1
|
Müller T, Krüger T, Engstler M. Subcellular dynamics in unicellular parasites. Trends Parasitol 2025; 41:222-234. [PMID: 39933989 DOI: 10.1016/j.pt.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Bioimaging has made tremendous advances in this century. Innovations in high- and super-resolution microscopy are well established, and live-cell imaging is extensively used to gain an overview of dynamic processes. But the combination of high spatial and temporal resolution necessary to capture intracellular dynamics is rarely achieved. Further, efficient software pipelines - that can handle the recorded data and allow comprehensive analyses - are being developed but lag behind other technical innovations in applicability for broad groups of researchers. Especially in parasites, which offer great potential for studying subcellular dynamics, the possibilities have only begun to be probed. In all cases, the complete description of dynamic molecular movement in 3D space remains a challenging necessity.
Collapse
|
2
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. Mol Biol Cell 2024; 35:br22. [PMID: 39382839 PMCID: PMC11617092 DOI: 10.1091/mbc.e23-12-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
3
|
Overberg FA, Gompper G, Fedosov DA. Motion of microswimmers in cylindrical microchannels. SOFT MATTER 2024; 20:3007-3020. [PMID: 38495021 DOI: 10.1039/d3sm01480k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Biological and artificial microswimmers often have to propel through a variety of environments, ranging from heterogeneous suspending media to strong geometrical confinement. Under confinement, local flow fields generated by microswimmers, and steric and hydrodynamic interactions with their environment determine the locomotion. We propose a squirmer-like model to describe the motion of microswimmers in cylindrical microchannels, where propulsion is generated by a fixed surface slip velocity. The model is studied using an approximate analytical solution for cylindrical swimmer shapes, and by numerical hydrodynamics simulations for spherical and spheroidal shapes. For the numerical simulations, we employ the dissipative particle dynamics method for modelling fluid flow. Both the analytical model and simulations show that the propulsion force increases with increasing confinement. However, the swimming velocity under confinement remains lower than the swimmer speed without confinement for all investigated conditions. In simulations, different swimming modes (i.e. pusher, neutral, puller) are investigated, and found to play a significant role in the generation of propulsion force when a swimmer approaches a dead end of a capillary tube. Propulsion generation in confined systems is local, such that the generated flow field generally vanishes beyond the characteristic size of the swimmer. These results contribute to a better understanding of microswimmer force generation and propulsion under strong confinement, including the motion in porous media and in narrow channels.
Collapse
Affiliation(s)
- Florian A Overberg
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
4
|
Jentzsch J, Wunderlich H, Thein M, Bechthold J, Brehm L, Krauss SW, Weiss M, Ersfeld K. Microtubule polyglutamylation is an essential regulator of cytoskeletal integrity in Trypanosoma brucei. J Cell Sci 2024; 137:jcs261740. [PMID: 38205672 DOI: 10.1242/jcs.261740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hannes Wunderlich
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marinus Thein
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Julia Bechthold
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lucas Brehm
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576295. [PMID: 38293126 PMCID: PMC10827224 DOI: 10.1101/2024.01.19.576295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethal cell division defect. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
De Niz M, Frachon E, Gobaa S, Bastin P. Spatial confinement of Trypanosoma brucei in microfluidic traps provides a new tool to study free swimming parasites. PLoS One 2023; 18:e0296257. [PMID: 38134042 PMCID: PMC10745224 DOI: 10.1371/journal.pone.0296257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African trypanosomiasis and is transmitted by the tsetse fly (Glossina spp.). All stages of this extracellular parasite possess a single flagellum that is attached to the cell body and confers a high degree of motility. While several stages are amenable to culture in vitro, longitudinal high-resolution imaging of free-swimming parasites has been challenging, mostly due to the rapid flagellar beating that constantly twists the cell body. Here, using microfabrication, we generated various microfluidic devices with traps of different geometrical properties. Investigation of trap topology allowed us to define the one most suitable for single T. brucei confinement within the field of view of an inverted microscope while allowing the parasite to remain motile. Chips populated with V-shaped traps allowed us to investigate various phenomena in cultured procyclic stage wild-type parasites, and to compare them with parasites whose motility was altered upon knockdown of a paraflagellar rod component. Among the properties that we investigated were trap invasion, parasite motility, and the visualization of organelles labelled with fluorescent dyes. We envisage that this tool we have named "Tryp-Chip" will be a useful tool for the scientific community, as it could allow high-throughput, high-temporal and high-spatial resolution imaging of free-swimming T. brucei parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France
| | - Emmanuel Frachon
- Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France
| |
Collapse
|
7
|
Machado H, Temudo A, Niz MD. The lymphatic system favours survival of a unique T. brucei population. Biol Open 2023; 12:bio059992. [PMID: 37870927 PMCID: PMC10651106 DOI: 10.1242/bio.059992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Trypanosoma brucei colonise and multiply in the blood vasculature, as well as in various organs of the host's body. Lymph nodes have been previously shown to harbour large numbers of parasites, and the lymphatic system has been proposed as a key site that allows T. brucei distribution through, and colonization of the mammalian body. However, visualization of host-pathogen interactions in the lymphatic system has never captured dynamic events with high spatial and temporal resolution throughout infection. In our work, we used a mixture of tools including intravital microscopy and ex vivo imaging to study T. brucei distribution in 20 sets of lymph nodes. We demonstrate that lymph node colonization by T. brucei is different across lymph node sets, with the most heavily colonised being the draining lymph nodes of main tissue reservoirs: the gonadal white adipose tissue and pancreas. Moreover, we show that the lymphatic vasculature is a pivotal site for parasite dispersal, and altering this colonization by blocking LYVE-1 is detrimental for parasite survival. Additionally, parasites within the lymphatic vasculature have unique morphological and behavioural characteristics, different to those found in the blood, demonstrating that across both types of vasculature, these environments are physically separated. Finally, we demonstrate that the lymph nodes and the lymphatic vasculature undergo significant alterations during T. brucei infection, resulting in oedema throughout the host's body.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - António Temudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
- Bioimaging Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
8
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. PLoS Negl Trop Dis 2023; 17:e0011731. [PMID: 37917723 PMCID: PMC10656021 DOI: 10.1371/journal.pntd.0011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/17/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigotes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypanosomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
9
|
Tan F, Yan R, Zhao C, Zhao N. Translocation Dynamics of an Active Filament through a Long-Length Scale Channel. J Phys Chem B 2023; 127:8603-8615. [PMID: 37782905 DOI: 10.1021/acs.jpcb.3c04250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Active filament translocation through a confined space is crucial for diverse biological processes. By using Langevin dynamics simulations, we investigate the translocation dynamics of an axially self-propelled chain through a channel. First, results show a suggestive reciprocal scaling of translocation time versus active force. Second, in the case of a long channel, we demonstrate a very intriguing nonmonotonic change of translocation time with increasing channel width. The driving force shows a similar trend, providing a consistent picture to understand the unexpected channel width effect. In particular, in a moderately broad channel, the disordered chain conformation results in a loss of driving force and thus inhibits translocation dynamics. Chain adsorption might occur in a wide channel, which accounts for a facilitated translocation. Lastly, we connect the translocation process to tension propagation (TP). A modified TP picture is proposed to interpret the waiting time distribution. Our work highlights the new phenomenology owing to the crucial interplay of activity and spacial confinement, which drives the translocation dynamics, going beyond the traditional entropic barrier scenario.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
11
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542100. [PMID: 37293088 PMCID: PMC10245916 DOI: 10.1101/2023.05.24.542100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas' disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigoes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypansomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
12
|
Yan R, Tan F, Wang J, Zhao N. Conformation and dynamics of an active filament in crowded media. J Chem Phys 2023; 158:114905. [PMID: 36948796 DOI: 10.1063/5.0142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The structural and dynamical properties of active filamentous objects under macromolecular crowding have a great relevance in biology. By means of Brownian dynamics simulations, we perform a comparative study for the conformational change and diffusion dynamics of an active chain in pure solvents and in crowded media. Our result shows a robust compaction-to-swelling conformational change with the augment of the Péclet number. The presence of crowding facilitates self-trapping of monomers and, thus, reinforces the activity mediated compaction. In addition, the efficient collisions between the self-propelled monomers and crowders induce a coil-to-globulelike transition, indicated by a marked change of the Flory scaling exponent of the gyration radius. Moreover, the diffusion dynamics of the active chain in crowded solutions demonstrates activity-enhanced subdiffusion. The center of mass diffusion manifests rather new scaling relations with respect to both the chain length and Péclet number. The interplay of chain activity and medium crowding provides a new mechanism to understand the non-trivial properties of active filaments in complex environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jingli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
14
|
Godar S, Oristian J, Hinsch V, Wentworth K, Lopez E, Amlashi P, Enverso G, Markley S, Alper JD. Light chain 2 is a Tctex-type related axonemal dynein light chain that regulates directional ciliary motility in Trypanosoma brucei. PLoS Pathog 2022; 18:e1009984. [PMID: 36155669 PMCID: PMC9536576 DOI: 10.1371/journal.ppat.1009984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Flagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids. Trypanosoma brucei flagella beat with a bending wave that propagates from the flagellum's tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein-associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex-type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi in both wild-type and FLAM3, a flagellar attachment zone protein, knockdown cells and quantified TbLC2's effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to-tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids' unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.
Collapse
Affiliation(s)
- Subash Godar
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - James Oristian
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Valerie Hinsch
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Katherine Wentworth
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Ethan Lopez
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Parastoo Amlashi
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Gerald Enverso
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Samantha Markley
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Joshua Daniel Alper
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
15
|
Speidel A, Theile M, Pfeiffer L, Herrmann A, Figarella K, Ishikawa H, Schwerk C, Schroten H, Duszenko M, Mogk S. Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier. iScience 2022; 25:104014. [PMID: 35313698 PMCID: PMC8933718 DOI: 10.1016/j.isci.2022.104014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.
Collapse
Affiliation(s)
- Annika Speidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marianne Theile
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lena Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexander Herrmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Duszenko
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Saenz-Garcia JL, Borges BS, Souza-Melo N, Machado LV, Miranda JS, Pacheco-Lugo LA, Moretti NS, Wheleer R, Soares Medeiros LC, DaRocha WD. Trypanin Disruption Affects the Motility and Infectivity of the Protozoan Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:807236. [PMID: 35071054 PMCID: PMC8777028 DOI: 10.3389/fcimb.2021.807236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Collapse
Affiliation(s)
- Jose L Saenz-Garcia
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Beatriz S Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Normanda Souza-Melo
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Ultraestrutura Hertha Mayer, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz V Machado
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Juliana S Miranda
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | | | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Wheleer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lia C Soares Medeiros
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Muniz RS, Campbell PC, Sladewski TE, Renner LD, de Graffenried CL. Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. PLoS Pathog 2022; 18:e1010218. [PMID: 35041719 PMCID: PMC8797261 DOI: 10.1371/journal.ppat.1010218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, is highly motile and must be able to move in all three dimensions for reliable cell division. These characteristics make long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of important cellular events. To address this issue, we devised an imaging approach that confines cells in small volumes within cast agarose microwells that can be imaged continuously for up to 24 h. Individual T. brucei cells were imaged through multiple rounds of cell division with high spatial and temporal resolution. We developed a strategy that employs in-well “sentinel” cells to monitor potential imaging toxicity during loss-of-function experiments such as small-molecule inhibition and RNAi. Using our approach, we show that the asymmetric daughter cells produced during T. brucei division subsequently divide at different rates, with the old-flagellum daughter cell dividing first. The flagellar detachment phenotype that appears during inhibition of the Polo-like kinase homolog TbPLK occurs in a stepwise fashion, with the new flagellum initially linked by its tip to the old, attached flagellum. We probe the feasibility of a previously proposed “back-up” cytokinetic mechanism and show that cells that initiate this process do not appear to complete cell division. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.
Collapse
Affiliation(s)
- Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mondal D, Prabhune AG, Ramaswamy S, Sharma P. Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing. eLife 2021; 10:e67663. [PMID: 34806977 PMCID: PMC8758135 DOI: 10.7554/elife.67663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.
Collapse
Affiliation(s)
- Debasmita Mondal
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Ameya G Prabhune
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Prerna Sharma
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
19
|
Schuster S, Lisack J, Subota I, Zimmermann H, Reuter C, Mueller T, Morriswood B, Engstler M. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife 2021; 10:66028. [PMID: 34355698 PMCID: PMC8448533 DOI: 10.7554/elife.66028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host’s circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.
Collapse
Affiliation(s)
- Sarah Schuster
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Jaime Lisack
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Henriette Zimmermann
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Christian Reuter
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | | | | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
21
|
Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. eLife 2021; 10:65051. [PMID: 34180835 PMCID: PMC8238501 DOI: 10.7554/elife.65051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cellular motility is an ancient eukaryotic trait, ubiquitous across phyla with roles in predator avoidance, resource access, and competition. Flagellar motility is seen in various parasitic protozoans, and morphological changes in flagella during the parasite life cycle have been observed. We studied the impact of these changes on motility across life cycle stages, and how such changes might serve to facilitate human infection. We used holographic microscopy to image swimming cells of different Leishmania mexicana life cycle stages in three dimensions. We find that the human-infective (metacyclic promastigote) forms display ‘run and tumble’ behaviour in the absence of stimulus, reminiscent of bacterial motion, and that they specifically modify swimming direction and speed to target host immune cells in response to a macrophage-derived stimulus. Non-infective (procyclic promastigote) cells swim more slowly, along meandering helical paths. These findings demonstrate adaptation of swimming phenotype and chemotaxis towards human cells.
Collapse
Affiliation(s)
- Rachel C Findlay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom.,Department of Physics, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Kirstin A Spence
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
22
|
Sinclair AN, Huynh CT, Sladewski TE, Zuromski JL, Ruiz AE, de Graffenried CL. The Trypanosoma brucei subpellicular microtubule array is organized into functionally discrete subdomains defined by microtubule associated proteins. PLoS Pathog 2021; 17:e1009588. [PMID: 34010336 PMCID: PMC8168904 DOI: 10.1371/journal.ppat.1009588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/01/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.
Collapse
Affiliation(s)
- Amy N. Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christine T. Huynh
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Jenna L. Zuromski
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Amanda E. Ruiz
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
23
|
Calvo-Álvarez E, Bonnefoy S, Salles A, Benson FE, McKean PG, Bastin P, Rotureau B. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction. Cell Microbiol 2021; 23:e13347. [PMID: 33896083 PMCID: PMC8459223 DOI: 10.1111/cmi.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian‐infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta‐marker of the flagellum stage and maturation state in trypanosomes.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Audrey Salles
- Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Institut Pasteur, Paris, France
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Paul G McKean
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Théry A, Wang Y, Dvoriashyna M, Eloy C, Elias F, Lauga E. Rebound and scattering of motile Chlamydomonas algae in confined chambers. SOFT MATTER 2021; 17:4857-4873. [PMID: 33890590 PMCID: PMC8115209 DOI: 10.1039/d0sm02207a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic chamber and show that their spatial distribution exhibits strong corner accumulation. Using empirical scattering laws observed in previous experiments (scattering with a constant scattering angle), we next develop a two-dimension geometrical model and compute the phase space of trapped and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorporating the distribution of scattering angles observed in our experiments and including hydrodynamic interactions between the cells and the surfaces into the geometrical model enables us to reproduce the experimental probability density function of micro-swimmers in microfluidic chambers. Both our experiments and models demonstrate therefore that motility leads generically to trapping in complex geometries.
Collapse
Affiliation(s)
- Albane Théry
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | - Yuxuan Wang
- Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France
| | - Mariia Dvoriashyna
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | - Christophe Eloy
- Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France
| | - Florence Elias
- Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
25
|
Krüger T, Maus K, Kreß V, Meyer-Natus E, Engstler M. Single-cell motile behaviour of
T
r
y
p
a
n
o
s
o
m
a
b
r
u
c
e
i
in thin-layered fluid collectives. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:37. [PMID: 33755816 PMCID: PMC7987620 DOI: 10.1140/epje/s10189-021-00052-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/09/2021] [Indexed: 05/14/2023]
Abstract
We describe a system for the analysis of an important unicellular eukaryotic flagellate in a confining and crowded environment. The parasite Trypanosoma brucei is arguably one of the most versatile microswimmers known. It has unique properties as a single microswimmer and shows remarkable adaptations (not only in motility, but prominently so), to its environment during a complex developmental cycle involving two different hosts. Specific life cycle stages show fascinating collective behaviour, as millions of cells can be forced to move together in extreme confinement. Our goal is to examine such motile behaviour directly in the context of the relevant environments. Therefore, for the first time, we analyse the motility behaviour of trypanosomes directly in a widely used assay, which aims to evaluate the parasites behaviour in collectives, in response to as yet unknown parameters. In a step towards understanding whether, or what type of, swarming behaviour of trypanosomes exists, we customised the assay for quantitative tracking analysis of motile behaviour on the single-cell level. We show that the migration speed of cell groups does not directly depend on single-cell velocity and that the system remains to be simplified further, before hypotheses about collective motility can be advanced.
Collapse
Affiliation(s)
- Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität, Am Hubland, 97074, Würzburg, Germany.
| | - Katharina Maus
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität, Am Hubland, 97074, Würzburg, Germany
| | - Verena Kreß
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität, Am Hubland, 97074, Würzburg, Germany
| | - Elisabeth Meyer-Natus
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität, Am Hubland, 97074, Würzburg, Germany
| | - Markus Engstler
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
26
|
Trépout S. In situ structural analysis of the flagellum attachment zone in Trypanosoma brucei using cryo-scanning transmission electron tomography. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100033. [PMID: 32775999 PMCID: PMC7394968 DOI: 10.1016/j.yjsbx.2020.100033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
Flagellar and cellular membranes are in close contact next to the FAZ filament. Sticks are heterogeneously distributed along the FAZ filament length. Thin appendages are present between the sticks and the neighbouring microtubules. The FAZ could elongate thanks to the action of dynein on subpellicular microtubules.
The flagellum of Trypanosoma brucei is a 20 µm-long organelle responsible for locomotion and cell morphogenesis. The flagellum attachment zone (FAZ) is a multi-protein complex whose function is to attach the flagellum to the cell body but also to guide cytokinesis. Cryo-transmission electron microscopy is a tool of choice to access the structure of the FAZ in a close-to-native state. However, because of the large dimension of the cell body, the whole FAZ cannot be structurally studied in situ at the nanometre scale in 3D using classical transmission electron microscopy approaches. In the present work, cryo-scanning transmission electron tomography, a new method capable of investigating cryo-fixed thick biological samples, has been used to study whole T. brucei cells at the bloodstream stage. The method has been used to visualise and characterise the structure and organisation of the FAZ filament. It is composed of an array of cytoplasmic stick-like structures. These sticks are heterogeneously distributed between the posterior part and the anterior tip of the cell. This cryo-STET investigation provides new insights into the structure of the FAZ filament. In combination with protein structure predictions, this work proposes a new model for the elongation of the FAZ.
Collapse
|
27
|
Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J Cell Sci 2020; 133:jcs129213. [PMID: 32503938 DOI: 10.1242/jcs.129213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.
Collapse
Affiliation(s)
- Robert L Douglas
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brett M Haltiwanger
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Albisetti
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Haiming Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L Jeng
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Joel Mancuso
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - W Zacheus Cande
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Biswas A, Cruz JM, Parmananda P, Das D. First passage of an active particle in the presence of passive crowders. SOFT MATTER 2020; 16:6138-6144. [PMID: 32555827 DOI: 10.1039/d0sm00350f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We experimentally study the stochastic transport of a self-propelled camphor boat, driven by Marangoni forces, through a crowd of passive paper discs floating on water. We analyze the statistics of the first passage times of the active particle to travel from the center of a circular container to its boundary. While the mean times rise monotonically as a function of the covered area fraction φ of the passive paper discs, their fluctuations show a non-monotonic behavior - being higher at low and high value of φ compared to intermediate values. The reason is traced to an interplay of two distinct sources of fluctuations - one intrinsic to the dynamics, while the other due to the crowding.
Collapse
Affiliation(s)
- Animesh Biswas
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - J M Cruz
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - P Parmananda
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - Dibyendu Das
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| |
Collapse
|
29
|
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49:8088-8112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of "swallowing a surgeon".
Collapse
Affiliation(s)
- Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|
30
|
Culturing and Transfection of Pleomorphic Trypanosoma brucei. Methods Mol Biol 2020. [PMID: 32221911 DOI: 10.1007/978-1-0716-0294-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cultivation of pleomorphic Trypanosoma brucei strains was introduced in 1996 when matrix dependence of growth of natural isolates was recognized. Semisolid agarose or liquid methylcellulose are currently used and here we provide optimized protocols for these culture methods and for transfection of pleomorphic strains. Although more laborious than standard liquid culture, culture of native pleomorphic strains is important for a number of research questions including differentiation, virulence, tissue tropism, and regulated metabolism. Some subclones of pleomorphic strains have acquired matrix independence upon passage in culture but maintained a pleomorphic phenotype. It appears that matrix dependence and pleomorphism are not tightly linked traits, yet phenotypes have to be verified before choosing one of these subclones for given experiments. Based on direct comparisons, we give recommendations for pleomorphic strain selection and culture conditions that guarantee truly pleomorphic and differentiation competent Trypanosoma brucei.
Collapse
|
31
|
Abstract
Motility analysis of microswimmers has long been limited to a few model cell types and broadly restricted by technical challenges of high-resolution in vivo microscopy. Recently, interdisciplinary interest in detailed analysis of the motile behavior of various species has gained momentum. Here we describe a basic protocol for motility analysis of an important, highly diverse group of eukaryotic flagellate microswimmers, using high spatiotemporal resolution videomicroscopy. Further, we provide a special, time-dependent tomographic approach for the proof of rotational locomotion of periodically oscillating microswimmers, using the same data. Taken together, the methods describe part of an integrative approach to generate decisive information on three-dimensional in vivo motility from standard two-dimensional videomicroscopy data.
Collapse
Affiliation(s)
- Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Markus Engstler
- Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, Würzburg, Germany.
| |
Collapse
|
32
|
Imhof S, Zhang J, Wang H, Bui KH, Nguyen H, Atanasov I, Hui WH, Yang SK, Zhou ZH, Hill KL. Cryo electron tomography with volta phase plate reveals novel structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma brucei. eLife 2019; 8:e52058. [PMID: 31710293 PMCID: PMC6974359 DOI: 10.7554/elife.52058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The 96-nm axonemal repeat includes dynein motors and accessory structures as the foundation for motility of eukaryotic flagella and cilia. However, high-resolution 3D axoneme structures are unavailable for organisms among the Excavates, which include pathogens of medical and economic importance. Here we report cryo electron tomography structures of the 96-nm repeat from Trypanosoma brucei, a protozoan parasite in the Excavate lineage that causes African trypanosomiasis. We examined bloodstream and procyclic life cycle stages, and a knockdown lacking DRC11/CMF22 of the nexin dynein regulatory complex (NDRC). Sub-tomogram averaging yields a resolution of 21.8 Å for the 96-nm repeat. We discovered several lineage-specific structures, including novel inter-doublet linkages and microtubule inner proteins (MIPs). We establish that DRC11/CMF22 is required for the NDRC proximal lobe that binds the adjacent doublet microtubule. We propose that lineage-specific elaboration of axoneme structure in T. brucei reflects adaptations to support unique motility needs in diverse host environments.
Collapse
Affiliation(s)
- Simon Imhof
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Hoangkim Nguyen
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Ivo Atanasov
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Wong H Hui
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
33
|
Sinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol 2019; 35:760-777. [PMID: 31471215 PMCID: PMC6783356 DOI: 10.1016/j.pt.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The subpellicular microtubule array defines the wide range of cellular morphologies found in parasitic kinetoplastids (trypanosomatids). Morphological studies have characterized array organization, but little progress has been made towards identifying the molecular mechanisms that are responsible for array differentiation during the trypanosomatid life cycle, or the apparent stability and longevity of array microtubules. In this review, we outline what is known about the structure and biogenesis of the array, with emphasis on Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, which cause life-threatening diseases in humans and livestock. We highlight unanswered questions about this remarkable cellular structure that merit new consideration in light of our recently improved understanding of how the 'tubulin code' influences microtubule dynamics to generate complex cellular structures.
Collapse
Affiliation(s)
- Amy N Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
34
|
Dóró É, Jacobs SH, Hammond FR, Schipper H, Pieters RP, Carrington M, Wiegertjes GF, Forlenza M. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. eLife 2019; 8:48388. [PMID: 31547905 PMCID: PMC6759355 DOI: 10.7554/elife.48388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are important disease agents of humans, livestock and cold-blooded species, including fish. The cellular morphology of trypanosomes is central to their motility, adaptation to the host’s environments and pathogenesis. However, visualizing the behaviour of trypanosomes resident in a live vertebrate host has remained unexplored. In this study, we describe an infection model of zebrafish (Danio rerio) with Trypanosoma carassii. By combining high spatio-temporal resolution microscopy with the transparency of live zebrafish, we describe in detail the swimming behaviour of trypanosomes in blood and tissues of a vertebrate host. Besides the conventional tumbling and directional swimming, T. carassii can change direction through a ‘whip-like’ motion or by swimming backward. Further, the posterior end can act as an anchoring site in vivo. To our knowledge, this is the first report of a vertebrate infection model that allows detailed imaging of trypanosome swimming behaviour in vivo in a natural host environment. Trypanosomes are one-celled parasites that cause the disease trypanosomiasis, which is also known as sleeping sickness. Trypanosomiasis is transmitted to humans and animals by a type of fly, known as tse-tse, which is commonly found in sub-Saharan Africa. A bite from the tse-tse fly transfers the trypanosome cells into the host’s bloodstream, where they spread from the blood to the internal organs and brain. This leads to a long-term illness, which can sometimes result in a coma and eventually death. Once in the blood trypanosomes move around using a structure similar to an underwater propeller called the flagellum. How the trypanosomes move and behave in the blood determines how the infection will progress. Until now it has only been possible to observe trypanosomes in plastic dishes or in blood drawn from infected patients. However, neither of these settings mimic the conditions of the bloodstream, and it is currently impossible to look inside human hosts to watch how trypanosomes move. To overcome this hurdle, Doro et al. infected zebrafish with Trypanosoma carassii, a close relative of the sub-Saharan trypanosomes that specifically infects fish. Zebrafish are transparent when young, making it possible to observe the parasite in the blood and tissues of live fish using a microscope. Doro et al. noticed that Trypanosoma carassii cells adapt to different environments in the host by using different swimming techniques. For example, in small capillaries trypanosomes were dragged along with the blood flow, whilst in larger vessels, when blood flow was slow or there were fewer red blood cells, trypanosomes actively swam against the current. The parasites were also able to change direction by using their flagella in a ‘whip-like’ motion. Lastly, it was discovered that Trypanosoma carassii could rapidly attach to blood vessel walls using one end of its cell body, even when blood flow was strong. This behaviour may help the parasites escape from the bloodstream into the surrounding tissues, making the infection more dangerous. Studying how trypanosomes infect zebrafish at this high level of detail provides new insights into how these parasites move and behave inside a host. An important question that remains to be answered, is how exactly the trypanosomes leave the bloodstream. A better understanding of the whole infection process may hint at new ways of fighting these deadly infections in future.
Collapse
Affiliation(s)
- Éva Dóró
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sem H Jacobs
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schipper
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Remco Pm Pieters
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Geert F Wiegertjes
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
35
|
Walker BJ, Wheeler RJ. High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella. J Cell Sci 2019; 132:jcs231795. [PMID: 31371486 PMCID: PMC6737910 DOI: 10.1242/jcs.231795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Analysis of flagellum and cilium beating in three dimensions (3D) is important for understanding cell motility, and using fluorescence microscopy to do so would be extremely powerful. Here, high-speed multifocal plane fluorescence microscopy, where the light path is split to visualise multiple focal planes simultaneously, was used to reconstruct Trypanosoma brucei and Leishmania mexicana movement in 3D. These species are uniflagellate unicellular parasites for which motility is vital. It was possible to use either a fluorescent stain or a genetically-encoded fluorescent protein to visualise flagellum and cell movement at 200 Hz frame rates. This addressed two open questions regarding Trypanosoma and Leishmania flagellum beating, which contributes to their swimming behaviours: 1) how planar is the L. mexicana flagellum beat, and 2) what is the nature of flagellum beating during T. brucei 'tumbling'? We showed that L. mexicana has notable deviations from a planar flagellum beat, and that during tumbling the T. brucei flagellum bends the cell and beats only in the distal portion to achieve cell reorientation. This demonstrates high-speed multifocal plane fluorescence microscopy as a powerful tool for the analysis of beating flagella.
Collapse
Affiliation(s)
- Benjamin J Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
36
|
Howard MP, Nikoubashman A, Palmer JC. Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Jakuszeit T, Croze OA, Bell S. Diffusion of active particles in a complex environment: Role of surface scattering. Phys Rev E 2019; 99:012610. [PMID: 30780271 DOI: 10.1103/physreve.99.012610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/07/2022]
Abstract
Experiments have shown that self-propelled particles can slide along the surface of a circular obstacle without becoming trapped over long times. Using simulations and theory, we study the impact of boundary conditions on the diffusive transport of active particles in an obstacle lattice. We find that particle dynamics with sliding boundary conditions result in large diffusivities even at high obstacle density, unlike classical specular reflection. These dynamics are very well described by a model based on run-and-tumble particles with microscopically derived reorientation functions arising from obstacle-induced tumbles. This model, however, fails to describe fine structure in the diffusivity at high obstacle density predicted by simulations for pusherlike collisions. Using a simple deterministic model, we show that this structure results from particles being guided by the lattice. Our results thus show how nonclassical surface scattering introduces a dependence on the lattice geometry at high densities. We discuss implications for the study of bacteria in complex environments.
Collapse
Affiliation(s)
- Theresa Jakuszeit
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ottavio A Croze
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Samuel Bell
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
38
|
Alfituri OA, Ajibola O, Brewer JM, Garside P, Benson RA, Peel T, Morrison LJ, Mabbott NA. Effects of host-derived chemokines on the motility and viability of Trypanosoma brucei. Parasite Immunol 2019; 41:e12609. [PMID: 30525202 PMCID: PMC6767366 DOI: 10.1111/pim.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/29/2018] [Indexed: 12/04/2022]
Abstract
African trypanosomes (Trypanosoma brucei spp.) are extracellular, hemoflagellate, protozoan parasites. Mammalian infection begins when the tsetse fly vector injects trypanosomes into the skin during blood feeding. The trypanosomes then reach the draining lymph nodes before disseminating systemically. Intravital imaging of the skin post-tsetse fly bite revealed that trypanosomes were observed both extravascularly and intravascularly in the lymphatic vessels. Whether host-derived cues play a role in the attraction of the trypanosomes towards the lymphatic vessels to aid their dissemination from the site of infection is not known. Since chemokines can mediate the attraction of leucocytes towards the lymphatics, in vitro chemotaxis assays were used to determine whether chemokines might also act as chemoattractants for trypanosomes. Although microarray data suggested that the chemokines CCL8, CCL19, CCL21, CCL27 and CXCL12 were highly expressed in mouse skin, they did not stimulate the chemotaxis of T brucei. Certain chemokines also possess potent antimicrobial properties. However, none of the chemokines tested exerted any parasiticidal effects on T brucei. Thus, our data suggest that host-derived chemokines do not act as chemoattractants for T brucei. Identification of the mechanisms used by trypanosomes to establish host infection will aid the development of novel approaches to block disease transmission.
Collapse
Affiliation(s)
- Omar A. Alfituri
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| | - Olumide Ajibola
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
- Department of MicrobiologyFederal University Birnin KebbiBirnin KebbiNigeria
| | - James M. Brewer
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Paul Garside
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Robert A. Benson
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Tamlyn Peel
- Centre for Inflammation Biology and Cancer ImmunologyFaculty of Life SciencesKing's College LondonLondonUK
| | - Liam J. Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
39
|
Zhang Y, Ceylan Koydemir H, Shimogawa MM, Yalcin S, Guziak A, Liu T, Oguz I, Huang Y, Bai B, Luo Y, Luo Y, Wei Z, Wang H, Bianco V, Zhang B, Nadkarni R, Hill K, Ozcan A. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. LIGHT, SCIENCE & APPLICATIONS 2018; 7:108. [PMID: 30564314 PMCID: PMC6290798 DOI: 10.1038/s41377-018-0110-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/25/2018] [Indexed: 05/08/2023]
Abstract
Parasitic infections constitute a major global public health issue. Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity to facilitate early diagnosis. Here, we demonstrate a motility-based label-free computational imaging platform to rapidly detect motile parasites in optically dense bodily fluids by utilizing the locomotion of the parasites as a specific biomarker and endogenous contrast mechanism. Based on this principle, a cost-effective and mobile instrument, which rapidly screens ~3.2 mL of fluid sample in three dimensions, was built to automatically detect and count motile microorganisms using their holographic time-lapse speckle patterns. We demonstrate the capabilities of our platform by detecting trypanosomes, which are motile protozoan parasites, with various species that cause deadly diseases affecting millions of people worldwide. Using a holographic speckle analysis algorithm combined with deep learning-based classification, we demonstrate sensitive and label-free detection of trypanosomes within spiked whole blood and artificial cerebrospinal fluid (CSF) samples, achieving a limit of detection of ten trypanosomes per mL of whole blood (~five-fold better than the current state-of-the-art parasitological method) and three trypanosomes per mL of CSF. We further demonstrate that this platform can be applied to detect other motile parasites by imaging Trichomonas vaginalis, the causative agent of trichomoniasis, which affects 275 million people worldwide. With its cost-effective, portable design and rapid screening time, this unique platform has the potential to be applied for sensitive and timely diagnosis of neglected tropical diseases caused by motile parasites and other parasitic infections in resource-limited regions.
Collapse
Affiliation(s)
- Yibo Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Michelle M. Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
| | - Sener Yalcin
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Alexander Guziak
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Ilker Oguz
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Yujia Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Yilin Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Zhensong Wei
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Hongda Wang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Vittorio Bianco
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Bohan Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Rohan Nadkarni
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
| | - Kent Hill
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
40
|
Bentivoglio M, Kristensson K, Rottenberg ME. Circumventricular Organs and Parasite Neurotropism: Neglected Gates to the Brain? Front Immunol 2018; 9:2877. [PMID: 30619260 PMCID: PMC6302769 DOI: 10.3389/fimmu.2018.02877] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Circumventricular organs (CVOs), neural structures located around the third and fourth ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood circulation, but may also increase chances of exposure to microbes. In spite of this, attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and choroid plexus can be infected by pathogens circulating in the bloodstream, providing a route for brain penetration, as shown by infections with the parasites Trypanosoma brucei. Immune responses elicited by pathogens or systemic infections in the choroid plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can seed into the ventricles and initiate accelerated infiltration of T cells and parasites in periventricular areas. The highly motile trypanosomes may also enter the brain parenchyma from the median eminence, a CVO located at the base of the third ventricle, by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may, thus, be provided for trypanosomes to move into brain areas connected to networks of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are also connected. Functional imbalances in these networks characterize human African trypanosomiasis, also called sleeping sickness. They are distinct from the sickness response to bacterial infections, but can occur in common neuropsychiatric diseases. Altogether the findings lead to the question: does the neglect in reporting microbe attacks to CVOs reflect lack of awareness in investigations or of gate-opening capability by microbes?
Collapse
Affiliation(s)
- Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Martin E. Rottenberg
- Department Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Krüger T, Schuster S, Engstler M. Beyond Blood: African Trypanosomes on the Move. Trends Parasitol 2018; 34:1056-1067. [DOI: 10.1016/j.pt.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
|
42
|
Hilton NA, Sladewski TE, Perry JA, Pataki Z, Sinclair-Davis AN, Muniz RS, Tran HL, Wurster JI, Seo J, de Graffenried CL. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Mol Microbiol 2018; 109:306-326. [PMID: 29781112 PMCID: PMC6359937 DOI: 10.1111/mmi.13986] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation identification (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely configured process in kinetoplastids.
Collapse
Affiliation(s)
- Nicholas A. Hilton
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Zemplen Pataki
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Holly L. Tran
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jiwon Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912
| | | |
Collapse
|
43
|
Sikkel PC, Cook CA, Renoux LP, Bennett CL, Tuttle LJ, Smit NJ. The distribution and host-association of a haemoparasite of damselfishes (Pomacentridae) from the eastern Caribbean based on a combination of morphology and 18S rDNA sequences. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:213-220. [PMID: 29988386 PMCID: PMC6024192 DOI: 10.1016/j.ijppaw.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
Abstract
Coral reefs harbor the greatest biodiversity per unit area of any ecosystem on earth. While parasites constitute the majority of this biodiversity, they remain poorly studied due to the cryptic nature of many parasites and the lack of appropriate training among coral reef ecologists. Damselfishes (Pomacentridae) are among the most abundant and diverse fishes on coral reefs. In a recent study of blood parasites of Caribbean reef fishes, the first ever apicomplexan blood parasites discovered in damselfishes were reported for members of the genus Stegastes. While these blood parasites were characterized as “Haemohormidium-like”, they appear to be distinct from any other known apicomplexan. In this study, we examined host associations, geographic distributions, and provide further insights on the phylogenetic affiliation of this parasite. A combination of morphological characteristics and 18S rDNA sequences suggest that this parasite may be the same species at multiple sites and occurs from the southern to the northern extreme of the eastern Caribbean, although it appears rare in the north. At present it appears to be limited to members of the genus Stegastes and infects all life history stages. It is most common in benthophagous species that occur in high population densities and appears basal to a major monophyletic clade containing species of coccidia, distinct from the Piroplasmida, the order to which Haemohormidium spp. have been assigned. These findings suggest a possible fecal-oral mode of transmission. A new species of Haemorhormidium-like apicomplexan blood parasite has recently been discovered in Caribbean damselfishes. Morphological and molecular data indicate that it is widespread in the eastern Caribbean. This parasite is limited to damselfish species of the genus Stegastes and infects juveniles and adults. It is most common in benthophagous species that occur in high population densities. This parasite resembles coccidia but 18S rDNA show it to be distinct from known genera, as well as genera of piroplasms.
Collapse
Affiliation(s)
- Paul C Sikkel
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, AR, USA.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Courtney A Cook
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lance P Renoux
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, AR, USA
| | - Courtney L Bennett
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, AR, USA.,Sarasota High School, 2155 Bahia Vista St, Sarasota, FL 34239, USA
| | - Lillian J Tuttle
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
44
|
Parasite motility is critical for virulence of African trypanosomes. Sci Rep 2018; 8:9122. [PMID: 29904094 PMCID: PMC6002391 DOI: 10.1038/s41598-018-27228-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes, Trypanosoma brucei spp., are lethal pathogens that cause substantial human suffering and limit economic development in some of the world's most impoverished regions. The name Trypanosoma ("auger cell") derives from the parasite's distinctive motility, which is driven by a single flagellum. However, despite decades of study, a requirement for trypanosome motility in mammalian host infection has not been established. LC1 is a conserved dynein subunit required for flagellar motility. Prior studies with a conditional RNAi-based LC1 mutant, RNAi-K/R, revealed that parasites with defective motility could infect mice. However, RNAi-K/R retained residual expression of wild-type LC1 and residual motility, thus precluding definitive interpretation. To overcome these limitations, here we generate constitutive mutants in which both LC1 alleles are replaced with mutant versions. These double knock-in mutants show reduced motility compared to RNAi-K/R and are viable in culture, but are unable to maintain bloodstream infection in mice. The virulence defect is independent of infection route but dependent on an intact host immune system. By comparing different mutants, we also reveal a critical dependence on the LC1 N-terminus for motility and virulence. Our findings demonstrate that trypanosome motility is critical for establishment and maintenance of bloodstream infection, implicating dynein-dependent flagellar motility as a potential drug target.
Collapse
|
45
|
Abstract
Trypanosoma brucei is a highly invasive pathogen capable of penetrating deeply into host tissues. To understand how flagellar motility facilitates cell penetration, we used cryo-electron tomography (cryo-ET) to visualize two genetically anucleate mutants with different flagellar motility behaviors. We found that the T. brucei cell body is highly deformable as defined by changes in cytoskeletal twist and spacing, in response to flagellar beating and environmental conditions. Based on the cryo-ET models, we proposed a mechanism of how flagellum motility is coupled to cell shape changes, which may facilitate penetration through size-limiting barriers. In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.
Collapse
|
46
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|
47
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
48
|
The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering. MICROMACHINES 2018; 9:mi9020063. [PMID: 30393339 PMCID: PMC6187515 DOI: 10.3390/mi9020063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 01/29/2023]
Abstract
The human body is constantly attacked by pathogens. Various lines of defence have evolved, among which the immune system is principal. In contrast to most pathogens, the African trypanosomes thrive freely in the blood circulation, where they escape immune destruction by antigenic variation and incessant motility. These unicellular parasites are flagellate microswimmers that also withstand the harsh mechanical forces prevailing in the bloodstream. They undergo complex developmental cycles in the bloodstream and organs of the mammalian host, as well as the disease-transmitting tsetse fly. Each life cycle stage has been shaped by evolution for manoeuvring in distinct microenvironments. Here, we introduce trypanosomes as blueprints for nature-inspired design of trypanobots, micromachines that, in the future, could explore the human body without affecting its physiology. We review cell biological and biophysical aspects of trypanosome motion. While this could provide a basis for the engineering of microbots, their actuation and control still appear more like fiction than science. Here, we discuss potentials and challenges of trypanosome-inspired microswimmer robots.
Collapse
|
49
|
Muthinja JM, Ripp J, Krüger T, Imle A, Haraszti T, Fackler OT, Spatz JP, Engstler M, Frischknecht F. Tailored environments to study motile cells and pathogens. Cell Microbiol 2018; 20. [PMID: 29316156 DOI: 10.1111/cmi.12820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Motile cells and pathogens migrate in complex environments and yet are mostly studied on simple 2D substrates. In order to mimic the diverse environments of motile cells, a set of assays including substrates of defined elasticity, microfluidics, micropatterns, organotypic cultures, and 3D gels have been developed. We briefly introduce these and then focus on the use of micropatterned pillar arrays, which help to bridge the gap between 2D and 3D. These structures are made from polydimethylsiloxane, a moldable plastic, and their use has revealed new insights into mechanoperception in Caenorhabditis elegans, gliding motility of Plasmodium, swimming of trypanosomes, and nuclear stability in cancer cells. These studies contributed to our understanding of how the environment influences the respective cell and inform on how the cells adapt to their natural surroundings on a cellular and molecular level.
Collapse
Affiliation(s)
- Julianne Mendi Muthinja
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Johanna Ripp
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Andrea Imle
- Integrative Virology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Tamás Haraszti
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.,Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Oliver T Fackler
- Integrative Virology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
50
|
Sinclair-Davis AN, McAllaster MR, de Graffenried CL. A functional analysis of TOEFAZ1 uncovers protein domains essential for cytokinesis in Trypanosoma brucei. J Cell Sci 2017; 130:3918-3932. [PMID: 28993462 DOI: 10.1242/jcs.207209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022] Open
Abstract
The parasite Trypanosoma brucei is highly polarized, including a flagellum that is attached along the cell surface by the flagellum attachment zone (FAZ). During cell division, the new FAZ positions the cleavage furrow, which ingresses from the anterior tip of the cell towards the posterior. We recently identified TOEFAZ1 (for 'Tip of the Extending FAZ protein 1') as an essential protein in trypanosome cytokinesis. Here, we analyzed the localization and function of TOEFAZ1 domains by performing overexpression and RNAi complementation experiments. TOEFAZ1 comprises three domains with separable functions: an N-terminal α-helical domain that may be involved in FAZ recruitment, a central intrinsically disordered domain that keeps the morphogenic kinase TbPLK at the new FAZ tip, and a C-terminal zinc finger domain necessary for TOEFAZ1 oligomerization. Both the N-terminal and C-terminal domains are essential for TOEFAZ1 function, but TbPLK retention at the FAZ is not necessary for cytokinesis. The feasibility of alternative cytokinetic pathways that do not employ TOEFAZ1 are also assessed. Our results show that TOEFAZ1 is a multimeric scaffold for recruiting proteins that control the timing and location of cleavage furrow ingression.
Collapse
Affiliation(s)
- Amy N Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|