on living organisms have not yet been elucidated. Galleria mellonella larvae can biodegrade plastics. While biodegradation and solving the waste problem have attracted much attention, the interactions of this distinctive property of G. mellonella larvae in the immune system and ecosystem are not yet completely understood. Al and PS NPs were applied to G. mellonella separately. Al NPs were purchased and PS NPs were prepared from PS by single-emulsion technique and characterized. Then LC50 values of these NPs on G. mellonella were determined. The interactions of these NPs with encapsulation, melanization, and phenoloxidase activity, which express innate immune responses in G. mellonella larvae, were revealed. NP exposure resulted in suppression of the immune response, probably because it affects the functions of hemocytes such as enzymatic activation, hemocyte division, and populations. In this context, our data suggest that Al and PS NPs induce toxic impacts and negatively alter the physiological status of G. mellonella. It is also shown that G. mellonella has the potential to be an impactful alternative model for biosafety and nanotoxicology studies.
Collapse
Affiliation(s)
| | - Fevzi Uçkan
- Department of Biology, Kocaeli University, Kocaeli, Türkiye
| | - Serap Mert
- Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Türkiye
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Türkiye
- Department of Chemistry and Chemical Processing Technology, Kocaeli University, Türkiye
| |
Collapse
|
5
|
Mushtaq I, Sarwar MS, Munzoor I. A comprehensive review of Wolbachia-mediated mechanisms to control dengue virus transmission in Aedes aegypti through innate immune pathways. Front Immunol 2024; 15:1434003. [PMID: 39176079 PMCID: PMC11338905 DOI: 10.3389/fimmu.2024.1434003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.
Collapse
|
6
|
Schinkel M, Bousema T, van Rij RP. Tripartite interactions between viruses, parasites, and mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101222. [PMID: 38908822 DOI: 10.1016/j.cois.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus-parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.
Collapse
Affiliation(s)
- Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Mehta D, Chaudhary S, Sunil S. Oxidative stress governs mosquito innate immune signalling to reduce chikungunya virus infection in Aedes-derived cells. J Gen Virol 2024; 105. [PMID: 38488850 DOI: 10.1099/jgv.0.001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Arboviruses such as chikungunya, dengue and zika viruses cause debilitating diseases in humans. The principal vector species that transmits these viruses is the Aedes mosquito. Lack of substantial knowledge of the vector species hinders the advancement of strategies for controlling the spread of arboviruses. To supplement our information on mosquitoes' responses to virus infection, we utilized Aedes aegypti-derived Aag2 cells to study changes at the transcriptional level during infection with chikungunya virus (CHIKV). We observed that genes belonging to the redox pathway were significantly differentially regulated. Upon quantifying reactive oxygen species (ROS) in the cells during viral infection, we further discovered that ROS levels are considerably higher during the early hours of infection; however, as the infection progresses, an increase in antioxidant gene expression suppresses the oxidative stress in cells. Our study also suggests that ROS is a critical regulator of viral replication in cells and inhibits intracellular and extracellular viral replication by promoting the Rel2-mediated Imd immune signalling pathway. In conclusion, our study provides evidence for a regulatory role of oxidative stress in infected Aedes-derived cells.
Collapse
Affiliation(s)
- Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Zhong D, Wahaab A, Zheng J, Zhang J, Ma Z, Wei J. Development of Colloidal Gold-Based Immunochromatographic Strips for Rapid Detection and Surveillance of Japanese Encephalitis Virus in Dogs across Shanghai, China. Viruses 2024; 16:258. [PMID: 38400034 PMCID: PMC10892515 DOI: 10.3390/v16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute encephalitis in humans and is of major public health concern in most Asian regions. Dogs are suitable sentinels for assessing the risk of JEV infection in humans. A neutralization test (NT) or an enzyme-linked immunosorbent assay (ELISA) is used for the serological detection of JEV in dogs; however, these tests have several limitations, and, thus, a more convenient and reliable alternative test is needed. In this study, a colloidal gold immunochromatographic strip (ICS), using a purified recombinant EDIII protein, was established for the serological survey of JEV infection in dogs. The results show that the ICSs could specifically detect JEV antibodies within 10 min without cross-reactions with antibodies against other canine viruses. The test strips could detect anti-JEV in serum with dilution up to 640 times, showing high sensitivity. The coincidence rate with the NT test was higher than 96.6%. Among 586 serum samples from dogs in Shanghai examined using the ICS test, 179 (29.98%) were found to be positive for JEV antibodies, and the high seropositivity of JEV in dogs in China was significantly correlated with the season and living environment. In summary, we developed an accurate and economical ICS for the rapid detection of anti-JEV in dog serum samples with great potential for the surveillance of JEV in dogs.
Collapse
Affiliation(s)
- Dengke Zhong
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201600, China;
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
- Department of Entomology, Center for Infectious Disease Dynamics and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| |
Collapse
|
10
|
Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLoS Pathog 2024; 20:e1011935. [PMID: 38198491 PMCID: PMC10805325 DOI: 10.1371/journal.ppat.1011935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.
Collapse
Affiliation(s)
- Lindsay E. Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
11
|
Alton LA, Novelo M, Beaman JE, Arnold PA, Bywater CL, Kerton EJ, Lombardi EJ, Koh C, McGraw EA. Exposure to ultraviolet-B radiation increases the susceptibility of mosquitoes to infection with dengue virus. GLOBAL CHANGE BIOLOGY 2023; 29:5540-5551. [PMID: 37560790 DOI: 10.1111/gcb.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/11/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage. If UVBR weakens insect immunity, then it may make insect disease vectors more susceptible to infection with pathogens of socioeconomic and public health importance. In the tropics, where UVBR is predicted to increase, the mosquito-borne dengue virus (DENV), is prevalent and a growing threat to humans. We therefore examined the effect of UVBR on the mosquito Aedes aegypti, the primary vector for DENV, to better understand the potential implications of increased tropical UVBR for mosquito-borne disease risk. We found that exposure to a UVBR dose that caused significant larval mortality approximately doubled the probability that surviving females would become infected with DENV, despite this UVBR dose having no effect on the expression of an effector gene involved in antiviral immunity. We also found that females exposed to a lower UVBR dose were more likely to have low fecundity even though this UVBR dose had no effect on larval size or activity, pupal cuticular melanin content, or adult mass, metabolic rate, or flight capacity. We conclude that future increases in tropical UVBR associated with anthropogenic global change may have the benefit of reducing mosquito-borne disease risk for humans by reducing mosquito fitness, but this benefit may be eroded if it also makes mosquitoes more likely to be infected with deadly pathogens.
Collapse
Affiliation(s)
- Lesley A Alton
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mario Novelo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Entomology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julian E Beaman
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Pieter A Arnold
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Candice L Bywater
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Emily J Kerton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Emily J Lombardi
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cassandra Koh
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Nivetha R, Marieshwari BN, Dev APM, Meenakumari M, Muralisankar T, Janarthanan S. Evaluation of haemolymph phenoloxidase activity from the grub of Zophobas morio as a predictor of immune response. J Comp Physiol B 2023; 193:495-507. [PMID: 37460758 DOI: 10.1007/s00360-023-01503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 09/29/2023]
Abstract
In insects, enzyme phenoloxidase plays a critical role in cuticular sclerotisation and defensive functions. In the present investigation, haemolymph phenoloxidase activity from the grub of Zophobas morio was attempted to evaluate as a reliable predictor of insect's immunological response. Among the various substrates tested, L-DOPA was chosen as an appropriate substrate due to its high oxidation. The optimum pH and temperature for haemolymph PO activity was found to be 8 and 30 °C, respectively. The optimum substrate concentration of L-DOPA was found to be 7.5 mM for subsequent PO enzymatic characterisation. Among the various chemical inhibitors and copper chelators, PO activity was significantly reduced in the case of PMSF and thiourea. Preincubation of haemolymph with non-self-molecules showed enhancement of PO activity in the case of LPS from Serratia marcescens. In addition, exogenous proteases like α-chymotrypsin enhanced the PO activity of haemolymph and an increase in PO activity was demonstrated when haemolymph was preincubated with the anionic detergent, SDS and cationic detergent, cetyl pyridium chloride. Alteration of PO activity was observed under agonising conditions of starvation, ligation and microplastics injection at different time intervals. Interestingly, there were no correlation between PO and insect defence under live challenge of microbes. SDS protein profile revealed a significant increase in the 85 kDa and 55 kDa polypeptides in all the experiments over control after 24 h, 48 h and 96 h. Mass spectrophotometric analysis of the polypeptides revealed their homology to antimicrobial peptides for 55 kDa protein and 85 kDa protein. A significant increase in 85 kDa polypeptide was observed in the haemolymph of the grubs after 72 h in the case of starved and microplastics injected groups only. These results demonstrated that PO may not be a reliable benchmark of immunological response in this insect.
Collapse
Affiliation(s)
- Ramanathan Nivetha
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | | | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
13
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
14
|
Nantege D, Odong R, Auta HS, Keke UN, Ndatimana G, Assie AF, Arimoro FO. Microplastic pollution in riverine ecosystems: threats posed on macroinvertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27839-9. [PMID: 37248351 DOI: 10.1007/s11356-023-27839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) are pollutants of emerging concern that have been reported in terrestrial and aquatic ecosystems as well as in food items. The increasing production and use of plastic materials have led to a rise in MP pollution in aquatic ecosystems. This review aimed at providing an overview of the abundance and distribution of MPs in riverine ecosystems and the potential effects posed on macroinvertebrates. Microplastics in riverine ecosystems are reported in all regions, with less research in Africa, South America, and Oceania. The abundance and distribution of MPs in riverine ecosystems are mainly affected by population density, economic activities, seasons, and hydraulic regimes. Ingestion of MPs has also been reported in riverine macroinvertebrates and has been incorporated in caddisflies cases. Further, bivalves and chironomids have been reported as potential indicators of MPs in aquatic ecosystems due to their ability to ingest MPs relative to environmental concentration. Fiber and fragments are the most common types reported. Meanwhile, polyethylene, polypropylene, polystyrene, polyethylene terephthalate (polyester), polyamide, and polyvinyl chloride are the most common polymers. These MPs are from materials/polymers commonly used for packaging, shopping/carrier bags, fabrics/textiles, and construction. Ingestion of MPs by macroinvertebrates can physically harm and inhibit growth, reproduction, feeding, and moulting, thus threatening their survival. In addition, MP ingestion can trigger enzymatic changes and cause oxidative stress in the organisms. There is a need to regulate the production and use of plastic materials, as well as disposal of the wastes to reduce MP pollution in riverine ecosystems.
Collapse
Affiliation(s)
- Diana Nantege
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria.
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Helen Shnada Auta
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Unique Ndubuisi Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Gilbert Ndatimana
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Attobla Fulbert Assie
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Francis Ofurum Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| |
Collapse
|
15
|
Zhao QY, Chen X, Wang RZ, Chen YM, Zang LS. Comparative Analysis of the Venom Proteins from Two Eupelmid Egg Parasitoids Anastatus japonicus and Mesocomys trabalae. BIOLOGY 2023; 12:biology12050700. [PMID: 37237513 DOI: 10.3390/biology12050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.
Collapse
Affiliation(s)
- Qian-Yu Zhao
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xu Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Run-Zhi Wang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yong-Ming Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lian-Sheng Zang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Marieshwari BN, Bhuvaragavan S, Sruthi K, Mullainadhan P, Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J Comp Physiol B 2023; 193:1-23. [PMID: 36472653 DOI: 10.1007/s00360-022-01468-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Insect life on earth is greatly diversified despite being exposed to several infectious agents due to their diverse habitats and ecological niche. One of the major factors responsible for their successful establishment is having a powerful innate immune system. The most common and effective method used by insects in recognizing pathogen and non-self-substances is the melanization process among others. The key enzyme involved in melanin biosynthesis is the copper containing humoral defense enzyme, phenoloxidase (PO). This review focused on understanding about PO and that had been in research for nearly a century. The review elaborates about evolutionary significance of PO in arthropods, its relationship with mammalian tyrosinases, various substrates, activators and inhibitors involved in the activation of phenoloxidase cascade, as it requires an integrated system of activation that vary among insect species. The enzyme also plays a vital role in insect immunity by involving in several other immune functions like sclerotization, wound healing, opsonization, encapsulation and nodule formation. Further, gene knock down or knock out of PO genes and inhibition of PO-melanization cascade by several mechanisms can also be considered as promising future alternative to control serious pests by making them highly susceptible to any targeted attack.
Collapse
Affiliation(s)
| | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
17
|
Wang Z, Luo J, Feng K, Zhou Y, Tang F. Prophenoloxidase of Odontotermes formosanus (Shiraki) (Blattodea: Termitidae) Is a Key Gene in Melanization and Has a Defensive Role during Bacterial Infection. Int J Mol Sci 2022; 24:ijms24010406. [PMID: 36613850 PMCID: PMC9820534 DOI: 10.3390/ijms24010406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Melanization mediated by the prophenoloxidase (PPO)-activating system is an important innate immunity to fight pathogens in insects. In this study, the in vitro time-dependent increase in the intensity of melanization and phenoloxidase (PO) activity from the hemolymph of Odontotermes formosanus (Shiraki) challenged by pathogenic bacteria was detected. PPO is one of the key genes in melanization pathway, whereas the molecular characteristics and functions of O. formosanus PPO are unclear. The OfPPO gene was cloned and characterized. The open reading frame of OfPPO is 2085 bp in length and encodes a 79.497 kDa protein with 694 amino acids. A BLASTx search and phylogenetic analyses revealed that OfPPO shares a high degree of homology to the Blattodea PPOs. Moreover, real-time fluorescent quantitative PCR analysis showed that OfPPO is ubiquitously expressed in all castes and tissues examined, with the highest expression in workers and variable expression patterns in tissues of different termite castes. Furthermore, the expression of OfPPO was significantly induced in O. formosanus infected by pathogenic bacteria. Intriguingly, in combination with silencing of OfPPO expression, pathogenic bacteria challenge caused greatly increased mortality of O. formosanus. These results suggest that OfPPO plays a role in defense against bacteria and highlight the novel termite control strategy combining pathogenic bacteria application with termite PPO silencing.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-138-1396-6269
| |
Collapse
|
18
|
Yuan C, Yang Q, Wu J, Peng Y, Li Y, Xiong S, Zhou J, Wang M, Hu Z, Zou Z, Xia Q. Proteomics reveals the hemolymph components of partially fed Hyalomma asiaticum ticks. Ticks Tick Borne Dis 2022; 13:102032. [PMID: 36088665 DOI: 10.1016/j.ttbdis.2022.102032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Hemolymph infection facilitates pathogen invasion of internal tick tissues. However, the overall protein composition of the hemolymph has not been analyzed for any tick species. Here, a gel based liquid chromatography tandem mass spectrometry method was used to characterize the hemolymph proteome of Hyalomma asiaticum females during blood feeding. A total of 311 proteins were identified. Hemelipoglyco-carrier proteins, apolipophorin-like proteins, and intracellular proteins were the most abundant proteins. Thirteen immunity-related proteins were identified, including peptidoglycan recognition protein (PGRP), Thioester-containing proteins (TEPs), clip‑serine proteinases, serpins and Dome. The presence of hemocytin, proclotting enzyme homologs, serpins, TEPs, factor D-like protein and the lack of coagulin, hemocyanin, and prophenoloxidase suggest ticks may possess a unique coagulation system, which is largely different from that of insects. Taken together, the study revealed the constitution, level, and possible functions of global hemolymph proteins in H. asiaticum and could facilitate the discovery of new targets for control of tick-borne pathogens.
Collapse
Affiliation(s)
- Chuanfei Yuan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qingtai Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wu
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Peng
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shirui Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
19
|
Marten AD, Tift CT, Tree MO, Bakke J, Conway MJ. Chronic depletion of vertebrate lipids in Aedes aegypti cells dysregulates lipid metabolism and inhibits innate immunity without altering dengue infectivity. PLoS Negl Trop Dis 2022; 16:e0010890. [PMID: 36279305 PMCID: PMC9632908 DOI: 10.1371/journal.pntd.0010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV) and other arboviruses. Previous literature suggests that vertebrate and invertebrate lipids and the nutritional status of mosquitoes modify virus infection. Here, we developed a vertebrate lipid-depleted Ae. aegypti cell line to investigate if chronic depletion of vertebrate lipids normally present in a blood meal and insect cell culture medium would impact cell growth and virus infection. Chronic depletion of vertebrate lipids reduced cell size and proliferation, although cells retained equivalent total intracellular lipids per cell by reducing lipolysis and modifying gene expression related to sugar and lipid metabolism. Downregulation of innate immunity genes was also observed. We hypothesized that chronic depletion of vertebrate lipids would impact virus infection; however, the same amount of DENV was produced per cell. This study reveals how Ae. aegypti cells adapt in the absence of vertebrate lipids, and how DENV can replicate equally well in cells that contain predominately vertebrate or invertebrate lipids. Aedes aegypti is a major threat to public health. Ae. aegypti is the primary vector of dengue virus types 1–4 (DENV 1–4), zika virus (ZIKV), chikungunya virus (CHIKV), and yellow fever virus (YFV). Ae. aegypti acquires arboviruses from a vertebrate host during blood feeding. Blood feeding introduces vertebrate-specific factors into the mosquito that may be important for both mosquito and virus. This study reveals that Ae. aegypti adapts to depletion of vertebrate lipids by inhibiting lipolysis and promoting de novo synthesis of invertebrate lipids, and that DENV can replicate equally well without high concentrations of cholesterol and other vertebrate lipid species. Understanding how disease vectors adapt to nutritional changes will identify novel strategies for vector control and disease mitigation.
Collapse
Affiliation(s)
- Andrew D. Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Clara T. Tift
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Maya O. Tree
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Jesse Bakke
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cardoso-Jaime V, Tikhe CV, Dong S, Dimopoulos G. The Role of Mosquito Hemocytes in Viral Infections. Viruses 2022; 14:v14102088. [PMID: 36298644 PMCID: PMC9608948 DOI: 10.3390/v14102088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Insect hemocytes are the only immune cells that can mount a humoral and cellular immune response. Despite the critical involvement of hemocytes in immune responses against bacteria, fungi, and parasites in mosquitoes, our understanding of their antiviral potential is still limited. It has been shown that hemocytes express humoral factors such as TEP1, PPO, and certain antimicrobial peptides that are known to restrict viral infections. Insect hemocytes also harbor the major immune pathways, such as JAK/STAT, TOLL, IMD, and RNAi, which are critical for the control of viral infection. Recent research has indicated a role for hemocytes in the regulation of viral infection through RNA interference and autophagy; however, the specific mechanism by which this regulation occurs remains uncharacterized. Conversely, some studies have suggested that hemocytes act as agonists of arboviral infection because they lack basal lamina and circulate throughout the whole mosquito, likely facilitating viral dissemination to other tissues such as salivary glands. In addition, hemocytes produce arbovirus agonist factors such as lectins, which enhance viral infection. Here, we summarize our current understanding of hemocytes’ involvement in viral infections.
Collapse
|
21
|
Elhawary NA, Soliman MA, Seif AI, Meshrif WS. Fitness cost of malathion resistance in Egyptian Culex pipiens populations. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:338-346. [PMID: 35357023 DOI: 10.1111/mve.12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The extensive use of insecticides in agriculture and public health has resulted in the rapid development of insecticide resistance in mosquito populations. Therefore, in this study, we aimed to evaluate insecticide resistance costs on the fitness of Culex pipiens. Two Cx. pipiens field populations (Beheira malathion-resistant and Gharbia malathion-susceptible) were compared to the reference (sensitive) population. The biochemical composition and expression of four genes relevant to insecticide resistance were estimated in third instar larvae. Adult survival, female fecundity and egg hatchability were also determined. As per our findings, it was found that the total protein and carbohydrate contents in Beheira malathion-resistant larvae were significantly lower than that in the reference larvae. Beheira malathion-resistant larvae had higher phenoloxidase (PO) specific activity than the reference population. In terms of the relevant genes, only cytochrome P450 (CYP6F1) expression showed elevated levels in the Gharbia malathion-susceptible population compared to the Beheira malathion-resistant population. In esterases (Estα and Estβ) and glutathione S-transferase, the tested populations did not show any significant differences. Compared to the reference mosquito population, Gharbia malathion-susceptible Cx. pipiens males exhibited significantly longer median survival. Female fecundity and hatchability showed nonsignificant differences among the populations tested. In conclusion, malathion resistance can induce lower protein and carbohydrate contents, but higher PO activity in larvae.
Collapse
Affiliation(s)
- Noura A Elhawary
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed A Soliman
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amal I Seif
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wesam S Meshrif
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Ji J, Shen D, Zhang S, Wang L, An C. Serpin-4 Facilitates Baculovirus Infection by Inhibiting Melanization in Asian Corn Borer, Ostrinia furnacalis (Guenée). Front Immunol 2022; 13:905357. [PMID: 35757693 PMCID: PMC9218052 DOI: 10.3389/fimmu.2022.905357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phenoloxidase (PO)-catalyzed melanization is a vital immune response in insects for defense against pathogen infection. This process is mediated by clip domain serine proteases and regulated by members of the serpin superfamily. We here revealed that the infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) significantly inhibited the PO activity in Ostrinia furnacalis hemolymph and induced the expression of O. furnacalis serpin-4. Addition of recombinant serpin-4 protein to O. furnacalis hemolymph resulted in a great increase of AcMNPV copies. Serpin-4 significantly suppressed the PO activity and the amidase activity in cleaving colorimetric substrate IEARpNA (IEARase activity) of hemolymph. Further experiments indicated it formed covalent complexes with three serine proteases (SP1, SP13 and SP105) and prevented them from cleaving their cognate downstream proteases in vitro. Altogether, O. furnacalis melanization restricted AcMNPV replication and serpin-4 facilitated AcMNPV infection by inhibiting serine proteases, SP1, SP13, and SP105 which were all involved in the melanization response.
Collapse
Affiliation(s)
- Jiayue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongxu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.,Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Shasha Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lei Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Harsh S, Tafesh-Edwards G, Eleftherianos I. Zika virus infection triggers the melanization response in Drosophila. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166424. [DOI: 10.1016/j.bbadis.2022.166424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
|
24
|
Zupanič N, Počič J, Leonardi A, Šribar J, Kordiš D, Križaj I. Serine pseudoproteases in physiology and disease. FEBS J 2022; 290:2263-2278. [PMID: 35032346 DOI: 10.1111/febs.16355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Abstract
Serine proteases (SPs) constitute a very important family of enzymes, both physiologically and pathologically. The effects produced by these proteins have been explained by their proteolytic activity. However, the discovery of pharmacologically active SP molecules that show no enzymatic activity, as the so-called pseudo SPs or SP homologs (SPHs), has exposed a profoundly neglected possibility of nonenzymatic functions of these SP molecules. In this review, the most thoroughly described SPHs are presented. The main physiological domains in which SPHs operate appear to be in reproduction, embryonic development, immune response, host defense, and hemostasis. Hitherto unexplained actions of SPs should therefore be considered also as the result of the ligand-like attributes of SPs. The gain of a novel function by an SPH is a consequence of specific amino acid replacements that have resulted in a novel interaction interface or a 'catalytic trap'. Unraveling the SP/SPH interactome will provide a description of previously unknown physiological functions of SPs/SPHs, aiding the creation of innovative medical approaches.
Collapse
Affiliation(s)
- Nina Zupanič
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Jernej Počič
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
- Biotechnical Faculty University of Ljubljana Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Dušan Kordiš
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
25
|
Wang HC, Wang QH, Bhowmick B, Li YX, Han Q. Functional characterization of two clip domain serine proteases in innate immune responses of Aedes aegypti. Parasit Vectors 2021; 14:584. [PMID: 34819136 PMCID: PMC8611957 DOI: 10.1186/s13071-021-05091-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Background Clip domain serine proteases (CLIPs), a very diverse group of proteolytic enzymes, play a crucial role in the innate immunity of insects. Innate immune responses are the first line of defense in mosquitoes against the invasion of pathogenic microorganisms. The Toll pathway, immunodeficiency (IMD) pathway and melanization are the main processes of innate immunity in Aedes aegypti. CLIPS are classified into five subfamilies—CLIPA, CLIPB, CLIPC, CLIPD, and CLIPE—based on their sequence specificity and phylogenetic relationships. We report the functional characterization of the genes that code for two CLIPs in Ae. aegypti (Ae): Ae-CLIPB15 and Ae-CLIPB22. Methods Clustal Omega was used for multiple amino acid sequence alignment of Ae-CLIPB15 and Ae-CLIPB22 with different CLIP genes from other insect species. The spatiotemporal expression profiles of Ae-CLIPB15 and Ae-CLIPB22 were examined. We determined whether Ae-CLIPB15 and Ae-CLIPB22 respond to microbial challenge and tissue injury. RNA interference (RNAi) was used to explore the function of Ae-CLIPB15 and Ae-CLIPB22 in the defense of Ae. aegypti against bacterial and fungal infections. The expression levels of nuclear factor kappa B (NF-κB) transcription factors REL1 and REL2 in the Toll pathway and IMD pathway after bacterial infection were investigated. Finally, the change in phenoloxidase (PO) activity in Ae-CLIPB15 and Ae-CLIPB22 knockdown adults was investigated. Results We performed spatiotemporal gene expression profiling of Ae-CLIPB15 and Ae-CLIPB22 genes in Ae. aegypti using quantitative real-time polymerase chain reaction. These genes were expressed in different stages and tissues. The messenger RNA (mRNA) levels for both genes were also up-regulated by Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus and fungal Beauveria bassiana infections, as well as in the tissue injury experiments. RNAi-mediated knockdown of Ae-CLIPB15 led to a significant decrease of PO activity in the hemolymph of Ae. aegypti, while other RNAi experiments revealed that both Ae-CLIPB15 and Ae-CLIPB22 were involved in immune defense against bacterial and fungal infections. The mRNA expression of NF-κB transcription factors REL1 and REL2 in the Toll pathway and IMD pathway differed between Ae-CLIPB15 and Ae-CLIPB22 knockdown mosquitoes infected with bacteria and wild type mosquitoes infected with bacteria. Conclusions Our findings suggest that Ae-CLIPB15 and Ae-CLIPB22 play a critical role in mosquito innate immunity, and that they are involved in immune responses to injury and infection. Their regulation of transcription factors and PO activity indicates that they also play a specific role in the regulation of innate immunity. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Hao-Cheng Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Qiu-Hui Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Biswajit Bhowmick
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Yi-Xun Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China. .,One Health Institute, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
26
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathog 2021; 17:e1009870. [PMID: 34473801 PMCID: PMC8412342 DOI: 10.1371/journal.ppat.1009870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.
Collapse
|
28
|
Li T, Wang X, Qin S, Sun X, Wang S, Li M. The hemolymph melanization response is related to defence against the AcMNPV infection in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21764. [PMID: 34272769 DOI: 10.1002/arch.21764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 06/13/2023]
Abstract
Melanization is mediated by the prophenoloxidase (proPO) activation cascade and plays an important role in the arthropods immune system. Previously, we found that the hemolymph of the p50 strain does not perform melanization after infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, this mechanism is still unclear. In this study, the underlying mechanism of the inhibition of hemolymph melanization was investigated by analysing the AcMNPV-susceptible or -resistant silkworm strains after inoculation with AcMNPV. The results showed that the level of hemolymph melanization was higher in resistant strain C108 than in susceptible strain p50 at the late stage (72 to 120 h postinoculation). The PO activity decreased significantly at the late stage of infection (72 to 120 hpi), and the expression of BmPPO1 and BmPPO2 was downregulated in p50. However, the PO activity increased in the resistant strain C108, while the expression level of BmPPO1 and BmPPO2 displayed no significant changes. The expression of the BmPPAE gene was upregulated in two strains during viral infection. In addition, the hemolymph melanization can weaken the viral activity in vitro. Our results suggested that the silkworm hemolymph melanization response is related to defence against the AcMNPV infection.
Collapse
Affiliation(s)
- Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, China
| | - Xueyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Shengpeng Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
29
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
30
|
Cell Line Platforms Support Research into Arthropod Immunity. INSECTS 2021; 12:insects12080738. [PMID: 34442304 PMCID: PMC8397109 DOI: 10.3390/insects12080738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Many insect and tick species are serious pests, because insects damage crop plants and, along with ticks, transmit a wide range of human and animal diseases. One way of controlling these pests is by impairing their immune system, which protects them from bacterial, fungal, and viral infections. An important tool for studying immunity is using long-lasting cell cultures, known as cell lines. These lines can be frozen and thawed at will to be used in automated tests, and they provide consistent results over years. Questions that can be asked using cell lines include: How do insects or ticks recognize when they have been infected and by what organism? What kinds of defensive strategies do they use to contain or kill infectious agents? This article reviews research with insect or tick cell lines to answer these questions, as well as other questions relating to immunity. This review also discusses future research strategies for working with cell lines. Abstract Innate immune responses are essential to maintaining insect and tick health and are the primary defense against pathogenic viruses, bacteria, and fungi. Cell line research is a powerful method for understanding how invertebrates mount defenses against pathogenic organisms and testing hypotheses on how these responses occur. In particular, immortal arthropod cell lines are valuable tools, providing a tractable, high-throughput, cost-effective, and consistent platform to investigate the mechanisms underpinning insect and tick immune responses. The research results inform the controls of medically and agriculturally important insects and ticks. This review presents several examples of how cell lines have facilitated research into multiple aspects of the invertebrate immune response to pathogens and other foreign agents, as well as comments on possible future research directions in these robust systems.
Collapse
|
31
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
32
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
33
|
Mayall C, Dolar A, Jemec Kokalj A, Novak S, Razinger J, Barbero F, Puntes V, Drobne D. Stressor-Dependant Changes in Immune Parameters in the Terrestrial Isopod Crustacean, Porcellio scaber: A Focus on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:934. [PMID: 33917492 PMCID: PMC8067488 DOI: 10.3390/nano11040934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
We compared the changes of selected immune parameters of Porcellio scaber to different stressors. The animals were either fed for two weeks with Au nanoparticles (NPs), CeO2 NPs, or Au ions or body-injected with Au NPs, CeO2 NPs, or lipopolysaccharide endotoxin. Contrary to expectations, the feeding experiment showed that both NPs caused a significant increase in the total haemocyte count (THC). In contrast, the ion-positive control resulted in a significantly decreased THC. Additionally, changes in phenoloxidase (PO)-like activity, haemocyte viability, and nitric oxide (NO) levels seemed to depend on the stressor. Injection experiments also showed stressor-dependant changes in measured parameters, such as CeO2 NPs and lipopolysaccharide endotoxin (LPS), caused more significant responses than Au NPs. These results show that feeding and injection of NPs caused an immune response and that the response differed significantly, depending on the exposure route. We did not expect the response to ingested NPs, due to the low exposure concentrations (100 μg/g dry weight food) and a firm gut epithelia, along with a lack of phagocytosis in the digestive system, which would theoretically prevent NPs from crossing the biological barrier. It remains a challenge for future research to reveal what the physiological and ecological significance is for the organism to sense and respond, via the immune system, to ingested foreign material.
Collapse
Affiliation(s)
- Craig Mayall
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Andraz Dolar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Anita Jemec Kokalj
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Sara Novak
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia;
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain; (F.B.); (V.P.)
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain; (F.B.); (V.P.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| |
Collapse
|
34
|
Zhang X, Li M, El Moussawi L, Saab S, Zhang S, Osta MA, Michel K. CLIPB10 is a Terminal Protease in the Regulatory Network That Controls Melanization in the African Malaria Mosquito Anopheles gambiae. Front Cell Infect Microbiol 2021; 10:585986. [PMID: 33520733 PMCID: PMC7843523 DOI: 10.3389/fcimb.2020.585986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Humoral immune responses in animals are often tightly controlled by regulated proteolysis. This proteolysis is exerted by extracellular protease cascades, whose activation culminates in the proteolytic cleavage of key immune proteins and enzymes. A model for such immune system regulation is the melanization reaction in insects, where the activation of prophenoxidase (proPO) leads to the rapid formation of eumelanin on the surface of foreign entities such as parasites, bacteria and fungi. ProPO activation is tightly regulated by a network of so-called clip domain serine proteases, their proteolytically inactive homologs, and their serpin inhibitors. In Anopheles gambiae, the major malaria vector in sub-Saharan Africa, manipulation of this protease network affects resistance to a wide range of microorganisms, as well as host survival. However, thus far, our understanding of the molecular make-up and regulation of the protease network in mosquitoes is limited. Here, we report the function of the clip domain serine protease CLIPB10 in this network, using a combination of genetic and biochemical assays. CLIPB10 knockdown partially reversed melanotic tumor formation induced by Serpin 2 silencing in the absence of infection. CLIPB10 was also partially required for the melanization of ookinete stages of the rodent malaria parasite Plasmodium berghei in a refractory mosquito genetic background. Recombinant serpin 2 protein, a key inhibitor of the proPO activation cascade in An. gambiae, formed a SDS-stable protein complex with activated recombinant CLIPB10, and efficiently inhibited CLIPB10 activity in vitro at a stoichiometry of 1.89:1. Recombinant activated CLIPB10 increased PO activity in Manduca sexta hemolymph ex vivo, and directly activated purified M. sexta proPO in vitro. Taken together, these data identify CLIPB10 as the second protease with prophenoloxidase-activating function in An. gambiae, in addition to the previously described CLIPB9, suggesting functional redundancy in the protease network that controls melanization. In addition, our data suggest that tissue melanization and humoral melanization of parasites are at least partially mediated by the same proteases.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Layla El Moussawi
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, United States.,Department of Entomology, China Agricultural University, Beijing, China
| | - Mike A Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
35
|
Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A Review: Aedes-Borne Arboviral Infections, Controls and Wolbachia-Based Strategies. Vaccines (Basel) 2021; 9:32. [PMID: 33435566 PMCID: PMC7827552 DOI: 10.3390/vaccines9010032] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Arthropod-borne viruses (Arboviruses) continue to generate significant health and economic burdens for people living in endemic regions. Of these viruses, some of the most important (e.g., dengue, Zika, chikungunya, and yellow fever virus), are transmitted mainly by Aedes mosquitoes. Over the years, viral infection control has targeted vector population reduction and inhibition of arboviral replication and transmission. This control includes the vector control methods which are classified into chemical, environmental, and biological methods. Some of these control methods may be largely experimental (both field and laboratory investigations) or widely practised. Perceptively, one of the biological methods of vector control, in particular, Wolbachia-based control, shows a promising control strategy for eradicating Aedes-borne arboviruses. This can either be through the artificial introduction of Wolbachia, a naturally present bacterium that impedes viral growth in mosquitoes into heterologous Aedes aegypti mosquito vectors (vectors that are not natural hosts of Wolbachia) thereby limiting arboviral transmission or via Aedes albopictus mosquitoes, which naturally harbour Wolbachia infection. These strategies are potentially undermined by the tendency of mosquitoes to lose Wolbachia infection in unfavourable weather conditions (e.g., high temperature) and the inhibitory competitive dynamics among co-circulating Wolbachia strains. The main objective of this review was to critically appraise published articles on vector control strategies and specifically highlight the use of Wolbachia-based control to suppress vector population growth or disrupt viral transmission. We retrieved studies on the control strategies for arboviral transmissions via arthropod vectors and discussed the use of Wolbachia control strategies for eradicating arboviral diseases to identify literature gaps that will be instrumental in developing models to estimate the impact of these control strategies and, in essence, the use of different Wolbachia strains and features.
Collapse
Affiliation(s)
- Samson T. Ogunlade
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Michael T. Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
| | - Adeshina I. Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
| | - Diana P. Rojas
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Oyelola A. Adegboye
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Emma S. McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
36
|
Wang J, Yan Z, Xiao S, Wang B, Fang Q, Schlenke T, Ye G. Characterization of a cell death-inducing endonuclease-like venom protein from the parasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). PEST MANAGEMENT SCIENCE 2021; 77:224-233. [PMID: 32673424 PMCID: PMC9282878 DOI: 10.1002/ps.6011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Parasitoid wasps are valuable natural enemies for controlling pests. To ensure successful parasitism, these wasps inject venoms along with their eggs that are deposited either into or on their hosts. Parasitoid venoms regulate host behaviors, development, metabolism and immune responses. Pteromalus puparum is a pupal endoparasitoid that parasitizes a number of butterflies, including the worldwide pest cabbage butterfly, Pieris rapae. Venom from P. puparum has a variety of effects on host hemocytes, including alteration of absolute and relative hemocyte counts, and inhibition of hemocyte spreading and encapsulation. In particular, P. puparum venom causes hemocyte cell death in vivo and in vitro. RESULTS Using assay-guided chromatography, a cell death-inducing venom fraction was identified and defined as P. puparum endonuclease-like venom protein (PpENVP). It belongs to the DNA/RNA nonspecific endonuclease family, which contains two conserved endonuclease activation sites. We analyzed its expression profiles and demonstrated that PpENVP inhibits gene expression in transfected cells relying on two activation sites. However, RNA interference of PpENVP did not significantly reduce P. puparum venom cytotoxicity, suggesting that PpENVP may not be the sole cytotoxic factor present. CONCLUSION Our results provide novel insight into the function of the P. puparum venom cocktail and identify a promising insecticide candidate endonuclease that targets insect hemocytes.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Entomology, University of Arizona, Tucson 85719, AZ, USA
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Todd Schlenke
- Department of Entomology, University of Arizona, Tucson 85719, AZ, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Stokes S, Almire F, Tatham MH, McFarlane S, Mertens P, Pondeville E, Boutell C. The SUMOylation pathway suppresses arbovirus replication in Aedes aegypti cells. PLoS Pathog 2020; 16:e1009134. [PMID: 33351855 PMCID: PMC7802965 DOI: 10.1371/journal.ppat.1009134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/12/2021] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Mosquitoes are responsible for the transmission of many clinically important arboviruses that cause significant levels of annual mortality and socioeconomic health burden worldwide. Deciphering the mechanisms by which mosquitoes modulate arbovirus infection is crucial to understand how viral-host interactions promote vector transmission and human disease. SUMOylation is a post-translational modification that leads to the covalent attachment of the Small Ubiquitin-like MOdifier (SUMO) protein to host factors, which in turn can modulate their stability, interaction networks, sub-cellular localisation, and biochemical function. While the SUMOylation pathway is known to play a key role in the regulation of host immune defences to virus infection in humans, the importance of this pathway during arbovirus infection in mosquito vectors, such as Aedes aegypti (Ae. aegypti), remains unknown. Here we characterise the sequence, structure, biochemical properties, and tissue-specific expression profiles of component proteins of the Ae. aegypti SUMOylation pathway. We demonstrate significant biochemical differences between Ae. aegypti and Homo sapiens SUMOylation pathways and identify cell-type specific patterns of SUMO expression in Ae. aegypti tissues known to support arbovirus replication. Importantly, depletion of core SUMOylation effector proteins (SUMO, Ubc9 and PIAS) in Ae. aegypti cells led to enhanced levels of arbovirus replication from three different families; Zika (Flaviviridae), Semliki Forest (Togaviridae), and Bunyamwera (Bunyaviridae) viruses. Our findings identify an important role for mosquito SUMOylation in the cellular restriction of arboviruses that may directly influence vector competence and transmission of clinically important arboviruses. Half the world’s population is at risk of infection from arboviruses transmitted by mosquitoes. Deciphering the viral-host interactions that influence the outcome of arbovirus infection in mosquitoes is beneficial to the development of future vector control strategies to limit arbovirus transmission and viral emergence within the human population. Similar to humans, mosquitoes possess different immune pathways to limit the replication of arboviruses. While the Small Ubiquitin-like MOdifier (SUMO) pathway is known to play an important role in the regulation of immune defences to viral infection in humans, the influence of this pathway during arbovirus infection in mosquito cells is currently unknown. Here we define the conservation, biochemical activity, and tissue distribution of the core effector proteins of the Aedes aegypti SUMOylation pathway. We show that the mosquito SUMOylation pathway plays a broadly antiviral role against a wide range of clinically important arboviruses, including Zika, Semliki Forest, and Bunyamwera viruses. Our findings identify SUMOylation as an important component of the antiviral response to arbovirus infection in mosquito cells.
Collapse
Affiliation(s)
- Samuel Stokes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| |
Collapse
|
38
|
Deng Y, Zhao H, Shen S, Yang S, Yang D, Deng S, Hou C. Identification of Immune Response to Sacbrood Virus Infection in Apis cerana Under Natural Condition. Front Genet 2020; 11:587509. [PMID: 33193724 PMCID: PMC7649357 DOI: 10.3389/fgene.2020.587509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/03/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a serious threat to eastern honeybees (Apis cerana), especially larvae. However, the pathological mechanism of this deadly disease remains unclear. Here, we employed mRNA and small RNA (sRNA) transcriptome approach to investigate the microRNAs (miRNAs) and small interfering RNAs (siRNAs) expression changes of A. cerana larvae infected with CSBV under natural condition. We found that serine proteases involved in immune response were down-regulated, while the expression of siRNAs targeted to serine proteases were up-regulated. In addition, CSBV infection also affected the expression of larvae cuticle proteins such as larval cuticle proteins A1A and A3A, resulting in increased susceptibility to CSBV infection. Together, our results provide insights into sRNAs that they are likely to be involved in regulating honeybee immune response.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Sciences (Academy of Agriculture and Forestry Sciences), Qinghai University, Xining, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
39
|
aBravo Is a Novel Aedes aegypti Antiviral Protein that Interacts with, but Acts Independently of, the Exogenous siRNA Pathway Effector Dicer 2. Viruses 2020; 12:v12070748. [PMID: 32664591 PMCID: PMC7411624 DOI: 10.3390/v12070748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Mosquitoes, such as Aedes aegypti, can transmit arboviruses to humans. The exogenous short interfering RNA (exo-siRNA) pathway plays a major antiviral role in controlling virus infection in mosquito cells. The Dicer 2 (Dcr2) nuclease is a key effector protein in this pathway, which cleaves viral double-stranded RNA into virus-derived siRNAs that are further loaded onto an effector called Argonaute 2 (Ago2), which as part of the multiprotein RNA-induced silencing complex (RISC) targets and cleaves viral RNA. In order to better understand the effector protein Dcr2, proteomics experiments were conducted to identify interacting cellular partners. We identified several known interacting partners including Ago2, as well as two novel and previously uncharacterized Ae. aegypti proteins. The role of these two proteins was further investigated, and their interactions with Dcr2 verified by co-immunoprecipitation. Interestingly, despite their ability to interact with Ago2 and Piwi4, neither of these proteins was found to affect exo-siRNA silencing in a reporter assay. However, one of these proteins, Q0IFK9, subsequently called aBravo (aedine broadly active antiviral protein), was found to mediate antiviral activity against positive strand RNA arboviruses. Intriguingly the presence of Dcr2 was not necessary for this effect, suggesting that this interacting antiviral effector may act as part of protein complexes with potentially separate antiviral activities.
Collapse
|
40
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
41
|
Wang Q, Yin M, Yuan C, Liu X, Hu Z, Zou Z, Wang M. Identification of a Conserved Prophenoloxidase Activation Pathway in Cotton Bollworm Helicoverpa armigera. Front Immunol 2020; 11:785. [PMID: 32431706 PMCID: PMC7215089 DOI: 10.3389/fimmu.2020.00785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Melanization is a prominent insect humoral response for encapsulation of and killing invading pathogens. It is mediated by a protease cascade composed of a modular serine protease (SP), and clip domain SPs (cSPs), which converts prophenoloxidase (PPO) into active phenoloxidase (PO). To date, melanization pathway in cotton bollworm Helicoverpa armigera, an important agricultural pest, remains largely unclear. To biochemically reconstitute the pathway in vitro, the putative proteases along with modified proteases containing the factor Xa cleavage site were expressed by Drosophila S2 cell expression system. Purified recombinant proteins were used to examine their role in activating PPO. It is revealed that cascade is initiated by a modular SP-SP41, followed by cSP1 and cSP6. The three-step SP41/cSP1/cSP6 cascade could further activate PPO, and the PO activity was significantly enhanced in the presence of two cSP homologs (cSPHs), cSPH11 and cSPH50, suggesting the latter are cofactors for PPO activation. Moreover, baculovirus infection was efficiently blocked by the reconstituted PPO activation cascade, and the effect was boosted by cSPH11 and cSPH50. Taken together, we unraveled a conserved PPO activation cascade in H. armigera, which is similar to that exists in lepidopteran biochemical model Manduca sexta and highlighted its role in antagonizing viral infection.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Mengyi Yin
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfei Yuan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xijia Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Zou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Tropical Translational Medicine, Laboratory of Medicine, School of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, China
| | - Manli Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
42
|
Felicioli A, Forzan M, Sagona S, D’Agostino P, Baido D, Fronte B, Mazzei M. Effect of Oral Administration of 1,3-1,6 β-Glucans in DWV Naturally Infected Newly Emerged Bees ( Apis mellifera L.). Vet Sci 2020; 7:vetsci7020052. [PMID: 32344871 PMCID: PMC7355867 DOI: 10.3390/vetsci7020052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
Honeybee pathogens have an important role in honeybee colony mortality and colony losses; most of them are widely spread and necessitate worldwide solutions to contrast honeybee's decline. Possible accepted solutions to cope with the spread of honeybee's pathogens are focused on the study of experimental protocols to enhance the insect's immune defenses. Honeybee's artificial diet capable to stimulate the immune system is a promising field of investigation as ascertained by the introduction of 1,3-1,6 β-glucans as a dietary supplement. In this work, by collecting faecal samples of honeybees exposed to different dietary conditions of 1,3-1,6 β-glucans (0.5% and 2% w/w), it has been possible to investigate the Deformed wing virus (DWV) viral load kinetic without harming the insects. Virological data obtained by a one-step TaqMan RT-PCR highlighted the ability of 1,3-1,6 β-glucans to reduce the viral load at the 24th day of rearing. The results indicated that the diet supplemented with 1,3-1,6 β-glucans was associated with a dose-dependent activation of phenoloxidase. The control group showed a higher survival rate than the experimental groups. This research confirmed 1,3-1,6 β-glucans as molecules able to modulate honeybees' defense pathways, and this is the first report in which the kinetic of DWV infection in honeybee faeces has been monitored by a RT-qPCR.
Collapse
Affiliation(s)
- Antonio Felicioli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56100 Pisa, Italy; (A.F.); (M.F.); (S.S.); (P.D.); (B.F.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Mario Forzan
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56100 Pisa, Italy; (A.F.); (M.F.); (S.S.); (P.D.); (B.F.)
| | - Simona Sagona
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56100 Pisa, Italy; (A.F.); (M.F.); (S.S.); (P.D.); (B.F.)
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Paola D’Agostino
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56100 Pisa, Italy; (A.F.); (M.F.); (S.S.); (P.D.); (B.F.)
| | - Diego Baido
- Independent Researcher, 37019 Peschiera del Garda (Verona), Italy;
| | - Baldassare Fronte
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56100 Pisa, Italy; (A.F.); (M.F.); (S.S.); (P.D.); (B.F.)
| | - Maurizio Mazzei
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56100 Pisa, Italy; (A.F.); (M.F.); (S.S.); (P.D.); (B.F.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|
43
|
McFarlane M, Almire F, Kean J, Donald CL, McDonald A, Wee B, Lauréti M, Varjak M, Terry S, Vazeille M, Gestuveo RJ, Dietrich I, Loney C, Failloux AB, Schnettler E, Pondeville E, Kohl A. The Aedes aegypti Domino Ortholog p400 Regulates Antiviral Exogenous Small Interfering RNA Pathway Activity and ago-2 Expression. mSphere 2020; 5:e00081-20. [PMID: 32269152 PMCID: PMC7142294 DOI: 10.1128/msphere.00081-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/13/2020] [Indexed: 02/03/2023] Open
Abstract
Arboviruses are pathogens of humans and animals. A better understanding of the interactions between these pathogens and the arthropod vectors, such as mosquitoes, that transmit them is necessary to develop novel control measures. A major antiviral pathway in the mosquito vector is the exogenous small interfering RNA (exo-siRNA) pathway, which is induced by arbovirus-derived double-stranded RNA in infected cells. Although recent work has shown the key role played by Argonaute-2 (Ago-2) and Dicer-2 (Dcr-2) in this pathway, the regulatory mechanisms that govern these pathways have not been studied in mosquitoes. Here, we show that the Domino ortholog p400 has antiviral activity against the alphavirus Semliki Forest virus (Togaviridae) both in Aedes aegypti-derived cells and in vivo Antiviral activity of p400 was also demonstrated against chikungunya virus (Togaviridae) and Bunyamwera virus (Peribunyaviridae) but not Zika virus (Flaviviridae). p400 was found to be expressed across mosquito tissues and regulated ago-2 but not dcr-2 transcript levels in A. aegypti mosquitoes. These findings provide novel insights into the regulation of an important aedine exo-siRNA pathway effector protein, Ago-2, by the Domino ortholog p400. They add functional insights to previous observations of this protein's antiviral and RNA interference regulatory activities in Drosophila melanogasterIMPORTANCE Female Aedes aegypti mosquitoes are vectors of human-infecting arthropod-borne viruses (arboviruses). In recent decades, the incidence of arthropod-borne viral infections has grown dramatically. Vector competence is influenced by many factors, including the mosquito's antiviral defenses. The exogenous small interfering RNA (siRNA) pathway is a major antiviral response restricting arboviruses in mosquitoes. While the roles of the effectors of this pathway, Argonaute-2 and Dicer-2 are well characterized, nothing is known about its regulation in mosquitoes. In this study, we demonstrate that A. aegypti p400, whose ortholog Domino in Drosophila melanogaster is a chromatin-remodeling ATPase member of the Tip60 complex, regulates siRNA pathway activity and controls ago-2 expression levels. In addition, we found p400 to have antiviral activity against different arboviruses. Therefore, our study provides new insights into the regulation of the antiviral response in A. aegypti mosquitoes.
Collapse
Affiliation(s)
- Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Alma McDonald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Bryan Wee
- Usher Institute for Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathilde Lauréti
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Sandra Terry
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Marie Vazeille
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Rommel J Gestuveo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
- Division of Biological Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Isabelle Dietrich
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| |
Collapse
|
44
|
Wang JY, Zhang H, Siemann E, Ji XY, Chen YJ, Wang Y, Jiang JX, Wan NF. Immunity of an insect herbivore to an entomovirus is affected by different host plants. PEST MANAGEMENT SCIENCE 2020; 76:1004-1010. [PMID: 31489764 DOI: 10.1002/ps.5609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Interactions between herbivorous insects and entomoviruses may depend on host plant, perhaps mediated through changes in herbivore innate immunity. RESULTS Caterpillars (Spodoptera exigua) fed Glycine max had high viral loads and low melanization rates together with low melanization enzyme [PO, DDC, TH] activities and gene expressions. Caterpillars fed Ipomoea aquatica had low viral loads and high melanization, gene activities and gene expressions while those fed Brassica oleracea or artificial diet had intermediate levels of each. Melanization rates were negatively correlated with viral loads and positively correlated with activity and expression of each of the three enzymes. Some diet effects on enzymes were constitutive because the same diets led to low (G. max) or high (I. aquatica) melanization related gene activities and expressions without infection. CONCLUSION Diet influences the interactions between insect herbivores and viruses by shaping the innate immune response both at the onset of infection and afterwards as viral loads accumulate over a period of days. In addition, diets that lead to low viral loads are associated with high activities and gene expressions of a variety of melanization related enzymes suggesting a common causative mechanism. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Hao Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi-Juan Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi Wang
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Nian-Feng Wan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| |
Collapse
|
45
|
King JG. Developmental and comparative perspectives on mosquito immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103458. [PMID: 31377103 DOI: 10.1016/j.dci.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diseases spread by mosquitoes have killed more people than those spread by any other group of arthropod vectors and remain an important factor in determining global health and economic stability. The mosquito innate immune system can act to either modulate infection with human pathogens or fight off entomopathogens and increase the fitness and longevity of infected mosquitoes. While work remains towards understanding the larval immune system and the development of the mosquito immune system, it has recently become clearer that environmental factors heavily shape the developing mosquito immune system and continue to influence the adult immune system as well. The adult immune system has been well-studied and is known to involve multiple tissues and diverse molecular mechanisms. This review summarizes and synthesizes what is currently understood about the development of the mosquito immune system and includes comparisons of immune components unique to mosquitoes among the blood-feeding arthropods as well as important distinguishing factors between the anopheline and culicine mosquitoes. An explanation is included for how mosquito immunity factors into vector competence and vectorial capacity is presented along with a model for the interrelationships between nutrition, microbiome, pathogen interactions and behavior as they relate to mosquito development, immune status, adult female fitness and ultimately, vectorial capacity. Novel discoveries in the fields of mosquito ecoimmunology, neuroimmunology, and intracellular antiviral responses are highlighted.
Collapse
Affiliation(s)
- Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Dorman 402, Mississippi State, MS 39762, USA.
| |
Collapse
|
46
|
Bryden SR, Pingen M, Lefteri DA, Miltenburg J, Delang L, Jacobs S, Abdelnabi R, Neyts J, Pondeville E, Major J, Müller M, Khalid H, Tuplin A, Varjak M, Merits A, Edgar J, Graham GJ, Shams K, McKimmie CS. Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Sci Transl Med 2020; 12:eaax2421. [PMID: 31969486 DOI: 10.1126/scitranslmed.aax2421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Arthropod-borne viruses (arboviruses) are important human pathogens for which there are no specific antiviral medicines. The abundance of genetically distinct arbovirus species, coupled with the unpredictable nature of their outbreaks, has made the development of virus-specific treatments challenging. Instead, we have defined and targeted a key aspect of the host innate immune response to virus at the arthropod bite that is common to all arbovirus infections, potentially circumventing the need for virus-specific therapies. Using mouse models and human skin explants, we identify innate immune responses by dermal macrophages in the skin as a key determinant of disease severity. Post-exposure treatment of the inoculation site by a topical TLR7 agonist suppressed both the local and subsequent systemic course of infection with a variety of arboviruses from the Alphavirus, Flavivirus, and Orthobunyavirus genera. Clinical outcome was improved in mice after infection with a model alphavirus. In the absence of treatment, antiviral interferon expression to virus in the skin was restricted to dermal dendritic cells. In contrast, stimulating the more populous skin-resident macrophages with a TLR7 agonist elicited protective responses in key cellular targets of virus that otherwise proficiently replicated virus. By defining and targeting a key aspect of the innate immune response to virus at the mosquito bite site, we have identified a putative new strategy for limiting disease after infection with a variety of genetically distinct arboviruses.
Collapse
Affiliation(s)
- Steven R Bryden
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marieke Pingen
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniella A Lefteri
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Janne Miltenburg
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Emilie Pondeville
- MRC‑University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Jack Major
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Henna Khalid
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Margus Varjak
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julia Edgar
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Gerard J Graham
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Kave Shams
- Inflammatory Skin Disease Group, Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Clive S McKimmie
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
47
|
Wei J, Hameed M, Wang X, Zhang J, Guo S, Anwar MN, Pang L, Liu K, Li B, Shao D, Qiu Y, Zhong D, Zhou B, Ma Z. Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Res 2019; 174:104673. [PMID: 31812636 DOI: 10.1016/j.antiviral.2019.104673] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that is the most significant etiological agent of childhood viral neurological infections. However, no specific antiviral drug is currently available to treat JEV infections. The JEV envelope (E) protein is a class II viral fusion protein that mediates host cell entry, making interference with the interaction between the E protein of JEV and its cognate receptors an attractive strategy for anti-JEV drug development. In this study, we identified a peptide derived from a phage display peptide library against the E protein of JEV, designated P1, that potentially inhibits in vitro and in vivo JEV infections. P1 inhibits JEV infection in BHK-21 cells with 50% inhibitory capacity at a concentration of 35.9 μM. The time-of-addition assay indicates that JEV replication is significantly inhibited during pre-infection and co-infection of P1 with JEV while post-infection treatments with P1 have very little impact on JEV proliferation, showing that P1 inhibits JEV infection at early stages and indicating the potential prophylactic effect of P1. We adapted an in vitro BiFC assay system and demonstrated that P1 interacts with JEV E proteins and blocks their entry into cells. We also evaluated the therapeutic efficacy of P1 in a lethal JEV mouse model exhibiting systemic and brain infections. Interestingly, P1 treatment protected C57BL/6 mice against mortality, markedly reduced the viral loads in blood and brain, and diminished the histopathological lesions in the brain cells. In addition to controlling systemic infection, P1 has a very low level of cytotoxicity and acts in a sequence-specific manner, as scrambled peptide sP1 does not show any antiviral activity. In conclusion, our in vitro and in vivo experimental findings show that P1 possesses antiviral activity against JEV infections, is safe to use, and has potential for further development as an antiviral treatment against JEV infections.
Collapse
Affiliation(s)
- Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China; Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China
| | - Shuang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Dengke Zhong
- Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China.
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
48
|
Toufeeq S, Wang J, Zhang SZ, Li B, Hu P, Zhu LB, You LL, Xu JP. Bmserpin2 Is Involved in BmNPV Infection by Suppressing Melanization in Bombyx mori. INSECTS 2019; 10:insects10110399. [PMID: 31717928 PMCID: PMC6921080 DOI: 10.3390/insects10110399] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022]
Abstract
Melanization, an important defense response, plays a vital role in arthropod immunity. It is mediated by serine proteases (SPs) that convert the inactive prophenoloxidase (PPO) to active phenoloxidase (PO) and is tightly regulated by serine protease inhibitors (serpins) which belong to a well distributed superfamily in invertebrates, participating in immune mechanisms and other important physiological processes. Here, we investigated the Bmserpin2 gene which was identified from a transcriptome database in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that Bmserpin2 was expressed in all tissues, with maximum expression in fat body. Upon BmNPV infection, the expression of Bmserpin2 was up-regulated in P50 (susceptible strain) and BC9 (resistant strain) in haemocytes, fat body and the midgut. However, up-regulation was delayed in BC9 (48 or 72 h), in contrast to P50 (24 h), after BmNPV infection. Meanwhile, Bmserpin2 could delay or inhibit melanization in silkworm haemolymph. Significant increased PO activity can be observed in Bmserpin2-depleted haemolymph under NPV infection. Furthermore, the viral genomic DNA copy number was decreased in Bmserpin2-depleted haemolymph. We conclude that Bmserpin2 is an inducible gene which might be involved in the regulation of PPO activation and suppressed melanization, and have a potential role in the innate immune system of B. mori.
Collapse
Affiliation(s)
- Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence:
| |
Collapse
|
49
|
Hameed M, Liu K, Anwar MN, Wahaab A, Safdar A, Di D, Boruah P, Xu J, Wang X, Li B, Zhu H, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. The emerged genotype I of Japanese encephalitis virus shows an infectivity similar to genotype III in Culex pipiens mosquitoes from China. PLoS Negl Trop Dis 2019; 13:e0007716. [PMID: 31557156 PMCID: PMC6762057 DOI: 10.1371/journal.pntd.0007716] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that represents the most significant etiology of childhood viral neurological infections throughout the Asia. During the last 20 years, JEV genotype dominance has shifted from genotype III (GIII) to genotype I (GI). To date, the exact mechanism of this displacement is still not known. Culex (Cx.) mosquitoes are the most common species in China and play an essential role in maintaining JEV enzootic transmission cycle. In this study, we used Cx. pipiens mosquitoes from China as an in vivo mosquito model to explore if mosquitoes played a potential role in JEV genotype shift. We exposed female Cx. pipiens mosquitoes orally to either GI or GIII JEV strains. Midgut, whole mosquitoes, secondary organs, and salivary glands of JEV-infected mosquitoes were collected at 7 and 14 days of post infection (dpi) and subjected to measure the infection rate, replication kinetics, dissemination rate and transmission potential of the infected JEV strains in Cx. pipiens mosquitoes by 50% tissue culture infective dose assay. We found that Cx. pipiens mosquito was competent vector for both GI and GIII JEV infection, with similar infection rates and growth kinetics. After the establishment of infection, Cx. pipiens mosquitoes disseminated both JEV genotypes to secondary organs at similar rates of dissemination. A few GI-infected mosquito salivary glands (16.2%) were positive for GI virus, whereas GIII virus was undetectable in GIII-infected mosquito salivary glands at 7 dpi. However, 29.4% (5/17) and 36.3% (8/22) were positive for GI- and GIII-infected mosquito salivary glands at 14 dpi, respectively, showing an increase in JEV positive rate. No statistical difference in the transmission rate between GI- and GIII-infected mosquitoes was detected. Our experiment data demonstrated that GI and GIII viruses have similar infectivity in Cx. pipiens mosquitoes, suggesting that Cx. pipiens mosquitoes from China may not play a critical role in JEV genotype shift. Although the current data were obtained solely from Cx. pipiens mosquitoes, it is likely that the conclusion drawn could be extrapolated to the role of mosquitoes in JEV genotype shift.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Anum Safdar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Prerona Boruah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Huaimin Zhu
- Department of Pathogen biology, Second Military Medical University, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
50
|
Discovery and characterization of a novel alphavirus-like RNA virus from the red firebug Pyrrhocoris apterus L. (Heteroptera). J Invertebr Pathol 2019; 166:107213. [DOI: 10.1016/j.jip.2019.107213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
|