1
|
Mopuri R, Welbourn S, Charles T, Ralli-Jain P, Rosales D, Burton S, Aftab A, Karunakaran K, Pellegrini K, Kilembe W, Karita E, Gnanakaran S, Upadhyay AA, Bosinger SE, Derdeyn CA. High throughput analysis of B cell dynamics and neutralizing antibody development during immunization with a novel clade C HIV-1 envelope. PLoS Pathog 2023; 19:e1011717. [PMID: 37878666 PMCID: PMC10627474 DOI: 10.1371/journal.ppat.1011717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
A protective HIV-1 vaccine has been hampered by a limited understanding of how B cells acquire neutralizing activity. Our previous vaccines expressing two different HIV-1 envelopes elicited robust antigen specific serum IgG titers in 20 rhesus macaques; yet serum from only two animals neutralized the autologous virus. Here, we used high throughput immunoglobulin receptor and single cell RNA sequencing to characterize the overall expansion, recall, and maturation of antigen specific B cells longitudinally over 90 weeks. Diversification and expansion of many B cell clonotypes occurred broadly in the absence of serum neutralization. However, in one animal that developed neutralization, two neutralizing B cell clonotypes arose from the same immunoglobulin germline and were tracked longitudinally. Early antibody variants with high identity to germline neutralized the autologous virus while later variants acquired somatic hypermutation and increased neutralization potency. The early engagement of precursors capable of neutralization with little to no SHM followed by prolonged affinity maturation allowed the two neutralizing lineages to successfully persist despite many other antigen specific B cells. The findings provide new insight into B cells responding to HIV-1 envelope during heterologous prime and boost immunization in rhesus macaques and the development of selected autologous neutralizing antibody lineages.
Collapse
Affiliation(s)
- Rohini Mopuri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Pooja Ralli-Jain
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - David Rosales
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Samantha Burton
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Areeb Aftab
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kirti Karunakaran
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn Pellegrini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Sandrasegaram Gnanakaran
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amit A. Upadhyay
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia A. Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine Unit, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Jeewanraj N, Mandizvo T, Mulaudzi T, Gumede N, Ndhlovu Z, Ndung'u T, Gounder K, Mann J. Partial compartmentalisation of HIV-1 subtype C between lymph nodes, peripheral blood mononuclear cells and plasma. Virology 2023; 582:62-70. [PMID: 37030154 PMCID: PMC10132742 DOI: 10.1016/j.virol.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
HIV-1 compartmentalisation is likely to have important implications for a preventative vaccine as well as eradication strategies. We genetically characterised HIV-1 subtype C variants in lymph nodes, peripheral blood mononuclear cells and plasma of six antiretroviral (ART) naïve individuals and four individuals on ART. Full-length env (n = 171) and gag (n = 250) sequences were generated from participants using single genome amplification. Phylogenetic relatedness of sequences was assessed, and compartmentalisation was determined using both distance and tree-based methods implemented in HyPhy. Additionally, potential associations between compartmentalisation and immune escape mutations were assessed. Partial viral compartmentalisation was present in nine of the ten participants. Broadly neutralising antibody (bnAb) escape was found to be associated with partial env compartmentalisation in some individuals, while cytotoxic T lymphocyte escape mutations in Gag were limited and did not differ between compartments. Viral compartmentalisation may be an important consideration for bnAb use in viral eradication.
Collapse
Affiliation(s)
- Neschika Jeewanraj
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda Mandizvo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa
| | - Takalani Mulaudzi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nombali Gumede
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Division of Infection and Immunity, University College London, London, United Kingdom
| | - Kamini Gounder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
3
|
Kuriakose Gift S, Wieczorek L, Sanders-Buell E, Zemil M, Molnar S, Donofrio G, Townsley S, Chenine AL, Bose M, Trinh HV, Barrows BM, Sriplienchan S, Kitsiripornchai S, Nitayapan S, Eller LA, Rao M, Ferrari G, Michael NL, Ake JA, Krebs SJ, Robb ML, Tovanabutra S, Polonis VR. Evolution of Antibody Responses in HIV-1 CRF01_AE Acute Infection: Founder Envelope V1V2 Impacts the Timing and Magnitude of Autologous Neutralizing Antibodies. J Virol 2023; 97:e0163522. [PMID: 36749076 PMCID: PMC9973046 DOI: 10.1128/jvi.01635-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Understanding the dynamics of early immune responses to HIV-1 infection, including the evolution of initial neutralizing and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, will inform HIV vaccine design. In this study, we assess the development of autologous neutralizing antibodies (ANAbs) against founder envelopes (Envs) from 18 participants with HIV-1 CRF01_AE acute infection. The timing of ANAb development directly associated with the magnitude of the longitudinal ANAb response. Participants that developed ANAbs within 6 months of infection had significantly higher ANAb responses at 1 year (50% inhibitory concentration [IC50] geometric mean titer [GMT] = 2,010 versus 184; P = 0.001) and 2 years (GMT = 3,479 versus 340; P = 0.015), compared to participants that developed ANAb responses after 6 months. Participants with later development of ANAb tended to develop an earlier, potent heterologous tier 1 (92TH023) neutralizing antibody (NAb) response (P = 0.049). CRF01_AE founder Env V1V2 loop lengths correlated indirectly with the timing (P = 0.002, r = -0.675) and directly with magnitude (P = 0.005, r = 0.635) of ANAb responses; Envs with longer V1V2 loop lengths elicited earlier and more potent ANAb responses. While ANAb responses did not associate with viral load, the viral load set point correlated directly with neutralization of the heterologous 92TH023 strain (P = 0.007, r = 0.638). In contrast, a striking inverse correlation was observed between viral load set point and peak ADCC against heterologous 92TH023 Env strain (P = 0.0005, r = -0.738). These data indicate that specific antibody functions can be differentially related to viral load set point and may affect HIV-1 pathogenesis. Exploiting Env properties, such as V1V2 length, could facilitate development of subtype-specific vaccines that elicit more effective immune responses and improved protection. IMPORTANCE Development of an effective HIV-1 vaccine will be facilitated by better understanding the dynamics between the founder virus and the early humoral responses. Variations between subtypes may influence the evolution of immune responses and should be considered as we strive to understand these dynamics. In this study, autologous founder envelope neutralization and heterologous functional humoral responses were evaluated after acute infection by HIV-1 CRF01_AE, a subtype that has not been thoroughly characterized. The evolution of these humoral responses was assessed in relation to envelope characteristics, magnitude of elicited immune responses, and viral load. Understanding immune parameters in natural infection will improve our understanding of protective responses and aid in the development of immunogens that elicit protective functional antibodies. Advancing our knowledge of correlates of positive clinical outcomes should lead to the design of more efficacious vaccines.
Collapse
Affiliation(s)
- Syna Kuriakose Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Gina Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Samantha Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Agnes L. Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Somchai Sriplienchan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suchai Kitsiripornchai
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayapan
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Leigh-Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Welbourn S, Chakraborty S, Yang JE, Gleinich AS, Gangadhara S, Khan S, Ferrebee C, Yagnik B, Burton S, Charles T, Smith SA, Williams D, Mopuri R, Upadhyay AA, Thompson J, Price MA, Wang S, Qin Z, Shen X, Williams LD, Eisel N, Peters T, Zhang L, Kilembe W, Karita E, Tomaras GD, Bosinger SE, Amara RR, Azadi P, Wright ER, Gnanakaran S, Derdeyn CA. A neutralizing antibody target in early HIV-1 infection was recapitulated in rhesus macaques immunized with the transmitted/founder envelope sequence. PLoS Pathog 2022; 18:e1010488. [PMID: 35503780 PMCID: PMC9106183 DOI: 10.1371/journal.ppat.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.
Collapse
Affiliation(s)
- Sarah Welbourn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne S. Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Salar Khan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Courtney Ferrebee
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Bhrugu Yagnik
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - S. Abigail Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Danielle Williams
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Rohini Mopuri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Justin Thompson
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matt A. Price
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- International AIDS Vaccine Initiative, New York city, New York, United States of America
| | - Shiyu Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - LaTonya D. Williams
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Nathan Eisel
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Tiffany Peters
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Lu Zhang
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - William Kilembe
- Center for Family Health Research in Zambia (CFHRZ), Lusaka, Zambia
| | | | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
HIV-2 Neutralization Sensitivity in Relation to Co-Receptor Entry Pathways and Env Motifs. Int J Mol Sci 2022; 23:ijms23094766. [PMID: 35563157 PMCID: PMC9101540 DOI: 10.3390/ijms23094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-2, compared to HIV-1, elicits potent and broadly neutralizing antibodies, and uses a broad range of co-receptors. However, both sensitivity to neutralization and breadth of co-receptor use varies between HIV-2 isolates, and the molecular background is still not fully understood. Thus, in the current study, we have deciphered relationships between HIV-2 neutralization sensitivity, co-receptor use and viral envelope glycoprotein (Env) molecular motifs. A panel of primary HIV-2 isolates, with predefined use of co-receptors, was assessed for neutralization sensitivity using a set of HIV-2 Env-directed monoclonal antibodies and co-receptor indicator cell lines. Neutralization sensitivity of the isolates was analysed in relation target cell co-receptor expression, in addition to amino acid motifs and predicted structures of Env regions. Results showed that HIV-2 isolates were more resistant to neutralizing antibodies when entering target cells via the alternative co-receptor GPR15, as compared to CCR5. A similar pattern was noted for isolates using the alternative co-receptor CXCR6. Sensitivity to neutralizing antibodies appeared also to be linked to specific Env motifs in V1/V2 and C3 regions. Our findings suggest that HIV-2 sensitivity to neutralization depends both on which co-receptor is used for cell entry and on specific Env motifs. This study highlights the multifactorial mechanisms behind HIV-2 neutralization sensitivity.
Collapse
|
6
|
Ding C, Patel D, Ma Y, Mann JFS, Wu J, Gao Y. Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Front Immunol 2021; 12:697683. [PMID: 34354709 PMCID: PMC8329590 DOI: 10.3389/fimmu.2021.697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the discovery that the human immunodeficiency virus 1 (HIV-1) is the pathogen of acquired immunodeficiency syndrome (AIDS) in 1983, there is still no effective anti-HIV-1 vaccine. The major obstacle to the development of HIV-1 vaccine is the extreme diversity of viral genome sequences. Nonetheless, a number of broadly neutralizing antibodies (bNAbs) against HIV-1 have been made and identified in this area. Novel strategies based on using these bNAbs as an efficacious preventive and/or therapeutic intervention have been applied in clinical. In this review, we summarize the recent development of bNAbs and its application in HIV-1 acquisition prevention as well as discuss the innovative approaches being used to try to convey protection within individuals at risk and being treated for HIV-1 infection.
Collapse
Affiliation(s)
- Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Darshit Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Yunjing Ma
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jianjun Wu
- Department of AIDS Research, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Charles TP, Burton SL, Arunachalam PS, Cottrell CA, Sewall LM, Bollimpelli VS, Gangadhara S, Dey AK, Ward AB, Shaw GM, Hunter E, Amara RR, Pulendran B, van Gils MJ, Derdeyn CA. The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathog 2021; 17:e1009257. [PMID: 33556148 PMCID: PMC7895394 DOI: 10.1371/journal.ppat.1009257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.
Collapse
Affiliation(s)
- Tysheena P. Charles
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha L. Burton
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Prabhu S. Arunachalam
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Venkata S. Bollimpelli
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Bali Pulendran
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MKD, Wimmers F, Burton SL, Labranche CC, Petitdemange C, Gangadhara S, Styles TM, Quarnstrom CF, Walter KA, Ketas TJ, Legere T, Jagadeesh Reddy PB, Kasturi SP, Tsai A, Yeung BZ, Gupta S, Tomai M, Vasilakos J, Shaw GM, Kang CY, Moore JP, Subramaniam S, Khatri P, Montefiori D, Kozlowski PA, Derdeyn CA, Hunter E, Masopust D, Amara RR, Pulendran B. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med 2020; 26:932-940. [PMID: 32393800 PMCID: PMC7303014 DOI: 10.1038/s41591-020-0858-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/drug effects
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/drug effects
- Antibodies, Viral/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Heterologous
- Immunogenicity, Vaccine
- Immunologic Memory/immunology
- Macaca mulatta
- Mucous Membrane
- SAIDS Vaccines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/immunology
- Vagina
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tysheena P Charles
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Venkata S Bollimpelli
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Samantha L Burton
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Caroline Petitdemange
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Tiffany M Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Traci Legere
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Pradeep Babu Jagadeesh Reddy
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- Pfizer, Andover, MA, USA
| | - Sudhir Pai Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | | | | | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Clade C HIV-1 Envelope Vaccination Regimens Differ in Their Ability To Elicit Antibodies with Moderate Neutralization Breadth against Genetically Diverse Tier 2 HIV-1 Envelope Variants. J Virol 2019; 93:JVI.01846-18. [PMID: 30651354 DOI: 10.1128/jvi.01846-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023] Open
Abstract
The goals of preclinical HIV vaccine studies in nonhuman primates are to develop and test different approaches for their ability to generate protective immunity. Here, we compared the impact of 7 different vaccine modalities, all expressing the HIV-1 1086.C clade C envelope (Env), on (i) the magnitude and durability of antigen-specific serum antibody responses and (ii) autologous and heterologous neutralizing antibody capacity. These vaccination regimens included immunization with different combinations of DNA, modified vaccinia virus Ankara (MVA), soluble gp140 protein, and different adjuvants. Serum samples collected from 130 immunized monkeys at two key time points were analyzed using the TZM-bl cell assay: at 2 weeks after the final immunization (week 40/41) and on the day of challenge (week 58). Key initial findings were that inclusion of a gp140 protein boost had a significant impact on the magnitude and durability of Env-specific IgG antibodies, and addition of 3M-052 adjuvant was associated with better neutralizing activity against the SHIV1157ipd3N4 challenge virus and a heterologous HIV-1 CRF01 Env, CNE8. We measured neutralization against a panel of 12 tier 2 Envs using a newly described computational tool to quantify serum neutralization potency by factoring in the predetermined neutralization tier of each reference Env. This analysis revealed modest neutralization breadth, with DNA/MVA immunization followed by gp140 protein boosts in 3M-052 adjuvant producing the best scores. This study highlights that protein-containing regimens provide a solid foundation for the further development of novel adjuvants and inclusion of trimeric Env immunogens that could eventually elicit a higher level of neutralizing antibody breadth.IMPORTANCE Despite much progress, we still do not have a clear understanding of how to elicit a protective neutralizing antibody response against HIV-1 through vaccination. There have been great strides in the development of envelope immunogens that mimic the virus particle, but less is known about how different vaccination modalities and adjuvants contribute to shaping the antibody response. We compared seven different vaccines that were administered to rhesus macaques and that delivered the same envelope protein through various modalities and with different adjuvants. The results demonstrate that some vaccine components are better than others at eliciting neutralizing antibodies with breadth.
Collapse
|
10
|
Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma Neutralizing Antibodies. J Virol 2019; 93:JVI.01685-18. [PMID: 30567996 PMCID: PMC6401460 DOI: 10.1128/jvi.01685-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
Millions of people are still being infected with HIV decades after the first recognition of the virus. Currently, no vaccine is able to elicit bNAbs that will prevent infection by global HIV strains. Several studies have implicated HIV Env diversity in the development of breadth. However, Env evolution in individuals who fail to develop breadth despite mounting potent strain-specific neutralizing responses has not been well defined. Using longitudinal neutralization, epitope mapping, and sequence data from 14 participants, we found that overall measures of viral diversity were similar in all donors. However, the number of positively selected sites within Env epitopes was higher in bNAb participants than in strain-specific donors. We further identified common sites that were positively selected as bNAbs developed. These data indicate that while viral diversity is required for breadth, this should be highly targeted to specific residues to shape the elicitation of bNAbs by vaccination. The development of HIV broadly neutralizing antibodies (bNAbs) has previously been shown to be associated with viral evolution and high levels of genetic diversity in the HIV envelope (Env) glycoprotein. However, few studies have examined Env evolution in those who fail to develop neutralization breadth in order to assess whether bNAbs result from distinct evolutionary pathways. We compared Env evolution in eight HIV-1-infected participants who developed bNAbs to six donors with similar viral loads who did not develop bNAbs over three years of infection. We focused on Env V1V2 and C3V4, as these are major targets for both strain-specific neutralizing antibodies (nAbs) and bNAbs. Overall evolutionary rates (ranging from 9.92 × 10−3 to 4.1 × 10−2 substitutions/site/year) and viral diversity (from 1.1% to 6.5%) across Env, and within targeted epitopes, did not distinguish bNAb donors from non-bNAb donors. However, bNAb participants had more positively selected residues within epitopes than those without bNAbs, and several of these were common among bNAb donors. A comparison of the kinetics of strain-specific nAbs and bNAbs indicated that selection pressure at these residues increased with the onset of breadth. These data suggest that highly targeted viral evolution rather than overall envelope diversity is associated with neutralization breadth. The association of shared positively selected sites with the onset of breadth highlights the importance of diversity at specific positions in these epitopes for bNAb development, with implications for the development of sequential and cocktail immunization strategies. IMPORTANCE Millions of people are still being infected with HIV decades after the first recognition of the virus. Currently, no vaccine is able to elicit bNAbs that will prevent infection by global HIV strains. Several studies have implicated HIV Env diversity in the development of breadth. However, Env evolution in individuals who fail to develop breadth despite mounting potent strain-specific neutralizing responses has not been well defined. Using longitudinal neutralization, epitope mapping, and sequence data from 14 participants, we found that overall measures of viral diversity were similar in all donors. However, the number of positively selected sites within Env epitopes was higher in bNAb participants than in strain-specific donors. We further identified common sites that were positively selected as bNAbs developed. These data indicate that while viral diversity is required for breadth, this should be highly targeted to specific residues to shape the elicitation of bNAbs by vaccination.
Collapse
|
11
|
Smith SA, Burton SL, Kilembe W, Lakhi S, Karita E, Price M, Allen S, Derdeyn CA. VH1-69 Utilizing Antibodies Are Capable of Mediating Non-neutralizing Fc-Mediated Effector Functions Against the Transmitted/Founder gp120. Front Immunol 2019; 9:3163. [PMID: 30697215 PMCID: PMC6341001 DOI: 10.3389/fimmu.2018.03163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Multiple antibody effector functions arise in HIV-1 infection that could be harnessed to protect against infection or clear the persistent reservoir. Here, we have investigated the genetic and functional memory B cell and antibody landscape present during early infection in six individuals infected with either subtype A, C, or an A/C recombinant HIV-1. These individuals demonstrated varying levels of plasma autologous neutralization (nAb) against the transmitted/founder envelope (T/F Env) pseudovirus and non-neutralizing Fc-mediated effector function (nnFc) antibody-dependent cell-mediated cytotoxicity (ADCC) against the T/F Env gp120 protein at ~7 months after infection. Genetic analysis of the immunoglobulin heavy (VH) and light (VL) chain variable domain gene segments from 352 autologous T/F Env gp120-specific single B cells recovered at this same 7-month time-point revealed an over-representation of the VH1-69 germline in five of six individuals. A defining feature of the VH1-69 utilizing gp120-specific antibodies was their significantly more hydrophobic complementarity-determining region-2 (CDRH2) regions compared to other VH CDRH2 sequences from each individual. While none of the VH1-69 antibodies possessed strong neutralizing activity against virions pseudotyped with the autologous T/F Env, almost a third were capable of mediating high ADCC activity, as assayed by intracellular granzyme B activity in CEM.NKr.CCR5 target cells coated with autologous T/F Env gp120. High ADCC mediating VH1-69 antibodies exhibited shorter complementarity-determining region-3 (CDRH3) lengths and a more neutral isoelectric point than antibodies lacking this function. In the individual that developed the highest autologous ADCC responses, the high granzyme B producing antibodies bound to surface expressed envelope in the absence of CD4 and were not enhanced by the addition of soluble CD4. Overall, VH1-69 utilizing antibodies are commonly induced against gp120 in diverse HIV-1 infections and a subset of these antibodies can mediate ADCC functions, serving as a bridge between the innate and adaptive immune response to HIV-1.
Collapse
Affiliation(s)
- S Abigail Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Samantha L Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | | | - Shabir Lakhi
- Zambia Emory HIV Research Project, Lusaka, Zambia
| | | | - Matt Price
- International AIDS Vaccine Initiative, New York, NY, United States.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Cynthia A Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Gp120 V5 Is Targeted by the First Wave of Sequential Neutralizing Antibodies in SHIV SF162P3N-Infected Rhesus Macaques. Viruses 2018; 10:v10050262. [PMID: 29772652 PMCID: PMC5977255 DOI: 10.3390/v10050262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) infection provides a relevant animal model to study HIV-1 neutralization breadth. With previously identified SHIVSF162P3N infected rhesus macaques that did or did not develop neutralization breadth, we characterized the transmitted/founder viruses and initial autologous/homologous neutralizing antibodies in these animals. The plasma viral load and blood CD4 count did not distinguish macaques with and without breadth, and only one tested homologous envelope clone revealed a trend for macaques with breadth to favor an early homologous response. In two macaques with breadth, GB40 and FF69, infected with uncloned SHIVSF162P3N, multiple viral variants were transmitted, and the transmitted variants were not equal in neutralization sensitivity. The targets of initial autologous neutralizing antibodies, arising between 10 and 20 weeks post infection, were mapped to N462 glycan and G460a in gp120 V5 in GB40 and FF69, respectively. Although it is unclear whether these targets are related to later neutralization breadth development, the G460a target but not N462 glycan appeared more common in macaques with breadth than those without. Longitudinal plasmas revealed 2⁻3 sequential waves of neutralizing antibodies in macaques with breadth, implicating that 3 sequential envelope variants, if not more, may be required for the broadening of HIV-1 neutralizing antibodies.
Collapse
|
13
|
Anthony C, York T, Bekker V, Matten D, Selhorst P, Ferreria RC, Garrett NJ, Karim SSA, Morris L, Wood NT, Moore PL, Williamson C. Cooperation between Strain-Specific and Broadly Neutralizing Responses Limited Viral Escape and Prolonged the Exposure of the Broadly Neutralizing Epitope. J Virol 2017; 91:e00828-17. [PMID: 28679760 PMCID: PMC5571269 DOI: 10.1128/jvi.00828-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
V3-glycan-targeting broadly neutralizing antibodies (bNAbs) are a focus of HIV-1 vaccine development. Understanding the viral dynamics that stimulate the development of these antibodies can provide insights for immunogen design. We used a deep-sequencing approach, together with neutralization phenotyping, to investigate the rate and complexity of escape from V3-glycan-directed bNAbs compared to overlapping early strain-specific neutralizing antibody (ssNAb) responses to the V3/C3 region in donor CAP177. Escape from the ssNAb response occurred rapidly via an N334-to-N332 glycan switch, which took just 7.5 weeks to reach >50% frequency. In contrast, escape from the bNAbs was mediated via multiple pathways and took longer, with escape first occurring through an increase in V1 loop length, which took 46 weeks to reach 50% frequency, followed by an N332-to-N334 reversion, which took 66 weeks. Importantly, bNAb escape was incomplete, with contemporaneous neutralization observed up to 3 years postinfection. Both the ssNAb response and the bNAb response were modulated by the presence/absence of the N332 glycan, indicating an overlap between the two epitopes. Thus, selective pressure by ssNAbs to maintain the N332 glycan may have constrained the bNAb escape pathway. This slower and incomplete viral escape resulted in prolonged exposure of the bNAb epitope, which may in turn have aided the maturation of the bNAb lineage.IMPORTANCE The development of an HIV-1 vaccine is of paramount importance, and broadly neutralizing antibodies are likely to be a key component of a protective vaccine. The V3-glycan-targeting bNAb responses are among the most promising vaccine targets, as they are commonly elicited during infection. Understanding the interplay between viral evolution and the development of these antibodies provides insights that may guide immunogen design. Our work contrasted the dynamics of the early strain-specific antibodies and the later broadly neutralizing responses to a common Env target (V3C3), showing slower and more complex escape from bNAbs. Constrained bNAb escape, together with evidence of contemporaneous autologous virus neutralization, supports the proposal that prolonged exposure of the bNAb epitope enabled the maturation of the bNAb lineage.
Collapse
Affiliation(s)
- Colin Anthony
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Bekker
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa
| | - David Matten
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Philippe Selhorst
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roux-Cil Ferreria
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nigel J Garrett
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S Abdool Karim
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natasha T Wood
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
14
|
Crooks ET, Osawa K, Tong T, Grimley SL, Dai YD, Whalen RG, Kulp DW, Menis S, Schief WR, Binley JM. Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology 2017; 505:193-209. [PMID: 28279830 PMCID: PMC5895097 DOI: 10.1016/j.virol.2017.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022]
Abstract
Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits (PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb specificity using rational heterologous boosts.
Collapse
Affiliation(s)
- Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Samantha L Grimley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Yang D Dai
- The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert G Whalen
- Altravax, Inc., 725 San Aleso Avenue, Suite 2, Sunnyvale, CA 94085, USA
| | - Daniel W Kulp
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - William R Schief
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA.
| |
Collapse
|
15
|
Lythgoe KA, Gardner A, Pybus OG, Grove J. Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections. Trends Microbiol 2017; 25:336-348. [PMID: 28377208 PMCID: PMC5405858 DOI: 10.1016/j.tim.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, WC1E 6BT, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize recent advances in the use of broadly neutralizing antibodies (bNAbs) as therapeutics in human clinical trials and in non-human primate (NHP) models. We seek to highlight lessons from these studies with an emphasis on consequences to the virus and immune system. RECENT FINDINGS In the past 10 years, advances in HIV-1 trimer structure and B cell isolation methods have precipitated the identification of "new-generation" anti-HIV antibodies with broad and potent neutralization. In the past 2 years, the concept of using these bNAbs as therapeutic tools has moved from NHP models into human clinical trials. These trials have investigated the effects of bNAb infusions into patients chronically infected with HIV-1, while the NHP model has investigated treatment during acute infection. Through this work, the relationship between in vitro breadth and potency and in vivo clinical effect, although unresolved, is gradually being elucidated. These results emphasize the need for combination antibody therapy.
Collapse
Affiliation(s)
- Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), 1 Modderfontein Road, Sandringham, Johannesburg, Gauteng 2131 South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St. NW, Washington, DC 20001 USA
| |
Collapse
|
17
|
Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth. PLoS Pathog 2016; 12:e1005989. [PMID: 27851829 PMCID: PMC5112890 DOI: 10.1371/journal.ppat.1005989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/11/2016] [Indexed: 11/19/2022] Open
Abstract
A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.
Collapse
|
18
|
Duenas-Decamp M, Jiang L, Bolon D, Clapham PR. Saturation Mutagenesis of the HIV-1 Envelope CD4 Binding Loop Reveals Residues Controlling Distinct Trimer Conformations. PLoS Pathog 2016; 12:e1005988. [PMID: 27820858 PMCID: PMC5098743 DOI: 10.1371/journal.ppat.1005988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
The conformation of HIV-1 envelope (Env) glycoprotein trimers is key in ensuring protection against waves of neutralizing antibodies generated during infection, while maintaining sufficient exposure of the CD4 binding site (CD4bs) for viral entry. The CD4 binding loop on Env is an early contact site for CD4 while penetration of a proximal cavity by CD4 triggers Env conformational changes for entry. The role of residues in the CD4 binding loop in regulating the conformation of the trimer and trimer association domain (TAD) was investigated using a novel saturation mutagenesis approach. Single mutations identified, resulted in distinct trimer conformations affecting CD4bs exposure, the glycan shield and the TAD across diverse HIV-1 clades. Importantly, mutations that improve access to the CD4bs without exposing the immunodominant V3 loop were identified. The different trimer conformations identified will affect the specificity and breadth of nabs elicited in vivo and are important to consider in design of Env immunogens for vaccines. Spike proteins on the surface of HIV virus particles bind to CD4 receptors on the surface of immune cells and trigger infection. The immune system in an infected person attacks the virus spikes by producing antibodies that bind and neutralize them. To combat this immune attack, HIV continually alters the structure of the spike and thus escapes host antibodies. However, this process must still preserve sites on the spike that bind CD4 receptors for infection. Here, we investigated how the spike regulates its structure. We used a systematic approach to investigate every possible mutation covering a region of the spike critical for binding the CD4 receptor and controlling overall structure. We identified different sites and mechanisms that control the spike structure for diverse HIV-1 strains and impact the exposure of the binding site for CD4 along with targets for neutralizing antibodies. Our observations will help guide the design of spike structures for vaccines that induce neutralizing antibodies effective against different HIV-1 strains across the globe.
Collapse
Affiliation(s)
- Maria Duenas-Decamp
- Program in Molecular Medicine, Biotech 2, University of Massachusetts Medical School, Worcester, United States of America
| | - Li Jiang
- Biochemistry and Molecular Pharmacology, Lazare Research Building, University of Massachusetts Medical School, Worcester, United States of America
| | - Daniel Bolon
- Biochemistry and Molecular Pharmacology, Lazare Research Building, University of Massachusetts Medical School, Worcester, United States of America
- * E-mail: (PRC); (DB)
| | - Paul R. Clapham
- Program in Molecular Medicine, Biotech 2, University of Massachusetts Medical School, Worcester, United States of America
- * E-mail: (PRC); (DB)
| |
Collapse
|
19
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
20
|
Tian J, López CA, Derdeyn CA, Jones MS, Pinter A, Korber B, Gnanakaran S. Effect of Glycosylation on an Immunodominant Region in the V1V2 Variable Domain of the HIV-1 Envelope gp120 Protein. PLoS Comput Biol 2016; 12:e1005094. [PMID: 27716795 PMCID: PMC5055340 DOI: 10.1371/journal.pcbi.1005094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
Heavy glycosylation of the envelope (Env) surface subunit, gp120, is a key adaptation of HIV-1; however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. Here we explore the patterns of HIV-1 Env gp120 glycosylation, and particularly the enrichment in glycosylation sites proximal to the disulfide linkages at the base of the surface-exposed variable domains. To dissect the influence of glycans on the conformation these regions, we focused on an antigenic peptide fragment from a disulfide bridge-bounded region spanning the V1 and V2 hyper-variable domains of HIV-1 gp120. We used replica exchange molecular dynamics (MD) simulations to investigate how glycosylation influences its conformation and stability. Simulations were performed with and without N-linked glycosylation at two sites that are highly conserved across HIV-1 isolates (N156 and N160); both are contacts for recognition by V1V2-targeted broadly neutralizing antibodies against HIV-1. Glycosylation stabilized the pre-existing conformations of this peptide construct, reduced its propensity to adopt other secondary structures, and provided resistance against thermal unfolding. Simulations performed in the context of the Env trimer also indicated that glycosylation reduces flexibility of the V1V2 region, and provided insight into glycan-glycan interactions in this region. These stabilizing effects were influenced by a combination of factors, including the presence of a disulfide bond between the Cysteines at 131 and 157, which increased the formation of beta-strands. Together, these results provide a mechanism for conservation of disulfide linkage proximal glycosylation adjacent to the variable domains of gp120 and begin to explain how this could be exploited to enhance the immunogenicity of those regions. These studies suggest that glycopeptide immunogens can be designed to stabilize the most relevant Env conformations to focus the immune response on key neutralizing epitopes. Heavy glycosylation of the envelope surface subunit, gp120, is a key adaptation of HIV-1, however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. The network of glycans on gp120 is of particular interest with regards to vaccine design, because the glycans both serve as targets for many classes of broadly neutralizing antibodies, and contribute to patterns of immune evasion and escape during HIV-1 infection. In this manuscript, we report on how glycosylation influences an immunogenic but disordered region of gp120. Glycosylation stabilizes the pre-existing conformation, and reduces its propensity to form other secondary structures. It also stabilizes preformed conformation against thermal unfolding. These complementary effects originate from a combination of multiple factors, including the observation that having a glycosylation site adjacent to the disulfide bond further promotes the formation of beta-strand structure in this peptide.
Collapse
Affiliation(s)
- Jianhui Tian
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Biomolecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Morris S. Jones
- University of California Berkeley, School of Public Health, Berkeley, California, United States of America
| | - Abraham Pinter
- New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
21
|
van den Kerkhof TLGM, de Taeye SW, Boeser-Nunnink BD, Burton DR, Kootstra NA, Schuitemaker H, Sanders RW, van Gils MJ. HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds. Retrovirology 2016; 13:48. [PMID: 27388013 PMCID: PMC4936165 DOI: 10.1186/s12977-016-0279-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current HIV-1 immunogens are unable to induce antibodies that can neutralize a broad range of HIV-1 (broadly neutralizing antibodies; bNAbs). However, such antibodies are elicited in 10-30 % of HIV-1 infected individuals, and the co-evolution of the virus and the humoral immune responses in these individuals has attracted attention, because they can provide clues for vaccine design. RESULTS Here we characterized the NAb responses and envelope glycoprotein evolution in an HIV-1 infected "elite neutralizer" of the Amsterdam Cohort Studies on HIV-1 infection and AIDS who developed an unusually potent bNAb response rapidly after infection. The NAb response was dependent on the N332-glycan and viral resistance against the N332-glycan dependent bNAb PGT135 developed over time but viral escape did not occur at or near this glycan. In contrast, the virus likely escaped by increasing V1 length, with up to 21 amino acids, accompanied by the introduction of 1-3 additional glycans, as well as 2-4 additional cysteine residues within V1. CONCLUSIONS In the individual studied here, HIV-1 escaped from N332-glycan directed NAb responses without changing the epitope itself, but by elongating a variable loop that shields this epitope.
Collapse
Affiliation(s)
- Tom L G M van den Kerkhof
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Brigitte D Boeser-Nunnink
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Dennis R Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Janssen Pharmaceuticals, 2333 CN, Leiden, The Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, NY, 10065, USA.
| | - Marit J van Gils
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
22
|
|
23
|
Krumm SA, Mohammed H, Le KM, Crispin M, Wrin T, Poignard P, Burton DR, Doores KJ. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology 2016; 13:8. [PMID: 26837192 PMCID: PMC4736637 DOI: 10.1186/s12977-016-0241-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Background Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the 323IGDIR327 motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. Results Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. Conclusions These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie A Krumm
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Hajer Mohammed
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Terri Wrin
- Monogram Biosciences, Laboratory Corporation of America(R) Holdings, South San Francisco, CA, USA.
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA. .,Ragon Institute of MGH, MIT and Harvard, Cambridge, USA.
| | - Katie J Doores
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
24
|
Dilernia DA, Chien JT, Monaco DC, Brown MPS, Ende Z, Deymier MJ, Yue L, Paxinos EE, Allen S, Tirado-Ramos A, Hunter E. Multiplexed highly-accurate DNA sequencing of closely-related HIV-1 variants using continuous long reads from single molecule, real-time sequencing. Nucleic Acids Res 2015; 43:e129. [PMID: 26101252 PMCID: PMC4787755 DOI: 10.1093/nar/gkv630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 01/30/2023] Open
Abstract
Single Molecule, Real-Time (SMRT) Sequencing (Pacific Biosciences, Menlo Park, CA, USA) provides the longest continuous DNA sequencing reads currently available. However, the relatively high error rate in the raw read data requires novel analysis methods to deconvolute sequences derived from complex samples. Here, we present a workflow of novel computer algorithms able to reconstruct viral variant genomes present in mixtures with an accuracy of >QV50. This approach relies exclusively on Continuous Long Reads (CLR), which are the raw reads generated during SMRT Sequencing. We successfully implement this workflow for simultaneous sequencing of mixtures containing up to forty different >9 kb HIV-1 full genomes. This was achieved using a single SMRT Cell for each mixture and desktop computing power. This novel approach opens the possibility of solving complex sequencing tasks that currently lack a solution.
Collapse
Affiliation(s)
| | - Jung-Ting Chien
- Emory Vaccine Center, Emory University, Atlanta, GA, 30329, USA
| | | | | | - Zachary Ende
- Emory Vaccine Center, Emory University, Atlanta, GA, 30329, USA
| | | | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, GA, 30329, USA
| | | | - Susan Allen
- Pathology and Laboratory Medicine, Emory University, Atlanta, 30322, GA
| | | | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, 30329, USA Pathology and Laboratory Medicine, Emory University, Atlanta, 30322, GA
| |
Collapse
|
25
|
Chowdhury A, Del Rio Estrada PM, Del Rio PME, Tharp GK, Trible RP, Amara RR, Chahroudi A, Reyes-Teran G, Bosinger SE, Silvestri G. Decreased T Follicular Regulatory Cell/T Follicular Helper Cell (TFH) in Simian Immunodeficiency Virus-Infected Rhesus Macaques May Contribute to Accumulation of TFH in Chronic Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3237-47. [PMID: 26297764 PMCID: PMC4575868 DOI: 10.4049/jimmunol.1402701] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/13/2015] [Indexed: 01/12/2023]
Abstract
T follicular helper cells (TFH) are critical for the development and maintenance of germinal center (GC) and humoral immune responses. During chronic HIV/SIV infection, TFH accumulate, possibly as a result of Ag persistence. The HIV/SIV-associated TFH expansion may also reflect lack of regulation by suppressive follicular regulatory CD4(+) T cells (TFR). TFR are natural regulatory T cells (TREG) that migrate into the follicle and, similar to TFH, upregulate CXCR5, Bcl-6, and PD1. In this study, we identified TFR as CD4(+)CD25(+)FOXP3(+)CXCR5(+)PD1(hi)Bcl-6(+) within lymph nodes of rhesus macaques (RM) and confirmed their localization within the GC by immunohistochemistry. RNA sequencing showed that TFR exhibit a distinct transcriptional profile with shared features of both TFH and TREG, including intermediate expression of FOXP3, Bcl-6, PRDM1, IL-10, and IL-21. In healthy, SIV-uninfected RM, we observed a negative correlation between frequencies of TFR and both TFH and GC B cells, as well as levels of CD4(+) T cell proliferation. Post SIV infection, the TFR/TFH ratio was reduced with no change in the frequency of TREG or TFR within the total CD4(+) T cell pool. Finally, we examined whether higher levels of direct virus infection of TFR were responsible for their relative depletion post SIV infection. We found that TFH, TFR, and TREG sorted from SIV-infected RM harbor comparable levels of cell-associated viral DNA. Our data suggest that TFR may contribute to the regulation and proliferation of TFH and GC B cells in vivo and that a decreased TFR/TFH ratio in chronic SIV infection may lead to unchecked expansion of both TFH and GC B cells.
Collapse
Affiliation(s)
- Ankita Chowdhury
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Perla Mariana Del Rio Estrada
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Perla Maria Estrada Del Rio
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Greg K Tharp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Ronald P Trible
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Rama R Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Ann Chahroudi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329
| | - Gustavo Reyes-Teran
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Steven E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329;
| |
Collapse
|
26
|
Abstract
In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.
Collapse
|
27
|
Breakthrough of SIV strain smE660 challenge in SIV strain mac239-vaccinated rhesus macaques despite potent autologous neutralizing antibody responses. Proc Natl Acad Sci U S A 2015; 112:10780-5. [PMID: 26261312 DOI: 10.1073/pnas.1509731112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although the correlates of immunological protection from human immunodeficiency virus or simian immunodeficiency virus infection remain incompletely understood, it is generally believed that medium to high titers of serum neutralizing antibodies (nAbs) against the challenge virus will prevent infection. This paradigm is based on a series of studies in which passive transfer of HIV-specific nAbs protected rhesus macaques (RMs) from subsequent mucosal challenge with a chimeric human/simian immunodeficiency virus. However, it is unknown whether nAb titers define protection in the setting of active immunization. Here we determined serum nAb titers against breakthrough transmitted/founder (T/F) SIVsmE660-derived envelope glycoprotein (Env) variants from 14 RMs immunized with SIVmac239-based DNA-prime/modified vaccinia virus Ankara-boost vaccine regimens that included GM-CSF or CD40L adjuvants and conferred significant but incomplete protection against repeated low-dose intrarectal challenge. A single Env variant established infection in all RMs except one, with no identifiable genetic signature associated with vaccination breakthrough compared with T/F Envs from four unvaccinated monkeys. Breakthrough T/F Env pseudoviruses were potently neutralized in vitro by heterologous pooled serum from chronically SIVsmE660-infected monkeys at IC50 titers exceeding 1:1,000,000. Remarkably, the T/F Env pseudoviruses from 13 of 14 monkeys were also susceptible to neutralization by autologous prechallenge serum at in vitro IC50 titers ranging from 1:742-1:10,832. These titers were similar to those observed in vaccinated RMs that remained uninfected. These data suggest that the relationship between serum nAb titers and protection from mucosal SIV challenge in the setting of active immunization is more complex than previously recognized, warranting further studies into the balance between immune activation, target cell availability, and protective antibody responses.
Collapse
|
28
|
Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 2015; 89:8130-51. [PMID: 26018167 DOI: 10.1128/jvi.01221-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.
Collapse
|
29
|
Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS, Menis S, Huang X, Kulp D, Osawa K, Muranaka J, Stewart-Jones G, Destefano J, O’Dell S, LaBranche C, Robinson JE, Montefiori DC, McKee K, Du SX, Doria-Rose N, Kwong PD, Mascola JR, Zhu P, Schief WR, Wyatt RT, Whalen RG, Binley JM. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathog 2015; 11:e1004932. [PMID: 26023780 PMCID: PMC4449185 DOI: 10.1371/journal.ppat.1004932] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 12/28/2022] Open
Abstract
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
Collapse
Affiliation(s)
- Ema T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bimal Chakrabarti
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kristin Narayan
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sergey Menis
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Xiaoxing Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Daniel Kulp
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | | | - Guillaume Stewart-Jones
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Joanne Destefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James E. Robinson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sean X. Du
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - William R. Schief
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard T. Wyatt
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
30
|
Doria-Rose NA, Joyce MG. Strategies to guide the antibody affinity maturation process. Curr Opin Virol 2015; 11:137-47. [PMID: 25913818 DOI: 10.1016/j.coviro.2015.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process.
Collapse
Affiliation(s)
- Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Moore PL, Williamson C, Morris L. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends Microbiol 2015; 23:204-11. [PMID: 25572881 PMCID: PMC4380704 DOI: 10.1016/j.tim.2014.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
The development of a preventative HIV-1 vaccine remains a global public health priority. This will likely require the elicitation of broadly neutralizing antibodies (bNAbs) able to block infection by diverse viral strains from across the world. Understanding the pathway to neutralization breadth in HIV-1 infected humans will provide insights into how bNAb lineages arise, a process that probably involves a combination of host and viral factors. Here, we focus on the role of viral characteristics and evolution in shaping bNAbs during HIV-1 infection, and describe how these findings may be translated into novel vaccine strategies.
Collapse
Affiliation(s)
- Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town & National Health Laboratory Services, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
32
|
Boliar S, Das S, Bansal M, Shukla BN, Patil S, Shrivastava T, Samal S, Goswami S, King CR, Bhattacharya J, Chakrabarti BK. An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies. PLoS One 2015; 10:e0122443. [PMID: 25822521 PMCID: PMC4379091 DOI: 10.1371/journal.pone.0122443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.
Collapse
Affiliation(s)
- Saikat Boliar
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Supratik Das
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Manish Bansal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Brihaspati N. Shukla
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Shilpa Patil
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Tripti Shrivastava
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Sweety Samal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Sandeep Goswami
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | | | - Jayanta Bhattacharya
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Bimal K. Chakrabarti
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
- * E-mail:
| |
Collapse
|
33
|
Musich T, O'Connell O, Gonzalez-Perez MP, Derdeyn CA, Peters PJ, Clapham PR. HIV-1 non-macrophage-tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4+ T-cells than envelopes highly adapted for macrophages. Retrovirology 2015; 12:25. [PMID: 25809903 PMCID: PMC4373511 DOI: 10.1186/s12977-015-0141-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs. RESULTS Highly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+ virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs. CONCLUSIONS Our results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.
Collapse
|
34
|
Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog 2015; 11:e1004565. [PMID: 25569444 PMCID: PMC4287535 DOI: 10.1371/journal.ppat.1004565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
Collapse
|
35
|
Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014; 80:1-11. [PMID: 24813074 DOI: 10.1111/sji.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
The scope of the article is to review the different approaches that have been used for HIV vaccines. The review is based on articles retrieved by PubMed and clinical trials from 1990 up to date. The article discusses virus complexity, protective and non-protective immune responses against the virus, and the most important approaches for HIV vaccine development.
Collapse
Affiliation(s)
- D Lema
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
36
|
Derdeyn CA, Moore PL, Morris L. Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr Opin HIV AIDS 2014; 9:210-6. [PMID: 24662931 PMCID: PMC4068799 DOI: 10.1097/coh.0000000000000057] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Detailed genetic and structural characterization has revealed that broadly neutralizing antibodies (bnAbs) against HIV-1 have unusually high levels of somatic hypermutation, long CDRH3 domains, and the ability to target one of four sites of vulnerability on the HIV-1 envelope (Env) glycoproteins. A current priority is to understand how bnAbs are generated during natural infection, and translate this information into immunogens that can elicit bnAb following vaccination. RECENT FINDINGS Strain-specific neutralizing antibodies can acquire broad neutralizing capacity when the transmitted/founder Env or a specific Env variant is recognized by an unmutated rearranged germline that has the capacity to develop bnAb-like features. This event could be relatively infrequent, as only certain germlines appear to possess inherent features needed for bnAb activity. Furthermore, the glycosylation pattern and diversity of circulating HIV-1 Envs, as well as the state of the B-cell compartment, may influence the activation and maturation of certain antibody lineages. SUMMARY Collectively, studies over the last year have suggested that the development of HIV-1 Env immunogens that bind and activate bnAb-like germlines is feasible. However, more information about the features of Env variants and the host factors that lead to breadth during natural infection are needed to elicit bnAbs through immunization.
Collapse
Affiliation(s)
- Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Program of Research, Durban, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Program of Research, Durban, South Africa
| |
Collapse
|
37
|
VanBlargan LA, Mukherjee S, Dowd KA, Durbin AP, Whitehead SS, Pierson TC. The type-specific neutralizing antibody response elicited by a dengue vaccine candidate is focused on two amino acids of the envelope protein. PLoS Pathog 2013; 9:e1003761. [PMID: 24348242 PMCID: PMC3857832 DOI: 10.1371/journal.ppat.1003761] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Dengue viruses are mosquito-borne flaviviruses that circulate in nature as four distinct serotypes (DENV1-4). These emerging pathogens are responsible for more than 100 million human infections annually. Severe clinical manifestations of disease are predominantly associated with a secondary infection by a heterotypic DENV serotype. The increased risk of severe disease in DENV-sensitized populations significantly complicates vaccine development, as a vaccine must simultaneously confer protection against all four DENV serotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of ongoing vaccine development efforts. However, a recent large clinical trial of a candidate live-attenuated DENV vaccine revealed low protective efficacy despite eliciting a neutralizing antibody response, highlighting the need for a better understanding of the humoral immune response against dengue infection. In this study, we sought to identify epitopes recognized by serotype-specific neutralizing antibodies elicited by monovalent DENV1 vaccination. We constructed a panel of over 50 DENV1 structural gene variants containing substitutions at surface-accessible residues of the envelope (E) protein to match the corresponding DENV2 sequence. Amino acids that contribute to recognition by serotype-specific neutralizing antibodies were identified as DENV mutants with reduced sensitivity to neutralization by DENV1 immune sera, but not cross-reactive neutralizing antibodies elicited by DENV2 vaccination. We identified two mutations (E126K and E157K) that contribute significantly to type-specific recognition by polyclonal DENV1 immune sera. Longitudinal and cross-sectional analysis of sera from 24 participants of a phase I clinical study revealed a markedly reduced capacity to neutralize a E126K/E157K DENV1 variant. Sera from 77% of subjects recognized the E126K/E157K DENV1 variant and DENV2 equivalently (<3-fold difference). These data indicate the type-specific component of the DENV1 neutralizing antibody response to vaccination is strikingly focused on just two amino acids of the E protein. This study provides an important step towards deconvoluting the functional complexity of DENV serology following vaccination.
Collapse
Affiliation(s)
- Laura A. VanBlargan
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna P. Durbin
- Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wibmer CK, Bhiman JN, Gray ES, Tumba N, Abdool Karim SS, Williamson C, Morris L, Moore PL. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog 2013; 9:e1003738. [PMID: 24204277 PMCID: PMC3814426 DOI: 10.1371/journal.ppat.1003738] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/14/2013] [Indexed: 11/30/2022] Open
Abstract
Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elin S. Gray
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nancy Tumba
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Comput Biol 2013; 9:e1003046. [PMID: 23696718 PMCID: PMC3656115 DOI: 10.1371/journal.pcbi.1003046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 envelope (Env) spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD) simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.
Collapse
|
40
|
Stieh DJ, Phillips JL, Rogers PM, King DF, Cianci GC, Jeffs SA, Gnanakaran S, Shattock RJ. Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein. Retrovirology 2013; 10:33. [PMID: 23514633 PMCID: PMC3648349 DOI: 10.1186/1742-4690-10-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. RESULTS The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. CONCLUSIONS Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized environment on the interactions of HIV with target cells are more pronounced than previously appreciated. There is differential chemistry of trimeric, but not monomeric, Env under conditions which mimic the mucosa compared to those found systemically. This should be taken into consideration during design of immunogens which targets virus at mucosal portals of entry.
Collapse
Affiliation(s)
- Daniel J Stieh
- Center for Infection, Department of Cellular and Molecular Medicine, St. George's University of London, London SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|