1
|
Singh R, Gaur SK, Nagar R, Kaul R. Insights into the different mechanisms of Autophagy and Apoptosis mediated by Morbilliviruses. Virology 2025; 603:110371. [PMID: 39742556 DOI: 10.1016/j.virol.2024.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Viruses are obligate intracellular parasites that have co-evolved with the host. During the course of evolution, viruses have acquired abilities to abrogate the host's immune responses by modulating the host proteins which play a pivotal role in various biological processes. One such process is the programmed cell death in virus-infected cells, which can occur via autophagy or apoptosis. Morbilliviruses are known to modulate both autophagy and apoptosis. Upon infecting a cell, the morbilliviruses can utilize autophagosomes as their nest and delay the host defense apoptotic response, and/or can promote apoptosis to escalate the virus dissemination. Moreover, there is an active interplay between these two pathways which eventually decides the fate of a virus-infected cell. Recent advances in our understanding of these processes provide a potential rationale to further explore morbilliviruses for therapeutic purposes.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rakhi Nagar
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
2
|
Zhao F, Cong X, Huang X, Zheng Y, Zhao Q, Wen Y, Wu R, Du S, Cao S, Cong F, Wang Y. Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity. Vet Res 2025; 56:5. [PMID: 39789633 PMCID: PMC11720510 DOI: 10.1186/s13567-024-01436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 01/12/2025] Open
Abstract
Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity. To date, there are no vaccines and drugs approved to prevent or treat SADS-CoV infection. Understanding of the mutual relationship between SADS-CoV infection and host immunity is crucial for the development of novel vaccines and drugs against SADS-CoV. Here, we review recent advancements in our understanding of the interplay between SADS-CoV infection and the host intrinsic and innate immunity. The extensive and in-depth investigation on their interactive relationship will contribute to the identification of new targets for developing intervention strategies to control SADS-CoV infection.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Xiaobo Huang
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Zheng
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Wen
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Senyan Du
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sanjie Cao
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China.
| | - Yiping Wang
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Gaur SK, Jain J, Chaudhary Y, Kaul R. Insights into the mechanism of Morbillivirus induced immune suppression. Virology 2024; 600:110212. [PMID: 39232265 DOI: 10.1016/j.virol.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Viruses enter the host cell, and various strategies are employed to evade the host immune system. These include overcoming the various components of the immune system, including modulation of the physical and chemical barriers, non-specific innate response and specific adaptive immune response. Morbilliviruses impose immune modulation by utilizing various approaches including hindering antigen presentation to T-Helper (TH) cells, hematopoiesis and suppression of effector molecule activities. These viruses can also impede the early stages of T cell activation. Despite the availability of effective vaccines, morbilliviruses are still a significant threat to mankind. After infection, they also induce a state of immune suppression in the host. The molecular mechanisms employed by morbilliviruses to induce the state of immune suppression in the infected host are still being investigated. This review is an attempt to summarize insights into some of the strategies adopted by morbilliviruses to mediate immune modulation in the host.
Collapse
Affiliation(s)
- Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Juhi Jain
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
4
|
Zhang R, Hu Z, Wei D, Li R, Li Y, Zhang Z. Carboplatin restricts peste des petits ruminants virus replication by suppressing the STING-mediated autophagy. Front Vet Sci 2024; 11:1383927. [PMID: 38812563 PMCID: PMC11133560 DOI: 10.3389/fvets.2024.1383927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Abstract
Autophagy is a constitutive cellular process of degradation required to maintain homeostasis and turn over spent organelles and aggregated proteins. For some viruses, the process can be antiviral, degrading viral proteins or virions themselves. For many other viruses, the induction of the autophagic process provides a benefit and promotes viral replication. In this Review, we survey the roles that the autophagic pathway plays in the replication of viruses. Most viruses that benefit from autophagic induction block autophagic degradation, which is a 'bend, but don't break' strategy initiating but limiting a potentially antiviral response. In almost all cases, it is other effects of the redirected autophagic machinery that benefit these viruses. This rapid mechanism to generate small double-membraned vesicles can be usurped to shape membranes for viral genome replication and virion maturation. However, data suggest that autophagic maintenance of cellular homeostasis is crucial for the initiation of infection, as viruses have evolved to replicate in normal, healthy cells. Inhibition of autophagic degradation is important once infection has initiated. Although true degradative autophagy is probably a negative for most viruses, initiating nondegradative autophagic membranes benefits a wide variety of viruses.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hoenigsperger H, Koepke L, Acharya D, Hunszinger V, Freisem D, Grenzner A, Wiese S, Kirchhoff F, Gack MU, Sparrer KM. CSNK2 suppresses autophagy by activating FLN-NHL-containing TRIM proteins. Autophagy 2024; 20:994-1014. [PMID: 37938186 PMCID: PMC11135829 DOI: 10.1080/15548627.2023.2281128] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Macroautophagy/autophagy is a tightly regulated cellular process integral to homeostasis and innate immunity. As such, dysregulation of autophagy is associated with cancer, neurodegenerative disorders, and infectious diseases. While numerous factors that promote autophagy have been characterized, the key mechanisms that prevent excessive autophagy are less well understood. Here, we identify CSNK2/CK2 (casein kinase 2) as a negative regulator of autophagy. Pharmacological inhibition of CSNK2 activity or siRNA-mediated depletion of CSNK2 increased basal autophagic flux in cell lines and primary human lung cells. Vice versa, ectopic expression of CSNK2 reduced autophagic flux. Mechanistically, CSNK2 interacted with the FLN (filamin)-NHL domain-containing tripartite motif (TRIM) family members TRIM2, TRIM3 and TRIM71. Our data show that recruitment of CSNK2 to the C-terminal NHL domain of TRIM3 lead to its robust phosphorylation at serine 661 by CSNK2. A phosphorylation-defective mutant of TRIM3 was unable to reduce autophagosome numbers indicating that phosphorylation by CSNK2 is required for TRIM-mediated autophagy inhibition. All three TRIMs facilitated inactivation of the ULK1-BECN1 autophagy initiation complex by facilitating ULK1 serine 757 phosphorylation. Inhibition of CSNK2 promoted autophagy upon influenza A virus (IAV) and measles virus (MeV) infection. In line with this, targeting of CSNK2 or depletion of TRIM2, TRIM3 or TRIM71 enhanced autophagy-dependent restriction of IAV, MeV and human immunodeficiency virus 1 (HIV-1). Thus, our results identify the CSNK2-TRIM2, -TRIM3, -TRIM71 axis as a key regulatory pathway that limits autophagy. Targeting this axis may allow for therapeutic induction of autophagy against viral infections and in diseases associated with dysregulated autophagy.Abbreviation: ATG5: autophagy related 5; BafA1: bafilomycin A1; BECN1: beclin 1; CCD: coiled-coil domain; CSNK2/CK2: casein kinase 2; CSNK2A1: casein kinase 2 alpha 1; CSNK2A2: casein kinase 2 alpha 2; CSNK2B: casein kinase 2 beta; FLN: filamin; HeLa GL: HeLa cells stably expressing eGFP-LC3B; HIV-1: human immunodeficiency virus 1; IAV: influenza A virus; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3; MeV: measles virus; MTOR: mechanistic target of rapamycin kinase; RING: really interesting new gene; SQSTM1/p62: sequestosome 1; TRIM: tripartite motif; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, Florida, USA
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Alexander Grenzner
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Baden-Wuerttemberg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, Florida, USA
| | - Konstantin M.J. Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| |
Collapse
|
7
|
Banerjee S, Gadpayle MP, Samanta S, Dutta P, Das S, Datta R, Maiti S. Role of Macrophage PIST Protein in Regulating Leishmania major Infection. ACS Infect Dis 2024; 10:1414-1428. [PMID: 38556987 DOI: 10.1021/acsinfecdis.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Priyanka Dutta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Swagata Das
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| |
Collapse
|
8
|
Viret C, Lavedrine A, Lamiral G, Rozières A, Faure M. Contextual influence of mammalian macro-autophagy in virus-bacteria coinfected cell phenotypes. PLoS Pathog 2023; 19:e1011625. [PMID: 37733691 PMCID: PMC10513301 DOI: 10.1371/journal.ppat.1011625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
9
|
Chen F, Guo Z, Zhang R, Zhang Z, Hu B, Bai L, Zhao S, Wu Y, Zhang Z, Li Y. Canine distemper virus N protein induces autophagy to facilitate viral replication. BMC Vet Res 2023; 19:60. [PMID: 36922800 PMCID: PMC10015816 DOI: 10.1186/s12917-023-03575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Canine distemper virus (CDV) is one of the most contagious and lethal viruses known to the Canidae, with a very broad and expanding host range. Autophagy serves as a fundamental stabilizing response against pathogens, but some viruses have been able to evade or exploit it for their replication. However, the effect of autophagy mechanisms on CDV infection is still unclear. RESULTS In the present study, autophagy was induced in CDV-infected Vero cells as demonstrated by elevated LC3-II levels and aggregation of green fluorescent protein (GFP)-LC3 spots. Furthermore, CDV promoted the complete autophagic process, which could be determined by the degradation of p62, co-localization of LC3 with lysosomes, GFP degradation, and accumulation of LC3-II and p62 due to the lysosomal protease inhibitor E64d. In addition, the use of Rapamycin to promote autophagy promoted CDV replication, and the inhibition of autophagy by Wortmannin, Chloroquine and siRNA-ATG5 inhibited CDV replication, revealing that CDV-induced autophagy facilitated virus replication. We also found that UV-inactivated CDV still induced autophagy, and that nucleocapsid (N) protein was able to induce complete autophagy in an mTOR-dependent manner. CONCLUSIONS This study for the first time revealed that CDV N protein induced complete autophagy to facilitate viral replication.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Zijing Guo
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China
| | - Rui Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China
| | - Zhixiong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, 130112, Jilin, China
| | - Ling Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Yongshu Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu Jiaping, Lanzhou, 730046, Gansu, China
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China.
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Claviere M, Lavedrine A, Lamiral G, Bonnet M, Verlhac P, Petkova DS, Espert L, Duclaux-Loras R, Lucifora J, Rivoire M, Boschetti G, Nancey S, Rozières A, Viret C, Faure M. Measles virus-imposed remodeling of the autophagy machinery determines the outcome of bacterial coinfection. Autophagy 2023; 19:858-872. [PMID: 35900944 PMCID: PMC9980578 DOI: 10.1080/15548627.2022.2107309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/18/2023] Open
Abstract
Although it is admitted that secondary infection can complicate viral diseases, the consequences of viral infection on cell susceptibility to other infections remain underexplored at the cellular level. We though to examine whether the sustained macroautophagy/autophagy associated with measles virus (MeV) infection could help cells oppose invasion by Salmonella Typhimurium, a bacterium sensitive to autophagic restriction. We report here the unexpected finding that Salmonella markedly replicated in MeV-infected cultures due to selective growth within multinucleated cells. Hyper-replicating Salmonella localized outside of LAMP1-positive compartments to an extent that equaled that of the predominantly cytosolic sifA mutant Salmonella. Bacteria were subjected to effective ubiquitination but failed to be targeted by LC3 despite an ongoing productive autophagy. Such a phenotype could not be further aggravated upon silencing of the selective autophagy regulator TBK1 or core autophagy factors ATG5 or ATG7. MeV infection also conditioned primary human epithelial cells for augmented Salmonella replication. The analysis of selective autophagy receptors able to target Salmonella revealed that a lowered expression level of SQSTM1/p62 and TAX1BP1/T6BP autophagy receptors prevented effective anti-Salmonella autophagy in MeV-induced syncytia. Conversely, as SQSTM1/p62 is promoting the cytosolic growth of Shigella flexneri, MeV infection led to reduced Shigella replication. The results indicate that the rarefaction of dedicated autophagy receptors associated with MeV infection differentially affects the outcome of bacterial coinfection depending on the nature of the functional relationship between bacteria and such receptors. Thus, virus-imposed reconfiguration of the autophagy machinery can be instrumental in determining the fate of bacterial coinfection.Abbreviations: ACTB/β-ACTIN: actin beta; ATG: autophagy related; BAFA1: bafilomycin A1; CFU: colony-forming units; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; OPTN: optineurin; PHH: primary human hepatocyte; SCV: Salmonella-containing vacuoles; SQSTM1/p62: sequestosome 1; S. flexneri: Shigella flexneri; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1/T6BP: Tax1 binding protein 1; TBK1: TANK binding kinase 1.
Collapse
Affiliation(s)
- Mathieu Claviere
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mariette Bonnet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pauline Verlhac
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Denitsa S. Petkova
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Lucile Espert
- IRIM, University of Montpellier, UMR 9004 CNRS, Montpellier, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| |
Collapse
|
11
|
Wang T, Wang C, Han J, Hou X, Hu R, Chang W, Wang L, Qi X, Wang J. β-catenin facilitates fowl adenovirus serotype 4 replication through enhancing virus-induced autophagy. Vet Microbiol 2023; 276:109617. [PMID: 36469999 DOI: 10.1016/j.vetmic.2022.109617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
β-catenin is a key component of the Wnt/β-catenin signal transduction cascade which is a highly conserved signaling pathway in eukaryotes. Increasing evidence suggests that the Wnt/β-catenin signaling pathway is involved in the infection of many viruses. However, its role in fowl adenovirus serotype 4 (FAdV-4) replication remains unclear. In the present study, we showed that FAdV-4 infection increased the expression of β-catenin and promoted the nuclear translocation of β-catenin. Overexpression of β-catenin and LiCl treatment stimulated the accumulation of β-catenin in the nucleus, and then facilitated FAdV-4 replication. Conversely, repression of β-catenin by inhibitors and siRNA significantly inhibited FAdV-4 replication. Furthermore, inhibition of autophagy by 3-Methyladenine (3-MA) suppressed the FAdV-4 replication, and repression of β-catenin inhibited the FAdV-4-triggered autophagy. In conclusion, the nuclear translocation of β-catenin benefits FAdV-4 replication, and suppression of β-catenin limits FAdV-4 production by inhibiting FAdV-4-induced autophagy. These findings indicated that β-catenin is an important regulator of FAdV-4 replication which can serve as a potential target for anti-FAdV-4 agents.
Collapse
Affiliation(s)
- Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Lavedrine A, Lamiral G, Rozières A, Viret C, Faure M. [Autophagy in coinfection: "It is double pleasure to deceive the deceiver"]. Med Sci (Paris) 2023; 39:20-22. [PMID: 36692313 DOI: 10.1051/medsci/2022189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aude Lavedrine
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Aurore Rozières
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Christophe Viret
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Mathias Faure
- Centre international de recherche en infectiologie (CIRI), Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| |
Collapse
|
13
|
The Relationship between DUGBE Virus Infection and Autophagy in Epithelial Cells. Viruses 2022; 14:v14102230. [PMID: 36298785 PMCID: PMC9611011 DOI: 10.3390/v14102230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Dugbe orthonairovirus (DUGV) is a tick-borne arbovirus within the order Bunyavirales. Although displaying mild pathogenic potential, DUGV is genetically related to the Crimean–Congo hemorrhagic fever virus (CCHFV), another orthonairovirus that causes severe liver dysfunction and hemorrhagic fever with a high mortality rate in humans. As we previously observed that CCHFV infection could massively recruit and lipidate MAP1LC3 (LC3), a core factor involved in the autophagic degradation of cytosolic components, we asked whether DUGV infection also substantially impacts the autophagy machinery in epithelial cells. We observed that DUGV infection does impose LC3 lipidation in cultured hepatocytes. DUGV infection also caused an upregulation of the MAP1LC3 and SQSTM1/p62 transcript levels, which were, however, more moderate than those seen during CCHFV infection. In contrast, unlike during CCHFV infection, the modulation of core autophagy factors could influence both LC3 lipidation and viral particle production: the silencing of ATG5 and/or ATG7 diminished the induction of LC3 lipidation and slightly upregulated the level of infectious DUGV particle production. Overall, the results are compatible with the notion that in epithelial cells infected with DUGV in vitro, the autophagy machinery may be recruited to exert a certain level of restriction on viral replication. Thus, the relationship between DUGV infection and autophagy in epithelial cells appears to present both similarities and distinctions with that seen during CCHFV infection.
Collapse
|
14
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
15
|
Liu Y, Zhou T, Hu J, Jin S, Wu J, Guan X, Wu Y, Cui J. Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Front Microbiol 2022; 13:889835. [PMID: 35572624 PMCID: PMC9096610 DOI: 10.3389/fmicb.2022.889835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
PPRV-Induced Autophagy Facilitates Infectious Virus Transmission by the Exosomal Pathway. J Virol 2022; 96:e0024422. [PMID: 35319226 DOI: 10.1128/jvi.00244-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. We showed previously that PPRV induced sustained autophagy for their replication in host cells. Many studies have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate the recipient's cellular response and result in productive infection of the recipient host. Here, we show that PPRV infection results in packaging of the viral genomic RNA and partial viral proteins into exosomes of Vero cells and upregulates exosome secretion. We provide evidence showing that the exosomal viral cargo can be transferred to and establish productive infection in a new target cell. Importantly, our study reveals that PPRV-induced autophagy enhances exosome secretion and exosome-mediated virus transmission. Additionally, our data show that TSG101 may be involved in the sorting of the infectious PPRV RNA into exosomes to facilitate the release of PPRV through the exosomal pathway. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated PPRV intercellular transmission. IMPORTANCE Autophagy plays an important role in PPRV pathogenesis. The role of exosomes in viral infections is beginning to be appreciated. The present study examined the role of autophagy in secretion of infectious PPRV from Vero cells. Our data provided the first direct evidence that ATG7-mediated autophagy enhances exosome secretion and exosome-mediated PPRV transmission. TSG101 may be involved in the sorting of the infectious PPRV RNA genomes into exosomes to facilitate the release of PPRV through the exosomal pathway. Inhibition of PPRV-induced autophagy or TSG101 expression could be used as a strategy to block exosome-mediated virus transmission.
Collapse
|
17
|
Chawla K, Subramanian G, Rahman T, Fan S, Chakravarty S, Gujja S, Demchak H, Chakravarti R, Chattopadhyay S. Autophagy in Virus Infection: A Race between Host Immune Response and Viral Antagonism. IMMUNO 2022; 2:153-169. [PMID: 35252965 PMCID: PMC8893043 DOI: 10.3390/immuno2010012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Virus-infected cells trigger a robust innate immune response and facilitate virus replication. Here, we review the role of autophagy in virus infection, focusing on both pro-viral and anti-viral host responses using a select group of viruses. Autophagy is a cellular degradation pathway operated at the basal level to maintain homeostasis and is induced by external stimuli for specific functions. The degradative function of autophagy is considered a cellular anti-viral immune response. However, autophagy is a double-edged sword in viral infection; viruses often benefit from it, and the infected cells can also use it to inhibit viral replication. In addition to viral regulation, autophagy pathway proteins also function in autophagy-independent manners to regulate immune responses. Since viruses have co-evolved with hosts, they have developed ways to evade the anti-viral autophagic responses of the cells. Some of these mechanisms are also covered in our review. Lastly, we conclude with the thought that autophagy can be targeted for therapeutic interventions against viral diseases.
Collapse
Affiliation(s)
- Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Tia Rahman
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shreyas Gujja
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Hayley Demchak
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
18
|
Human Respiratory Syncytial Virus NS2 Protein Induces Autophagy by Modulating Beclin1 Protein Stabilization and ISGylation. mBio 2022; 13:e0352821. [PMID: 35038909 PMCID: PMC8764521 DOI: 10.1128/mbio.03528-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Paramyxoviruses such as respiratory syncytial virus (RSV) are the leading cause of pneumonia in infants, the elderly, and immunocompromised individuals. Understanding host-virus interactions is essential for the development of effective interventions. RSV induces autophagy to modulate the immune response. The viral factors and mechanisms underlying RSV-induced autophagy are unknown. Here, we identify the RSV nonstructural protein NS2 as the virus component mediating RSV-induced autophagy. We show that NS2 interacts and stabilizes the proautophagy mediator Beclin1 by preventing its degradation by the proteasome. NS2 further impairs interferon-stimulated gene 15 (ISG15)-mediated Beclin1 ISGylation and generates a pool of "hypo-ISGylated" active Beclin1 to engage in functional autophagy. Studies with NS2-deficient RSV revealed that NS2 contributes to RSV-mediated autophagy during infection. The present study is the first report to show direct activation of autophagy by a paramyxovirus nonstructural protein. We also report a new viral mechanism for autophagy induction wherein the viral protein NS2 promotes hypo-ISGylation of Beclin1 to ensure availability of active Beclin1 to engage in the autophagy process. IMPORTANCE Understanding host-virus interactions is essential for the development of effective interventions against respiratory syncytial virus (RSV), a paramyxovirus that is a leading cause of viral pneumonia in infants. RSV induces autophagy following infection, although the viral factors involved in this mechanism are unknown. Here, we identify the RSV nonstructural protein 2 (NS2) as the virus component involved in autophagy induction. NS2 promotes autophagy by interaction with and stabilization of the proautophagy mediator Beclin1 and by impairing its ISGylation to overcome autophagy inhibition. To the best of our knowledge, this is the first report of a viral protein regulating the autophagy pathway by modulating ISGylation of autophagy mediators. Our studies highlight a direct role of a paramyxovirus nonstructural protein in activating autophagy by interacting with the autophagy mediator Beclin1. NS2-mediated regulation of the autophagy and ISGylation processes is a novel function of viral nonstructural proteins to control the host response against RSV.
Collapse
|
19
|
Abstract
CD46 is a receptor for human herpesvirus 6A (HHV-6A) and is in some cells also important for infection with HHV-6B. CD46 has several isoforms of which the most commonly expressed can be distinguished by expression of a BC domain or a C domain in a serine-threonine-proline rich (STP) extracellular region. Using a SupT1 CD46 CRISPR-Cas9 knockout model system reconstituted with specific CD46 isoforms, we demonstrated that HHV-6A infection was more efficient when BC-isoforms were expressed as opposed to C-isoforms, measured by higher levels of intracellular viral transcripts and recovery of more progeny virus. Although the B domain contains several O-glycosylations, mutations of Ser and Thr residues did not prevent infection with HHV-6A. The HHV-6A infection was blocked by inhibitors of clathrin-mediated endocytosis. In contrast, infection with HHV-6B was preferentially promoted by C-isoforms mediating fusion-from-without, and this infection was less affected by inhibitors of clathrin-mediated endocytosis. Taken together, HHV-6A preferred BC isoforms, mediating endocytosis, whereas HHV-6B preferred C isoforms, mediating fusion-from-without. This demonstrates that the STP region of CD46 is important for regulating the mode of infection in SupT1 cells and suggests an epigenetic regulation of the host susceptibility to HHV-6A and HHV-6B infection. Importance CD46 is the receptor used by human herpesvirus 6A (HHV-6A) during infection of T cells, but it is also involved in infection of certain T cells by HHV-6B. The gene for CD46 allows expression of several variants of CD46, known as isoforms, but whether the isoforms matter for infection of T cells is unknown. We used a genetic approach to delete CD46 from T cells and reconstituted them with separate isoforms to study these individually. We expressed the isoforms known as BC and C, which are distinguished by the potential inclusion of a B domain in the CD46 molecule. We demonstrate that HHV-6A prefers the BC isoform to infect T cells, and this occurs predominantly by clathrin-mediated endocytosis. In contrast, HHV-6B prefers the C isoform and infects predominantly by fusion-from-without. Thus, CD46 isoforms may affect susceptibility of T cells to infection with HHV-6A and HHV-6B.
Collapse
|
20
|
Liang W, Liu H, He J, Ai L, Meng Q, Zhang W, Yu C, Wang H, Liu H. Studies Progression on the Function of Autophagy in Viral Infection. Front Cell Dev Biol 2022; 9:772965. [PMID: 34977022 PMCID: PMC8716779 DOI: 10.3389/fcell.2021.772965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a conservative lysosomal catabolic pathway commonly seen in eukaryotic cells. It breaks down proteins and organelles by forming a two-layer membrane structure of autophagosomes and circulating substances and maintaining homeostasis. Autophagy can play a dual role in viral infection and serve either as a pro-viral factor or an antiviral defense element dependent on the virus replication cycle. Recent studies have suggested the complicated and multidirectional role of autophagy in the process of virus infection. On the one hand, autophagy can orchestrate immunity to curtail infection. On the other hand, some viruses have evolved strategies to evade autophagy degradation, facilitating their replication. In this review, we summarize recent progress of the interaction between autophagy and viral infection. Furthermore, we highlight the link between autophagy and SARS-CoV-2, which is expected to guide the development of effective antiviral treatments against infectious diseases.
Collapse
Affiliation(s)
| | - Huimin Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, China
| | - Qingxue Meng
- Department of Science, Southern University of Science and Technology, Shenzhen, China
| | - Weiwen Zhang
- Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Department of Science, Southern University of Science and Technology, Shenzhen, China.,Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
21
|
Xu X, Wang J, Zhang Y, Yan Y, Liu Y, Shi X, Zhang Q. Inhibition of DDX6 enhances autophagy and alleviates endoplasmic reticulum stress in Vero cells under PEDV infection. Vet Microbiol 2022; 266:109350. [DOI: 10.1016/j.vetmic.2022.109350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
|
22
|
Qin J, Zheng Y, Ding Y, Huang C, Hou M, Li M, Qian G, Lv H. Co-culture of peripheral blood mononuclear cell (PBMC) and human coronary artery endothelial cell (HCAEC) reveals the important role of autophagy implicated in Kawasaki disease. Transl Pediatr 2021; 10:3140-3150. [PMID: 35070827 PMCID: PMC8753476 DOI: 10.21037/tp-21-344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a systemic vasculitis syndrome that commonly occurs in children. Autophagy has been increasingly shown to be involved in various cardiovascular diseases, including endothelial dysfunction and vascular endothelial injury. However, whether autophagy is implicated in the pathogenesis of KD remains poorly understood, and particularly, how the dysfunction of human coronary artery endothelial cells (HCAECs) is associated with autophagy in peripheral blood mononuclear cells (PBMCs) from KD patients awaits further investigation. METHODS Peripheral blood samples were collected from KD patients, common fever patients, and healthy controls. The PBMC samples were isolated from KD blood samples collected at three different phases: the acute phase before therapy (acute-KD), 1 week (subacute-KD), and 4 weeks (convalescent-KD) after drug administration. RESULTS The autophagy flux was significantly increased in the PBMCs of KD patients at acute phase. The PBMCs of acute KD patients could induce autophagy in HCAECs and promote the secretion of chemokines and pro-inflammatory factors after cocultured with HCAECs whereas 3-methyladenine (3-MA) drug could partly reverse this process. CONCLUSIONS Autophagy is involved in the inflammatory injury of vascular endothelial cells associated with PBMCs in KD patients, and may play a crucial role in regulating inflammation. Hence, we identify a novel regulatory mechanism of vascular injury in this disease.
Collapse
Affiliation(s)
- Jie Qin
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, The First People's Hospital of Yan Cheng, Yancheng, China
| | - Yiming Zheng
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yueyue Ding
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Chengcheng Huang
- Department of Pediatrics, Yi Ji Shan Hospital, Wan Nan Medical College, Wuhu, China
| | - Miao Hou
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Sato H, Hoshi M, Ikeda F, Fujiyuki T, Yoneda M, Kai C. Downregulation of mitochondrial biogenesis by virus infection triggers antiviral responses by cyclic GMP-AMP synthase. PLoS Pathog 2021; 17:e1009841. [PMID: 34648591 PMCID: PMC8516216 DOI: 10.1371/journal.ppat.1009841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress. Viruses exert their pathogenicity by targeting various cellular components in infected cells. In response, host cells have evolved strategies to sense intracellular pathogen-associated molecules, such as nucleic acids derived from infected virus, and trigger subsequent antiviral responses to counteract infection. Measles virus (MeV), the causative agent of human measles, is the most highly contagious virus, killing 300 children per day worldwide; thus MeV has been targeted for eradication by the World Health Organization. In the present study, we found that MeV causes downregulation of mitochondrial biogenesis accompanied with aberrant hyperfusion of mitochondria in the infected cells. Furthermore, we show that cytoplasmic release of mitochondrial DNA activates DNA sensor molecule, cGAS, in addition to the innate immune response induced by the viral component. Importantly, this phenomenon was also observed for viruses, both RNA and DNA, which target mitochondrial biogenesis. Our study provides new insights into the mitochondrial stress by virus infection and an important host defense system to suppress viral propagation.
Collapse
Affiliation(s)
- Hiroki Sato
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Molecular Virology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Miho Hoshi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fusako Ikeda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Fujiyuki
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Virus Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Misako Yoneda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Chieko Kai
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
25
|
Teo QW, van Leur SW, Sanyal S. Escaping the Lion's Den: redirecting autophagy for unconventional release and spread of viruses. FEBS J 2021; 288:3913-3927. [PMID: 33044763 DOI: 10.1111/febs.15590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
Autophagy is an evolutionarily conserved process, designed to maintain cellular homeostasis during a range of internal and external stimuli. Conventionally, autophagy is known for coordinated degradation and recycling of intracellular components and removal of cytosolic pathogens. More recently, several lines of evidence have indicated an unconventional, nondegradative role of autophagy for secretion of cargo that lacks a signal peptide. This process referred to as secretory autophagy has also been implicated in the infection cycle of several virus species. This review focuses on the current evidence available on the nondegradative features of autophagy, emphasizing its potential role and unresolved questions in the release and spread of (-) and (+) RNA viruses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong
| | - Sophie Wilhelmina van Leur
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
26
|
Abstract
Activation of autophagy is part of the innate immune response during viral infections. Autophagy involves the sequestration of endogenous or foreign components from the cytosol within double-membraned vesicles and the delivery of their content to the lysosomes for degradation. As part of innate immune responses, this autophagic elimination of foreign components is selective and requires specialized cargo receptors that function as links between a tagged foreign component and the autophagic machinery. Pathogens have evolved ways to evade their autophagic degradation to promote their replication, and recent research has shown autophagic receptors to be an important and perhaps previously overlooked target of viral autophagy inhibition. This is a brief summary of the recent progress in knowledge of virus-host interaction in the context of autophagy receptors.
Collapse
Affiliation(s)
- Päivi Ylä-Anttila
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. .,Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, Stockholm, Sweden. .,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
28
|
Xia M, Meng G, Dong J. [Synergistic Effect of NF-κB Signaling Pathway Inhibitor and Oncolytic
Measles Virus Vaccine Strain against Lung Cancer and Underlying Mechanisms]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:245-253. [PMID: 33775041 PMCID: PMC8105609 DOI: 10.3779/j.issn.1009-3419.2021.102.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
背景与目的 肺癌已成为我国发病率和死亡率居首位的恶性肿瘤。能自我复制、选择性杀伤肿瘤的溶瘤病毒,是治疗恶性肿瘤的有效策略,而其中溶瘤麻疹病毒疫苗株因其良好的溶瘤效果,且对正常细胞无损伤或微损伤,已进入几项临床试验。本研究旨在探讨核转录因子κB(nuclear factor kappa B, NF-κB)信号通路抑制剂与溶瘤麻疹病毒疫苗株协同抗肺癌的作用及机制。 方法 应用Western blot方法检测MV-Edm感染人肺癌细胞A549和H1299并应用细胞自噬相关的siRNA或者应用NF-кB通路抑制剂PS1145后SQSTM1、p-IκBα、IκBα、PARP及BAX的表达水平,运用流式细胞术分析各组细胞凋亡率的变化,同时采用噻唑蓝[3-(4, 5)-dimethylthiahiazo(-z-y1)-3, 5-di-phenytetrazoliumromide, MTT]法检测各组细胞的存活率。 结果 Western blot结果显示MV-Edm感染人肺癌细胞A549和H1299后,自噬引起NF-κB通路的激活,进而抑制细胞凋亡。抑制细胞自噬可抑制NF-κB通路的激活,MV-Edm感染后p-IκBα表达水平随着感染时间有不同程度的升高,IκBα的表达水平则降低,NF-κB通路抑制剂PS1145可促进人肺癌细胞A549和H1299凋亡(P < 0.01),并增强其溶瘤效果。 结论 NF-κB信号通路抑制剂PS1145与溶瘤麻疹病毒疫苗株联合可促进人肺癌细胞A549和H1299凋亡,并增强其溶瘤效果。
Collapse
Affiliation(s)
- Mao Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210007, China
| | - Gang Meng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210007, China
| | - Jie Dong
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210007, China
| |
Collapse
|
29
|
Zhu M, Wang Y, Qu C, Liu R, Zhang C, Wang J, Zhou D, Gu W, Chen P, Wu B, Zhao Z. Recombinant Chinese Hu191 measles virus exhibits a significant antitumor activity against nephroblastoma mediated by immunogenic form of apoptosis. Am J Transl Res 2021; 13:2077-2093. [PMID: 34017376 PMCID: PMC8129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In previous studies oncolytic measles viruses (MVs) have shown significant antitumor activity against various tumors. In our research recombinant MV-Hu191 (rMV-Hu191), established via reverse genetics technology and expressing enhanced green fluorescent protein (EGFP), was evaluated for its therapeutic effects and related mechanisms against nephroblastoma cell lines. We built three different constructs based on rMV-Hu191 to express EGFP effectively. Our experiments showed that rMV-Hu191 expressing EGFP could efficiently infect and replicate in nephroblastoma cell lines. Caspase-induced apoptosis exerted a significant impact on MV-induced cell death, which was accompanied by emission of cellular ATP and high-mobility group protein 1 (HMGB1) and by translocation of calreticulin (CRT). Intratumoral injection of rMV-Hu191-EGFP resulted in significant regression of tumors in a G401 xenograft model. Our results indicate that the MV-Hu191 strain, which is widely used in China, is an appropriate vector for expression of foreign genes and could serve as a potentially good candidate for nephroblastoma therapy mediated by induction of apoptosis-associated immunogenic cell death (ICD).
Collapse
Affiliation(s)
- Mengying Zhu
- Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Yilong Wang
- Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
- Department of Neurology, Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhou 310052, Zhejiang, China
| | - Chufan Qu
- Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Rongxian Liu
- Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Chudi Zhang
- Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Jinhu Wang
- Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhou 310052, Zhejiang, China
| | - Dongming Zhou
- Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
- Department of Neurology, Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
| | - Weizhong Gu
- Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
- Department of Neurology, Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
| | - Peichun Chen
- Maternal and Child Health Hospital of Guangming DistrictShenzhen 518000, Guangdong, China
| | - Benqing Wu
- Maternal and Child Health Hospital of Guangming DistrictShenzhen 518000, Guangdong, China
| | - Zhengyan Zhao
- Zhejiang University School of MedicineHangzhou, Zhejiang, China
- Children’s Hospital, Zhejiang University School of MedicineHangzhou 310052, Zhejiang, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhou 310052, Zhejiang, China
| |
Collapse
|
30
|
Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021; 11:life11030232. [PMID: 33799853 PMCID: PMC7998235 DOI: 10.3390/life11030232] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, Michigan Medicine, Ann Arbor, MI 48109, USA
- Correspondence:
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
| |
Collapse
|
31
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
33
|
Viret C, Duclaux-Loras R, Nancey S, Rozières A, Faure M. Selective Autophagy Receptors in Antiviral Defense. Trends Microbiol 2021; 29:798-810. [PMID: 33678557 DOI: 10.1016/j.tim.2021.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Autophagy ensures the degradation of cytosolic substrates by the lysosomal pathway. Cargoes destined to be eliminated are confined within double-membrane vesicles called autophagosomes, prior to fusion with endolysosomal vacuoles. Autophagy receptors selectively interact with cargoes and route them to elongating autophagic membranes, a process referred to as selective autophagy. Besides contributing to cell homeostasis, selective autophagy constitutes an important cell-autonomous defense mechanism against viruses. We review observations related to selective autophagy receptor engagement during host cell responses to virus infection. We examine the distinct roles of autophagy receptors in antiviral autophagy, consider the strategies viruses have evolved to escape or oppose such restrictions, and delineate the contributions of selective autophagy to the tailoring of antiviral innate responses. Finally, we mention some open and emerging questions in the field.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Department of Gastroenterology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France.
| |
Collapse
|
34
|
Meignié A, Combredet C, Santolini M, Kovács IA, Douché T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV. Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65-iASPP Protein Complex. Mol Cell Proteomics 2021; 20:100049. [PMID: 33515806 PMCID: PMC7950213 DOI: 10.1016/j.mcpro.2021.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65–iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication. Measles virus controls immune response and cell death pathways to achieve replication. Host proteins interaction network with measles virulence factor C protein. Cellular p65–iASPP complex is targeted by measles virus C protein.
Collapse
Affiliation(s)
- Alice Meignié
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Santolini
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France; Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Thibaut Douché
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR 3756, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mariette Matondo
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Yves Jacob
- Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
35
|
Mara K, Dai M, Brice AM, Alexander MR, Tribolet L, Layton DS, Bean AGD. Investigating the Interaction between Negative Strand RNA Viruses and Their Hosts for Enhanced Vaccine Development and Production. Vaccines (Basel) 2021; 9:vaccines9010059. [PMID: 33477334 PMCID: PMC7830660 DOI: 10.3390/vaccines9010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
Collapse
|
36
|
Hou P, Yang K, Jia P, Liu L, Lin Y, Li Z, Li J, Chen S, Guo S, Pan J, Wu J, Peng H, Zeng W, Li C, Liu Y, Guo D. A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection. Cell Res 2021; 31:62-79. [PMID: 32612200 PMCID: PMC7852694 DOI: 10.1038/s41422-020-0362-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved process that delivers cytosolic substances to the lysosome for degradation, but its direct role in the regulation of antiviral innate immunity remains poorly understood. Here, through high-throughput screening, we discovered that CCDC50 functions as a previously unknown autophagy receptor that negatively regulates the type I interferon (IFN) signaling pathway initiated by RIG-I-like receptors (RLRs), the sensors for RNA viruses. The expression of CCDC50 is enhanced by viral infection, and CCDC50 specifically recognizes K63-polyubiquitinated RLRs, thus delivering the activated RIG-I/MDA5 for autophagic degradation. The association of CCDC50 with phagophore membrane protein LC3 is confirmed by crystal structure analysis. In contrast to other known autophagic cargo receptors that associate with either the LIR-docking site (LDS) or the UIM-docking site (UDS) of LC3, CCDC50 can bind to both LDS and UDS, representing a new type of cargo receptor. In mouse models with RNA virus infection, CCDC50 deficiency reduces the autophagic degradation of RIG-I/MDA5 and promotes type I IFN responses, resulting in enhanced viral resistance and improved survival rates. These results reveal a new link between autophagy and antiviral innate immune responses and provide additional insights into the regulatory mechanisms of RLR-mediated antiviral signaling.
Collapse
Affiliation(s)
- Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongxiang Yang
- Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Lan Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jun Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shuting Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ji'An Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Junyu Wu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Peng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingfang Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
37
|
Jin KT, Tao XH, Fan YB, Wang SB. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed Pharmacother 2020; 134:110932. [PMID: 33370632 DOI: 10.1016/j.biopha.2020.110932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses have attracted attention as a promising strategy in cancer therapy owing to their ability to selectively infect and kill tumor cells, without affecting healthy cells. They also exert their anti-tumor effects by releasing immunostimulatory molecules from dying cancer cells. Several regulatory mechanisms, such as autophagy, contribute to the anti-tumor properties of oncolytic viruses. Autophagy is a conserved catabolic process in responses to various stresses, such as nutrient deprivation, hypoxia, and infection that produces energy by lysosomal degradation of intracellular contents. Autophagy can support infectivity and replication of the oncolytic virus and enhance their anti-tumor effects via mediating oncolysis, autophagic cell death, and immunogenic cell death. On the other hand, autophagy can reduce the cytotoxicity of oncolytic viruses by providing survival nutrients for tumor cells. In his review, we summarize various types of oncolytic viruses in clinical trials, their mechanism of action, and autophagy machinery. Furthermore, we precisely discuss the interaction between oncolytic viruses and autophagy in cancer therapy and their combinational effects on tumor cells.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, PR China
| | - Xiao-Hua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China.
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China.
| |
Collapse
|
38
|
Nutma E, Marzin MC, Cillessen SA, Amor S. Autophagy in white matter disorders of the CNS: mechanisms and therapeutic opportunities. J Pathol 2020; 253:133-147. [PMID: 33135781 PMCID: PMC7839724 DOI: 10.1002/path.5576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic‐metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy‐modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Moroso M, Verlhac P, Ferraris O, Rozières A, Carbonnelle C, Mély S, Endtz HP, Peyrefitte CN, Paranhos-Baccalà G, Viret C, Faure M. Crimean-Congo hemorrhagic fever virus replication imposes hyper-lipidation of MAP1LC3 in epithelial cells. Autophagy 2020; 16:1858-1870. [PMID: 31905032 PMCID: PMC8386629 DOI: 10.1080/15548627.2019.1709765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation. Abbreviations: BECN1: Beclin 1; CCHF: Crimean-Congo hemorrhagic fever; CCHFV: Crimean-Congo hemorrhagic fever virus; CHX: cycloheximide; ER: endoplasmic reticulum; GFP: green fluorescent protein; GP: glycoproteins; MAP1LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; n.i.: non-infected; NP: nucleoprotein; p.i.: post-infection; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Marie Moroso
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
| | - Pauline Verlhac
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
| | - Olivier Ferraris
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
- Département Microbiologie et Maladies Infectieuses, Biomedical Research Institute of the French Army (IRBA), Brétigny-sur-Orge, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
| | | | - Stéphane Mély
- Laboratoire P4 Inserm-Jean Mérieux, US003 Inserm, Lyon, France
| | - Hubert P. Endtz
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
| | - Christophe N. Peyrefitte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
- Département Microbiologie et Maladies Infectieuses, Biomedical Research Institute of the French Army (IRBA), Brétigny-sur-Orge, France
| | - Glaucia Paranhos-Baccalà
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Emerging Pathogens Laboratory, Fondation Mérieux, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| |
Collapse
|
40
|
Reggio A, Buonomo V, Grumati P. Eating the unknown: Xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp Cell Res 2020; 396:112276. [PMID: 32918896 PMCID: PMC7480532 DOI: 10.1016/j.yexcr.2020.112276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.
Collapse
Affiliation(s)
- Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
| |
Collapse
|
41
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
42
|
Koepke L, Winter B, Grenzner A, Regensburger K, Engelhart S, van der Merwe JA, Krebs S, Blum H, Kirchhoff F, Sparrer KMJ. An improved method for high-throughput quantification of autophagy in mammalian cells. Sci Rep 2020; 10:12241. [PMID: 32699244 PMCID: PMC7376206 DOI: 10.1038/s41598-020-68607-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.
Collapse
Affiliation(s)
- Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Winter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alexander Grenzner
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Susanne Engelhart
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Stefan Krebs
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | |
Collapse
|
43
|
Viret C, Rozières A, Duclaux-Loras R, Boschetti G, Nancey S, Faure M. Regulation of anti-microbial autophagy by factors of the complement system. MICROBIAL CELL 2020; 7:93-105. [PMID: 32274388 PMCID: PMC7136756 DOI: 10.15698/mic2020.04.712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complement system is a major component of innate immunity that participates in the defense of the host against a myriad of pathogenic microorganisms. Activation of complement allows for both local inflammatory response and physical elimination of microbes through phagocytosis or lysis. The system is highly efficient and is therefore finely regulated. In addition to these well-established properties, recent works have revealed that components of the complement system can be involved in a variety of other functions including in autophagy, the conserved mechanism that allows for the targeting and degradation of cytosolic materials by the lysosomal pathway after confining them into specialized organelles called autophagosomes. Besides impacting cell death, development or metabolism, the complement factors-autophagy connection can greatly modulate the cell autonomous, anti-microbial activity of autophagy: xenophagy. Both surface receptor-ligand interactions and intracellular interactions are involved in the modulation of the autophagic response to intracellular microbes by complement factors. Here, we review works that relate to the recently discovered connections between factors of the complement system and the functioning of autophagy in the context of host-pathogen relationship.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.,Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| |
Collapse
|
44
|
The Role of Autophagy and Autophagy Receptor NDP52 in Microbial Infections. Int J Mol Sci 2020; 21:ijms21062008. [PMID: 32187990 PMCID: PMC7139735 DOI: 10.3390/ijms21062008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a general protective mechanism for maintaining homeostasis in eukaryotic cells, regulating cellular metabolism, and promoting cell survival by degrading and recycling cellular components under stress conditions. The degradation pathway that is mediated by autophagy receptors is called selective autophagy, also named as xenophagy. Autophagy receptor NDP52 acts as a ‘bridge’ between autophagy and the ubiquitin-proteasome system, and it also plays an important role in the process of selective autophagy. Pathogenic microbial infections cause various diseases in both humans and animals, posing a great threat to public health. Increasing evidence has revealed that autophagy and autophagy receptors are involved in the life cycle of pathogenic microbial infections. The interaction between autophagy receptor and pathogenic microorganism not only affects the replication of these microorganisms in the host cell, but it also affects the host’s immune system. This review aims to discuss the effects of autophagy on pathogenic microbial infection and replication, and summarizes the mechanisms by which autophagy receptors interact with microorganisms. While considering the role of autophagy receptors in microbial infection, NDP52 might be a potential target for developing effective therapies to treat pathogenic microbial infections.
Collapse
|
45
|
Strategies employed by viruses to manipulate autophagy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:203-237. [PMID: 32620243 DOI: 10.1016/bs.pmbts.2020.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy, originally described as a conserved bulk degradation pathway important to maintain cellular homeostasis during starvation, has also been implicated in playing a central role in multiple physiological processes. For example, autophagy is part of our innate immunity by targeting intracellular pathogens to lysosomes for degradation in a process called xenophagy. Coevolution and adaptation between viruses and autophagy have armed viruses with a multitude of strategies to counteract the antiviral functions of the autophagy pathway. In addition, some viruses have acquired mechanisms to exploit specific functions of either autophagy or the key components of this process, the autophagy-related (ATG) proteins, to promote viral replication and pathogenesis. In this chapter, we describe several examples where the strategy employed by a virus to subvert autophagy has been described with molecular detail. Their stratagems positively or negatively target practically all the steps of autophagy, including the signaling pathways regulating this process. This highlights the intricate relationship between autophagy and viruses and how by commandeering autophagy, viruses have devised ways to fine-tune their replication.
Collapse
|
46
|
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by orchestrating immunity upon viral infection. Following viral infection, autophagy is often initiated to curtail infection by delivering viral particles for lysosomal degradation and further integrating with innate pattern recognition receptor signaling to induce interferon (IFN)-mediated viral clearance. However, some viruses have evolved anti-autophagy strategies to escape host immunity and to promote viral replication. In this chapter, we illustrate how autophagy prevents viral infection to generate an optimal anti-viral milieu, and then concentrate on how viruses subvert and hijack the autophagic process to evade immunosurveillance, thereby facilitating viral replication and pathogenesis. Understanding the interplays between autophagy and viral infection is anticipated to guide the development of effective anti-viral therapeutics to fight against infectious diseases.
Collapse
|
47
|
Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4657-4670. [PMID: 31552430 PMCID: PMC6760330 DOI: 10.1093/jxb/erz244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Jen Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Siou-Cen Li
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
48
|
Yang B, Xue Q, Guo J, Wang X, Zhang Y, Guo K, Li W, Chen S, Xue T, Qi X, Wang J. Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity. Autophagy 2019; 16:842-861. [PMID: 31318632 PMCID: PMC7144873 DOI: 10.1080/15548627.2019.1643184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy is an essential cellular response in the fight against intracellular pathogens. Although some viruses can escape from or utilize autophagy to ensure their own replication, the responses of autophagy pathways to viral invasion remain poorly documented. Here, we show that peste des petits ruminants virus (PPRV) infection induces successive autophagic signalling in host cells via distinct and uncoupled molecular pathways. Immediately upon invasion, PPRV induced a first transient wave of autophagy via a mechanism involving the cellular pathogen receptor NECTIN4 and an AKT-MTOR-dependent pathway. Autophagic detection showed that early PPRV infection not only increased the amounts of autophagosomes and LC3-II but also downregulated the phosphorylation of AKT-MTOR. Subsequently, we found that the binding of viral protein H to NECTIN4 ultimately induced a wave of autophagy and inactivated the AKT-MTOR pathway, which is a critical step for the control of infection. Soon after infection, new autophagic signalling was initiated that required viral replication and protein expression. Interestingly, expression of IRGM and HSPA1A was significantly upregulated following PPRV replication. Strikingly, knockdown of IRGM and HSPA1A expression using small interfering RNAs impaired the PPRV-induced second autophagic wave and viral particle production. Moreover, IRGM-interacting PPRV-C and HSPA1A-interacting PPRV-N expression was sufficient to induce autophagy through an IRGM-HSPA1A-dependent pathway. Importantly, syncytia formation could facilitate sustained autophagy and the replication of PPRV. Overall, our work reveals distinct molecular pathways underlying the induction of self-beneficial sustained autophagy by attenuated PPRV, which will contribute to improving the use of vaccines for therapy. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG: autophagy-related; BECN1: beclin 1; CDV: canine distemper virus; Co-IP: coimmunoprecipitation; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; GST: glutathione S-transferase; HMOX1: heme oxygenase 1; hpi: hours post infection; HSPA1A: heat shock protein family A (Hsp70) member 1A; HSP90AA1: heat shock protein 90 kDa alpha (cytosolic), class A member 1; IFN: interferon; IgG: immunoglobulin G; INS: insulin; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide-3 kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SDS: sodium dodecyl sulfate; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; UV: ultraviolet.
Collapse
Affiliation(s)
- Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghong Xue
- Department of viral biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianxia Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Starvation-Induced Differential Virotherapy Using an Oncolytic Measles Vaccine Virus. Viruses 2019; 11:v11070614. [PMID: 31284426 PMCID: PMC6669668 DOI: 10.3390/v11070614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Starvation sensitizes tumor cells to chemotherapy while protecting normal cells at the same time, a phenomenon defined as differential stress resistance. In this study, we analyzed if starvation would also increase the oncolytic potential of an oncolytic measles vaccine virus (MeV-GFP) while protecting normal cells against off-target lysis. Human colorectal carcinoma (CRC) cell lines as well as human normal colon cell lines were subjected to various starvation regimes and infected with MeV-GFP. The applied fasting regimes were either short-term (24 h pre-infection) or long-term (24 h pre- plus 96 h post-infection). Cell-killing features of (i) virotherapy, (ii) starvation, as well as (iii) the combination of both were analyzed by cell viability assays and virus growth curves. Remarkably, while long-term low-serum, standard glucose starvation potentiated the efficacy of MeV-mediated cell killing in CRC cells, it was found to be decreased in normal colon cells. Interestingly, viral replication of MeV-GFP in CRC cells was decreased in long-term-starved cells and increased after short-term low-glucose, low-serum starvation. In conclusion, starvation-based virotherapy has the potential to differentially enhance MeV-mediated oncolysis in the context of CRC cancer patients while protecting normal colon cells from unwanted off-target effects.
Collapse
|
50
|
Keshavarz M, Solaymani-Mohammadi F, Miri SM, Ghaemi A. Oncolytic paramyxoviruses-induced autophagy; a prudent weapon for cancer therapy. J Biomed Sci 2019; 26:48. [PMID: 31217023 PMCID: PMC6585078 DOI: 10.1186/s12929-019-0542-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy has currently emerged as a promising approach upon which scientists have been able to induce tumor-specific cell death in a broad spectrum of malignancies. Paramyxoviruses represent intrinsic oncolytic capability, which makes them excellent candidates to be widely used in oncolytic virotherapy. The mechanisms through which these viruses destroy the cancerous cells involve triggering the autophagic machinery and apoptosis in target cells. Interestingly, oncolytic paramyxoviruses have been found to induce autophagy and lead to tumor cells death rather than their survival. Indeed, the induction of autophagy has been revealed to enhance the immunogenicity of tumor cells via the release of damage-associated molecular patterns (DAMPs) and the activation of autophagy-related immunogenic cell death (ICD). Subsequent cross-presentation of tumor-associated antigens (TAA) through the MHC-I complex to CD8+ T cells results in the productive priming of the tumor-specific immune response. In this review, we first briefly discuss autophagy and explain the process of viral xenophagy. Finally, we focus on the interactions between virus and autophagy proteins, elaborating on the global preclinical studies on oncolytic paramyxoviruses.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Solaymani-Mohammadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|