1
|
AlDaif BA, Fleming SB. Innate Immune Sensing of Parapoxvirus Orf Virus and Viral Immune Evasion. Viruses 2025; 17:587. [PMID: 40285029 PMCID: PMC12031380 DOI: 10.3390/v17040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Orf virus (ORFV) is the type species of Parapoxvirus of the Poxviridae family that induces cutaneous pustular skin lesions in sheep and goats, and causes zoonotic infections in humans. Pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), leading to the triggering of the innate immune response through multiple signalling pathways involving type I interferons (IFNs). The major PAMPs generated during viral infection are nucleic acids, which are the most important molecules that are recognized by the host. The induction of type l IFNs leads to activation of the Janus kinase (JAK)-signal transducer activator of transcription (STAT) pathway, which results in the induction of hundreds of interferon-stimulated genes (ISGs), many of which encode proteins that have antiviral roles in eliminating virus infection and create an antiviral state. Genetic and functional analyses have revealed that ORFV, as found for other poxviruses, has evolved multiple immunomodulatory genes and strategies that manipulate the innate immune sensing response.
Collapse
Affiliation(s)
| | - Stephen B. Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
2
|
Meyer Zu Natrup C, Clever S, Schünemann LM, Tuchel T, Ohrnberger S, Volz A. Strong and early monkeypox virus-specific immunity associated with mild disease after intradermal clade-IIb-infection in CAST/EiJ-mice. Nat Commun 2025; 16:1729. [PMID: 39966381 PMCID: PMC11836108 DOI: 10.1038/s41467-025-56800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Monkeypox virus (MPXV) is a zoonotic poxvirus long endemic in West and Central Africa. Outbreaks, first the global spread of clade II outside Africa in 2022, and since 2023 the accelerating spread of clade I in central Africa, point to MPXV adaptations that pose the risk of it becoming more transmissible in humans. Animal models mimicking the clinical disease outcome in humans are important to better understand pathogenesis, host tropism, and the contribution of genetic mutations. Here, we demonstrate that MPXV infection via tail scarification in CAST/EiJ mice is an appropriate animal model to mimic human mpox. In our study, disease outcome is milder in clade IIb than clade IIa-infected mice, which is associated with enhanced immunogenicity early during infection. This suggests that clade IIb more efficiently activates host immune responses, highlighting how this animal model could facilitate studying new MPXV variants to help develop efficient antivirals and preventive measures.
Collapse
Affiliation(s)
| | - Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sonja Ohrnberger
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany.
- German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
3
|
Kamel W, Ruscica V, Embarc-Buh A, de Laurent ZR, Garcia-Moreno M, Demyanenko Y, Orton RJ, Noerenberg M, Madhusudhan M, Iselin L, Järvelin AI, Hannan M, Kitano E, Moore S, Merits A, Davis I, Mohammed S, Castello A. Alphavirus infection triggers selective cytoplasmic translocation of nuclear RBPs with moonlighting antiviral roles. Mol Cell 2024; 84:4896-4911.e7. [PMID: 39642884 DOI: 10.1016/j.molcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
RNA is a central molecule for viruses; however, the interactions that viral RNA (vRNA) establishes with the host cell is only starting to be elucidated. Here, we determine the ribonucleoprotein (RNP) composition of the prototypical arthropod-borne Sindbis virus (SINV). We show that SINV RNAs engage with hundreds of cellular proteins, including a group of nuclear RNA-binding proteins (RBPs) with unknown roles in infection. We demonstrate that these nuclear RBPs are selectively translocated to the cytoplasm after infection, where they accumulate in the viral replication organelles (ROs). These nuclear RBPs strongly suppress viral gene expression, with activities spanning viral species and families. Particularly, the U2 small nuclear RNP (snRNP) emerges as an antiviral complex, with both its U2 small nuclear RNA (snRNA) and protein components contributing to the recognition of the vRNA and the antiviral phenotype. These results suggest that the U2 snRNP has RNA-driven antiviral activity in a mechanism reminiscent of the RNAi pathway.
Collapse
Affiliation(s)
- Wael Kamel
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Vincenzo Ruscica
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Azman Embarc-Buh
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Zaydah R de Laurent
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yana Demyanenko
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Richard J Orton
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Marko Noerenberg
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Meghana Madhusudhan
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Louisa Iselin
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK; Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research,11, Oxford OX1 3SY, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maximilian Hannan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eduardo Kitano
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Samantha Moore
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK; Department of Chemistry, University of Oxford, Mansfield Road 16, Oxford OX1 3TA, UK.
| | - Alfredo Castello
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
4
|
Fang D, Liu Y, Dou D, Su B. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies. Virol Sin 2024; 39:709-718. [PMID: 39181538 PMCID: PMC11738799 DOI: 10.1016/j.virs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.
Collapse
Affiliation(s)
- Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Bin Su
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Hristova DB, Oliveira M, Wagner E, Melcher A, Harrington KJ, Belot A, Ferguson BJ. DNA-PKcs is required for cGAS/STING-dependent viral DNA sensing in human cells. iScience 2024; 27:108760. [PMID: 38269102 PMCID: PMC10805666 DOI: 10.1016/j.isci.2023.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
To mount an efficient interferon response to virus infection, intracellular pattern recognition receptors (PRRs) sense viral nucleic acids and activate anti-viral gene transcription. The mechanisms by which intracellular DNA and DNA viruses are sensed are relevant not only to anti-viral innate immunity, but also to autoinflammation and anti-tumour immunity through the initiation of sterile inflammation by self-DNA recognition. The PRRs that directly sense and respond to viral or damaged self-DNA function by signaling to activate interferon regulatory factor (IRF)-dependent type one interferon (IFN-I) transcription. We and others have previously defined DNA-dependent protein kinase (DNA-PK) as an essential component of the DNA-dependent anti-viral innate immune system. Here, we show that DNA-PK is essential for cyclic GMP-AMP synthase (cGAS)- and stimulator of interferon genes (STING)-dependent IFN-I responses in human cells during stimulation with exogenous DNA and infection with DNA viruses.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Emma Wagner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alan Melcher
- The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard, Lyon, France
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
8
|
Peng X, Wu H, Zhang B, Xu C, Lang J. A Novel Nucleic Acid Sensing-related Genes Signature for Predicting Immunotherapy Efficacy and Prognosis of Lung Adenocarcinoma. Curr Cancer Drug Targets 2024; 24:425-444. [PMID: 37592781 DOI: 10.2174/1568009623666230817101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND As a novel pillar for lung adenocarcinoma (LUAD) treatment, immunotherapy has limited efficiency in LUAD patients. The nucleic acid sensing (NAS) pathways are critical in the anti-tumor immune response, but their role in LUAD remains controversial. OBJECTIVE The study aims to develop a classification system to identify immune subtypes of LUAD based on nucleic acid sensing-related genes so that it can help screen patients who may respond to immunotherapy. METHODS We performed a comprehensive bioinformatics analysis of the NAS molecule expression profiles across multiple public datasets. Using qRT-PCR to verify the NAS genes in multiple lung cancer cell lines. Molecular docking was performed to screen drug candidates. RESULTS The NAS-activated subgroup and NAS-suppressed subgroup were validated based on the different patterns of gene expression and pathways enrichment. The NAS-activated subgroup displayed a stronger immune infiltration and better prognosis of patients. Moreover, we constructed a seven nucleic acid sensing-related risk score (NASRS) model for the convenience of clinical application. The predictive values of NASRS in prognosis and immunotherapy were subsequently fully validated in the lung adenocarcinoma dataset and the uroepithelial carcinoma dataset. Additionally, five potential drugs binding to the core target of the NAS signature were predicted through molecular docking. CONCLUSION We found a significant correlation between nucleic acid sensing function and the immune treatment efficiency in LUAD. The NASRS can be used as a robust biomarker for the predicting of prognosis and immunotherapy efficiency and may help in clinical decisions for LUAD patients.
Collapse
Affiliation(s)
- Xinhao Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Biqin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinyi Lang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
12
|
Yang N, Wang Y, Dai P, Li T, Zierhut C, Tan A, Zhang T, Xiang JZ, Ordureau A, Funabiki H, Chen Z, Deng L. Vaccinia E5 is a major inhibitor of the DNA sensor cGAS. Nat Commun 2023; 14:2898. [PMID: 37217469 PMCID: PMC10201048 DOI: 10.1038/s41467-023-38514-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, 10065, USA
- The Institute of Cancer Research, London, SW3 6JB, UK
| | - Adrian Tan
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jenny Zhaoying Xiang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Molteni C, Forni D, Cagliani R, Arrigoni F, Pozzoli U, De Gioia L, Sironi M. Selective events at individual sites underlie the evolution of monkeypox virus clades. Virus Evol 2023; 9:vead031. [PMID: 37305708 PMCID: PMC10256197 DOI: 10.1093/ve/vead031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
In endemic regions (West Africa and the Congo Basin), the genetic diversity of monkeypox virus (MPXV) is geographically structured into two major clades (Clades I and II) that differ in virulence and host associations. Clade IIb is closely related to the B.1 lineage, which is dominating a worldwide outbreak initiated in 2022. Lineage B.1 has however accumulated mutations of unknown significance that most likely result from apolipoprotein B mRNA editing catalytic polypeptide-like 3 (APOBEC3) editing. We applied a population genetics-phylogenetics approach to investigate the evolution of MPXV during historical viral spread in Africa and to infer the distribution of fitness effects. We observed a high preponderance of codons evolving under strong purifying selection, particularly in viral genes involved in morphogenesis and replication or transcription. However, signals of positive selection were also detected and were enriched in genes involved in immunomodulation and/or virulence. In particular, several genes showing evidence of positive selection were found to hijack different steps of the cellular pathway that senses cytosolic DNA. Also, a few selected sites in genes that are not directly involved in immunomodulation are suggestive of antibody escape or other immune-mediated pressures. Because orthopoxvirus host range is primarily determined by the interaction with the host immune system, we suggest that the positive selection signals represent signatures of host adaptation and contribute to the different virulence of Clade I and II MPXVs. We also used the calculated selection coefficients to infer the effects of mutations that define the predominant human MPXV1 (hMPXV1) lineage B.1, as well as the changes that have been accumulating during the worldwide outbreak. Results indicated that a proportion of deleterious mutations were purged from the predominant outbreak lineage, whose spread was not driven by the presence of beneficial changes. Polymorphic mutations with a predicted beneficial effect on fitness are few and have a low frequency. It remains to be determined whether they have any significance for ongoing virus evolution.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| |
Collapse
|
14
|
Riederer S, Del Canizo A, Navas J, Peter MG, Link EK, Sutter G, Rojas JJ. Improving poxvirus-mediated antitumor immune responses by deleting viral cGAMP-specific nuclease. Cancer Gene Ther 2023:10.1038/s41417-023-00610-5. [PMID: 37016144 DOI: 10.1038/s41417-023-00610-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
cGAMP-specific nucleases (poxins) are a recently described family of proteins dedicated to obstructing cyclic GMP-AMP synthase signaling (cGAS), an important sensor triggered by cytoplasmic viral replication that activates type I interferon (IFN) production. The B2R gene of vaccinia viruses (VACV) codes for one of these nucleases. Here, we evaluated the effects of inactivating the VACV B2 nuclease in the context of an oncolytic VACV. VACV are widely used as anti-cancer vectors due to their capacity to activate immune responses directed against tumor antigens. We aimed to elicit robust antitumor immunity by preventing viral inactivation of the cGAS/STING/IRF3 pathway after infection of cancer cells. Activation of such a pathway is associated with a dominant T helper 1 (Th1) cell differentiation of the response, which benefits antitumor outcomes. Deletion of the B2R gene resulted in enhanced IRF3 phosphorylation and type I IFN expression after infection of tumor cells, while effective VACV replication remained unimpaired, both in vitro and in vivo. In syngeneic mouse tumor models, the absence of the VACV cGAMP-specific nuclease translated into improved antitumor activity, which was associated with antitumor immunity directed against tumor epitopes.
Collapse
Affiliation(s)
- Stephanie Riederer
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Navas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Marlowe G Peter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Ellen K Link
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Juan J Rojas
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain.
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
15
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 PMCID: PMC11870302 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
16
|
Saghazadeh A, Rezaei N. Poxviruses and the immune system: Implications for monkeypox virus. Int Immunopharmacol 2022; 113:109364. [PMID: 36283221 PMCID: PMC9598838 DOI: 10.1016/j.intimp.2022.109364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Poxviruses (PXVs) are mostly known for the variola virus, being the cause of smallpox; however, re-emerging PXVs have also shown a great capacity to develop outbreaks of pox-like infections in humans. The situation is alarming; PXV outbreaks have been involving both endemic and non-endemic areas in recent decades. Stopped smallpox vaccination is a reason offered mainly for this changing epidemiology that implies the protective role of immunity in the pathology of PXV infections. The immune system recognizes PXVs and elicits responses, but PXVs can antagonize these responses. Here, we briefly review the immunology of PXV infections, with emphasis on the role of pattern-recognition receptors, macrophages, and natural killer cells in the early response to PXV infections and PXVs’ strategies influencing these responses, as well as taking a glance at other immune cells, which discussion over them mainly occurs in association with PXV immunization rather than PXV infection. Throughout the review, numerous evasion mechanisms are highlighted, which might have implications for designing specific immunotherapies for PXV in the future.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
17
|
Zhu J, Liu L, Ma X, Cao X, Chen Y, Qu X, Ji M, Liu H, Liu C, Qin X, Xiang Y. The Role of DNA Damage and Repair in Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:2292. [PMID: 36421478 PMCID: PMC9687113 DOI: 10.3390/antiox11112292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The mortality rate of idiopathic pulmonary fibrosis (IPF) increases yearly due to ineffective treatment. Given that the lung is exposed to the external environment, it is likely that oxidative stress, especially the stimulation of DNA, would be of particular importance in pulmonary fibrosis. DNA damage is known to play an important role in idiopathic pulmonary fibrosis initiation, so DNA repair systems targeting damage are also crucial for the survival of lung cells. Although many contemporary reports have summarized the role of individual DNA damage and repair pathways in their hypotheses, they have not focused on idiopathic pulmonary fibrosis. This review, therefore, aims to provide a concise overview for researchers to understand the pathways of DNA damage and repair and their roles in IPF.
Collapse
Affiliation(s)
- Jiahui Zhu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Lexin Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaodi Ma
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xinyu Cao
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yu Chen
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Ming Ji
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| |
Collapse
|
18
|
Rivera-Calzada A, Arribas-Bosacoma R, Ruiz-Ramos A, Escudero-Bravo P, Boskovic J, Fernandez-Leiro R, Oliver AW, Pearl LH, Llorca O. Structural basis for the inactivation of cytosolic DNA sensing by the vaccinia virus. Nat Commun 2022; 13:7062. [PMID: 36400800 PMCID: PMC9674614 DOI: 10.1038/s41467-022-34843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Detection of cytosolic DNA is a central element of the innate immunity system against viral infection. The Ku heterodimer, a component of the NHEJ pathway of DNA repair in the nucleus, functions as DNA sensor that detects dsDNA of viruses that replicate in the cytoplasm. Vaccinia virus expresses two proteins, C4 and C16, that inactivate DNA sensing and enhance virulence. The structural basis for this is unknown. Here we determine the structure of the C16 - Ku complex using cryoEM. Ku binds dsDNA by a preformed ring but C16 sterically blocks this access route, abrogating binding to a dsDNA end and its insertion into DNA-PK, thereby averting signalling into the downstream innate immunity system. C4 replicates these activities using a domain with 54% identity to C16. Our results reveal how vaccinia virus subverts the capacity of Ku to recognize viral DNA.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK
| | - Alba Ruiz-Ramos
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Paloma Escudero-Bravo
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jasminka Boskovic
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rafael Fernandez-Leiro
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK.
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Ciszewski WM, Sobierajska K, Stasiak A, Wagner W. Lactate drives cellular DNA repair capacity: Role of lactate and related short-chain fatty acids in cervical cancer chemoresistance and viral infection. Front Cell Dev Biol 2022; 10:1012254. [PMID: 36340042 PMCID: PMC9627168 DOI: 10.3389/fcell.2022.1012254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2023] Open
Abstract
The characteristic feature of a cancer microenvironment is the presence of a highly elevated concentration of L-lactate in the tumor niche. The lactate-rich environment is also maintained by commensal mucosal microbiota, which has immense potential for affecting cancer cells through its receptoric and epigenetic modes of action. Some of these lactate activities might be associated with the failure of anticancer therapy as a consequence of the drug resistance acquired by cancer cells. Upregulation of cellular DNA repair capacity and enhanced drug efflux are the most important cellular mechanisms that account for ineffective radiotherapy and drug-based therapies. Here, we present the recent scientific knowledge on the role of the HCA1 receptor for lactate and lactate intrinsic activity as an HDAC inhibitor in the development of an anticancer therapy-resistant tumor phenotype, with special focus on cervical cancer cells. In addition, a recent study highlighted the viable role of interactions between mammalian cells and microorganisms in the female reproductive tract and demonstrated an interesting mechanism regulating the efficacy of retroviral transduction through lactate-driven modulation of DNA-PKcs cellular localization. To date, very few studies have focused on the mechanisms of lactate-driven enhancement of DNA repair and upregulation of particular multidrug-resistance proteins in cancer cells with respect to their intracellular regulatory mechanisms triggered by lactate. This review presents the main achievements in the field of lactate impact on cell biology that may promote undesirable alterations in cancer physiology and mitigate retroviral infections.
Collapse
Affiliation(s)
| | | | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
20
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
21
|
Ge Z, Ding S. Regulation of cGAS/STING signaling and corresponding immune escape strategies of viruses. Front Cell Infect Microbiol 2022; 12:954581. [PMID: 36189363 PMCID: PMC9516114 DOI: 10.3389/fcimb.2022.954581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of defense against invading external pathogens, and pattern recognition receptors (PRRs) are the key receptors that mediate the innate immune response. Nowadays, there are various PRRs in cells that can activate the innate immune response by recognizing pathogen-related molecular patterns (PAMPs). The DNA sensor cGAS, which belongs to the PRRs, plays a crucial role in innate immunity. cGAS detects both foreign and host DNA and generates a second-messenger cGAMP to mediate stimulator of interferon gene (STING)-dependent antiviral responses, thereby exerting an antiviral immune response. However, the process of cGAS/STING signaling is regulated by a wide range of factors. Multiple studies have shown that viruses directly target signal transduction proteins in the cGAS/STING signaling through viral surface proteins to impede innate immunity. It is noteworthy that the virus utilizes these cGAS/STING signaling regulators to evade immune surveillance. Thus, this paper mainly summarized the regulatory mechanism of the cGAS/STING signaling pathway and the immune escape mechanism of the corresponding virus, intending to provide targeted immunotherapy ideas for dealing with specific viral infections in the future.
Collapse
Affiliation(s)
- Zhe Ge
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- *Correspondence: Shuzhe Ding,
| |
Collapse
|
22
|
Linville AC, Rico AB, Teague H, Binsted LE, Smith GL, Albarnaz JD, Wiebe MS. Dysregulation of Cellular VRK1, BAF, and Innate Immune Signaling by the Vaccinia Virus B12 Pseudokinase. J Virol 2022; 96:e0039822. [PMID: 35543552 PMCID: PMC9175622 DOI: 10.1128/jvi.00398-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood. Here, we further characterize how B12 and VRK1 regulate one another during poxvirus infection. First, we demonstrate that B12 is stabilized in the presence of VRK1 and that VRK1 and B12 coinfluence their respective solubility and subcellular localization. In this regard, we find that B12 promotes VRK1 colocalization with cellular DNA during mitosis and that B12 and VRK1 may be tethered cooperatively to chromatin. Next, we observe that the C-terminal tail of VRK1 is unnecessary for B12-VRK1 complex formation or its proviral activity. Interestingly, we identify a point mutation of B12 capable of abrogating interaction with VRK1 and which renders B12 nonrepressive during infection. Lastly, we investigated the influence of B12 on the host factor BAF and antiviral signaling pathways and find that B12 triggers redistribution of BAF from the cytoplasm to the nucleus. In addition, B12 increases DNA-induced innate immune signaling, revealing a new functional consequence of the B12 pseudokinase. Together, this study characterizes the multifaceted roles B12 plays during poxvirus infection that impact VRK1, BAF, and innate immune signaling. IMPORTANCE Protein pseudokinases comprise a considerable fraction of the human kinome, as well as other forms of life. Recent studies have demonstrated that their lack of key catalytic residues compared to their kinase counterparts does not negate their ability to intersect with molecular signal transduction. While the multifaceted roles pseudokinases can play are known, their contribution to virus infection remains understudied. Here, we further characterize the mechanism of how the VACV B12 pseudokinase and human VRK1 kinase regulate one another in the nucleus during poxvirus infection and inhibit VACV DNA replication. We find that B12 disrupts regulation of VRK1 and its downstream target BAF, while also enhancing DNA-dependent innate immune signaling. Combined with previous data, these studies contribute to the growing field of nuclear pathways targeted by poxviruses and provide evidence of unexplored roles of B12 in the activation of antiviral immunity.
Collapse
Affiliation(s)
- Alexandria C. Linville
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Amber B. Rico
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Helena Teague
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lucy E. Binsted
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jonas D. Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew S. Wiebe
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
23
|
Wang F, Zhao M, Chang B, Zhou Y, Wu X, Ma M, Liu S, Cao Y, Zheng M, Dang Y, Xu J, Chen L, Liu T, Tang F, Ren Y, Xu Z, Mao Z, Huang K, Luo M, Li J, Liu H, Ge B. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Mol Cell 2022; 82:2032-2049.e7. [PMID: 35460603 DOI: 10.1016/j.molcel.2022.03.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
Abstract
Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.
Collapse
Affiliation(s)
- Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengmeng Zhao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilong Zhou
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Siyu Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yajuan Cao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengge Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifang Dang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Tianhao Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Fen Tang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yefei Ren
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
24
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
25
|
Malikov V, Meade N, Simons LM, Hultquist JF, Naghavi MH. FEZ1 phosphorylation regulates HSPA8 localization and interferon-stimulated gene expression. Cell Rep 2022; 38:110396. [PMID: 35172151 PMCID: PMC8900055 DOI: 10.1016/j.celrep.2022.110396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
Fasciculation and elongation protein zeta-1 (FEZ1) is a multifunctional kinesin adaptor involved in processes ranging from neurodegeneration to retrovirus and polyomavirus infection. Here, we show that, although modulating FEZ1 expression also impacts infection by large DNA viruses in human microglia, macrophages, and fibroblasts, this broad antiviral phenotype is associated with the pre-induction of interferon-stimulated genes (ISGs) in a STING-independent manner. We further reveal that S58, a key phosphorylation site in FEZ1's kinesin regulatory domain, controls both binding to, and the nuclear-cytoplasmic localization of, heat shock protein 8 (HSPA8), as well as ISG expression. FEZ1- and HSPA8-induced changes in ISG expression further involved changes in DNA-dependent protein kinase (DNA-PK) accumulation in the nucleus. Moreover, phosphorylation of endogenous FEZ1 at S58 was reduced and HSPA8 and DNA-PK translocated to the nucleus in cells stimulated with DNA, suggesting that FEZ1 is a regulatory component of the recently identified HSPA8/DNA-PK innate immune pathway.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan Meade
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
27
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus ORF116 gene encodes an antagonist of the interferon response. J Gen Virol 2021; 102. [PMID: 34890310 DOI: 10.1099/jgv.0.001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus of the Poxviridae family. Genetic and functional studies have revealed ORFV has multiple immunomodulatory genes that manipulate innate immune responses, during the early stage of infection. ORF116 is a novel gene of ORFV with hitherto unknown function. Characterization of an ORF116 deletion mutant showed that it replicated in primary lamb testis cells with reduced levels compared to the wild-type and produced a smaller plaque phenotype. ORF116 was shown to be expressed prior to DNA replication. The potential function of ORF116 was investigated by gene-expression microarray analysis in HeLa cells infected with wild-type ORFV or the ORF116 deletion mutant. The analysis of differential cellular gene expression revealed a number of interferon-stimulated genes (ISGs) differentially expressed at either 4 or 6 h post infection. IFI44 showed the greatest differential expression (4.17-fold) between wild-type and knockout virus. Other ISGs that were upregulated in the knockout included RIG-I, IFIT2, MDA5, OAS1, OASL, DDX60, ISG20 and IFIT1 and in addition the inflammatory cytokine IL-8. These findings were validated by infecting HeLa cells with an ORF116 revertant recombinant virus and analysis of transcript expression by quantitative real time-PCR (qRT-PCR). These observations suggested a role for the ORFV gene ORF116 in modulating the IFN response and inflammatory cytokines. This study represents the first functional analysis of ORF116.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Somasekharan SP, Gleave M. SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets. FEBS Lett 2021; 595:2872-2896. [PMID: 34780058 PMCID: PMC8652540 DOI: 10.1002/1873-3468.14229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The current work investigated SARS‐CoV‐2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC‐based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress‐stimulated NCAP to undergo liquid–liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS‐CoV‐2 NCAP.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Sui H, Hao M, Chang W, Imamichi T. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front Cell Infect Microbiol 2021; 11:761983. [PMID: 34746031 PMCID: PMC8566972 DOI: 10.3389/fcimb.2021.761983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | | | | | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
30
|
Li S, Cao L, Zhang Z, Kuang M, Chen L, Zhao Y, Luo Y, Yin Z, You F. Cytosolic and nuclear recognition of virus and viral evasion. MOLECULAR BIOMEDICINE 2021; 2:30. [PMID: 35006471 PMCID: PMC8607372 DOI: 10.1186/s43556-021-00046-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
The innate immune system is the first line of host defense, which responds rapidly to viral infection. Innate recognition of viruses is mediated by a set of pattern recognition receptors (PRRs) that sense viral genomic nucleic acids and/or replication intermediates. PRRs are mainly localized either to the endosomes, the plasma membrane or the cytoplasm. Recent evidence suggested that several proteins located in the nucleus could also act as viral sensors. In turn, these important elements are becoming the target for most viruses to evade host immune surveillance. In this review, we focus on the recent progress in the study of viral recognition and evasion.
Collapse
Affiliation(s)
- Siji Li
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
31
|
Riederer S, Fux R, Lehmann MH, Volz A, Sutter G, Rojas JJ. Activation of interferon regulatory factor 3 by replication-competent vaccinia viruses improves antitumor efficacy mediated by T cell responses. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:399-409. [PMID: 34553028 PMCID: PMC8430050 DOI: 10.1016/j.omto.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Recently, oncolytic vaccinia viruses (VACVs) have shown their potential to provide for clinically effective cancer treatments. The reason for this clinical usefulness is not only the direct destruction of infected cancer cells but also activation of immune responses directed against tumor antigens. For eliciting a robust antitumor immunity, a dominant T helper 1 (Th1) cell differentiation of the response is preferred, and such polarization can be achieved by activating the Toll-like receptor 3 (TLR3)-interferon regulatory factor 3 (IRF3) signaling pathway. However, current VACVs used as oncolytic viruses to date still encode several immune evasion proteins involved in the inhibition of this signaling pathway. By inactivating genes of selected regulatory virus proteins, we aimed for a candidate virus with increased potency to activate cellular antitumor immunity but at the same time with a fully maintained replicative capacity in cancer cells. The removal of up to three key genes (C10L, N2L, and C6L) from VACV did not reduce the strength of viral replication, both in vitro and in vivo, but resulted in the rescue of IRF3 phosphorylation upon infection of cancer cells. In syngeneic mouse tumor models, this activation translated to enhanced cytotoxic T lymphocyte (CTL) responses directed against tumor-associated antigens and neo-epitopes and improved antitumor activity.
Collapse
Affiliation(s)
- Stephanie Riederer
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Michael H Lehmann
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Juan J Rojas
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,Department of Pathology and Experimental Therapies, IDIBELL, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
32
|
Rowley PA, Ellahi A, Han K, Patel JS, Van Leuven JT, Sawyer SL. Nuku, a family of primate retrocopies derived from KU70. G3 (BETHESDA, MD.) 2021; 11:jkab163. [PMID: 34849803 PMCID: PMC8496227 DOI: 10.1093/g3journal/jkab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
The gene encoding the ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of KU70 have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of KU70-derived "NUKU" retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. NUKU retrocopies show evidence of functional divergence away from KU70, as evinced by their altered pattern of tissue expression and possible tissue-specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several NUKU retrocopies appear to have been degraded by mutation, NUKU2 shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of NUKUs could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Aisha Ellahi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78751, USA
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio- Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - Sara L Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| |
Collapse
|
33
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
34
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
35
|
Abstract
Adaptive immune cells are usually not equipped with pattern recognition receptors. In this issue of Immunity, Wang et al. revealed an "innate-like" cytosolic DNA-sensing mechanism by the KU complex in aged CD4+ T cells, which exacerbates aging-related autoimmunity.
Collapse
Affiliation(s)
- Jianjun Wu
- Department of Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA; Department of Microbiology, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
36
|
The Vaccinia Virus B12 Pseudokinase Represses Viral Replication via Interaction with the Cellular Kinase VRK1 and Activation of the Antiviral Effector BAF. J Virol 2021; 95:JVI.02114-20. [PMID: 33177193 DOI: 10.1128/jvi.02114-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/20/2022] Open
Abstract
The poxviral B1 and B12 proteins are a homologous kinase-pseudokinase pair, which modulates a shared host pathway governing viral DNA replication and antiviral defense. While the molecular mechanisms involved are incompletely understood, B1 and B12 seem to intersect with signaling processes mediated by their cellular homologs termed the vaccinia-related kinases (VRKs). In this study, we expand upon our previous characterization of the B1-B12 signaling axis to gain insights into B12 function. We begin our studies by demonstrating that modulation of B12 repressive activity is a conserved function of B1 orthologs from divergent poxviruses. Next, we characterize the protein interactome of B12 using multiple cell lines and expression systems and discover that the cellular kinase VRK1 is a highly enriched B12 interactor. Using complementary VRK1 knockdown and overexpression assays, we first demonstrate that VRK1 is required for the rescue of a B1-deleted virus upon mutation of B12. Second, we find that VRK1 overexpression is sufficient to overcome repressive B12 activity during B1-deleted virus replication. Interestingly, we also evince that B12 interferes with the ability of VRK1 to phosphoinactivate the host defense protein BAF. Thus, B12 restricts vaccinia virus DNA accumulation in part by repressing the ability of VRK1 to inactivate BAF. Finally, these data establish that a B12-VRK1-BAF signaling axis forms during vaccinia virus infection and is modulated via kinases B1 and/or VRK2. These studies provide novel insights into the complex mechanisms that poxviruses use to hijack homologous cellular signaling pathways during infection.IMPORTANCE Viruses from diverse families encode both positive and negative regulators of viral replication. While their functions can sometimes be enigmatic, investigation of virus-encoded, negative regulators of viral replication has revealed fascinating aspects of virology. Studies of poxvirus-encoded genes have largely concentrated on positive regulators of their replication; however, examples of fitness gains attributed to poxvirus gene loss suggests that negative regulators of poxvirus replication also impact infection dynamics. This study focuses on the vaccinia B12 pseudokinase, a protein capable of inhibiting vaccinia DNA replication. Here, we elucidate the mechanisms by which B12 inhibits vaccinia DNA replication, demonstrating that B12 activates the antiviral protein BAF by inhibiting the activity of VRK1, a cellular modulator of BAF. Combined with previous data, these studies provide evidence that poxviruses govern their replication by employing both positive and negative regulators of viral replication.
Collapse
|
37
|
Luo X, Donnelly CR, Gong W, Heath BR, Hao Y, Donnelly LA, Moghbeli T, Tan YS, Lin X, Bellile E, Kansy BA, Carey TE, Brenner JC, Cheng L, Polverini PJ, Morgan MA, Wen H, Prince ME, Ferris RL, Xie Y, Young S, Wolf GT, Chen Q, Lei YL. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING. J Clin Invest 2020; 130:1635-1652. [PMID: 31874109 DOI: 10.1172/jci129497] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
The incidence of human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) has surpassed that of cervical cancer and is projected to increase rapidly until 2060. The coevolution of HPV with transforming epithelial cells leads to the shutdown of host immune detection. Targeting proximal viral nucleic acid-sensing machinery is an evolutionarily conserved strategy among viruses to enable immune evasion. However, E7 from the dominant HPV subtype 16 in HNSCC shares low homology with HPV18 E7, which was shown to inhibit the STING DNA-sensing pathway. The mechanisms by which HPV16 suppresses STING remain unknown. Recently, we characterized the role of the STING/type I interferon (IFN-I) pathway in maintaining immunogenicity of HNSCC in mouse models. Here we extended those findings into the clinical domain using tissue microarrays and machine learning-enhanced profiling of STING signatures with immune subsets. We additionally showed that HPV16 E7 uses mechanisms distinct from those used by HPV18 E7 to antagonize the STING pathway. We identified NLRX1 as a critical intermediary partner to facilitate HPV16 E7-potentiated STING turnover. The depletion of NLRX1 resulted in significantly improved IFN-I-dependent T cell infiltration profiles and tumor control. Overall, we discovered a unique HPV16 viral strategy to thwart host innate immune detection that can be further exploited to restore cancer immunogenicity.
Collapse
Affiliation(s)
- Xiaobo Luo
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Christopher R Donnelly
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Oral Health Sciences PhD Program, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Blake R Heath
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yuning Hao
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Lorenza A Donnelly
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Toktam Moghbeli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Yee Sun Tan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Xin Lin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Emily Bellile
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Benjamin A Kansy
- Department of Otolaryngology, University Hospital Essen, Essen, North Rhine-Westphalia, Germany
| | - Thomas E Carey
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery
| | - J Chad Brenner
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peter J Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Oral Health Sciences PhD Program, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Pathology, and
| | - Meredith A Morgan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Mark E Prince
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery
| | - Robert L Ferris
- Department of Otolaryngology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gregory T Wolf
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Oral Health Sciences PhD Program, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery
| |
Collapse
|
38
|
Hristova DB, Lauer KB, Ferguson BJ. Viral interactions with non-homologous end-joining: a game of hide-and-seek. J Gen Virol 2020; 101:1133-1144. [PMID: 32735206 PMCID: PMC7879558 DOI: 10.1099/jgv.0.001478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
There are extensive interactions between viruses and the host DNA damage response (DDR) machinery. The outcome of these interactions includes not only direct effects on viral nucleic acids and genome replication, but also the activation of host stress response signalling pathways that can have further, indirect effects on viral life cycles. The non-homologous end-joining (NHEJ) pathway is responsible for the rapid and imprecise repair of DNA double-stranded breaks in the nucleus that would otherwise be highly toxic. Whilst directly repairing DNA, components of the NHEJ machinery, in particular the DNA-dependent protein kinase (DNA-PK), can activate a raft of downstream signalling events that activate antiviral, cell cycle checkpoint and apoptosis pathways. This combination of possible outcomes results in NHEJ being pro- or antiviral depending on the infection. In this review we will describe the broad range of interactions between NHEJ components and viruses and their consequences for both host and pathogen.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| | - Katharina B. Lauer
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
- Present address: ELIXIR Hub, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Brian J. Ferguson
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
40
|
Burleigh K, Maltbaek JH, Cambier S, Green R, Gale M, James RC, Stetson DB. Human DNA-PK activates a STING-independent DNA sensing pathway. Sci Immunol 2020; 5:5/43/eaba4219. [PMID: 31980485 DOI: 10.1126/sciimmunol.aba4219] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Detection of intracellular DNA by the cGAS-STING pathway activates a type I interferon-mediated innate immune response that protects from virus infection. Whether there are additional DNA sensing pathways, and how such pathways might function, remains controversial. We show here that humans-but not laboratory mice-have a second, potent, STING-independent DNA sensing pathway (SIDSP). We identify human DNA-dependent protein kinase (DNA-PK) as the sensor of this pathway and demonstrate that DNA-PK activity drives a robust and broad antiviral response. We show that the E1A oncoprotein of human adenovirus 5 and the ICP0 protein of herpes simplex virus 1 block this response. We found heat shock protein HSPA8/HSC70 as a target for inducible phosphorylation in the DNA-PK antiviral pathway. Last, we demonstrate that DNA damage and detection of foreign DNA trigger distinct modalities of DNA-PK activity. These findings reveal the existence, sensor, a specific downstream target, and viral antagonists of a SIDSP in human cells.
Collapse
Affiliation(s)
- Katelyn Burleigh
- Department of Immunology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| | - Joanna H Maltbaek
- Department of Immunology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| | - Stephanie Cambier
- Department of Immunology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| | - Richard Green
- Department of Immunology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA.,Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| | - Richard C James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA. .,Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
41
|
El-Jesr M, Teir M, Maluquer de Motes C. Vaccinia Virus Activation and Antagonism of Cytosolic DNA Sensing. Front Immunol 2020; 11:568412. [PMID: 33117352 PMCID: PMC7559579 DOI: 10.3389/fimmu.2020.568412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells express multiple molecules aimed at detecting incoming virus and infection. Recognition of virus infection leads to the production of cytokines, chemokines and restriction factors that limit virus replication and activate an adaptive immune response offering long-term protection. Recognition of cytosolic DNA has become a central immune sensing mechanism involved in infection, autoinflammation, and cancer immunotherapy. Vaccinia virus (VACV) is the prototypic member of the family Poxviridae and the vaccine used to eradicate smallpox. VACV harbors enormous potential as a vaccine vector and several attenuated strains are currently being developed against infectious diseases. In addition, VACV has emerged as a popular oncolytic agent due to its cytotoxic capacity even in hypoxic environments. As a poxvirus, VACV is an unusual virus that replicates its large DNA genome exclusively in the cytoplasm of infected cells. Despite producing large amounts of cytosolic DNA, VACV efficiently suppresses the subsequent innate immune response by deploying an arsenal of proteins with capacity to disable host antiviral signaling, some of which specifically target cytosolic DNA sensing pathways. Some of these strategies are conserved amongst orthopoxviruses, whereas others are seemingly unique to VACV. In this review we provide an overview of the VACV replicative cycle and discuss the recent advances on our understanding of how VACV induces and antagonizes innate immune activation via cytosolic DNA sensing pathways. The implications of these findings in the rational design of vaccines and oncolytics based on VACV are also discussed.
Collapse
Affiliation(s)
- Misbah El-Jesr
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Muad Teir
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
42
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
43
|
Hernáez B, Alonso G, Georgana I, El-Jesr M, Martín R, Shair KHY, Fischer C, Sauer S, Maluquer de Motes C, Alcamí A. Viral cGAMP nuclease reveals the essential role of DNA sensing in protection against acute lethal virus infection. SCIENCE ADVANCES 2020; 6:6/38/eabb4565. [PMID: 32948585 PMCID: PMC7500930 DOI: 10.1126/sciadv.abb4565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Cells contain numerous immune sensors to detect virus infection. The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and activates innate immune responses via stimulator of interferon genes (STING), but the impact of DNA sensing pathways on host protective responses has not been fully defined. We demonstrate that cGAS/STING activation is required to resist lethal poxvirus infection. We identified viral Schlafen (vSlfn) as the main STING inhibitor, and ectromelia virus was severely attenuated in the absence of vSlfn. Both vSlfn-mediated virulence and STING inhibitory activity were mapped to the recently discovered poxin cGAMP nuclease domain. Animals were protected from subcutaneous, respiratory, and intravenous infection in the absence of vSlfn, and interferon was the main antiviral protective mechanism controlled by the DNA sensing pathway. Our findings support the idea that manipulation of DNA sensing is an efficient therapeutic strategy in diseases triggered by viral infection or tissue damage-mediated release of self-DNA.
Collapse
Affiliation(s)
- Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Graciela Alonso
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Iliana Georgana
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Misbah El-Jesr
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Kathy H Y Shair
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cornelius Fischer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Zinc-finger antiviral protein (ZAP) is a restriction factor for replication of modified vaccinia virus Ankara (MVA) in human cells. PLoS Pathog 2020; 16:e1008845. [PMID: 32866210 PMCID: PMC7485971 DOI: 10.1371/journal.ppat.1008845] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is an approved smallpox vaccine and a promising vaccine vector for other pathogens as well as for cancer therapeutics with more than 200 current or completed clinical trials. MVA was derived by passaging the parental Ankara vaccine virus hundreds of times in chick embryo fibroblasts during which it lost the ability to replicate in human and most other mammalian cells. Although this replication deficiency is an important safety feature, the genetic basis of the host restriction is not understood. Here, an unbiased human genome-wide RNAi screen in human A549 cells revealed that the zinc-finger antiviral protein (ZAP), previously shown to inhibit certain RNA viruses, is a host restriction factor for MVA, a DNA virus. Additional studies demonstrated enhanced MVA replication in several human cell lines following knockdown of ZAP. Furthermore, CRISPR-Cas9 knockout of ZAP in human A549 cells increased MVA replication and spread by more than one log but had no effect on a non-attenuated strain of vaccinia virus. The intact viral C16 protein, which had been disrupted in MVA, antagonized ZAP by binding and sequestering the protein in cytoplasmic punctate structures. Studies aimed at exploring the mechanism by which ZAP restricts MVA replication in the absence of C16 showed that knockout of ZAP had no discernible effect on viral DNA or individual mRNA or protein species as determined by droplet digital polymerase chain reaction, deep RNA sequencing and mass spectrometry, respectively. Instead, inactivation of ZAP reduced the number of aberrant, dense, spherical particles that typically form in MVA-infected human cells, suggesting that ZAP has a novel role in interfering with a late step in the assembly of infectious MVA virions in the absence of the C16 protein. The attenuated vaccine vector known as modified vaccinia virus Ankara (MVA) was derived by extensively passaging the parental strain of vaccinia virus Ankara in chick embryo fibroblasts and is unable to replicate in most mammalian cells. The MVA host range restriction is exceptional in that synthesis of the abundant viral proteins appears unaffected but morphogenesis of virus particles is abortive. Despite the importance of the host range restriction for vaccine safety, the basis for this antiviral effect has remained an enigma. Here we demonstrate that the zinc finger antiviral protein (ZAP), previously shown to be an inhibitor of RNA viruses, is a specific host restriction factor for replication of MVA in human cells. Moreover, the intact vaccinia virus C16 protein, which was disrupted during the attenuation of MVA, sequesters ZAP in cytoplasmic punctae and effectively counteracts the inhibitory effects of ZAP.
Collapse
|
45
|
Lu Y, Zhang L. DNA-Sensing Antiviral Innate Immunity in Poxvirus Infection. Front Immunol 2020; 11:1637. [PMID: 32983084 PMCID: PMC7483915 DOI: 10.3389/fimmu.2020.01637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
As pattern recognition receptors, cytosolic DNA sensors quickly induce an effective innate immune response. Poxvirus, a large DNA virus, is capable of evading the host antiviral innate immune response. In this review, we summarize the latest studies on how poxvirus is sensed by the host innate immune system and how poxvirus-encoded proteins antagonize DNA sensors. A comprehensive understanding of the interplay between poxvirus and DNA-sensing antiviral immune responses of the host will contribute to the development of new antiviral therapies and vaccines in the future.
Collapse
Affiliation(s)
- Yue Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China
| | - Leiliang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
46
|
Neidel S, Torres AA, Ren H, Smith GL. Leaky scanning translation generates a second A49 protein that contributes to vaccinia virus virulence. J Gen Virol 2020; 101:533-541. [PMID: 32100702 PMCID: PMC7414448 DOI: 10.1099/jgv.0.001386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus (VACV) strain Western Reserve gene A49L encodes a small intracellular protein with a Bcl-2 fold that is expressed early during infection and has multiple functions. A49 co-precipitates with the E3 ubiquitin ligase β-TrCP and thereby prevents ubiquitylation and proteasomal degradation of IκBα, and consequently blocks activation of NF-κB. In a similar way, A49 stabilizes β-catenin, leading to activation of the wnt signalling pathway. However, a VACV strain expressing a mutant A49 that neither co-precipitates with β-TrCP nor inhibits NF-κB activation, is more virulent than a virus lacking A49, indicating that A49 has another function that also contributes to virulence. Here we demonstrate that gene A49L encodes a second, smaller polypeptide that is expressed via leaky scanning translation from methionine 20 and is unable to block NF-κB activation. Viruses engineered to express either only the large protein or only the small A49 protein both have lower virulence than wild-type virus and greater virulence than an A49L deletion mutant. This demonstrates that the small protein contributes to virulence by an unknown mechanism that is independent of NF-κB inhibition. Despite having a large genome with about 200 genes, this study illustrates how VACV makes efficient use of its coding potential and from gene A49L expresses a protein with multiple functions and multiple proteins with different functions.
Collapse
Affiliation(s)
- Sarah Neidel
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Present address: Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
47
|
Gowripalan A, Abbott CR, McKenzie C, Chan WS, Karupiah G, Levy L, Newsome TP. Cell-to-cell spread of vaccinia virus is promoted by TGF-β-independent Smad4 signalling. Cell Microbiol 2020; 22:e13206. [PMID: 32237038 DOI: 10.1111/cmi.13206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The induction of Smad signalling by the extracellular ligand TGF-β promotes tissue plasticity and cell migration in developmental and pathological contexts. Here, we show that vaccinia virus (VACV) stimulates the activity of Smad transcription factors and expression of TGF-β/Smad-responsive genes at the transcript and protein levels. Accordingly, infected cells share characteristics to those undergoing TGF-β/Smad-mediated epithelial-to-mesenchymal transition (EMT). Depletion of the Smad4 protein, a common mediator of TGF-β signalling, results in an attenuation of viral cell-to-cell spread and reduced motility of infected cells. VACV induction of TGF-β/Smad-responsive gene expression does not require the TGF-β ligand or type I and type II TGF-β receptors, suggesting a novel, non-canonical Smad signalling pathway. Additionally, the spread of ectromelia virus, a related orthopoxvirus that does not activate a TGF-β/Smad response, is enhanced by the addition of exogenous TGF-β. Together, our results indicate that VACV orchestrates a TGF-β-like response via a unique activation mechanism to enhance cell migration and promote virus spread.
Collapse
Affiliation(s)
- Anjali Gowripalan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Caitlin R Abbott
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher McKenzie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Weng S Chan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gunasegaran Karupiah
- Tasmanian School of Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Laurence Levy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Timothy P Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Meek K. An Antiviral DNA Response without the STING? Trends Immunol 2020; 41:362-364. [PMID: 32305305 DOI: 10.1016/j.it.2020.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Higher eukaryotes have evolved elegant and redundant pathways to protect their genomes from both genotoxic stressors and foreign DNA from invading pathogens. Emerging data from Burleigh et al. suggest that these distinct pathways may share factors to enhance the functional redundancy of both.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA; Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA. @msu.edu
| |
Collapse
|
49
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
50
|
Shadrina O, Garanina I, Korolev S, Zatsepin T, Van Assche J, Daouad F, Wallet C, Rohr O, Gottikh M. Analysis of RNA binding properties of human Ku protein reveals its interactions with 7SK snRNA and protein components of 7SK snRNP complex. Biochimie 2020; 171-172:110-123. [PMID: 32105815 DOI: 10.1016/j.biochi.2020.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022]
Abstract
Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.
Collapse
Affiliation(s)
- Olga Shadrina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Irina Garanina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergey Korolev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 121205, Russia
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|