1
|
Xiao G, Cui Y, Zhou L, Niu C, Wang B, Wang J, Zhou S, Pan M, Chan CK, Xia Y, Xu L, Lu Y, Chen S. Identification of a phenyl ester covalent inhibitor of caseinolytic protease and analysis of the ClpP1P2 inhibition in mycobacteria. MLIFE 2025; 4:155-168. [PMID: 40313980 PMCID: PMC12042115 DOI: 10.1002/mlf2.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 05/03/2025]
Abstract
The caseinolytic protease complex ClpP1P2 is crucial for protein homeostasis in mycobacteria and stress response and virulence of the pathogens. Its role as a potential drug target for combating tuberculosis (TB) has just begun to be substantiated in drug discovery research. We conducted a biochemical screening targeting the ClpP1P2 using a library of compounds phenotypically active against Mycobacterium tuberculosis (Mtb). The screening identified a phenyl ester compound GDI-5755, inhibiting the growth of Mtb and M. bovis BCG, the model organism of mycobacteria. GDI-5755 covalently modified the active-site serine residue of ClpP1, rendering the peptidase inactive, which was delineated through protein mass spectrometry and kinetic analyses. GDI-5755 exerted antibacterial activity by inhibiting ClpP1P2 in the bacteria, which could be demonstrated through a minimum inhibitory concentration (MIC) shift assay with a clpP1 CRISPRi knockdown (clpP1-KD) mutant GH189. The knockdown also remarkably heightened the mutant's sensitivity to ethionamide and meropenem, but not to many other TB drugs. On the other hand, a comparative proteomic analysis of wild-type cells exposed to GDI-5755 revealed the dysregulated proteome, specifically showing changes in the expression levels of multiple TB drug targets, including EthA, LdtMt2, and PanD. Subsequent evaluation confirmed the synergistic activity of GDI-5755 when combined with the TB drugs to inhibit mycobacterial growth. Our findings indicate that small-molecule inhibitors targeting ClpP1P2, when used alongside existing TB medications, could represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Genhui Xiao
- Global Health Drug Discovery InstituteBeijingChina
| | - Yumeng Cui
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Chuya Niu
- Global Health Drug Discovery InstituteBeijingChina
| | - Bing Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Jinglan Wang
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Miaomiao Pan
- Global Health Drug Discovery InstituteBeijingChina
| | - Chi Kin Chan
- Global Health Drug Discovery InstituteBeijingChina
| | - Yan Xia
- Global Health Drug Discovery InstituteBeijingChina
| | - Lan Xu
- Global Health Drug Discovery InstituteBeijingChina
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Shawn Chen
- Global Health Drug Discovery InstituteBeijingChina
| |
Collapse
|
2
|
Wang Y, Wang L, Guo D, Liu X, Xu Y, Wang R, Sun Y, Liu Q, Guan J, Liu D, Wang B, Zhao Y, Yan M. Targeting ClpP: Unlocking a novel therapeutic approach of isochlorogenic acid A for methicillin-resistant Staphylococcus aureus-infected osteomyelitis. Microbiol Res 2025; 292:128042. [PMID: 39756139 DOI: 10.1016/j.micres.2024.128042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis. As the main protein "quality control" system of S. aureus, ClpP is indispensable for coordinating drug resistance, regulating adhesion, and acting on numerous virulence targets. Through fluorescence resonance energy transfer (FRET), we successfully identified isochlorogenic acid A (I-A), a polyphenol derivative, as an efficient inhibitor of ClpP, with an IC50 value of 24.89 μg/mL. Further analysis revealed that I-A can effectively inhibit the expression of virulence factors of MRSA and significantly reduce its adhesion to fibrinogen. Molecular docking revealed the potential binding sites of ClpP and I-A, namely, ILE-81, LYS-109, GLU-156, ARG-157, and GLY-184. At the cellular level, I-A can alleviate the death and increased secretion of inflammatory factors caused by MRSA USA300 in MC3T3-E1 cells. Moreover, it downregulates the activity of ClpP and reduces the response of bacteria to environmental stress. In vivo experiments have confirmed that I-A shows significant efficacy in both rat osteomyelitis models and Galleria mellonella infection models. This study provides new insights into the field of treatment strategies targeting virulence and provides a solid foundation for further exploration of the potential of I-A in combating drug-resistant S. aureus.
Collapse
Affiliation(s)
- Yueying Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongbin Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinyao Liu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yueshan Xu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Rong Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yun Sun
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Quan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yicheng Zhao
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong 519000, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China.
| | - Ming Yan
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
4
|
Smith EL, Goley ED. House of CarDs: Functional insights into the transcriptional regulator CdnL. Mol Microbiol 2024; 122:789-796. [PMID: 38664995 PMCID: PMC11502505 DOI: 10.1111/mmi.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Regulation of bacterial transcription is a complex and multi-faceted phenomenon that is critical for growth and adaptation. Proteins in the CarD_CdnL_TRCF family are widespread, often essential, regulators of transcription of genes required for growth and metabolic homeostasis. Research in the last decade has described the mechanistic and structural bases of CarD-CdnL-mediated regulation of transcription initiation. More recently, studies in a range of bacteria have begun to elucidate the physiological roles of CarD-CdnL proteins as well as mechanisms by which these proteins, themselves, are regulated. A theme has emerged wherein regulation of CarD-CdnL proteins is central to bacterial adaptation to stress and/or changing environmental conditions.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
5
|
Guiza Beltran D, Wan T, Zhang L. WhiB-like proteins: Diversity of structure, function and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119787. [PMID: 38879133 PMCID: PMC11365794 DOI: 10.1016/j.bbamcr.2024.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA.
| |
Collapse
|
6
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
7
|
Malakar B, Barth V, Puffal J, Woychik N, Husson RN. Phosphorylation of VapB antitoxins affects intermolecular interactions to regulate VapC toxin activity in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596101. [PMID: 38853858 PMCID: PMC11160731 DOI: 10.1101/2024.05.30.596101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Toxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the Mycobacterium tuberculosis complex, with 50 modules present in the M. tuberculosis genome. In type IIA modules the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein. VapB proteins also bind to promoter region sequences and repress expression of the vapB-vapC operon. Though VapB-VapC interactions can control the amount of free VapC toxin in the bacterial cell, the mechanisms that affect this interaction are poorly understood. Based on our recent finding of Ser/Thr phosphorylation of VapB proteins in M. tuberculosis, we substituted phosphomimetic or phosphoablative amino acids at the phosphorylation sites of two VapB proteins. We found that phosphomimetic substitution of VapB27 and VapB46 resulted in decreased interaction with their respective cognate VapC proteins, whereas phosphoablative substitution did not alter binding. Similarly, we determined that phosphomimetic substitution interfered with VapB binding to promoter region DNA sequences. Both decreased VapB-VapC interaction and decreased VapB repression of vapB-vapC operon transcription would result in increased free VapC in the M. tuberculosis cell. M. tuberculosis strains expressing vapB46-vapC46 constructs containing a phosphoablative vapB mutation resulted in lower toxicity compared to a strain expressing native vapB46, whereas similar or greater toxicity was observed in the strain expressing the phosphomimetic vapB mutation. These results identify a novel mechanism by which VapC toxicity activity can be regulated by VapB phosphorylation, potentially in response to extracytoplasmic as well as intracellular signals.
Collapse
Affiliation(s)
- Basanti Malakar
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Valdir Barth
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Julia Puffal
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nancy Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Ogbonna EC, Anderson HR, Beardslee PC, Bheemreddy P, Schmitz KR. Interactome Analysis Identifies MSMEI_3879 as a Substrate of Mycolicibacterium smegmatis ClpC1. Microbiol Spectr 2023; 11:e0454822. [PMID: 37341639 PMCID: PMC10433963 DOI: 10.1128/spectrum.04548-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
The prevalence of drug-resistant Mycobacterium tuberculosis infections has prompted extensive efforts to exploit new drug targets in this globally important pathogen. ClpC1, the unfoldase component of the essential ClpC1P1P2 protease, has emerged as one particularly promising antibacterial target. However, efforts to identify and characterize compounds that impinge on ClpC1 activity are constrained by our limited knowledge of Clp protease function and regulation. To expand our understanding of ClpC1 physiology, we employed a coimmunoprecipitation and mass spectrometry workflow to identify proteins that interact with ClpC1 in Mycolicibacterium smegmatis, a surrogate for M. tuberculosis. We identify a diverse panel of interaction partners, many of which coimmunoprecipitate with both the regulatory N-terminal domain and the ATPase core of ClpC1. Notably, our interactome analysis establishes MSMEI_3879, a truncated gene product unique to M. smegmatis, as a novel proteolytic substrate. Degradation of MSMEI_3879 by ClpC1P1P2 in vitro requires exposure of its N-terminal sequence, reinforcing the idea that ClpC1 selectively recognizes disordered motifs on substrates. Fluorescent substrates incorporating MSMEI_3879 may be useful in screening for novel ClpC1-targeting antibiotics to help address the challenge of M. tuberculosis drug resistance. IMPORTANCE Drug-resistant tuberculosis infections are a major challenge to global public health. Much effort has been invested in identifying new drug targets in the causative pathogen, Mycobacterium tuberculosis. One such target is the ClpC1 unfoldase. Compounds have been identified that kill M. tuberculosis by disrupting ClpC1 activity, yet the physiological function of ClpC1 in cells has remained poorly defined. Here, we identify interaction partners of ClpC1 in a model mycobacterium. By building a broader understanding of the role of this prospective drug target, we can more effectively develop compounds that inhibit its essential cellular activities.
Collapse
Affiliation(s)
- Emmanuel C. Ogbonna
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Henry R. Anderson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Patrick C. Beardslee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Priyanka Bheemreddy
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Karl R. Schmitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Xu X, Zhang L, Yang T, Qiu Z, Bai L, Luo Y. Targeting caseinolytic protease P and its AAA1 chaperone for tuberculosis treatment. Drug Discov Today 2023; 28:103508. [PMID: 36706830 DOI: 10.1016/j.drudis.2023.103508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Caseinolytic protease P with its AAA1 chaperone, known as Mycobacterium tuberculosis (Mtb)ClpP1P2 proteolytic machinery, maintains protein homeostasis in Mtb cells and is essential for bacterial survival. It is regarded as an important biological target with the potential to address the increasingly serious issue of multidrug-resistant (MDR) TB. Over the past 10 years, many MtbClpP1P2-targeted modulators have been identified and characterized, some of which have shown potent anti-TB activity. In this review, we describe current understanding of the substrates, structure and function of MtbClpP1P2, classify the modulators of this important protein machine into several categories based on their binding subunits or pockets, and discuss their binding details; Such information provides insights for use in candidate drug research and development of TB treatments by targeting MtbClpP1P2 proteolytic machinery.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Antibiotic Acyldepsipeptides Stimulate the Streptomyces Clp-ATPase/ClpP Complex for Accelerated Proteolysis. mBio 2022; 13:e0141322. [PMID: 36286522 PMCID: PMC9765437 DOI: 10.1128/mbio.01413-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clp proteases consist of a proteolytic, tetradecameric ClpP core and AAA+ Clp-ATPases. Streptomycetes, producers of a plethora of secondary metabolites, encode up to five different ClpP homologs, and the composition of their unusually complex Clp protease machinery has remained unsolved. Here, we report on the composition of the housekeeping Clp protease in Streptomyces, consisting of a heterotetradecameric core built of ClpP1, ClpP2, and the cognate Clp-ATPases ClpX, ClpC1, or ClpC2, all interacting with ClpP2 only. Antibiotic acyldepsipeptides (ADEP) dysregulate the Clp protease for unregulated proteolysis. We observed that ADEP binds Streptomyces ClpP1, but not ClpP2, thereby not only triggering the degradation of nonnative protein substrates but also accelerating Clp-ATPase-dependent proteolysis. The explanation is the concomitant binding of ADEP and Clp-ATPases to opposite sides of the ClpP1P2 barrel, hence revealing a third, so far unknown mechanism of ADEP action, i.e., the accelerated proteolysis of native protein substrates by the Clp protease. IMPORTANCE Clp proteases are antibiotic and anticancer drug targets. Composed of the proteolytic core ClpP and a regulatory Clp-ATPase, the protease machinery is important for protein homeostasis and regulatory proteolysis. The acyldepsipeptide antibiotic ADEP targets ClpP and has shown promise for treating multiresistant and persistent bacterial infections. The molecular mechanism of ADEP is multilayered. Here, we present a new way how ADEP can deregulate the Clp protease system. Clp-ATPases and ADEP bind to opposite sides of Streptomyces ClpP, accelerating the degradation of natural Clp protease substrates. We also demonstrate the composition of the major Streptomyces Clp protease complex, a heteromeric ClpP1P2 core with the Clp-ATPases ClpX, ClpC1, or ClpC2 exclusively bound to ClpP2, and the killing mechanism of ADEP in Streptomyces.
Collapse
|
11
|
Samukawa N, Yamaguchi T, Ozeki Y, Matsumoto S, Igarashi M, Kinoshita N, Hatano M, Tokudome K, Matsunaga S, Tomita S. An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748577 DOI: 10.1099/mic.0.001285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.
Collapse
Affiliation(s)
- Noriaki Samukawa
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Present address: Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Toyama 1-23-1, Shinjuku-ku, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Naoko Kinoshita
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masaki Hatano
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shinji Matsunaga
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Ogbonna EC, Anderson HR, Schmitz KR. Identification of Arginine Phosphorylation in Mycolicibacterium smegmatis. Microbiol Spectr 2022; 10:e0204222. [PMID: 36214676 PMCID: PMC9604228 DOI: 10.1128/spectrum.02042-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis is a leading cause of worldwide infectious mortality. The prevalence of multidrug-resistant Mycobacterium tuberculosis infections drives an urgent need to exploit new drug targets. One such target is the ATP-dependent protease ClpC1P1P2, which is strictly essential for viability. However, few proteolytic substrates of mycobacterial ClpC1P1P2 have been identified to date. Recent studies in Bacillus subtilis have shown that the orthologous ClpCP protease recognizes proteolytic substrates bearing posttranslational arginine phosphorylation. While several lines of evidence suggest that ClpC1P1P2 is similarly capable of recognizing phosphoarginine-bearing proteins, the existence of phosphoarginine modifications in mycobacteria has remained in question. Here, we confirm the presence of posttranslational phosphoarginine modifications in Mycolicibacterium smegmatis, a nonpathogenic surrogate of M. tuberculosis. Using a phosphopeptide enrichment workflow coupled with shotgun phosphoproteomics, we identified arginine phosphosites on several functionally diverse targets within the M. smegmatis proteome. Interestingly, phosphoarginine modifications are not upregulated by heat stress, suggesting divergent roles in mycobacteria and Bacillus. Our findings provide new evidence supporting the existence of phosphoarginine-mediated proteolysis by ClpC1P1P2 in mycobacteria and other actinobacterial species. IMPORTANCE Mycobacteria that cause tuberculosis infections employ proteolytic pathways that modulate cellular behavior by destroying specific proteins in a highly regulated manner. Some proteolytic enzymes have emerged as novel antibacterial targets against drug-resistant tuberculosis infections. However, we have only a limited understanding of how these enzymes function in the cell and how they select proteins for destruction. Some proteolytic enzymes are capable of recognizing proteins that carry an unusual chemical modification, arginine phosphorylation. Here, we confirm the existence of arginine phosphorylation in mycobacterial proteins. Our work expands our understanding of a promising drug target in an important global pathogen.
Collapse
Affiliation(s)
- Emmanuel C. Ogbonna
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Henry R. Anderson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Karl R. Schmitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
d’Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. The essential M. tuberculosis Clp protease is functionally asymmetric in vivo. SCIENCE ADVANCES 2022; 8:eabn7943. [PMID: 35507665 PMCID: PMC9067928 DOI: 10.1126/sciadv.abn7943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The Clp protease system is a promising, noncanonical drug target against Mycobacterium tuberculosis (Mtb). Unlike in Escherichia coli, the Mtb Clp protease consists of two distinct proteolytic subunits, ClpP1 and ClpP2, which hydrolyze substrates delivered by the chaperones ClpX and ClpC1. While biochemical approaches uncovered unique aspects of Mtb Clp enzymology, its essentiality complicates in vivo studies. To address this gap, we leveraged new genetic tools to mechanistically interrogate the in vivo essentiality of the Mtb Clp protease. While validating some aspects of the biochemical model, we unexpectedly found that only the proteolytic activity of ClpP1, but not of ClpP2, is essential for substrate degradation and Mtb growth and infection. Our observations not only support a revised model of Mtb Clp biology, where ClpP2 scaffolds chaperone binding while ClpP1 provides the essential proteolytic activity of the complex; they also have important implications for the ongoing development of inhibitors toward this emerging therapeutic target.
Collapse
Affiliation(s)
- Felipe B. d’Andrea
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Ruby Froom
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Kayan Tam
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Li X, Chen F, Liu X, Xiao J, Andongma BT, Tang Q, Cao X, Chou SH, Galperin MY, He J. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife 2022; 11:73347. [PMID: 35080493 PMCID: PMC8820732 DOI: 10.7554/elife.73347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.
Collapse
Affiliation(s)
- Xinfeng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Illigmann A, Thoma Y, Pan S, Reinhardt L, Brötz-Oesterhelt H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb Physiol 2021; 31:260-279. [PMID: 34438398 DOI: 10.1159/000517718] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
Fast adaptation to environmental changes ensures bacterial survival, and proteolysis represents a key cellular process in adaptation. The Clp protease system is a multi-component machinery responsible for protein homoeostasis, protein quality control, and targeted proteolysis of transcriptional regulators in prokaryotic cells and prokaryote-derived organelles of eukaryotic cells. A functional Clp protease complex consists of the tetradecameric proteolytic core ClpP and a hexameric ATP-consuming Clp-ATPase, several of which can associate with the same proteolytic core. Clp-ATPases confer substrate specificity by recognising specific degradation tags, and further selectivity is conferred by adaptor proteins, together allowing for a fine-tuned degradation process embedded in elaborate regulatory networks. This review focuses on the contribution of the Clp protease system to prokaryotic survival and summarises the current state of knowledge for exemplary bacteria in an increasing degree of interaction with eukaryotic cells. Starting from free-living bacteria as exemplified by a non-pathogenic and a pathogenic member of the Firmicutes, i.e., Bacillus subtilis and Staphylococcus aureus, respectively, we turn our attention to facultative and obligate intracellular bacterial pathogens, i.e., Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, and conclude with mitochondria. Under stress conditions, the Clp protease system exerts its pivotal role in the degradation of damaged proteins and controls the timing and extent of the heat-shock response by regulatory proteolysis. Key regulators of developmental programmes like natural competence, motility, and sporulation are also under Clp proteolytic control. In many pathogenic species, the Clp system is required for the expression of virulence factors and essential for colonising the host. In accordance with its evolutionary origin, the human mitochondrial Clp protease strongly resembles its bacterial counterparts, taking a central role in protein quality control and homoeostasis, energy metabolism, and apoptosis in eukaryotic cells, and several cancer cell types depend on it for proliferation.
Collapse
Affiliation(s)
- Astrid Illigmann
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Thoma
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefan Pan
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Laura Reinhardt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021; 26:3309. [PMID: 34072937 PMCID: PMC8199504 DOI: 10.3390/molecules26113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Paolo Saul Coghi
- School of Pharmacy Macau, University of Science and Technology, Taipa Macau 999078, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa Macau 999078, China
| | - Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Hongming Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| |
Collapse
|
18
|
Bordes P, Genevaux P. Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Front Mol Biosci 2021; 8:691399. [PMID: 34079824 PMCID: PMC8165232 DOI: 10.3389/fmolb.2021.691399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a noxious toxin and a counteracting cognate antitoxin. Although they are widespread in bacterial chromosomes and in mobile genetic elements, their cellular functions and activation mechanisms remain largely unknown. It has been proposed that toxin activation or expression of the TA operon could rely on the degradation of generally less stable antitoxins by cellular proteases. The resulting active toxin would then target essential cellular processes and inhibit bacterial growth. Although interplay between proteases and TA systems has been observed, evidences for such activation cycle are very limited. Herein, we present an overview of the current knowledge on TA recognition by proteases with a main focus on the major human pathogen Mycobacterium tuberculosis, which harbours multiple TA systems (over 80), the essential AAA + stress proteases, ClpC1P1P2 and ClpXP1P2, and the Pup-proteasome system.
Collapse
Affiliation(s)
- Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
19
|
Brötz-Oesterhelt H, Vorbach A. Reprogramming of the Caseinolytic Protease by ADEP Antibiotics: Molecular Mechanism, Cellular Consequences, Therapeutic Potential. Front Mol Biosci 2021; 8:690902. [PMID: 34109219 PMCID: PMC8182300 DOI: 10.3389/fmolb.2021.690902] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rising antibiotic resistance urgently calls for the discovery and evaluation of novel antibiotic classes and unique antibiotic targets. The caseinolytic protease Clp emerged as an unprecedented target for antibiotic therapy 15 years ago when it was observed that natural product-derived acyldepsipeptide antibiotics (ADEP) dysregulated its proteolytic core ClpP towards destructive proteolysis in bacterial cells. A substantial database has accumulated since on the interaction of ADEP with ClpP, which is comprehensively compiled in this review. On the molecular level, we describe the conformational control that ADEP exerts over ClpP, the nature of the protein substrates degraded, and the emerging structure-activity-relationship of the ADEP compound class. On the physiological level, we review the multi-faceted antibacterial mechanism, species-dependent killing modes, the activity against carcinogenic cells, and the therapeutic potential of the compound class.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Andreas Vorbach
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
20
|
ClpX Is Essential and Activated by Single-Strand DNA Binding Protein in Mycobacteria. J Bacteriol 2021; 203:JB.00608-20. [PMID: 33229461 PMCID: PMC7847540 DOI: 10.1128/jb.00608-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, imposes a major global health burden, surpassing HIV and malaria in annual deaths. The ClpP1P2 proteolytic complex and its cofactor ClpX are attractive drug targets, but their precise cellular functions are unclear. The ClpP1P2 proteolytic complex is essential in Mycobacterium tuberculosis. Proteolysis by ClpP1P2 requires an associated ATPase, either ClpX or ClpC1. Here, we sought to define the unique contributions of the ClpX ATPase to mycobacterial growth. We formally demonstrated that ClpX is essential for mycobacterial growth, and to understand its essential functions, we identified ClpX-His-interacting proteins by pulldown and tandem mass spectrometry. We found an unexpected association between ClpX and proteins involved in DNA replication, and we confirm a physical association between ClpX and the essential DNA maintenance protein single-stranded-DNA binding protein (SSB). Purified SSB is not degraded by ClpXP1P2; instead, SSB enhances ATP hydrolysis by ClpX and degradation of the model substrate GFP-SsrA by ClpXP1P2. This activation of ClpX is mediated by the C-terminal tail of SSB, which had been implicated in the activation of other ATPases associated with DNA replication. Consistent with the predicted interactions, depletion of clpX transcript perturbs DNA replication. These data reveal that ClpX participates in DNA replication and identify the first activator of ClpX in mycobacteria. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, imposes a major global health burden, surpassing HIV and malaria in annual deaths. The ClpP1P2 proteolytic complex and its cofactor ClpX are attractive drug targets, but their precise cellular functions are unclear. This work confirms ClpX’s essentiality and describes a novel interaction between ClpX and SSB, a component of the DNA replication machinery. Further, we demonstrate that a loss of ClpX is sufficient to interrupt DNA replication, suggesting that the ClpX-SSB complex may play a role in DNA replication in mycobacteria.
Collapse
|
21
|
Nicholson KR, Mousseau CB, Champion MM, Champion PA. The genetic proteome: Using genetics to inform the proteome of mycobacterial pathogens. PLoS Pathog 2021; 17:e1009124. [PMID: 33411813 PMCID: PMC7790235 DOI: 10.1371/journal.ppat.1009124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycobacterial pathogens pose a sustained threat to human health. There is a critical need for new diagnostics, therapeutics, and vaccines targeting both tuberculous and nontuberculous mycobacterial species. Understanding the basic mechanisms used by diverse mycobacterial species to cause disease will facilitate efforts to design new approaches toward detection, treatment, and prevention of mycobacterial disease. Molecular, genetic, and biochemical approaches have been widely employed to define fundamental aspects of mycobacterial physiology and virulence. The recent expansion of genetic tools in mycobacteria has further increased the accessibility of forward genetic approaches. Proteomics has also emerged as a powerful approach to further our understanding of diverse mycobacterial species. Detection of large numbers of proteins and their modifications from complex mixtures of mycobacterial proteins is now routine, with efforts of quantification of these datasets becoming more robust. In this review, we discuss the “genetic proteome,” how the power of genetics, molecular biology, and biochemistry informs and amplifies the quality of subsequent analytical approaches and maximizes the potential of hypothesis-driven mycobacterial research. Published proteomics datasets can be used for hypothesis generation and effective post hoc supplementation to experimental data. Overall, we highlight how the integration of proteomics, genetic, molecular, and biochemical approaches can be employed successfully to define fundamental aspects of mycobacterial pathobiology.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - C. Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| |
Collapse
|
22
|
Singh DK, Singh B, Ganatra SR, Gazi M, Cole J, Thippeshappa R, Alfson KJ, Clemmons E, Gonzalez O, Escobedo R, Lee TH, Chatterjee A, Goez-Gazi Y, Sharan R, Gough M, Alvarez C, Blakley A, Ferdin J, Bartley C, Staples H, Parodi L, Callery J, Mannino A, Klaffke B, Escareno P, Platt RN, Hodara V, Scordo J, Gautam S, Vilanova AG, Olmo-Fontanez A, Schami A, Oyejide A, Ajithdoss DK, Copin R, Baum A, Kyratsous C, Alvarez X, Ahmed M, Rosa B, Goodroe A, Dutton J, Hall-Ursone S, Frost PA, Voges AK, Ross CN, Sayers K, Chen C, Hallam C, Khader SA, Mitreva M, Anderson TJC, Martinez-Sobrido L, Patterson JL, Turner J, Torrelles JB, Dick EJ, Brasky K, Schlesinger LS, Giavedoni LD, Carrion R, Kaushal D. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat Microbiol 2021; 6:73-86. [PMID: 33340034 PMCID: PMC7890948 DOI: 10.1038/s41564-020-00841-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bindu Singh
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shashank R Ganatra
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Journey Cole
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rajesh Thippeshappa
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Elizabeth Clemmons
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olga Gonzalez
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ruby Escobedo
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Tae-Hyung Lee
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ayan Chatterjee
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Riti Sharan
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Maya Gough
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cynthia Alvarez
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Alyssa Blakley
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Justin Ferdin
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Carmen Bartley
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hilary Staples
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura Parodi
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jessica Callery
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amanda Mannino
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Roy N Platt
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vida Hodara
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Julia Scordo
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shalini Gautam
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Alyssa Schami
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - Xavier Alvarez
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mushtaq Ahmed
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Bruce Rosa
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Dutton
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Patrice A Frost
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Andra K Voges
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Veterinary Imaging Consulting of South Texas, San Antonio, TX, USA
| | - Corinna N Ross
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ken Sayers
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Christopher Chen
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cory Hallam
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shabaana A Khader
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Makedonka Mitreva
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | | | | | | | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Edward J Dick
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kathleen Brasky
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis D Giavedoni
- Southwest National Primate Research Center, San Antonio, TX, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Ricardo Carrion
- Southwest National Primate Research Center, San Antonio, TX, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, San Antonio, TX, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
23
|
Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase. Cell Rep 2020; 27:2468-2479.e3. [PMID: 31116989 PMCID: PMC6538288 DOI: 10.1016/j.celrep.2018.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/14/2018] [Accepted: 12/13/2018] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, withstands diverse environmental stresses in the host. The periplasmic protease HtrA is required only to survive extreme conditions in most bacteria but is predicted to be essential for normal growth in mycobacteria. We confirm that HtrA is indeed essential in Mycobacterium smegmatis and interacts with another essential protein of unknown function, LppZ. However, the loss of any of three unlinked genes, including those encoding Ami3, a peptidoglycan muramidase, and Pmt, a mannosyltransferase, suppresses the essentiality of both HtrA and LppZ, indicating the functional relevance of these genes' protein products. Our data indicate that HtrA-LppZ is required to counteract the accumulation of active Ami3, which is toxic under the stabilizing influence of Pmt-based mannosylation. This suggests that HtrA-LppZ blocks the toxicity of a cell wall enzyme to maintain mycobacterial homeostasis.
Collapse
|
24
|
Lunge A, Gupta R, Choudhary E, Agarwal N. The unfoldase ClpC1 of Mycobacterium tuberculosis regulates the expression of a distinct subset of proteins having intrinsically disordered termini. J Biol Chem 2020; 295:9455-9473. [PMID: 32409584 DOI: 10.1074/jbc.ra120.013456] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) harbors a well-orchestrated Clp (caseinolytic protease) proteolytic machinery consisting of two oligomeric segments, a barrel-shaped heterotetradecameric protease core comprising the ClpP1 and ClpP2 subunits, and hexameric ring-like ATP-dependent unfoldases composed of ClpX or ClpC1. The roles of the ClpP1P2 protease subunits are well-established in Mtb, but the potential roles of the associated unfoldases, such as ClpC1, remain elusive. Using a CRISPR interference-mediated gene silencing approach, here we demonstrate that clpC1 is indispensable for the extracellular growth of Mtb and for its survival in macrophages. The results from isobaric tags for relative and absolute quantitation-based quantitative proteomic experiments with clpC1- and clpP2-depleted Mtb cells suggested that the ClpC1P1P2 complex critically maintains the homeostasis of various growth-essential proteins in Mtb, several of which contain intrinsically disordered regions at their termini. We show that the Clp machinery regulates dosage-sensitive proteins such as the small heat shock protein Hsp20, which exists in a dodecameric conformation. Further, we observed that Hsp20 is poorly expressed in WT Mtb and that its expression is greatly induced upon depletion of clpC1 or clpP2 Remarkably, high Hsp20 protein levels were detected in the clpC1(-) or clpP2(-) knockdown strains but not in the parental bacteria, despite significant induction of hsp20 transcripts. In summary, the cellular levels of oligomeric proteins such as Hsp20 are maintained post-translationally through their recognition, disassembly, and degradation by ClpC1, which requires disordered ends in its protein substrates.
Collapse
Affiliation(s)
- Ajitesh Lunge
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, New Delhi, India
| | - Radhika Gupta
- Daulat Ram College, University of Delhi, Delhi, India.,Institute of Genomics and Integrative Biology, New Delhi, India
| | - Eira Choudhary
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India.,Symbiosis International (Deemed University), Lavale, Pune, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
25
|
Mycobacterium smegmatis MSMEG_0129 is a nutrition-associated regulator that interacts with CarD and ClpP2. Int J Biochem Cell Biol 2020; 124:105763. [PMID: 32389745 DOI: 10.1016/j.biocel.2020.105763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium smegmatis MSMEG_0129 and Rv0164, its homologue in Mycobacterium tuberculosis, are single START-domain proteins essential for bacterial growth and survival, but their biochemical activities and biological roles remain undetermined. Here, we probed the possible functions of MSMEG_0129 and its underlying mechanisms by determining its cellular location, searching for its interaction partners and monitoring its transcription profile. MSMEG_0129, and Rv0164 by extension, were found to be cytosolic proteins rather than secreted components as previously understood. Increases in MSMEG_0129 expression at physiological levels accelerated bacterial growth in a proportional manner, but additional growth acceleration was not observed when MSMEG_0129 was overexpressed up to 20 fold. MSMEG_0129 is a short-lived protein, unstable at both the mRNA and protein levels. Co-IP and GST pull-down assays showed that MSMEG_0129 interacts with the ClpP2 protease and a global transcription factor, CarD, their expression being correlated with that of MSMEG_0129. Nutrient deficiency led to the downregulation of MSMEG_0129 but upregulation of CarD. However, in the context of constitutive MSMEG_0129 overexpression under nutrient-rich or starvation conditions, the mRNA level of CarD was reduced 3 fold. Conversely, expression of ClpP2 decreased with MSMEG_0129 downregulation under starvation conditions, but increased 4-8 fold when MSMEG_0129 was overexpressed. Our data suggest that MSMEG_0129, and Rv0164 by analogy, are likely to be nutrition sensing factors that regulate mycobacterial growth and may be involved in signal transfer under nutrient deficiency, possibly via physical and regulatory interactions with CarD and ClpP2.
Collapse
|
26
|
Gopal P, Sarathy JP, Yee M, Ragunathan P, Shin J, Bhushan S, Zhu J, Akopian T, Kandror O, Lim TK, Gengenbacher M, Lin Q, Rubin EJ, Grüber G, Dick T. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nat Commun 2020; 11:1661. [PMID: 32245967 PMCID: PMC7125159 DOI: 10.1038/s41467-020-15516-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/16/2020] [Indexed: 11/28/2022] Open
Abstract
Pyrazinamide is a sterilizing first-line tuberculosis drug. Genetic, metabolomic and biophysical analyses previously demonstrated that pyrazinoic acid, the bioactive form of the prodrug pyrazinamide (PZA), interrupts biosynthesis of coenzyme A in Mycobacterium tuberculosis by binding to aspartate decarboxylase PanD. While most drugs act by inhibiting protein function upon target binding, we find here that pyrazinoic acid is only a weak enzyme inhibitor. We show that binding of pyrazinoic acid to PanD triggers degradation of the protein by the caseinolytic protease ClpC1-ClpP. Thus, the old tuberculosis drug pyrazinamide exerts antibacterial activity by acting as a target degrader, a mechanism of action that has recently emerged as a successful strategy in drug discovery across disease indications. Our findings provide the basis for the rational discovery of next generation PZA. It has been shown that the bioactive component of pyrazinamide, pyrazinoic acid (POA), blocks coenzyme A biosynthesis in M. tuberculosis by binding to the aspartate decarboxylase PanD. Here the authors show that pyrazinamide triggers degradation of PanD by stimulating its degradation by the caseinolytic protease Clp.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,MSD Translational Medicine Research Centre, Merck Research Laboratories, Singapore, Singapore
| | - Jickky Palmae Sarathy
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tatos Akopian
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olga Kandror
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Medical Sciences, Hackensack Meridian Medical School at Seton Hall University, Nutley, NJ, USA
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA. .,Department of Medical Sciences, Hackensack Meridian Medical School at Seton Hall University, Nutley, NJ, USA.
| |
Collapse
|
27
|
Abstract
Pyrazinamide (PZA) is a cornerstone antimicrobial drug used exclusively for the treatment of tuberculosis (TB). Due to its ability to shorten drug therapy by 3 months and reduce disease relapse rates, PZA is considered an irreplaceable component of standard first-line short-course therapy for drug-susceptible TB and second-line treatment regimens for multidrug-resistant TB. Despite over 60 years of research on PZA and its crucial role in current and future TB treatment regimens, the mode of action of this unique drug remains unclear. Defining the mode of action for PZA will open new avenues for rational design of novel therapeutic approaches for the treatment of TB. In this review, we discuss the four prevailing models for PZA action, recent developments in modulation of PZA susceptibility and resistance, and outlooks for future research and drug development.
Collapse
|
28
|
Wan T, Li S, Beltran DG, Schacht A, Zhang L, Becker DF, Zhang L. Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis. Nucleic Acids Res 2020; 48:501-516. [PMID: 31807774 PMCID: PMC6954389 DOI: 10.1093/nar/gkz1133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022] Open
Abstract
WhiB1 is a monomeric iron-sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe-4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe-4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - LiMei Zhang
- Department of Biochemistry
- Redox Biology Center
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
29
|
Hameed HA, Tan Y, Islam MM, Lu Z, Chhotaray C, Wang S, Liu Z, Fang C, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Detection of Novel Gene Mutations Associated with Pyrazinamide Resistance in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Southern China. Infect Drug Resist 2020; 13:217-227. [PMID: 32158237 PMCID: PMC6986415 DOI: 10.2147/idr.s230774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Pyrazinamide (PZA) is a cornerstone of modern tuberculosis regimens. This study aimed to investigate the performance of genotypic testing of pncA + upstream region, rpsA, panD, Rv2783c, and clpC1 genes to add insights for more accurate molecular diagnosis of PZA-resistant (R) Mycobacterium tuberculosis. Methods Drug susceptibility testing, sequencing analysis of PZA-related genes including the entire operon of pncA (Rv2044c-pncA-Rv2042c) and PZase assay were performed for 448 M. tuberculosis clinical isolates. Results Our data showed that among 448 M. tuberculosis clinical isolates, 113 were MDR, 195 pre-XDR and 70 XDR TB, while the remaining 70 strains had other combinations of drug-resistance. A total of 60.04% (269/448) M. tuberculosis clinical isolates were resistant to PZA, of which 78/113 were MDR, 119/195 pre-XDR and 29/70 XDR TB strains. PZAR isolates have predominance (83.3%) of Beijing genotype. Genotypic characterization of Rv2044c-pncA-Rv2042c revealed novel nonsynonymous mutations in Rv2044c with negative PZase activity which led to confer PZAR. Compared with phenotypic data, 84.38% (227/269) PZAR strains with mutations in pncA + upstream region exhibited 83.64% sensitivity but the combined evaluation of the mutations in rpsA 2.60% (7/269), panD 1.48% (4/269), Rv2783c 1.11% (3/269) and Rv2044c 0.74% (2/269) increased the sensitivity to 89.59%. Fifty-seven novel mutations were identified in this study. Interestingly, a frameshift deletion (C-114del) in upstream of pncAwt nullified the effect of A-11G mutation and induced positive PZase activity, divergent from five PZase negative A-11G PZAR mutants. Twenty-six PZAR strains having wild-type-sequenced genes with positive or negative PZase suggest the existence of unknown resistance mechanisms. Conclusion Our study revealed that PZAR rate in MDR and pre-XDR TB was markedly higher in southern China. The concomitant evaluation of pncA + UFR, rpsA, panD, Rv2783c, and Rv2044c provides more dependable genotypic results of PZA resistance. Fifty-seven novel mutations/indels in this study may play a vital role as diagnostic markers. The upstream region of pncA and PZase regulation are valuable to explore the unknown mechanism of PZA-resistance.
Collapse
Affiliation(s)
- Hm Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Toxic Activation of an AAA+ Protease by the Antibacterial Drug Cyclomarin A. Cell Chem Biol 2019; 26:1169-1179.e4. [DOI: 10.1016/j.chembiol.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
31
|
Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, Aderem A, Bhatt A, Baliga NS. Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol 2019; 15:e8584. [PMID: 30833303 PMCID: PMC6398593 DOI: 10.15252/msb.20188584] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Collapse
Affiliation(s)
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alissa C Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Charlotte Cooper
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
32
|
Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 2018. [DOI: 10.1007/s13199-018-0585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Appl Microbiol Biotechnol 2018; 102:7521-7539. [DOI: 10.1007/s00253-018-9086-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
|
34
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Bhandari V, Wong KS, Zhou JL, Mabanglo MF, Batey RA, Houry WA. The Role of ClpP Protease in Bacterial Pathogenesis and Human Diseases. ACS Chem Biol 2018; 13:1413-1425. [PMID: 29775273 DOI: 10.1021/acschembio.8b00124] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In prokaryotic cells and eukaryotic organelles, the ClpP protease plays an important role in proteostasis. The disruption of the ClpP function has been shown to influence the infectivity and virulence of a number of bacterial pathogens. More recently, ClpP has been found to be involved in various forms of carcinomas and in Perrault syndrome, which is an inherited condition characterized by hearing loss in males and females and by ovarian abnormalities in females. Hence, targeting ClpP is a potentially viable, attractive option for the treatment of different ailments. Herein, the biochemical and cellular activities of ClpP are discussed along with the mechanisms by which ClpP affects bacterial pathogenesis and various human diseases. In addition, a comprehensive overview is given of the new classes of compounds in development that target ClpP. Many of these compounds are currently primarily aimed at treating bacterial infections. Some of these compounds inhibit ClpP activity, while others activate the protease and lead to its dysregulation. The ClpP activators are remarkable examples of small molecules that inhibit protein-protein interactions but also result in a gain of function.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Keith S. Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Jin Lin Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark F. Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Robert A. Batey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
Muthu M, Deenadayalan A, Ramachandran D, Paul D, Gopal J, Chun S. A state-of-art review on the agility of quantitative proteomics in tuberculosis research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018; 4:478-498. [PMID: 29465983 PMCID: PMC5902792 DOI: 10.1021/acsinfecdis.7b00231] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.
Collapse
Affiliation(s)
- Tania J. Lupoli
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| |
Collapse
|
38
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
39
|
Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE. Protein adaptations in extremophiles: An insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 2018; 84:147-157. [PMID: 29331642 DOI: 10.1016/j.semcdb.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Anwar Alam
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mamta Rani
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Hafeeza Khatoon
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India; JH-Institute of Molecular Medicine, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
40
|
Rv0004 is a new essential member of the mycobacterial DNA replication machinery. PLoS Genet 2017; 13:e1007115. [PMID: 29176877 PMCID: PMC5720831 DOI: 10.1371/journal.pgen.1007115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/07/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004’s DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes. DNA is the molecule that encodes all of the genetic information of an organism. In order to pass genes onto the next generation, DNA has to first be copied through a process called DNA replication. Most of the initial studies on bacterial DNA replication were performed in Escherichia coli and Bacillus subtilis. While these studies were very informative, there is an increasing appreciation that more distantly related bacteria have diverged from these organisms in even the most fundamental processes. Mycobacteria, a group of bacteria that includes the human pathogen Mycobacterium tuberculosis, are distantly related to E. coli and B. subtilis and lack some of the proteins used for DNA replication in those model organisms. In this study, we discover that a previously uncharacterized protein in Mycobacteria, named Rv0004, is essential for bacterial viability and involved in DNA replication. Rv0004 is conserved in most bacteria but is absent from E. coli and B. subtilis. Since Rv0004 is essential for mycobacterial viability, this study both identifies a future target for antibiotic therapy and expands our knowledge on the diversity of bacterial DNA replication strategies, which may be applicable to other organisms.
Collapse
|
41
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
42
|
Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program. Cell 2017; 171:1125-1137.e11. [PMID: 29107333 DOI: 10.1016/j.cell.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/23/2017] [Accepted: 09/30/2017] [Indexed: 01/17/2023]
Abstract
Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack.
Collapse
|
43
|
Alhuwaider AAH, Dougan DA. AAA+ Machines of Protein Destruction in Mycobacteria. Front Mol Biosci 2017; 4:49. [PMID: 28770209 PMCID: PMC5515868 DOI: 10.3389/fmolb.2017.00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023] Open
Abstract
The bacterial cytosol is a complex mixture of macromolecules (proteins, DNA, and RNA), which collectively are responsible for an enormous array of cellular tasks. Proteins are central to most, if not all, of these tasks and as such their maintenance (commonly referred to as protein homeostasis or proteostasis) is vital for cell survival during normal and stressful conditions. The two key aspects of protein homeostasis are, (i) the correct folding and assembly of proteins (coupled with their delivery to the correct cellular location) and (ii) the timely removal of unwanted or damaged proteins from the cell, which are performed by molecular chaperones and proteases, respectively. A major class of proteins that contribute to both of these tasks are the AAA+ (ATPases associated with a variety of cellular activities) protein superfamily. Although much is known about the structure of these machines and how they function in the model Gram-negative bacterium Escherichia coli, we are only just beginning to discover the molecular details of these machines and how they function in mycobacteria. Here we review the different AAA+ machines, that contribute to proteostasis in mycobacteria. Primarily we will focus on the recent advances in the structure and function of AAA+ proteases, the substrates they recognize and the cellular pathways they control. Finally, we will discuss the recent developments related to these machines as novel drug targets.
Collapse
Affiliation(s)
- Adnan Ali H Alhuwaider
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| | - David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
44
|
Gopal P, Tasneen R, Yee M, Lanoix JP, Sarathy J, Rasic G, Li L, Dartois V, Nuermberger E, Dick T. In Vivo-Selected Pyrazinoic Acid-Resistant Mycobacterium tuberculosis Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infect Dis 2017; 3:492-501. [PMID: 28271875 PMCID: PMC5514395 DOI: 10.1021/acsinfecdis.7b00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Rokeya Tasneen
- Center for Tuberculosis
Research, Johns Hopkins University, Baltimore, Maryland, United States
| | - Michelle Yee
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Jean-Philippe Lanoix
- Department of Infectious Diseases, University Hospital of Amiens-Picardie, Amiens, France
| | - Jansy Sarathy
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - George Rasic
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Liping Li
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Eric Nuermberger
- Center for Tuberculosis
Research, Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas Dick
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
45
|
Wu FL, Liu Y, Jiang HW, Luan YZ, Zhang HN, He X, Xu ZW, Hou JL, Ji LY, Xie Z, Czajkowsky DM, Yan W, Deng JY, Bi LJ, Zhang XE, Tao SC. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis. Mol Cell Proteomics 2017; 16:1491-1506. [PMID: 28572091 DOI: 10.1074/mcp.m116.065771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/28/2017] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.
Collapse
Affiliation(s)
- Fan-Lin Wu
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Zhao Luan
- ¶State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou 500040, China
| | - Hai-Nan Zhang
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang He
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.,‖School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Wei Xu
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Li Hou
- **Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Yun Ji
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xie
- ¶State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou 500040, China
| | - Daniel M Czajkowsky
- ‖School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Yan
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiao-Yu Deng
- ‡‡State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li-Jun Bi
- §§National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,¶¶School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China.,‖‖Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan 528000, China
| | - Xian-En Zhang
- §§National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; .,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.,‖School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
46
|
Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, Wei X, Wang J, Qi L, Zhang H, Li L, Ye L, Guo X, Wu X. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation. Mol Cell Proteomics 2017; 16:982-997. [PMID: 28408662 DOI: 10.1074/mcp.m116.065797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokine-dependent renewal of stem cells is a fundamental requisite for tissue homeostasis and regeneration. Spermatogonial progenitor cells (SPCs) including stem cells support life-long spermatogenesis and male fertility, but pivotal phosphorylation events that regulate fate decisions in SPCs remain unresolved. Here, we described a quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of SPCs following sustained stimulation with glial cell-derived neurotrophic factor (GDNF), an extrinsic factor supporting SPC proliferation. Stimulated SPCs contained 3382 identified phosphorylated proteins and 12141 phosphorylation sites. Of them, 325 differentially phosphorylated proteins and 570 phosphorylation sites triggered by GDNF were highly enriched for ERK1/2, GSK3, CDK1, and CDK5 phosphorylating motifs. We validated that inhibition of GDNF/ERK1/2-signaling impaired SPC proliferation and increased G2/M cell cycle arrest. Significantly, we found that proliferation of SPCs requires phosphorylation of the mTORC1 component Raptor at Ser863 Tissue-specific deletion of Raptor in mouse germline cells results in impaired spermatogenesis and progressive loss of spermatogonia, but in vitro increased phosphorylation of Raptor by raptor over-expression in SPCs induced a more rapidly growth of SPCs in culture. These findings implicate previously undescribed signaling networks in governing fate decision of SPCs, which is essential for the understanding of spermatogenesis and of potential consequences of pathogenic insult for male infertility.
Collapse
Affiliation(s)
- Min Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yueshuai Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuanyuan Xue
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guihua Du
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wei
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin Qi
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lan Ye
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Wu
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
47
|
Mycobacterial Caseinolytic Protease Gene Regulator ClgR Is a Substrate of Caseinolytic Protease. mSphere 2017; 2:mSphere00338-16. [PMID: 28317028 PMCID: PMC5352834 DOI: 10.1128/msphere.00338-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition. The mycobacterial caseinolytic protease ClpP1P2 is a degradative protease that recently gained interest as a genetically and pharmacologically validated drug target for tuberculosis. The first whole-cell active ClpP1P2 inhibitor, the human proteasome inhibitor bortezomib, is currently undergoing lead optimization to introduce selectivity for the bacterial target. How inhibition of ClpP1P2 translates into whole-cell antimicrobial activity is little understood. Previous work has shown that the caseinolytic protease gene regulator ClgR is an activator of the clpP1P2 genes and also suggested that this transcription factor may be a substrate of the protease. Here, we employ promoter activity reporters and direct mRNA level measurements showing that bortezomib treatment of Mycobacterium bovis BCG increased transcription of clpP1P2 and other ClgR-dependent promoters, suggesting that inhibition of ClpP1P2 increases cellular ClgR levels. Then, we carried out red fluorescent protein-ClgR fusion analyses to show that ClgR is indeed a substrate of ClpP1P2 and to identify ClgR’s C-terminal nonapeptide APVVSLAVA as the signal sufficient for recognition and efficient protein degradation by ClpP1P2. Interestingly, accumulation of ClgR appears to be toxic for bacilli, suggesting a mechanism for how pharmacological inhibition of ClpP1P2 protease activity by bortezomib translates into whole-cell antibacterial activity. IMPORTANCE With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition.
Collapse
|
48
|
Caulobacter crescentus CdnL is a non-essential RNA polymerase-binding protein whose depletion impairs normal growth and rRNA transcription. Sci Rep 2017; 7:43240. [PMID: 28233804 PMCID: PMC5324124 DOI: 10.1038/srep43240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
CdnL is an essential RNA polymerase (RNAP)-binding activator of rRNA transcription in mycobacteria and myxobacteria but reportedly not in Bacillus. Whether its function and mode of action are conserved in other bacteria thus remains unclear. Because virtually all alphaproteobacteria have a CdnL homolog and none of these have been characterized, we studied the homolog (CdnLCc) of the model alphaproteobacterium Caulobacter crescentus. We show that CdnLCc is not essential for viability but that its absence or depletion causes slow growth and cell filamentation. CdnLCc is degraded in vivo in a manner dependent on its C-terminus, yet excess CdnLCc resulting from its stabilization did not adversely affect growth. We find that CdnLCc interacts with itself and with the RNAP β subunit, and localizes to at least one rRNA promoter in vivo, whose activity diminishes upon depletion of CdnLCc. Interestingly, cells expressing CdnLCc mutants unable to interact with the RNAP were cold-sensitive, suggesting that CdnLCc interaction with RNAP is especially required at lower than standard growth temperatures in C. crescentus. Our study indicates that despite limited sequence similarities and regulatory differences compared to its myco/myxobacterial homologs, CdnLCc may share similar biological functions, since it affects rRNA synthesis, probably by stabilizing open promoter-RNAP complexes.
Collapse
|
49
|
Missense Mutations in the Unfoldase ClpC1 of the Caseinolytic Protease Complex Are Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.02342-16. [PMID: 27872068 PMCID: PMC5278685 DOI: 10.1128/aac.02342-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/12/2016] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that mutations in Mycobacterium tuberculosispanD, involved in coenzyme A biosynthesis, cause resistance against pyrazinoic acid, the bioactive component of the prodrug pyrazinamide. To identify additional resistance mechanisms, we isolated mutants resistant against pyrazinoic acid and subjected panD wild-type strains to whole-genome sequencing. Eight of the nine resistant strains harbored missense mutations in the unfoldase ClpC1 associated with the caseinolytic protease complex.
Collapse
|
50
|
Malik IT, Brötz-Oesterhelt H. Conformational control of the bacterial Clp protease by natural product antibiotics. Nat Prod Rep 2017; 34:815-831. [DOI: 10.1039/c6np00125d] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural products targeting the bacterial Clp protease unravel key interfaces for protein–protein–interaction and long-distance conformational control.
Collapse
Affiliation(s)
- I. T. Malik
- Department of Microbial Bioactive Compounds
- Interfaculty Institute of Microbiology and Infection Medicine
- University of Tuebingen
- Germany
| | - H. Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds
- Interfaculty Institute of Microbiology and Infection Medicine
- University of Tuebingen
- Germany
| |
Collapse
|