1
|
Bailey JK, Horiya S, Neralkar M, Horvath V, Nakamoto K, Temme JS, Turra RJ, Krauss IJ. In vitro selection of cyclized, glycosylated peptide antigens that tightly bind HIV high mannose patch antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645033. [PMID: 40196650 PMCID: PMC11974836 DOI: 10.1101/2025.03.24.645033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
In vitro selection is typically limited to discovery of peptides, proteins and nucleic acids. Given the importance of carbohydrate-protein interactions in diverse areas of biology including cell adhesion/recognition, immunoregulation and host-pathogen interactions, directed-evolution-based methods for discovery of potent glycoligands are greatly needed. We have previously reported a method for in vitro selection of glycopeptides that combines mRNA display, alkynyl amino acid incorporation, and CuAAC "click" glycosylation. Herein, we describe extensions of this method that incorporate chemical cyclization, removal of N-terminal glycosylation sites and next-generation sequencing; as an approach to HIV immunogen design, we have then used this method to develop mimics of the High Mannose Patch (HMP), which is the region on HIV envelope protein gp120 most commonly targeted by HIV broadly neutralizing antibodies (bnAbs). We prepared libraries of 10 12-14 glycopeptides about 50 amino acids in length, containing variable numbers of high mannose (Man 9 GlcNAc 2 ) glycans and cyclization at varied sites. We performed selections to obtain binders of HIV bnAbs PGT128, PGT122, and gl-PGT121, a germline precursor of PGT122, and prepared numerous glycopeptide hits by chemical synthesis. Selected glycopeptides in some cases bound very tightly to their target HIV bnAb, e.g., with a K D as low as 0.5 nM for PGT128. These glycopeptides are of interest as immunogens and tools for HIV vaccine design.
Collapse
|
2
|
Swanson OM, Zhang QE, Van Itallie E, Tian M, Brown AR, Harris C, Kapingidza AB, Rhodes B, Smith LM, Venkatayogi S, Cronin K, Frazier M, Parks R, Bar M, Jiang C, Martin Beem JS, Cheng HL, Davis J, McGovern K, Newman A, Edwards RJ, Cain D, Alam SM, Wiehe K, Saunders KO, Acharya P, Alt F, Haynes BF, Azoitei ML. An engineered immunogen activates diverse HIV broadly neutralizing antibody precursors and promotes acquisition of improbable mutations. Sci Transl Med 2025; 17:eadr2218. [PMID: 39772772 DOI: 10.1126/scitranslmed.adr2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Elicitation of HIV broadly neutralizing antibodies (bnAbs) by vaccination first requires the activation of diverse precursors, followed by successive boosts that guide these responses to enhanced breadth through the acquisition of somatic mutations. Because HIV bnAbs contain mutations in their B cell receptors (BCRs) that are rarely generated during conventional B cell maturation, HIV vaccine immunogens must robustly engage and expand B cells with BCRs that contain these improbable mutations. Here, we engineered an immunogen that activates diverse precursors of an HIV V3-glycan bnAb and promotes their acquisition of a functionally critical improbable mutation. This immunogen was validated biochemically, structurally, and in three different humanized immunoglobulin mouse models that were designed to test HIV immunogens. These results provide a blueprint for rationally designing priming immunogens that explicitly target the elicitation of antibodies with functional yet improbable mutations.
Collapse
Affiliation(s)
- Olivia M Swanson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qianyi E Zhang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth Van Itallie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Alecia R Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin Harris
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lena M Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - McKenzie Frazier
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Bar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuancang Jiang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua S Martin Beem
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hwei-Ling Cheng
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Jillian Davis
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Kelly McGovern
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Molecular Genetics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fred Alt
- Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Haryadi R, Chan KF, Lin PC, Tan YL, Wan C, Shahreel W, Tay SJ, Nguyen-Khuong T, Walsh I, Song Z. Generating and characterizing a comprehensive panel of CHO cells glycosylation mutants for advancing glycobiology and biotechnology research. Sci Rep 2024; 14:23068. [PMID: 39367021 PMCID: PMC11452509 DOI: 10.1038/s41598-024-73722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
This report describes the development and characterization of a comprehensive collection of CHO cell glycosylation mutants with significant potential for advancing glycobiology and biotechnology. EPO-Fc and trastuzumab, two model molecules, were produced using these mutants to assess the effects of mutated glycogenes, and LC-MS/MS analysis was employed to quantitatively analyse their N-glycans. EPO-Fc exhibited exclusively homogeneous Man9 glycans only when nearly all α-mannosidases in the genome were inactivated, except lysosomal MAN2B1. Some mutants lacking GnT-I activity produce mostly Man5 N-glycans, while their O-glycan and glycolipid profiles can differ due to other mutations in the cell. GnT-II deficiency prevents GnT-V from adding GlcNAc to the core N-glycan, resulting in branches attaching solely to the α1,3-linked mannose, leaving the α1,6-linked mannose free. The mutant-produced antibody's single-branched glycan contains more sialic acid than the dual-branched glycans produced in CHO-K1 cells. Trastuzumab produced in these mutants provided insights into how Fc N-glycans impact the antibody's interaction with FcγR1 and FcγR2a, FcγR3a, and their influence on antibody-dependent cellular cytotoxicity (ADCC). In the study of Fc glycans in Fc-FcγR1 and FcγR2a interactions, we observed a consistent glycan-related impact on binding to both receptors, indicating a common interaction mechanism between Fc glycans and both FcγRI and FcγRIIa. CHO mutants produced trimeric gp120 demonstrated distinct reactivity with multiple broadly neutralizing anti-HIV antibodies, confirming the involvement of gp120 glycans in interactions with specific broadly neutralizing antibodies. Finally, one of the mutants produced human β-glucocerebrosidase with uniform Man5 N-glycans, showcasing its potential for glycoengineered production and enhancement in therapeutic efficacy.
Collapse
Affiliation(s)
- Ryan Haryadi
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Kah Fai Chan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Pao Chun Lin
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Yun Lei Tan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Corrine Wan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Wahyu Shahreel
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore.
| |
Collapse
|
4
|
Dias J, Fabozzi G, Fourati S, Chen X, Liu C, Ambrozak DR, Ransier A, Laboune F, Hu J, Shi W, March K, Maximova AA, Schmidt SD, Samsel J, Talana CA, Ernste K, Ko SH, Lucas ME, Radecki PE, Boswell KL, Nishimura Y, Todd JP, Martin MA, Petrovas C, Boritz EA, Doria-Rose NA, Douek DC, Sékaly RP, Lifson JD, Asokan M, Gama L, Mascola JR, Pegu A, Koup RA. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIV AD8-EO infection. Nat Commun 2024; 15:7461. [PMID: 39198422 PMCID: PMC11358508 DOI: 10.1038/s41467-024-51848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Slim Fourati
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xuejun Chen
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna A Maximova
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jakob Samsel
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, D.C., USA
| | - Chloe A Talana
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Lucas
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce E Radecki
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafick-Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mangaiarkarasi Asokan
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amarendra Pegu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
de Taeye SW, Schriek AI, Umotoy JC, Grobben M, Burger JA, Sanders RW, Vidarsson G, Wuhrer M, Falck D, Kootstra NA, van Gils MJ. Afucosylated broadly neutralizing antibodies enhance clearance of HIV-1 infected cells through cell-mediated killing. Commun Biol 2024; 7:964. [PMID: 39122901 PMCID: PMC11316088 DOI: 10.1038/s42003-024-06659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to delay viral rebound when administered to people with HIV-1 (PWH) during anti-retroviral therapy (ART) interruption. To further enhance the performance of bNAbs through their Fc effector functions, in particular NK cell-mediated killing of HIV-1 infected cells, we have produced a panel of glyco-engineered (afucosylated) bNAbs with enhanced affinity for Fc gamma receptor IIIa. These afucosylated anti-HIV-1 bNAbs enhance NK cell activation and degranulation compared to fucosylated counterparts even at low antigen density. NK cells from PWH expressing exhaustion markers PD-1 and TIGIT are activated in a similar fashion by afucosylated bNAbs as NK cell from HIV-1 negative individuals. Killing of HIV-1 infected cells is most effective with afucosylated bNAbs 2G12, N6, PGT151 and PGDM1400, whereas afucosylated PGT121 and non-neutralizing antibody A32 only induce minor NK cell-mediated killing. These data indicate that the approach angle and affinity of Abs influence the capacity to induce antibody-dependent cellular cytotoxicity. Thus, afucosylated bNAbs have the capacity to induce NK cell-mediated killing of infected cells, which warrants further investigation of afucosylated bNAb administration in vivo, aiming for reduction of the viral reservoir and ART free durable control.
Collapse
Affiliation(s)
- Steven W de Taeye
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands.
| | - Angela I Schriek
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Jeffrey C Umotoy
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Judith A Burger
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, 10065, USA
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner, Amsterdam UMC location University of Amsterdam, Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, 1066 CX, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Zhang Z, Anang S, Nguyen HT, Fritschi C, Smith AB, Sodroski JG. Membrane HIV-1 envelope glycoproteins stabilized more strongly in a pretriggered conformation than natural virus Envs. iScience 2024; 27:110141. [PMID: 38979012 PMCID: PMC11228805 DOI: 10.1016/j.isci.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains. Pretriggered Env stability correlated with stronger trimer subunit association, increased virus sensitivity to bNAb neutralization, and decreased capacity to mediate cell-cell fusion and virus entry. For some highly stabilized Env mutants, after virus-host cell engagement, the normally inaccessible gp120 V3 region on an Env intermediate became targetable by otherwise poorly neutralizing antibodies. Thus, evolutionary pressure on HIV-1 Env to maintain trimer integrity, responsiveness to the CD4 receptor, and resistance to antibodies modulates pretriggered Env stability. The strongly stabilized pretriggered membrane Envs reported here will facilitate further characterization of this functionally important conformation.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Adolf-Bryfogle J, Labonte JW, Kraft JC, Shapovalov M, Raemisch S, Lütteke T, DiMaio F, Bahl CD, Pallesen J, King NP, Gray JJ, Kulp DW, Schief WR. Growing Glycans in Rosetta: Accurate de novo glycan modeling, density fitting, and rational sequon design. PLoS Comput Biol 2024; 20:e1011895. [PMID: 38913746 PMCID: PMC11288642 DOI: 10.1371/journal.pcbi.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2024] [Accepted: 02/06/2024] [Indexed: 06/26/2024] Open
Abstract
Carbohydrates and glycoproteins modulate key biological functions. However, experimental structure determination of sugar polymers is notoriously difficult. Computational approaches can aid in carbohydrate structure prediction, structure determination, and design. In this work, we developed a glycan-modeling algorithm, GlycanTreeModeler, that computationally builds glycans layer-by-layer, using adaptive kernel density estimates (KDE) of common glycan conformations derived from data in the Protein Data Bank (PDB) and from quantum mechanics (QM) calculations. GlycanTreeModeler was benchmarked on a test set of glycan structures of varying lengths, or "trees". Structures predicted by GlycanTreeModeler agreed with native structures at high accuracy for both de novo modeling and experimental density-guided building. We employed these tools to design de novo glycan trees into a protein nanoparticle vaccine to shield regions of the scaffold from antibody recognition, and experimentally verified shielding. This work will inform glycoprotein model prediction, glycan masking, and further aid computational methods in experimental structure determination and refinement.
Collapse
Affiliation(s)
- Jared Adolf-Bryfogle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
- Institute for Protein Innovation, Boston, Massachusetts, United States of America
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason W. Labonte
- Department of Chemistry & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Maxim Shapovalov
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sebastian Raemisch
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Christopher D. Bahl
- Institute for Protein Innovation, Boston, Massachusetts, United States of America
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jesper Pallesen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey J. Gray
- Department of Chemistry & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Daniel W. Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - William R. Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
8
|
Steichen JM, Phung I, Salcedo E, Ozorowski G, Willis JR, Baboo S, Liguori A, Cottrell CA, Torres JL, Madden PJ, Ma KM, Sutton HJ, Lee JH, Kalyuzhniy O, Allen JD, Rodriguez OL, Adachi Y, Mullen TM, Georgeson E, Kubitz M, Burns A, Barman S, Mopuri R, Metz A, Altheide TK, Diedrich JK, Saha S, Shields K, Schultze SE, Smith ML, Schiffner T, Burton DR, Watson CT, Bosinger SE, Crispin M, Yates JR, Paulson JC, Ward AB, Sok D, Crotty S, Schief WR. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 2024; 384:eadj8321. [PMID: 38753769 PMCID: PMC11309785 DOI: 10.1126/science.adj8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.
Collapse
Affiliation(s)
- Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego; La Jolla, CA 92037, USA
| | - Eugenia Salcedo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Jordan R. Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Sabyasachi Baboo
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Patrick J. Madden
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Krystal M. Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Henry J. Sutton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Joel D. Allen
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Tina-Marie Mullen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Rohini Mopuri
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Tasha K. Altheide
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Steven E. Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Max Crispin
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - John R. Yates
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego; La Jolla, CA 92037, USA
| | - William R. Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
- Moderna, Inc., Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. mBio 2024; 15:e0268623. [PMID: 38470051 PMCID: PMC11005340 DOI: 10.1128/mbio.02686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
11
|
Kumar S, Dasgupta S, Sajadi MM, Snyder GA, DeVico AL, Ray K. Discordant Antigenic Properties of Soluble and Virion SARS-CoV-2 Spike Proteins. Viruses 2024; 16:407. [PMID: 38543772 PMCID: PMC10974403 DOI: 10.3390/v16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sameer Kumar
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Mohammad M. Sajadi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Division of Clinical Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Greg A. Snyder
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Liang J, Zhai L, Liang Z, Chen X, Jiang Y, Lin Y, Feng S, Liu Y, Zhao W, Wang F. Rational Design and Characterization of Trispecific Antibodies Targeting the HIV-1 Receptor and Envelope Glycoprotein. Vaccines (Basel) 2023; 12:19. [PMID: 38250832 PMCID: PMC10819093 DOI: 10.3390/vaccines12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Multitudinous broadly neutralizing antibodies (bNAbs) against HIV-1 have been developed as novel antiviral prophylactic and therapeutic agents. Combinations of bNAbs are generally even more effective than when they are applied individually, showing excellent neutralization coverage and limiting the emergence of escape mutants. In this study, we investigated the design and characterization of three trispecific antibodies that allow a single molecule to interact with independent HIV-1 envelope determinants-(1) the host receptor CD4, (2) the host co-receptor CCR5 and (3) distinct domains in the envelope glycoprotein of HIV-1-using an ELISA, an HIV-1 pseudovirus neutralization assay and in vivo antiviral experiments in humanized mice. We found that trispecific bNAbs and monovalent ones all had satisfactory binding activities against the corresponding antigens in the ELISA, exhibited higher potency and breadth than any previously described single bnAb in the HIV-1 pseudovirus neutralization assay and showed an excellent antiviral effect in vivo. The trispecific antibodies simultaneously recognize the host receptor CD4, host co-receptor CCR5 and HIV-1 envelope glycoprotein, which could mean they have promise as prophylactic and therapeutic agents against HIV-1.
Collapse
Affiliation(s)
- Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Linlin Zhai
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Zuxin Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Xiaoling Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Yuanlong Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Shiyan Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| |
Collapse
|
13
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567910. [PMID: 38045336 PMCID: PMC10690231 DOI: 10.1101/2023.11.20.567910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332 but Asn at this position is not absolutely conserved or required for HIV-1 entry based on prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity even though cell surface expression levels are lower than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and to evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs was in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, the College of Veterinary Medicine Graduate Program, and Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
14
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
16
|
Schaefer A, Yang B, Schroeder HA, Harit D, Humphry MS, Ravel J, Lai SK. Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals. Acta Biomater 2023; 169:387-397. [PMID: 37499728 PMCID: PMC10619885 DOI: 10.1016/j.actbio.2023.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
In addition to direct neutralization and other classical effector functions, IgG possesses a little recognized and thus under-utilized effector function at mucosal surfaces: Fc-mucin bonds enable IgG to trap viruses in mucus. Due to the paucity of envelope glycoproteins that limits the number of IgG that can bind HIV, it remains poorly understood whether IgG-mucin interactions can effectively immobilize HIV in human cervicovaginal mucus (CVM). Here, we obtained 54 fresh, undiluted CVM specimens from 17 different women, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent HIV virus-like-particles in CVM treated with various HIV-specific IgG. We observed consistent and effective trapping of HIV by broadly neutralizing antibodies (VRC01, PGT121, and 2F5) in a subset of women. While trapping efficacy was not affected by the menstrual cycle, it was positively correlated with appreciable L. Crispatus populations in the microbiome, and negatively correlated with appreciable L. Iners or G. Vaginalis populations. Our work demonstrates for the first time that IgG-mucin crosslinking is capable of reinforcing the mucosal barrier against HIV, and motivates further investigation of passive immunization against vaginal transmission of STIs. STATEMENT OF SIGNIFICANCE: HIV transmission in women primarily occurs vaginally, yet the 3-way interactions between mucins and HIV virions mediated by HIV-binding antibodies in cervicovaginal mucus (CVM) is not well understood. While IgG-Fc possess weak affinity to mucins that trap virus/IgG complexes in mucus, the effectiveness against HIV remains unclear, due to the low number of virion-bound IgG. Here, we discovered that IgG can trap HIV consistently in CVM from select individuals regardless of their birth control status or menstrual cycle phase. IgG-mediated trapping of HIV was moderately associated with microbiome composition. These results suggest that IgG-mucin interactions could potentially reduce HIV transmission and highlight the importance of mucosal secretions in antibody-mediated prevention of HIV and other sexually transmitted infections.
Collapse
Affiliation(s)
- Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27519, USA
| | - Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Holly A Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Mike S Humphry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Samuel K Lai
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27519, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA; Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Kumar S, Singh S, Chatterjee A, Bajpai P, Sharma S, Katpara S, Lodha R, Dutta S, Luthra K. Recognition determinants of improved HIV-1 neutralization by a heavy chain matured pediatric antibody. iScience 2023; 26:107579. [PMID: 37649696 PMCID: PMC10462834 DOI: 10.1016/j.isci.2023.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
The structural and characteristic features of HIV-1 broadly neutralizing antibodies (bnAbs) from chronically infected pediatric donors are currently unknown. Herein, we characterized a heavy chain matured HIV-1 bnAb 44m, identified from a pediatric elite-neutralizer. Interestingly, in comparison to its wild-type AIIMS-P01 bnAb, 44m exhibited moderately higher level of somatic hypermutations of 15.2%. The 44m neutralized 79% of HIV-1 heterologous viruses (n = 58) tested, with a geometric mean IC50 titer of 0.36 μg/mL. The cryo-EM structure of 44m Fab in complex with fully cleaved glycosylated native-like BG505.SOSIP.664.T332N gp140 envelope trimer at 4.4 Å resolution revealed that 44m targets the V3-glycan N332-supersite and GDIR motif to neutralize HIV-1 with improved potency and breadth, plausibly attributed by a matured heavy chain as compared to that of wild-type AIIMS-P01. This study further improves our understanding on pediatric HIV-1 bnAbs and structural basis of broad HIV-1 neutralization by 44m may be useful blueprint for vaccine design in future.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
18
|
Herschhorn A. Indirect Mechanisms of HIV-1 Evasion from Broadly Neutralizing Antibodies In Vivo. ACS Infect Dis 2023; 9:5-8. [PMID: 36512322 DOI: 10.1021/acsinfecdis.2c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Rossing E, Pijnenborg JFA, Boltje TJ. Chemical tools to track and perturb the expression of sialic acid and fucose monosaccharides. Chem Commun (Camb) 2022; 58:12139-12150. [PMID: 36222364 PMCID: PMC9623448 DOI: 10.1039/d2cc04275d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of glycans is a highly conserved biological process and found in all domains of life. The expression of cell surface glycans is increasingly recognized as a target for therapeutic intervention given the role of glycans in major pathologies such as cancer and microbial infection. Herein, we summarize our contributions to the development of unnatural monosaccharide derivatives to infiltrate and alter the expression of both mammalian and bacterial glycans and their therapeutic application.
Collapse
Affiliation(s)
- Emiel Rossing
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Johan F A Pijnenborg
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Gorman J, Wang C, Mason RD, Nazzari AF, Welles HC, Zhou T, Bess JW, Bylund T, Lee M, Tsybovsky Y, Verardi R, Wang S, Yang Y, Zhang B, Rawi R, Keele BF, Lifson JD, Liu J, Roederer M, Kwong PD. Cryo-EM structures of prefusion SIV envelope trimer. Nat Struct Mol Biol 2022; 29:1080-1091. [PMID: 36344847 PMCID: PMC10606957 DOI: 10.1038/s41594-022-00852-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Hugh C Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Optimal sequence-based design for multi-antigen HIV-1 vaccines using minimally distant antigens. PLoS Comput Biol 2022; 18:e1010624. [PMID: 36315492 PMCID: PMC9621458 DOI: 10.1371/journal.pcbi.1010624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The immense global diversity of HIV-1 is a significant obstacle to developing a safe and effective vaccine. We recently showed that infections established with multiple founder variants are associated with the development of neutralization breadth years later. We propose a novel vaccine design strategy that integrates the variability observed in acute HIV-1 infections with multiple founder variants. We developed a probabilistic model to simulate this variability, yielding a set of sequences that present the minimal diversity seen in an infection with multiple founders. We applied this model to a subtype C consensus sequence for the Envelope (Env) (used as input) and showed that the simulated Env sequences mimic the mutational landscape of an infection with multiple founder variants, including diversity at antibody epitopes. The derived set of multi-founder-variant-like, minimally distant antigens is designed to be used as a vaccine cocktail specific to a HIV-1 subtype or circulating recombinant form and is expected to promote the development of broadly neutralizing antibodies. Diverse HIV-1 populations are generally thought to promote neutralizing responses. Current leading HIV-1 vaccine design strategies maximize the distance between antigens to attempt to cover global HIV-1 diversity or serialize immunizations to recapitulate the temporal evolution of HIV-1 during infection. To date, no vaccine has elicited broadly neutralizing antibodies. As we recently demonstrated that infection with multiple HIV-1 founder variants is predictive of neutralization breadth, we propose a novel strategy that endeavors to promote the development of broadly neutralizing antibodies by replicating the diversity of multi-founder variant acute infections. By training an HIV-1 Env consensus sequence on the diversity from acute infections with multiple founders, we derived in silico a set of minimally distant antigens that is representative of the diversity seen in a multi-founder acute infection. As the model is particular to the input sequence, it can produce antigens specific to any HIV-1 subtype or circulating recombinant form (CRF). We applied this to HIV-1 subtype C and obtained a set of minimally distant antigens that can be used as a vaccine cocktail.
Collapse
|
23
|
Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 2022; 21:676-696. [PMID: 35725925 PMCID: PMC9207876 DOI: 10.1038/s41573-022-00495-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) are appealing as potential therapeutics and prophylactics for viral infections owing to characteristics such as their high specificity and their ability to enhance immune responses. Furthermore, antibody engineering can be used to strengthen effector function and prolong mAb half-life, and advances in structural biology have enabled the selection and optimization of potent neutralizing mAbs through identification of vulnerable regions in viral proteins, which can also be relevant for vaccine design. The COVID-19 pandemic has stimulated extensive efforts to develop neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several mAbs now having received authorization for emergency use, providing not just an important component of strategies to combat COVID-19 but also a boost to efforts to harness mAbs in therapeutic and preventive settings for other infectious diseases. Here, we describe advances in antibody discovery and engineering that have led to the development of mAbs for use against infections caused by viruses including SARS-CoV-2, respiratory syncytial virus (RSV), Ebola virus (EBOV), human cytomegalovirus (HCMV) and influenza. We also discuss the rationale for moving from empirical to structure-guided strategies in vaccine development, based on identifying optimal candidate antigens and vulnerable regions within them that can be targeted by antibodies to result in a strong protective immune response.
Collapse
Affiliation(s)
- Giuseppe Pantaleo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig Fenwick
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Victor S Joo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland.
| |
Collapse
|
24
|
Sahoo A, Jones AT, Cheedarla N, Gangadhara S, Roy V, Styles TM, Shiferaw A, Walter KL, Williams LD, Shen X, Ozorowski G, Lee WH, Burton S, Yi L, Song X, Qin ZS, Derdeyn CA, Ward AB, Clements JD, Varadarajan R, Tomaras GD, Kozlowski PA, Alter G, Amara RR. A clade C HIV-1 vaccine protects against heterologous SHIV infection by modulating IgG glycosylation and T helper response in macaques. Sci Immunol 2022; 7:eabl4102. [PMID: 35867800 PMCID: PMC9410801 DOI: 10.1126/sciimmunol.abl4102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The rising global HIV-1 burden urgently requires vaccines capable of providing heterologous protection. Here, we developed a clade C HIV-1 vaccine consisting of priming with modified vaccinia Ankara (MVA) and boosting with cyclically permuted trimeric gp120 (CycP-gp120) protein, delivered either orally using a needle-free injector or through parenteral injection. We tested protective efficacy of the vaccine against intrarectal challenges with a pathogenic heterologous clade C SHIV infection in rhesus macaques. Both routes of vaccination induced a strong envelope-specific IgG in serum and rectal secretions directed against V1V2 scaffolds from a global panel of viruses with polyfunctional activities. Envelope-specific IgG showed lower fucosylation compared with total IgG at baseline, and most of the vaccine-induced proliferating blood CD4+ T cells did not express CCR5 and α4β7, markers associated with HIV target cells. After SHIV challenge, both routes of vaccination conferred significant and equivalent protection, with 40% of animals remaining uninfected at the end of six weekly repeated challenges with an estimated efficacy of 68% per exposure. Induction of envelope-specific IgG correlated positively with G1FB glycosylation, and G2S2F glycosylation correlated negatively with protection. Vaccine-induced TNF-α+ IFN-γ+ CD8+ T cells and TNF-α+ CD4+ T cells expressing low levels of CCR5 in the rectum at prechallenge were associated with decreased risk of SHIV acquisition. These results demonstrate that the clade C MVA/CycP-gp120 vaccine provides heterologous protection against a tier2 SHIV rectal challenge by inducing a polyfunctional antibody response with distinct Fc glycosylation profile, as well as cytotoxic CD8 T cell response and CCR5-negative T helper response in the rectum.
Collapse
Affiliation(s)
- Anusmita Sahoo
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andrew T Jones
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Korey L Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - LaTonya D Williams
- Department of Surgery, Duke University Medical School, Duke University, Durham, NC 27710, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University Medical School, Duke University, Durham, NC 27710, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, San Diego, CA 92121, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, San Diego, CA 92121, USA
| | - Samantha Burton
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Lasanajak Yi
- Department of Biochemistry, Emory Glycomics and Molecular Interactions Core (EGMIC), School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Glycomics and Molecular Interactions Core (EGMIC), School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Cynthia A Derdeyn
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, San Diego, CA 92121, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 8638, USA
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, Karnataka 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560012, India
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical School, Duke University, Durham, NC 27710, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rama Rao Amara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Perdiguero B, Asbach B, Gómez CE, Köstler J, Barnett SW, Koutsoukos M, Weiss DE, Cristillo AD, Foulds KE, Roederer M, Montefiori DC, Yates NL, Ferrari G, Shen X, Sawant S, Tomaras GD, Sato A, Fulp WJ, Gottardo R, Ding S, Heeney JL, Pantaleo G, Esteban M, Wagner R. Early and Long-Term HIV-1 Immunogenicity Induced in Macaques by the Combined Administration of DNA, NYVAC and Env Protein-Based Vaccine Candidates: The AUP512 Study. Front Immunol 2022; 13:939627. [PMID: 35935978 PMCID: PMC9354927 DOI: 10.3389/fimmu.2022.939627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
To control HIV infection there is a need for vaccines to induce broad, potent and long-term B and T cell immune responses. With the objective to accelerate and maintain the induction of substantial levels of HIV-1 Env-specific antibodies and, at the same time, to enhance balanced CD4 and CD8 T cell responses, we evaluated the effect of concurrent administration of MF59-adjuvanted Env protein together with DNA or NYVAC vectors at priming to establish if early administration of Env leads to early induction of antibody responses. The primary goal was to assess the immunogenicity endpoint at week 26. Secondary endpoints were (i) to determine the quality of responses with regard to RV144 correlates of protection and (ii) to explore a potential impact of two late boosts. In this study, five different prime/boost vaccination regimens were tested in rhesus macaques. Animals received priming immunizations with either NYVAC or DNA alone or in combination with Env protein, followed by NYVAC + protein or DNA + protein boosts. All regimens induced broad, polyfunctional and well-balanced CD4 and CD8 T cell responses, with DNA-primed regimens eliciting higher response rates and magnitudes than NYVAC-primed regimens. Very high plasma binding IgG titers including V1/V2 specific antibodies, modest antibody-dependent cellular cytotoxicity (ADCC) and moderate neutralization activity were observed. Of note, early administration of the MF59-adjuvanted Env protein in parallel with DNA priming leads to more rapid elicitation of humoral responses, without negatively affecting the cellular responses, while responses were rapidly boosted after repeated immunizations, indicating the induction of a robust memory response. In conclusion, our findings support the use of the Env protein component during priming in the context of an heterologous immunization regimen with a DNA and/or NYVAC vector as an optimized immunization protocol against HIV infection.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII ), Madrid, Spain
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII ), Madrid, Spain
| | - Josef Köstler
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | - Marguerite Koutsoukos
- Department of Product Development, GlaxoSmithKline (GSK) Vaccines, Rixensart, Belgium
| | - Deborah E. Weiss
- Department of Immunobiology, Advanced BioScience Laboratories (ABL) Inc., Rockville, MD, United States
| | - Anthony D. Cristillo
- Department of Immunobiology, Advanced BioScience Laboratories (ABL) Inc., Rockville, MD, United States
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David C. Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Nicole L. Yates
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Guido Ferrari
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Xiaoying Shen
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Sheetal Sawant
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Alicia Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - William J. Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Biomedical Data Sciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Translational Data Science, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Song Ding
- EuroVacc Foundation EuroVacc Programme Coordinator, Lausanne, Switzerland
| | - Jonathan L. Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII ), Madrid, Spain
- *Correspondence: Mariano Esteban, ; Ralf Wagner,
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Mariano Esteban, ; Ralf Wagner,
| |
Collapse
|
26
|
Miller NL, Raman R, Clark T, Sasisekharan R. Complexity of Viral Epitope Surfaces as Evasive Targets for Vaccines and Therapeutic Antibodies. Front Immunol 2022; 13:904609. [PMID: 35784339 PMCID: PMC9247215 DOI: 10.3389/fimmu.2022.904609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic interplay between virus and host plays out across many interacting surfaces as virus and host evolve continually in response to one another. In particular, epitope-paratope interactions (EPIs) between viral antigen and host antibodies drive much of this evolutionary race. In this review, we describe a series of recent studies examining aspects of epitope complexity that go beyond two interacting protein surfaces as EPIs are typically understood. To structure our discussion, we present a framework for understanding epitope complexity as a spectrum along a series of axes, focusing primarily on 1) epitope biochemical complexity (e.g., epitopes involving N-glycans) and 2) antigen conformational/dynamic complexity (e.g., epitopes with differential properties depending on antigen state or fold-axis). We highlight additional epitope complexity factors including epitope tertiary/quaternary structure, which contribute to epistatic relationships between epitope residues within- or adjacent-to a given epitope, as well as epitope overlap resulting from polyclonal antibody responses, which is relevant when assessing antigenic pressure against a given epitope. Finally, we discuss how these different forms of epitope complexity can limit EPI analyses and therapeutic antibody development, as well as recent efforts to overcome these limitations.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
27
|
Donahue TC, Zong G, O'Brien NA, Ou C, Gildersleeve JC, Wang LX. Synthesis and Immunological Study of N-Glycan-Bacteriophage Qβ Conjugates Reveal Dominant Antibody Responses to the Conserved Chitobiose Core. Bioconjug Chem 2022; 33:1350-1362. [PMID: 35687881 DOI: 10.1021/acs.bioconjchem.2c00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Glycosylation plays an important role in many biological recognition processes. However, very few N-glycan-specific antibodies are available for functional studies and potentially for therapeutic development. In this study, we sought to synthesize bacteriophage Qβ conjugates with representative N-glycans and investigate their immunogenicity for raising N-glycan-specific antibodies. An array of Qβ glycoconjugates bearing five different human N-glycans and two different chemical linkers were synthesized, and the immunization of the N-glycan-Qβ conjugates was performed in mice. We found that the N-glycan-Qβ conjugates raised significant IgG antibodies that recognize N-glycans, but, surprisingly, most of the glycan-dependent antibodies were directed to the shared chitobiose core and were nonspecific for respective N-glycan structures. The linker chemistry was found to affect antibody specificity with adipic acid-linked N-glycan-Qβ immunogens raising antibodies capable of recognizing both the N-acetylglucosamine (GlcNAc) moieties of the chitobiose core. In contrast, antibodies raised by N-glycan-Qβ immunogens with a triazole linker preferentially recognized the innermost N-acetylglucosamine moiety at the reducing end. We also found that sialylation of the N-glycans significantly suppressed the immune response. Furthermore, the N-glycan-Qβ immunogens with an adipic acid linker elicited higher glycan-specific antibody titers than the N-glycan-triazole-Qβ immunogens. These findings delineate several challenges in eliciting mammalian N-glycan-specific antibodies through the conventional glycoconjugate vaccine design and immunization.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Welbourn S, Chakraborty S, Yang JE, Gleinich AS, Gangadhara S, Khan S, Ferrebee C, Yagnik B, Burton S, Charles T, Smith SA, Williams D, Mopuri R, Upadhyay AA, Thompson J, Price MA, Wang S, Qin Z, Shen X, Williams LD, Eisel N, Peters T, Zhang L, Kilembe W, Karita E, Tomaras GD, Bosinger SE, Amara RR, Azadi P, Wright ER, Gnanakaran S, Derdeyn CA. A neutralizing antibody target in early HIV-1 infection was recapitulated in rhesus macaques immunized with the transmitted/founder envelope sequence. PLoS Pathog 2022; 18:e1010488. [PMID: 35503780 PMCID: PMC9106183 DOI: 10.1371/journal.ppat.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.
Collapse
Affiliation(s)
- Sarah Welbourn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne S. Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Salar Khan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Courtney Ferrebee
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Bhrugu Yagnik
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - S. Abigail Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Danielle Williams
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Rohini Mopuri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Justin Thompson
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matt A. Price
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- International AIDS Vaccine Initiative, New York city, New York, United States of America
| | - Shiyu Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - LaTonya D. Williams
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Nathan Eisel
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Tiffany Peters
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Lu Zhang
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - William Kilembe
- Center for Family Health Research in Zambia (CFHRZ), Lusaka, Zambia
| | | | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Upadhyay C, Rao PG, Feyznezhad R. Dual Role of HIV-1 Envelope Signal Peptide in Immune Evasion. Viruses 2022; 14:v14040808. [PMID: 35458538 PMCID: PMC9030904 DOI: 10.3390/v14040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 Env signal peptide (SP) is an important contributor to Env functions. Env is generated from Vpu/Env encoded bicistronic mRNA such that the 5′ end of Env-N-terminus, that encodes for Env-SP overlaps with 3′ end of Vpu. Env SP displays high sequence diversity, which translates into high variability in Vpu sequence. This study aimed to understand the effect of sequence polymorphism in the Vpu-Env overlapping region (VEOR) on the functions of two vital viral proteins: Vpu and Env. We used infectious molecular clone pNL4.3-CMU06 and swapped its SP (or VEOR) with that from other HIV-1 isolates. Swapping VEOR did not affect virus production in the absence of tetherin however, presence of tetherin significantly altered the release of virus progeny. VEOR also altered Vpu’s ability to downregulate CD4 and tetherin. We next tested the effect of these swaps on Env functions. Analyzing the binding of monoclonal antibodies to membrane embedded Env revealed changes in the antigenic landscape of swapped Envs. These swaps affected the oligosaccharide composition of Env-N-glycans as shown by changes in DC-SIGN-mediated virus transmission. Our study suggests that genetic diversity in VEOR plays an important role in the differential pathogenesis and also assist in immune evasion by altering Env epitope exposure.
Collapse
|
30
|
Huettner I, Krumm SA, Serna S, Brzezicka K, Monaco S, Walpole S, van Diepen A, Allan F, Hicks T, Kimuda S, Emery AM, Landais E, Hokke CH, Angulo J, Reichardt N, Doores KJ. Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycans. Cell Rep 2022; 38:110611. [PMID: 35354052 PMCID: PMC10073069 DOI: 10.1016/j.celrep.2022.110611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/26/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Stefanie A Krumm
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Katarzyna Brzezicka
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Samuel Walpole
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Aidan M Emery
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Niels Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain; CIBER-BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
31
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
32
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
33
|
Shivatare SS, Rachel Cheng TJ, Cheng YY, Shivatare VS, Tsai TI, Chuang HY, Wu CY, Wong CH. Immunogenicity Evaluation of N-Glycans Recognized by HIV Broadly Neutralizing Antibodies. ACS Chem Biol 2021; 16:2016-2025. [PMID: 34649433 PMCID: PMC8526942 DOI: 10.1021/acschembio.1c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the improved treatment of human immunodeficiency virus type 1 (HIV-1) infection is available, the development of an effective and safe prophylactic vaccine against HIV-1 is still an unrealized goal. Encouragingly, the discovery of broadly neutralizing antibodies (bNAbs) from HIV-1 positive patients that are capable of neutralizing a broad spectrum of HIV-1 isolates of various clades has accelerated the progress of vaccine development in the past few years. Some of these bNAbs recognize the N-glycans on the viral surface gp120 glycoprotein. We have been interested in using the glycan epitopes recognized by bNAbs for the development of vaccines to elicit bNAb-like antibodies with broadly neutralizing activities. Toward this goal, we have identified novel hybrid-type structures with subnanomolar avidity toward several bNAbs including PG16, PGT121, PGT128-3C, 2G12, VRC13, VRC-PG05, VRC26.25, VRC26.09, PGDM1400, 35O22, and 10-1074. Here, we report the immunogenicity evaluation of a novel hybrid glycan conjugated to carrier DTCRM197, a nontoxic mutant of the diphtheria toxin, for immunization in mice. Our results indicated that the IgG response was mainly against the chitobiose motif with nonspecific binding to a panel of N-glycans with reducing end GlcNAc-GlcNAc (chitobiose) printed on the glass slides. However, the IgM response was mainly toward the reducing end GlcNAc moiety. We further used the glycoconjugates of Man3GlcNAc2, Man5GlcNAc2, and Man9GlcNAc2 glycans for immunization, and a similar specificity pattern was observed. These findings suggest that the immunogenicity of chitobiose may interfere with the outcome of N-glycan-based vaccines, and modification may be necessary to increase the immunogenicity of the entire N-glycan epitope.
Collapse
Affiliation(s)
- Sachin S. Shivatare
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Vidya S. Shivatare
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| |
Collapse
|
34
|
Stephenson KE, Julg B, Tan CS, Zash R, Walsh SR, Rolle CP, Monczor AN, Lupo S, Gelderblom HC, Ansel JL, Kanjilal DG, Maxfield LF, Nkolola J, Borducchi EN, Abbink P, Liu J, Peter L, Chandrashekar A, Nityanandam R, Lin Z, Setaro A, Sapiente J, Chen Z, Sunner L, Cassidy T, Bennett C, Sato A, Mayer B, Perelson AS, deCamp A, Priddy FH, Wagh K, Giorgi EE, Yates NL, Arduino RC, DeJesus E, Tomaras GD, Seaman MS, Korber B, Barouch DH. Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nat Med 2021; 27:1718-1724. [PMID: 34621054 PMCID: PMC8516645 DOI: 10.1038/s41591-021-01509-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-1-specific broadly neutralizing monoclonal antibodies are currently under development to treat and prevent HIV-1 infection. We performed a single-center, randomized, double-blind, dose-escalation, placebo-controlled trial of a single administration of the HIV-1 V3-glycan-specific antibody PGT121 at 3, 10 and 30 mg kg-1 in HIV-uninfected adults and HIV-infected adults on antiretroviral therapy (ART), as well as a multicenter, open-label trial of one infusion of PGT121 at 30 mg kg-1 in viremic HIV-infected adults not on ART (no. NCT02960581). The primary endpoints were safety and tolerability, pharmacokinetics (PK) and antiviral activity in viremic HIV-infected adults not on ART. The secondary endpoints were changes in anti-PGT121 antibody titers and CD4+ T-cell count, and development of HIV-1 sequence variations associated with PGT121 resistance. Among 48 participants enrolled, no treatment-related serious adverse events, potential immune-mediated diseases or Grade 3 or higher adverse events were reported. The most common reactions among PGT121 recipients were intravenous/injection site tenderness, pain and headache. Absolute and relative CD4+ T-cell counts did not change following PGT121 infusion in HIV-infected participants. Neutralizing anti-drug antibodies were not elicited. PGT121 reduced plasma HIV RNA levels by a median of 1.77 log in viremic participants, with a viral load nadir at a median of 8.5 days. Two individuals with low baseline viral loads experienced ART-free viral suppression for ≥168 days following antibody infusion, and rebound viruses in these individuals demonstrated full or partial PGT121 sensitivity. The trial met the prespecified endpoints. These data suggest that further investigation of the potential of antibody-based therapeutic strategies for long-term suppression of HIV is warranted, including in individuals off ART and with low viral load.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
| | - C Sabrina Tan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rebecca Zash
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stephen R Walsh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Ana N Monczor
- McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | - Sofia Lupo
- McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | | | - Jessica L Ansel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Diane G Kanjilal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lori F Maxfield
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ramya Nityanandam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zijin Lin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alessandra Setaro
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph Sapiente
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zhilin Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa Sunner
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Tyler Cassidy
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chelsey Bennett
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alicia Sato
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bryan Mayer
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Allan deCamp
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Roberto C Arduino
- McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Kelow SP, Adolf-Bryfogle J, Dunbrack RL. Hiding in plain sight: structure and sequence analysis reveals the importance of the antibody DE loop for antibody-antigen binding. MAbs 2021; 12:1840005. [PMID: 33180672 PMCID: PMC7671036 DOI: 10.1080/19420862.2020.1840005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody variable domains contain “complementarity-determining regions” (CDRs), the loops that form the antigen binding site. CDRs1-3 are recognized as the canonical CDRs. However, a fourth loop sits adjacent to CDR1 and CDR2 and joins the D and E strands on the antibody v-type fold. This “DE loop” is usually treated as a framework region, even though mutations in the loop affect the conformation of the CDRs and residues in the DE loop occasionally contact antigen. We analyzed the length, structure, and sequence features of all DE loops in the Protein Data Bank (PDB), as well as millions of sequences from HIV-1 infected and naïve patients. We refer to the DE loop as H4 and L4 in the heavy and light chains, respectively. Clustering the backbone conformations of the most common length of L4 (6 residues) reveals four conformations: two κ-only clusters, one λ-only cluster, and one mixed κ/λ cluster. Most H4 loops are length-8 and exist primarily in one conformation; a secondary conformation represents a small fraction of H4-8 structures. H4 sequence variability exceeds that of the antibody framework in naïve human high-throughput sequences, and both L4 and H4 sequence variability from λ and heavy germline sequences exceed that of germline framework regions. Finally, we identified dozens of structures in the PDB with insertions in the DE loop, all related to broadly neutralizing HIV-1 antibodies (bNabs), as well as antibody sequences from high-throughput sequencing studies of HIV-infected individuals, illuminating a possible role in humoral immunity to HIV-1.
Collapse
Affiliation(s)
- Simon P Kelow
- Institute for Cancer Research, Fox Chase Cancer Center , Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania , Philadelphia, PA, USA
| | - Jared Adolf-Bryfogle
- Protein Design Lab, Institute for Protein Innovation , Boston, MA, USA.,Division of Hematology/Oncology, Boston Children's Hospital , Boston, MA, USA.,Department of Pediatrics, Harvard Medical School , Boston, MA, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center , Philadelphia, PA, USA
| |
Collapse
|
36
|
Vzorov AN, Samokhvalov EI, Chebanenko VV, Scheblyakov DV, Gintsburg AL. Modification of the Spike Protein for Vaccines against Enveloped RNA Viruses. Mol Biol 2021; 55:538-547. [PMID: 34465926 PMCID: PMC8390073 DOI: 10.1134/s0026893321030158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022]
Abstract
Most vaccines work by inducing neutralizing antibodies that target the viral envelope. Enveloped RNA viruses have evolved mechanisms for surface glycoproteins to evade host immune responses, which exhibit substantial variability, even among different strains. Natural infection and vaccines using native forms of surface proteins may induce broadly neutralizing antibodies, yet with low and ineffective levels. Class I membrane-fusion proteins of enveloped RNA viruses, HIV-1, influenza A virus, SARS-CoV-2, yield a stable conformation (so-called "pre-fusion") in providing fusion between viral and host cell membranes. Modified viral surface proteins that are based on these features induce neutralizing antibodies with activity available against a broad spectrum of circulating strains and make it possible to overcome the difficulties associated with escape/variability of viral antigen.
Collapse
Affiliation(s)
- A. N. Vzorov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - E. I. Samokhvalov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - V. V. Chebanenko
- Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - D. V. Scheblyakov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - A. L. Gintsburg
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Department of Infectiology and Virology, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
37
|
Anand SP, Ding S, Tolbert WD, Prévost J, Richard J, Gil HM, Gendron-Lepage G, Cheung WF, Wang H, Pastora R, Saxena H, Wakarchuk W, Medjahed H, Wines BD, Hogarth M, Shaw GM, Martin MA, Burton DR, Hangartner L, Evans DT, Pazgier M, Cossar D, McLean MD, Finzi A. Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. J Virol 2021; 95:e0079621. [PMID: 34232070 PMCID: PMC8387047 DOI: 10.1128/jvi.00796-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Hirak Saxena
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malcom A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, Massachusetts, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Doug Cossar
- PlantForm Corporation, Toronto, Ontario, Canada
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Swanson O, Rhodes B, Wang A, Xia SM, Parks R, Chen H, Sanzone A, Cooper M, Louder MK, Lin BC, Doria-Rose NA, Bonsignori M, Saunders KO, Wiehe K, Haynes BF, Azoitei ML. Rapid selection of HIV envelopes that bind to neutralizing antibody B cell lineage members with functional improbable mutations. Cell Rep 2021; 36:109561. [PMID: 34407396 PMCID: PMC8493474 DOI: 10.1016/j.celrep.2021.109561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/25/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies (bnAbs) by an HIV vaccine will involve priming the immune system to activate antibody precursors, followed by boosting immunizations to select for antibodies with functional features required for neutralization breadth. The higher the number of acquired mutations necessary for function, the more convoluted are the antibody developmental pathways. HIV bnAbs acquire a large number of somatic mutations, but not all mutations are functionally important. In this study, we identify a minimal subset of mutations sufficient for the function of the naturally occurring V3-glycan bnAb DH270.6. Using antibody library screening, candidate envelope immunogens that interact with DH270.6-like antibodies containing this set of key mutations are identified and selected in vitro. Our results demonstrate that less complex B cell evolutionary pathways than those naturally observed exist for the induction of HIV bnAbs by vaccination, and they establish rational approaches to identify boosting candidate immunogens.
Collapse
Affiliation(s)
- Olivia Swanson
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Avivah Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Aja Sanzone
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Melissa Cooper
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Surgery, Duke University, Durham, NC 27610, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA,Department of Immunology, Duke University, Durham, NC 27610, USA
| | - Mihai L. Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA,Lead contact,Correspondence:
| |
Collapse
|
39
|
Walsh SR, Seaman MS. Broadly Neutralizing Antibodies for HIV-1 Prevention. Front Immunol 2021; 12:712122. [PMID: 34354713 PMCID: PMC8329589 DOI: 10.3389/fimmu.2021.712122] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
Given the absence of an effective vaccine for protection against HIV-1 infection, passive immunization strategies that utilize potent broadly neutralizing antibodies (bnAbs) to block acquisition of HIV-1 are being rigorously pursued in the clinical setting. bnAbs have demonstrated robust protection in preclinical animal models, and several leading bnAb candidates have shown favorable safety and pharmacokinetic profiles when tested individually or in combinations in early phase human clinical trials. Furthermore, passive administration of bnAbs in HIV-1 infected individuals has resulted in prolonged suppression of viral rebound following interruption of combination antiretroviral therapy, and robust antiviral activity when administered to viremic individuals. Recent results from the first efficacy trials testing repeated intravenous administrations of the anti-CD4 binding site bnAb VRC01 have demonstrated positive proof of concept that bnAb passive immunization can confer protection against HIV-1 infection in humans, but have also highlighted the considerable barriers that remain for such strategies to effectively contribute to control of the epidemic. In this review, we discuss the current status of clinical studies evaluating bnAbs for HIV-1 prevention, highlight lessons learned from the recent Antibody Mediated Prevention (AMP) efficacy trials, and provide an overview of strategies being employed to improve the breadth, potency, and durability of antiviral protection.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Ding C, Patel D, Ma Y, Mann JFS, Wu J, Gao Y. Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Front Immunol 2021; 12:697683. [PMID: 34354709 PMCID: PMC8329590 DOI: 10.3389/fimmu.2021.697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the discovery that the human immunodeficiency virus 1 (HIV-1) is the pathogen of acquired immunodeficiency syndrome (AIDS) in 1983, there is still no effective anti-HIV-1 vaccine. The major obstacle to the development of HIV-1 vaccine is the extreme diversity of viral genome sequences. Nonetheless, a number of broadly neutralizing antibodies (bNAbs) against HIV-1 have been made and identified in this area. Novel strategies based on using these bNAbs as an efficacious preventive and/or therapeutic intervention have been applied in clinical. In this review, we summarize the recent development of bNAbs and its application in HIV-1 acquisition prevention as well as discuss the innovative approaches being used to try to convey protection within individuals at risk and being treated for HIV-1 infection.
Collapse
Affiliation(s)
- Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Darshit Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Yunjing Ma
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jianjun Wu
- Department of AIDS Research, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
41
|
Shipley MM, Mangala Prasad V, Doepker LE, Dingens A, Ralph DK, Harkins E, Dhar A, Arenz D, Chohan V, Weight H, Mandaliya K, Bloom JD, Matsen FA, Lee KK, Overbaugh JM. Functional development of a V3/glycan-specific broadly neutralizing antibody isolated from a case of HIV superinfection. eLife 2021; 10:68110. [PMID: 34263727 PMCID: PMC8376252 DOI: 10.7554/elife.68110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Stimulating broadly neutralizing antibodies (bnAbs) directly from germline remains a barrier for HIV vaccines. HIV superinfection elicits bnAbs more frequently than single infection, providing clues of how to elicit such responses. We used longitudinal antibody sequencing and structural studies to characterize bnAb development from a superinfection case. BnAb QA013.2 bound initial and superinfecting viral Env, despite its probable naive progenitor only recognizing the superinfecting strain, suggesting both viruses influenced this lineage. A 4.15 Å cryo-EM structure of QA013.2 bound to native-like trimer showed recognition of V3 signatures (N301/N332 and GDIR). QA013.2 relies less on CDRH3 and more on framework and CDRH1 for affinity and breadth compared to other V3/glycan-specific bnAbs. Antigenic profiling revealed that viral escape was achieved by changes in the structurally-defined epitope and by mutations in V1. These results highlight shared and novel properties of QA013.2 relative to other V3/glycan-specific bnAbs in the setting of sequential, diverse antigens.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, United States
| | - Laura E Doepker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Adam Dingens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Duncan K Ralph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Elias Harkins
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Amrit Dhar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Dana Arenz
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Vrasha Chohan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Haidyn Weight
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kishor Mandaliya
- Coast Provincial General Hospital, Women's Health Project, Mombasa, Kenya
| | - Jesse D Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Frederick A Matsen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, United States
| | - Julie M Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
42
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
43
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
44
|
Gao C, Stavenhagen K, Eckmair B, McKitrick TR, Mehta AY, Matsumoto Y, McQuillan AM, Hanes MS, Eris D, Baker KJ, Jia N, Wei M, Heimburg-Molinaro J, Ernst B, Cummings RD. Differential recognition of oligomannose isomers by glycan-binding proteins involved in innate and adaptive immunity. SCIENCE ADVANCES 2021; 7:7/24/eabf6834. [PMID: 34108208 PMCID: PMC8189592 DOI: 10.1126/sciadv.abf6834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/21/2021] [Indexed: 05/07/2023]
Abstract
The recognition of oligomannose-type glycans in innate and adaptive immunity is elusive due to multiple closely related isomeric glycan structures. To explore the functions of oligomannoses, we developed a multifaceted approach combining mass spectrometry assignments of oligomannose substructures and the development of a comprehensive oligomannose microarray. This defined microarray encompasses both linear and branched glycans, varying in linkages, branching patterns, and phosphorylation status. With this resource, we identified unique recognition of oligomannose motifs by innate immune receptors, including DC-SIGN, L-SIGN, Dectin-2, and Langerin, broadly neutralizing antibodies against HIV gp120, N-acetylglucosamine-1-phosphotransferase, and the bacterial adhesin FimH. The results demonstrate that each protein exhibits a unique specificity to oligomannose motifs and suggest the potential to rationally design inhibitors to selectively block these protein-glycan interactions.
Collapse
Affiliation(s)
- Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara Eckmair
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Deniz Eris
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelly J Baker
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Kumar R, Deshpande S, Sewall LM, Ozorowski G, Cottrell CA, Lee WH, Holden LG, Richey ST, Chandrawacar AS, Dhiman K, Ashish, Kumar V, Ahmed S, Hingankar N, Kumar N, Murugavel KG, Srikrishnan AK, Sok D, Ward AB, Bhattacharya J. Elicitation of potent serum neutralizing antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from an Indian elite neutralizer. PLoS Pathog 2021; 17:e1008977. [PMID: 33826683 PMCID: PMC8055034 DOI: 10.1371/journal.ppat.1008977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/19/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Suprit Deshpande
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Lauren G. Holden
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Antra Singh Chandrawacar
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanika Dhiman
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Ashish
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vivek Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Nitin Hingankar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Naresh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Kailapuri G. Murugavel
- Y. R. Gaitonde Centre for AIDS Research and Education, YRG CARE Laboratory, Rajiv Gandhi Salai, Adyar, Chennai, India
| | - Aylur K. Srikrishnan
- Y. R. Gaitonde Centre for AIDS Research and Education, YRG CARE Laboratory, Rajiv Gandhi Salai, Adyar, Chennai, India
| | - Devin Sok
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative (IAVI), New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jayanta Bhattacharya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- International AIDS Vaccine Initiative, New Delhi, India; International AIDS Vaccine Initiative, New York, New York, United States of America
| |
Collapse
|
46
|
Ko S, Jo M, Jung ST. Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs 2021; 35:147-157. [PMID: 33608823 PMCID: PMC7894971 DOI: 10.1007/s40259-021-00471-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Association of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed. Currently, multiple IgG Fc variants that have been validated for their prolonged therapeutic potency in preclinical models have been successfully entered into human clinical trials for cancer, infectious diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Migyeong Jo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea. .,Biomedical Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines (Basel) 2021; 9:vaccines9020112. [PMID: 33540685 PMCID: PMC7913084 DOI: 10.3390/vaccines9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
Collapse
|
48
|
Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. J Virol 2021; 95:JVI.01369-20. [PMID: 33148792 DOI: 10.1128/jvi.01369-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs: (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing antibodies; (ii) a small fraction of Env modified by complex carbohydrates escaped cleavage in the Golgi; and (iii) the larger population of uncleaved Env lacked complex carbohydrates, cross-linked into diverse oligomeric forms, and was recognized by poorly neutralizing antibodies. This last group of more "open" Env oligomers reached the cell surface in the presence of brefeldin A, apparently bypassing the Golgi apparatus. Relative to Envs transported through the Golgi, these uncleaved Envs were counterselected for virion incorporation. By employing two pathways for Env transport to the surface of infected cells, HIV-1 can misdirect host antibody responses toward conformationally flexible, uncleaved Env without compromising virus infectivity.IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus type 1 (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The cleaved, functional Env is incorporated into virus particles from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.
Collapse
|
49
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Urak RZ, Soemardy C, Ray R, Li S, Shevchenko G, Scott T, Lim L, Wang X, Morris KV. Conditionally Replicating Vectors Mobilize Chimeric Antigen Receptors against HIV. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:285-294. [PMID: 33102620 PMCID: PMC7569266 DOI: 10.1016/j.omtm.2020.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) is an attractive target for chimeric antigen receptor (CAR) therapy. CAR T cells have proved remarkably potent in targeted killing of cancer cells, and we surmised that CAR T cells could prove useful in eradicating HIV-infected cells. Toward this goal, we interrogate several neutralizing single-chain variable fragments (scFvs) that target different regions of the HIV envelope glycoprotein, gp120. We find here that CAR T cells with scFv from NIH45-46 antibody demonstrated the highest cytotoxicity. Although NIH45-46 CAR T cells are capable of eliminating antigen-expressing cells, we wanted to address HIV reactivation from ex vivo culture of HIV patient-derived CAR T cells. In order to capitalize on the HIV reactivation, we developed a conditionally replicating lentiviral vector (crLV). The crLV can hijack HIV machinery, forming a chimeric lentivirus (LV) instead of HIV and delivered to uninfected cells. We find that CAR T cells generated with crLVs have similar CAR-mediated functionality as traditional CARs. We also demonstrate crLVs' capability of expanding CAR percentage and protecting CD4 CAR T cell in HIV donors. Collectively, we demonstrate here that the novel crLV NIH45-46 CAR can serve as a strategy to combat HIV, as well as overcome HIV reactivation in CD4+ CAR T cells.
Collapse
Affiliation(s)
- Ryan Z Urak
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Roslyn Ray
- City of Hope Center for Gene and Cell Therapy, Duarte, CA, USA
| | - Shirley Li
- City of Hope Center for Gene and Cell Therapy, Duarte, CA, USA
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Tristan Scott
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Laura Lim
- Department of Hematology and Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Kevin V Morris
- Center for Gene Therapy, Beckman Research Institute at the City of Hope, Duarte, CA, USA.,Hematological Malignancy and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA.,School of Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222 Australia
| |
Collapse
|