1
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
4
|
Wiesheu R, Edwards SC, Hedley A, Hall H, Tosolini M, Fares da Silva MGF, Sumaria N, Castenmiller SM, Wardak L, Optaczy Y, Lynn A, Hill DG, Hayes AJ, Hay J, Kilbey A, Shaw R, Whyte D, Walsh PJ, Michie AM, Graham GJ, Manoharan A, Halsey C, Blyth K, Wolkers MC, Miller C, Pennington DJ, Jones GW, Fournie JJ, Bekiaris V, Coffelt SB. IL-27 maintains cytotoxic Ly6C + γδ T cells that arise from immature precursors. EMBO J 2024; 43:2878-2907. [PMID: 38816652 PMCID: PMC11251046 DOI: 10.1038/s44318-024-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αβ-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, Ly/metabolism
- Antigens, Ly/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Interleukin-27/metabolism
- Interleukin-27/genetics
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Robert Wiesheu
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Sarah C Edwards
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Marie Tosolini
- Cancer Research Centre of Toulouse, University of Toulouse, Toulouse, France
| | | | - Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suzanne M Castenmiller
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Leyma Wardak
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Amy Lynn
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alan J Hayes
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Robin Shaw
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Declan Whyte
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Alison M Michie
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Anand Manoharan
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina Halsey
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Monika C Wolkers
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Crispin Miller
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Seth B Coffelt
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Scotland Institute, Glasgow, UK.
| |
Collapse
|
5
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Cordsmeier A, Bednar C, Kübel S, Bauer L, Ensser A. Re-Analysis of the Widely Used Recombinant Murine Cytomegalovirus MCMV-m157luc Derived from the Bacmid pSM3fr Confirms Its Hybrid Nature. Int J Mol Sci 2023; 24:14102. [PMID: 37762404 PMCID: PMC10531225 DOI: 10.3390/ijms241814102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Murine cytomegalovirus (MCMV), and, in particular, recombinant virus derived from MCMV-bacmid pSM3fr, is widely used as the small animal infection model for human cytomegalovirus (HCMV). We sequenced the complete genomes of MCMV strains and recombinants for quality control. However, we noticed deviances from the deposited reference sequences of MCMV-bacmid pSM3fr. This prompted us to re-analyze pSM3fr and reannotate the reference sequence, as well as that for the commonly used MCMV-m157luc reporter virus. A correct reference sequence for this frequently used pSM3fr, containing a repaired version of m129 (MCK-2) and the luciferase gene instead of ORF m157, was constructed. The new reference also contains the original bacmid sequence, and it has a hybrid origin from MCMV strains Smith and K181.
Collapse
Affiliation(s)
| | | | | | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.C.); (C.B.); (S.K.); (L.B.)
| |
Collapse
|
7
|
Kak G, Van Roy Z, Heim CE, Fallet RW, Shi W, Roers A, Duan B, Kielian T. IL-10 production by granulocytes promotes Staphylococcus aureus craniotomy infection. J Neuroinflammation 2023; 20:114. [PMID: 37179295 PMCID: PMC10183138 DOI: 10.1186/s12974-023-02798-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Treatment of brain tumors, epilepsy, or hemodynamic abnormalities requires a craniotomy to access the brain. Nearly 1 million craniotomies are performed in the US annually, which increase to ~ 14 million worldwide and despite prophylaxis, infectious complications after craniotomy range from 1 to 3%. Approximately half are caused by Staphylococcus aureus (S. aureus), which forms a biofilm on the bone flap that is recalcitrant to antibiotics and immune-mediated clearance. However, the mechanisms responsible for the persistence of craniotomy infection remain largely unknown. The current study examined the role of IL-10 in promoting bacterial survival. METHODS A mouse model of S. aureus craniotomy infection was used with wild type (WT), IL-10 knockout (KO), and IL-10 conditional KO mice where IL-10 was absent in microglia and monocytes/macrophages (CX3CR1CreIL-10 fl/fl) or neutrophils and granulocytic myeloid-derived suppressor cells (G-MDSCs; Mrp8CreIL-10 fl/fl), the major immune cell populations in the infected brain vs. subcutaneous galea, respectively. Mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the brain and galea to assess the role of IL-10 in craniotomy persistence. In addition, the role of G-MDSC-derived IL-10 on neutrophil activity was examined. RESULTS Granulocytes (neutrophils and G-MDSCs) were the major producers of IL-10 during craniotomy infection. Bacterial burden was significantly reduced in IL-10 KO mice in the brain and galea at day 14 post-infection compared to WT animals, concomitant with increased CD4+ and γδ T cell recruitment and cytokine/chemokine production, indicative of a heightened proinflammatory response. S. aureus burden was reduced in Mrp8CreIL-10 fl/fl but not CX3CR1CreIL-10 fl/fl mice that was reversed following treatment with exogenous IL-10, suggesting that granulocyte-derived IL-10 was important for promoting S. aureus craniotomy infection. This was likely due, in part, to IL-10 production by G-MDSCs that inhibited neutrophil bactericidal activity and TNF production. CONCLUSION Collectively, these findings reveal a novel role for granulocyte-derived IL-10 in suppressing S. aureus clearance during craniotomy infection, which is one mechanism to account for biofilm persistence.
Collapse
Affiliation(s)
- Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rachel W Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Wen Shi
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Axel Roers
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
8
|
Geiger KM, Manoharan M, Coombs R, Arana K, Park CS, Lee AY, Shastri N, Robey EA, Coscoy L. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep 2023; 42:112317. [PMID: 36995940 PMCID: PMC10539480 DOI: 10.1016/j.celrep.2023.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) plays a crucial role in shaping the peptide-major histocompatibility complex (MHC) class I repertoire and maintaining immune surveillance. While murine cytomegalovirus (MCMV) has multiple strategies for manipulating the antigen processing pathway to evade immune responses, the host has also developed ways to counter viral immune evasion. In this study, we find that MCMV modulates ERAAP and induces an interferon γ (IFN-γ)-producing CD8+ T cell effector response that targets uninfected ERAAP-deficient cells. We observe that ERAAP downregulation during infection leads to the presentation of the self-peptide FL9 on non-classical Qa-1b, thereby eliciting Qa-1b-restricted QFL T cells to proliferate in the liver and spleen of infected mice. QFL T cells upregulate effector markers upon MCMV infection and are sufficient to reduce viral load after transfer to immunodeficient mice. Our study highlights the consequences of ERAAP dysfunction during viral infection and provides potential targets for anti-viral therapies.
Collapse
Affiliation(s)
- Kristina M Geiger
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Manoharan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel Coombs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathya Arana
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chan-Su Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angus Y Lee
- Cancer Research Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ellen A Robey
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Laurent Coscoy
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Prinz I, Koenecke C. Antigen-specific γδ T cells contribute to cytomegalovirus control after stem cell transplantation. Curr Opin Immunol 2023; 82:102303. [PMID: 36947903 DOI: 10.1016/j.coi.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
γδ T cells support the immunological control of viral infections, in particular during cytomegalovirus (CMV) reactivation in immunocompromised patients after allogeneic hematopoietic stem cell transplantation. It is unclear how γδ T cells sense CMV-infection and whether this involves specific T cell receptor (TCR)-ligand interaction. Here we summarize recent findings that revealed an adaptive-like anti-CMV immune response of γδ T cells, characterized by acquisition of effector functions and long-lasting clonal expansion. We propose that rather CMV-induced self-antigen than viral antigens trigger γδ TCRs during CMV reactivation. Given that the TCRs of CMV-activated γδ T cells are often cross-reactive to tumor cells, these findings pinpoint γδ T cells and their γδ TCRs as attractive multipurpose tools for antiviral and antitumor therapy.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School (MHH), Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, MHH, Germany
| |
Collapse
|
10
|
Hahn AM, Vogg L, Brey S, Schneider A, Schäfer S, Palmisano R, Pavlova A, Sandrock I, Tan L, Fichtner AS, Prinz I, Ravens S, Winkler TH. A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. Cell Rep 2023; 42:112253. [PMID: 36920908 DOI: 10.1016/j.celrep.2023.112253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/14/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
The clonal selection theory describes key features of adaptive immune responses of B and T cells. For αβ T cells and B cells, antigen recognition and selection principles are known at a detailed molecular level. The precise role of the antigen receptor in γδ T cells remains less well understood. To better understand the role of the γδ T cell receptor (TCR), we generate an orthotopic TCRδ transgenic mouse model. We demonstrate a multi-layered functionality of γδ TCRs and diverse roles of CDR3δ-mediated selection during γδ T cell development. Whereas epithelial populations using Vγ5 or Vγ7 chains are almost unaffected in their biology in the presence of the transgenic TCRδ chain, pairing with Vγ1 positively selects γδ T cell subpopulations with distinct programs in several organs, thereby distorting the repertoire. In conclusion, our data support dictation of developmental tropism together with adaptive-like recognition principles in a single antigen receptor.
Collapse
Affiliation(s)
- Anne M Hahn
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lisa Vogg
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Brey
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andrea Schneider
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen (OICE), Competence Unit, FAU, 91058 Erlangen, Germany
| | - Anna Pavlova
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | | | - Likai Tan
- Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Immo Prinz
- Medizinische Hochschule Hannover, Hannover, Germany; Institute for Systems Immunology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
11
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
12
|
Li C, Lin YD, Wang WB, Xu M, Zhang N, Xiong N. Differential regulation of CD8 + CD86 + Vγ1.1 + γδT cell responses in skin barrier tissue protection and homeostatic maintenance. Eur J Immunol 2022; 52:1498-1509. [PMID: 35581932 DOI: 10.1002/eji.202249793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Compared to αβT cells, γδT cells are more innate-like and preferentially function as the first line of defense in barrier tissues. Certain populations of γδT cells possess adaptive immune cell properties but their regulation is not well understood. We herein report that while innate-like γδT17 cells dominated in the skin of WT mice, Vγ1.1+ γδT cells with adaptive T cell-like properties predominantly expanded in the skin of TCRβ-/- and B2m-/- mice. Commensal bacteria drove expansion of Vγ1.1+ skin γδT cells, functional properties of which correlated with local immune requirements. That is, Vγ1.1+ skin γδT cells in TCRβ-/- mice were a heterogeneous population; while Vγ1.1+ skin γδT cells in B2m-/- mice were mostly CD8+ CD86+ cells that had a similar function of CD8+ CD86+ skin αβT cells in supporting local Treg cells. We also found that intrinsic TGF-β receptor 2-derived signals in skin CD8+ αβT and γδT cells are required for their expression of CD86, a molecule important in supporting skin Treg cells. Our findings reveal broad functional potentials of γδT cells that are coordinately regulated with αβT cells to help maintain local tissue homeostasis.
Collapse
Affiliation(s)
- Chao Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Yang-Ding Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Wei-Bei Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Ming Xu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Na Xiong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Dermatology and Cutaneous Surgery, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Williams L, Dery KJ, Lee WH, Li H, Shively JE, Kujawski M. Isolation and expansion of murine γδ T cells from mouse splenocytes. J Immunol Methods 2022; 508:113322. [PMID: 35843266 DOI: 10.1016/j.jim.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Elucidation of the function of gamma delta T cells (γδ T cells) requires robust models that show how γδ T cells are commonly involved in inflammation, since very little is known about the factors that promote and control their development and function. There are few studies of murine γδ T cells primarily because these cells have proven difficult to isolate, expand and characterize. Here, we describe a simple method that utilizes key expansion elements to isolate and expand murine CD4-CD8-CD3+ γδ T cells typically found in secondary lymphoid tissues. Expansion of γδ T cells reached 150-fold by day 8 of culture, depended on exogenous IL-2, αCD3, and αCD28, and supported efficient and reproducible in vitro differentiation. These studies showed high production of cytokines IFNγ and Granzyme B, with the novel finding of IL-24 upregulation as well. Expression analysis of expanded γδ T cells, after treatment with IL-2, revealed high levels of Granzyme B, Granzyme D, and IFNγ. Lactate dehydrogenase (LDH) cytotoxicity assays showed that expanded γδ T cells were effective at inducing >90% cytolysis of murine MC38 colon cancer, E0771 breast cancer, and B16 melanoma cells at 10:1 effector to target ratios. These findings indicated that murine γδ T cells can be successfully isolated, expanded, and used to perform preclinical therapy studies.
Collapse
Affiliation(s)
- Lindsay Williams
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Kenneth J Dery
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA; The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wen-Hui Lee
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Harry Li
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - John E Shively
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Maciej Kujawski
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
14
|
Liu R, Wu N, Gao H, Liang S, Yue K, -Dong T, Dong X, Xu LP, Wang Y, Zhang XH, Liu J, Huang XJ. Distinct activities of Vδ1 + T cells upon different cytomegalovirus reactivation status after hematopoietic transplantation. Immunology 2022; 167:368-383. [PMID: 35795896 DOI: 10.1111/imm.13542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation is the most frequent viral infectious complication correlating to non-relapse mortality after allogeneic hematopoietic cell transplantation (alloHCT). The intrinsic anti-CMV immunity has not been completely elucidated. γδ T cells have drawn increasing attentions due to their distinct biological features and potential ability against viral infections. Previous studies reported a general association of γδ T cells or Vδ2-negative γδ T cells with CMV reactivation. Whereas researches for the direct responses and specific functions of γδ T subsets remain limited, especially in the scenario of alloHCT. Herein, we initially demonstrated that Vδ1+ T cells directly and independently recognized cell-free CMV and CMV-infected target cells, and inhibited CMV replication in vitro. The anti-CMV effect of Vδ1+ T cells was partially through TCRγδ, TLR2, and NKG2D receptor pathways. Further investigation about the anti-CMV characteristics of Vδ1+ T cells was performed in a clinical cohort with different CMV reactivation status after alloHCT. We found that occasional CMV reactivation remarkably increased the recovery levels and stimulated the functional activity of Vδ1+ T cells. Whereas disability of Vδ1+ T cells was observed upon refractory CMV reactivation, indicating the differential responses of Vδ1+ T cells under different CMV reactivation status. CXCL10 and IFN-β that were dramatically induced by occasional CMV reactivation could re-activate the deficient Vδ1+ T cells from recipients with refractory CMV reactivation. These findings unveiled the distinct activities of Vδ1+ T cells in anti-CMV immunity after alloHCT and may help develop novel strategies for the treatment of CMV infectious diseases.
Collapse
Affiliation(s)
- Ruoyang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ning Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tianhui -Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
15
|
Bigley TM, Yang L, Kang LI, Saenz JB, Victorino F, Yokoyama WM. Disruption of thymic central tolerance by infection with murine roseolovirus induces autoimmune gastritis. J Exp Med 2022; 219:213039. [PMID: 35226043 PMCID: PMC8932538 DOI: 10.1084/jem.20211403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Infections with herpesviruses, including human roseoloviruses, have been proposed to cause autoimmune disease, but defining a causal relationship and mechanism has been difficult due to the ubiquitous nature of infection and development of autoimmunity long after acute infection. Murine roseolovirus (MRV) is highly related to human roseoloviruses. Herein we show that neonatal MRV infection induced autoimmune gastritis (AIG) in adult mice in the absence of ongoing infection. MRV-induced AIG was dependent on replication during the neonatal period and was CD4+ T cell and IL-17 dependent. Moreover, neonatal MRV infection was associated with development of a wide array of autoantibodies in adult mice. Finally, neonatal MRV infection reduced medullary thymic epithelial cell numbers, thymic dendritic cell numbers, and thymic expression of AIRE and tissue-restricted antigens, in addition to increasing thymocyte apoptosis at the stage of negative selection. These findings strongly suggest that infection with a roseolovirus early in life results in disruption of central tolerance and development of autoimmune disease.
Collapse
Affiliation(s)
- Tarin M. Bigley
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Liping Yang
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Liang-I Kang
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO
| | - Jose B. Saenz
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO
| | - Francisco Victorino
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Wayne M. Yokoyama
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
17
|
Ghilas S, Ambrosini M, Cancel JC, Brousse C, Massé M, Lelouard H, Dalod M, Crozat K. Natural killer cells and dendritic epidermal γδ T cells orchestrate type 1 conventional DC spatiotemporal repositioning toward CD8 + T cells. iScience 2021; 24:103059. [PMID: 34568787 PMCID: PMC8449251 DOI: 10.1016/j.isci.2021.103059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
Successful immune responses rely on a regulated delivery of the right signals to the right cells at the right time. Here we show that natural killer (NK) and dendritic epidermal γδ T cells (DETCs) use similar mechanisms to spatiotemporally orchestrate conventional type 1 dendritic cell (cDC1) functions in the spleen, skin, and its draining lymph nodes (dLNs). Upon MCMV infection in the spleen, cDC1 clusterize with activated NK cells in marginal zones. This XCR1-dependent repositioning of cDC1 toward NK cells allows contact delivery of IL-12 and IL-15/IL-15Rα by cDC1, which is critical for NK cell responses. NK cells deliver granulocyte-macrophage colony-stimulating factor (GM-CSF) to cDC1, guiding their CCR7-dependent relocalization into the T cell zone. In MCMV-infected skin, XCL1-secreting DETCs promote cDC1 migration from the skin to the dLNs. This XCR1-dependent licensing of cDC1 both in the spleen and skin accelerates antiviral CD8+ T cell responses, revealing an additional mechanism through which cDC1 bridge innate and adaptive immunity. Upon viral infection in the spleen, NK cells clusterize with cDC1 in the marginal zone This XCL1/XCR1-dependent interaction allows mutual delivery of activating signals NK cell GM-CSF directs cDC1 migration to T cell zone boosting CD8+ T cell priming In the skin, DETCs contact cDC1 via XCL1/XCR1 to promote antiviral CD8+ T cell priming
Collapse
Affiliation(s)
- Sonia Ghilas
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Ambrosini
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Jean-Charles Cancel
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Carine Brousse
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marion Massé
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Hugues Lelouard
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Karine Crozat
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
18
|
Ma L, Papadopoulou M, Taton M, Genco F, Marchant A, Meroni V, Vermijlen D. Effector Vγ9Vδ2 T cell response to congenital Toxoplasma gondii infection. JCI Insight 2021; 6:e138066. [PMID: 34255746 PMCID: PMC8409983 DOI: 10.1172/jci.insight.138066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
A major γδ T cell population in human adult blood are the Vγ9Vδ2 T cells that are activated and expanded in a TCR-dependent manner by microbe-derived and endogenously derived phosphorylated prenyl metabolites (phosphoantigens). Vγ9Vδ2 T cells are also abundant in human fetal peripheral blood, but compared with their adult counterparts they have a distinct developmental origin, are hyporesponsive toward in vitro phosphoantigen exposure, and do not possess a cytotoxic effector phenotype. In order to obtain insight into the role of Vγ9Vδ2 T cells in the human fetus, we investigated their response to in utero infection with the phosphoantigen-producing parasite Toxoplasma gondii (T. gondii). Vγ9Vδ2 T cells expanded strongly when faced with congenital T. gondii infection, which was associated with differentiation toward potent cytotoxic effector cells. The Vγ9Vδ2 T cell expansion in utero resulted in a fetal footprint with public germline-encoded clonotypes in the Vγ9Vδ2 TCR repertoire 2 months after birth. Overall, our data indicate that the human fetus, from early gestation onward, possesses public Vγ9Vδ2 T cells that acquire effector functions following parasite infections.
Collapse
Affiliation(s)
- Ling Ma
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Taton
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valeria Meroni
- IRCCS San Matteo Polyclinic, Pavia, Italy.,Molecular Medicine Department, University of Pavia, Italy
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
19
|
Meyer SJ, Steffensen M, Acs A, Weisenburger T, Wadewitz C, Winkler TH, Nitschke L. CD22 Controls Germinal Center B Cell Receptor Signaling, Which Influences Plasma Cell and Memory B Cell Output. THE JOURNAL OF IMMUNOLOGY 2021; 207:1018-1032. [PMID: 34330755 DOI: 10.4049/jimmunol.2100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Germinal center reactions are established during a thymus-dependent immune response. Germinal center (GC) B cells are rapidly proliferating and undergo somatic hypermutation in Ab genes. This results in the production of high-affinity Abs and establishment of long-lived memory cells. GC B cells show lower BCR-induced signaling when compared with naive B cells, but the functional relevance is not clear. CD22 is a member of the Siglec family and functions as an inhibitory coreceptor on B cells. Interestingly, GC B cells downregulate sialic acid forms that serve as high-affinity ligands for CD22, indicating a role for CD22 ligand binding during GC responses. We studied the role of CD22 in the GC with mixed bone marrow chimeric mice and found a disadvantage of CD22-/- GC B cells during the GC reaction. Mechanistic investigations ruled out defects in dark zone/light zone distribution and affinity maturation. Rather, an increased rate of apoptosis in CD22-/- GC B cells was responsible for the disadvantage, also leading to a lower GC output in plasma cells and memory B cells. CD22-/- GC B cells showed a clearly increased calcium response upon BCR stimulation, which was almost absent in wild-type GC B cells. We conclude that the differential expression of the low-affinity cis CD22 ligands in the GC normally results in a strong attenuation of BCR signaling in GC B cells, probably due to higher CD22-BCR interactions. Therefore, attenuation of BCR signaling by CD22 is involved in GC output and B cell fate.
Collapse
Affiliation(s)
- Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Andreas Acs
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas Weisenburger
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Charlotte Wadewitz
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
20
|
Petersen B, Kammerer R, Frenzel A, Hassel P, Dau TH, Becker R, Breithaupt A, Ulrich RG, Lucas-Hahn A, Meyers G. Generation and first characterization of TRDC-knockout pigs lacking γδ T cells. Sci Rep 2021; 11:14965. [PMID: 34294758 PMCID: PMC8298467 DOI: 10.1038/s41598-021-94017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
The TRDC-locus encodes the T cell receptor delta constant region, one component of the γδ T cell receptor which is essential for development of γδ T cells. In contrast to peptide recognition by αβ T cells, antigens activating γδ T cells are mostly MHC independent and not well characterized. Therefore, the function of γδ T cells and their contribution to protection against infections is still unclear. Higher numbers of circulating γδ T cells compared to mice, render the pig a suitable animal model to study γδ T cells. Knocking-out the porcine TRDC-locus by intracytoplasmic microinjection and somatic cell nuclear transfer resulted in healthy living γδ T cell deficient offspring. Flow cytometric analysis revealed that TRDC-KO pigs lack γδ T cells in peripheral blood mononuclear cells (PBMC) and spleen cells. The composition of the remaining leucocyte subpopulations was not affected by the depletion of γδ T cells. Genome-wide transcriptome analyses in PBMC revealed a pattern of changes reflecting the impairment of known or expected γδ T cell dependent pathways. Histopathology did not reveal developmental abnormalities of secondary lymphoid tissues. However, in a vaccination experiment the KO pigs stayed healthy but had a significantly lower neutralizing antibody titer as the syngenic controls.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany.
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany
| | - Roswitha Becker
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Insel Riems, Greifswald, Germany
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Gregor Meyers
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany
| |
Collapse
|
21
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
22
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Papadopoulou M, Sanchez Sanchez G, Vermijlen D. Innate and adaptive γδ T cells: How, when, and why. Immunol Rev 2020; 298:99-116. [PMID: 33146423 DOI: 10.1111/imr.12926] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
γδ T cells comprise the third cell lineage of lymphocytes that use, like αβ T cells and B cells, V(D)J gene rearrangement with the potential to generate a highly diverse T cell receptor (TCR) repertoire. There is no obvious conservation of γδ T cell subsets (based on TCR repertoire and/or function) between mice and human, leading to the notion that human and mouse γδ T cells are highly different. In this review, we focus on human γδ T cells, building on recent studies using high-throughput sequencing to analyze the TCR repertoire in various settings. We make then the comparison with mouse γδ T cell subsets highlighting the similarities and differences and describe the remarkable changes during lifespan of innate and adaptive γδ T cells. Finally, we propose mechanisms contributing to the generation of innate versus adaptive γδ T cells. We conclude that key elements related to the generation of the γδ TCR repertoire and γδ T cell activation/development are conserved between human and mice, highlighting the similarities between these two species.
Collapse
Affiliation(s)
- Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| |
Collapse
|
24
|
Castro CD, Boughter CT, Broughton AE, Ramesh A, Adams EJ. Diversity in recognition and function of human γδ T cells. Immunol Rev 2020; 298:134-152. [PMID: 33136294 DOI: 10.1111/imr.12930] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
As interest increases in harnessing the potential power of tissue-resident cells for human health and disease, γδ T cells have been thrust into the limelight due to their prevalence in peripheral tissues, their sentinel-like phenotypes, and their unique antigen recognition capabilities. This review focuses primarily on human γδ T cells, highlighting their distinctive characteristics including antigen recognition, function, and development, with an emphasis on where they differ from their αβ T cell comparators, as well as from γδ T cell populations in the mouse. We review the antigens that have been identified thus far to regulate members of the human Vδ1 population and discuss what players are involved in transducing phosphoantigen-mediated signals to human Vγ9Vδ2 T cells. We also briefly review distinguishing features of these cells in terms of TCR signaling, use of coreceptor and costimulatory molecules and their development. These cells have great potential to be harnessed in a clinical setting, but caution must be taken to understand their unique capabilities and how they differ from the populations to which they are commonly compared.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher T Boughter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Augusta E Broughton
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Amrita Ramesh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Willcox CR, Mohammed F, Willcox BE. The distinct MHC-unrestricted immunobiology of innate-like and adaptive-like human γδ T cell subsets-Nature's CAR-T cells. Immunol Rev 2020; 298:25-46. [PMID: 33084045 DOI: 10.1111/imr.12928] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Distinct innate-like and adaptive-like immunobiological paradigms are emerging for human γδ T cells, supported by a combination of immunophenotypic, T cell receptor (TCR) repertoire, functional, and transcriptomic data. Evidence of the γδ TCR/ligand recognition modalities that respective human subsets utilize is accumulating. Although many questions remain unanswered, one superantigen-like modality features interactions of germline-encoded regions of particular TCR Vγ regions with specific BTN/BTNL family members and apparently aligns with an innate-like biology, albeit with some scope for clonal amplification. A second involves CDR3-mediated γδ TCR interaction with diverse ligands and aligns with an adaptive-like biology. Importantly, these unconventional modalities provide γδ T cells with unique recognition capabilities relative to αβ T cells, B cells, and NK cells, allowing immunosurveillance for signatures of "altered self" on target cells, via a membrane-linked γδ TCR recognizing intact non-MHC proteins on the opposing cell surface. In doing so, they permit cellular responses in diverse situations including where MHC expression is compromised, or where conventional adaptive and/or NK cell-mediated immunity is suppressed. γδ T cells may therefore utilize their TCR like a cell-surface Fab repertoire, somewhat analogous to engineered chimeric antigen receptor T cells, but additionally integrating TCR signaling with parallel signals from other surface immunoreceptors, making them multimolecular sensors of cellular stress.
Collapse
Affiliation(s)
- Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
26
|
Abstract
γδ T cells are a unique T cell subpopulation that are rare in secondary lymphoid organs but enriched in many peripheral tissues, such as the skin, intestines and lungs. By rapidly producing large amounts of cytokines, γδ T cells make key contributions to immune responses in these tissues. In addition to their immune surveillance activities, recent reports have unravelled exciting new roles for γδ T cells in steady-state tissue physiology, with functions ranging from the regulation of thermogenesis in adipose tissue to the control of neuronal synaptic plasticity in the central nervous system. Here, we review the roles of γδ T cells in tissue homeostasis and in surveillance of infection, aiming to illustrate their major impact on tissue integrity, tissue repair and immune protection.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Immune memory is essential for host defense against invaders and it is also used as a basis for vaccine development. For these reasons, it is crucial to understand its molecular basis. In this review, we describe recent findings on memory characteristics of innate-like lymphocytes and its contribution to host protection.(Figure is included in full-text article.) RECENT FINDINGS: In addition to adaptive immune cells, innate cells are also able to mount memory responses through a process called 'trained immunity.' Importantly, the lymphoid lineage is not restricted to cells carrying specific T-cell or B-cell receptors, but include cells with germline-encoded receptors. Recent studies show that these innate-like lymphocytes are able to generate efficient recall responses to reinfection. In different circumstances and depending on the cell type, innate-like lymphocyte memory can be antigen-specific or unspecific. Epigenetic changes accompany the generation of memory in these cells, but are still poorly defined. SUMMARY Immune memory is not restricted to antigen-specific cells, but also encompass different populations of innate immune cells. Innate-like lymphocytes embrace features of both innate and adaptive immune memory, and thus bridge adaptive and innate immune characteristics.
Collapse
|
28
|
Anderson CK, Reilly EC, Lee AY, Brossay L. Qa-1-Restricted CD8 + T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection. Cell Rep 2020; 27:537-548.e5. [PMID: 30970256 PMCID: PMC6472915 DOI: 10.1016/j.celrep.2019.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity. Anderson et al. describe a heterogenous population of non-classical CD8+ T cells responding to MCMV. Importantly, this population can protect mice from MCMV-induced lethality in the absence of other adaptive immune cells. Among the MHC class Ib-restricted CD8+ T cells responding, Qa-1-specific cells are required for protection.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Emma C Reilly
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Laurent Brossay
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Dunst J, Glaros V, Englmaier L, Sandoz PA, Önfelt B, Kisielow J, Kreslavsky T. Recognition of synthetic polyanionic ligands underlies "spontaneous" reactivity of Vγ1 γδTCRs. J Leukoc Biol 2020; 107:1033-1044. [PMID: 31943366 PMCID: PMC7317387 DOI: 10.1002/jlb.2ma1219-392r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 01/02/2023] Open
Abstract
Although γδTCRs were discovered more than 30 yr ago, principles of antigen recognition by these receptors remain unclear and the nature of these antigens is largely elusive. Numerous studies reported that T cell hybridomas expressing several Vγ1-containing TCRs, including the Vγ1Vδ6 TCR of γδNKT cells, spontaneously secrete cytokines. This property was interpreted as recognition of a self-ligand expressed on the hybridoma cells themselves. Here, we revisited this finding using a recently developed reporter system and live single cell imaging. We confirmed strong spontaneous signaling by Vγ1Vδ6 and related TCRs, but not by TCRs from several other γδ or innate-like αβ T cells, and demonstrated that both γ and δ chains contributed to this reactivity. Unexpectedly, live single cell imaging showed that activation of this signaling did not require any interaction between cells. Further investigation revealed that the signaling is instead activated by interaction with negatively charged surfaces abundantly present under regular cell culture conditions and was abrogated when noncharged cell culture vessels were used. This mode of TCR signaling activation was not restricted to the reporter cell lines, as interaction with negatively charged surfaces also triggered TCR signaling in ex vivo Vγ1 γδ T cells. Taken together, these results explain long-standing observations on the spontaneous reactivity of Vγ1Vδ6 TCR and demonstrate an unexpected antigen presentation-independent mode of TCR activation by a spectrum of chemically unrelated polyanionic ligands.
Collapse
Affiliation(s)
- Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Vassilis Glaros
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Lukas Englmaier
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Patrick A. Sandoz
- Department of Applied PhysicsScience for Life LaboratoryKTH Royal Institute of TechnologyStockholmSweden
| | - Björn Önfelt
- Department of Applied PhysicsScience for Life LaboratoryKTH Royal Institute of TechnologyStockholmSweden
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteSolnaSweden
| | - Jan Kisielow
- Institute of Molecular Health SciencesETHZurichSwitzerland
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
30
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
31
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
32
|
Deutschmann J, Schneider A, Gruska I, Vetter B, Thomas D, Kießling M, Wittmann S, Herrmann A, Schindler M, Milbradt J, Ferreirós N, Winkler TH, Wiebusch L, Gramberg T. A viral kinase counteracts in vivo restriction of murine cytomegalovirus by SAMHD1. Nat Microbiol 2019; 4:2273-2284. [PMID: 31548683 DOI: 10.1038/s41564-019-0529-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
The deoxynucleotide triphosphate (dNTP) hydrolase SAMHD1 inhibits retroviruses in non-dividing myeloid cells. Although antiviral activity towards DNA viruses has also been demonstrated, the role of SAMHD1 during cytomegalovirus (CMV) infection remains unclear. To determine the impact of SAMHD1 on the replication of CMV, we used murine CMV (MCMV) to infect a previously established SAMHD1 knockout mouse model and found that SAMHD1 inhibits the replication of MCMV in vivo. By comparing the replication of MCMV in vitro in myeloid cells and fibroblasts from SAMHD1-knockout and control mice, we found that the viral kinase M97 counteracts SAMHD1 after infection by phosphorylating the regulatory residue threonine 603. The phosphorylation of SAMHD1 in infected cells correlated with a reduced level of dNTP hydrolase activity and the loss of viral restriction. Together, we demonstrate that SAMHD1 acts as a restriction factor in vivo and we identify the M97-mediated phosphorylation of SAMHD1 as a previously undescribed viral countermeasure.
Collapse
Affiliation(s)
- Janina Deutschmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Schneider
- Chair of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Gruska
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charité Universitätsmedizin, Berlin, Germany
| | - Barbara Vetter
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charité Universitätsmedizin, Berlin, Germany
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Melissa Kießling
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Herrmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Schindler
- Institute for Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Jens Milbradt
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Thomas H Winkler
- Chair of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lüder Wiebusch
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
33
|
Sant S, Jenkins MR, Dash P, Watson KA, Wang Z, Pizzolla A, Koutsakos M, Nguyen TH, Lappas M, Crowe J, Loudovaris T, Mannering SI, Westall GP, Kotsimbos TC, Cheng AC, Wakim L, Doherty PC, Thomas PG, Loh L, Kedzierska K. Human γδ T-cell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. Clin Transl Immunology 2019; 8:e1079. [PMID: 31559018 PMCID: PMC6756999 DOI: 10.1002/cti2.1079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T‐cell receptor (TCR) clonal expansions. We dissected anti‐viral functions of human γδ T cells towards influenza viruses and defined influenza‐reactive γδ TCRs in the context of γδ‐TCRs across the human lifespan. Methods We performed 51Cr‐killing assay and single‐cell time‐lapse live video microscopy to define mechanisms underlying γδ T‐cell‐mediated killing of influenza‐infected targets. We assessed cytotoxic profiles of γδ T cells in influenza‐infected patients and IFN‐γ production towards influenza‐infected lung epithelial cells. Using single‐cell RT‐PCR, we characterised paired TCRγδ clonotypes for influenza‐reactive γδ T cells in comparison with TCRs from healthy neonates, adults, elderly donors and tissues. Results We provide the first visual evidence of γδ T‐cell‐mediated killing of influenza‐infected targets and show distinct features to those reported for CD8+ T cells. γδ T cells displayed poly‐cytotoxic profiles in influenza‐infected patients and produced IFN‐γ towards influenza‐infected cells. These IFN‐γ‐producing γδ T cells were skewed towards the γ9δ2 TCRs, particularly expressing the public GV9‐TCRγ, capable of pairing with numerous TCR‐δ chains, suggesting their significant role in γδ T‐cell immunity. Neonatal γδ T cells displayed extensive non‐overlapping TCRγδ repertoires, while adults had enriched γ9δ2‐pairings with diverse CDR3γδ regions. Conversely, the elderly showed distinct γδ‐pairings characterised by large clonal expansions, a profile also prominent in adult tissues. Conclusion Human TCRγδ repertoire is shaped by age, tissue compartmentalisation and the individual's history of infection, suggesting that these somewhat enigmatic γδ T cells indeed respond to antigen challenge.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Misty R Jenkins
- Immunology Division Walter and Eliza Hall Institute Melbourne VIC Australia.,LaTrobe Institute for Molecular Science La Trobe University Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Pradyot Dash
- Department of Immunology St Jude Children's Research Hospital Memphis TN USA
| | - Katherine A Watson
- Immunology Division Walter and Eliza Hall Institute Melbourne VIC Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Angela Pizzolla
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group Department of Obstetrics & Gynaecology Mercy Hospital for Women University of Melbourne Melbourne VIC Australia
| | | | - Tom Loudovaris
- Immunology and Diabetes Unit St Vincent's Institute of Medical Research Fitzroy VIC Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit St Vincent's Institute of Medical Research Fitzroy VIC Australia
| | - Glen P Westall
- Lung Transplant Unit Alfred Hospital Melbourne VIC Australia
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine The Alfred Hospital Melbourne VIC Australia.,Department of Medicine Central Clinical School The Alfred Hospital Melbourne Monash University Melbourne VIC Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine Monash University Melbourne VIC Australia.,Infection Prevention and Healthcare Epidemiology Unit Alfred Health Melbourne VIC Australia
| | - Linda Wakim
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Immunology Division Walter and Eliza Hall Institute Melbourne VIC Australia
| | - Paul G Thomas
- Department of Immunology St Jude Children's Research Hospital Memphis TN USA
| | - Liyen Loh
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| |
Collapse
|
34
|
Long HM, Meckiff BJ, Taylor GS. The T-cell Response to Epstein-Barr Virus-New Tricks From an Old Dog. Front Immunol 2019; 10:2193. [PMID: 31620125 PMCID: PMC6759930 DOI: 10.3389/fimmu.2019.02193] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infects most people and establishes life-long infection controlled by the host's immune system. The genetic stability of the virus, deep understanding of the viral antigens and immune epitopes recognized by the host's T-cell system and the fact that recent infection can be identified by the development of symptomatic infectious mononucleosis makes EBV a powerful system in which to study human immunology. The association between EBV and multiple cancers also means that the lessons learned have strong translational potential. Increasing evidence of a role for resident memory T-cells and non-conventional γδ T-cells in controlling EBV infection suggests new opportunities for research and means the virus will continue to provide exciting new insights into human biology and immunology into the future.
Collapse
Affiliation(s)
- Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Sullivan LC, Shaw EM, Stankovic S, Snell GI, Brooks AG, Westall GP. The complex existence of γδ T cells following transplantation: the good, the bad and the simply confusing. Clin Transl Immunology 2019; 8:e1078. [PMID: 31548887 PMCID: PMC6748302 DOI: 10.1002/cti2.1078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Gamma delta (γδ) T cells are a highly heterogeneous population of lymphocytes that exhibit innate and adaptive immune properties. Despite comprising the majority of residing lymphocytes in many organs, the role of γδ T cells in transplantation outcomes is under‐researched. γδ T cells can recognise a diverse array of ligands and exert disparate effector functions. As such, they may potentially contribute to both allograft acceptance and rejection, as well as impacting on infection and post‐transplant malignancy. Here, we review the current literature on the role and function of γδ T cells following solid organ and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| | - Evangeline M Shaw
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Gregory I Snell
- Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Glen P Westall
- Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
36
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
37
|
Cytomegalovirus (CMV) Pneumonitis: Cell Tropism, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20163865. [PMID: 31398860 PMCID: PMC6719013 DOI: 10.3390/ijms20163865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing disease mainly in immunocompromised patients or after congenital infection. HCMV infection of the respiratory tract leads to pneumonitis in the immunocompromised host, which is often associated with a bad clinical course. The related mouse cytomegalovirus (MCMV) likewise exhibits a distinct tropism for the lung and thus provides an elegant model to study host-pathogen interaction. Accordingly, fundamental features of cytomegalovirus (CMV) pneumonitis have been discovered in mice that correlate with clinical data obtained from humans. Recent studies have provided insight into MCMV cell tropism and localized inflammation after infection of the respiratory tract. Accordingly, the nodular inflammatory focus (NIF) has been identified as the anatomical correlate of immune control in lungs. Several hematopoietic cells involved in antiviral immunity reside in NIFs and their key effector molecules have been deciphered. Here, we review what has been learned from the mouse model with focus on the microanatomy of infection sites and antiviral immunity in MCMV pneumonitis.
Collapse
|
38
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
39
|
Willcox BE, Willcox CR. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat Immunol 2019; 20:121-128. [PMID: 30664765 DOI: 10.1038/s41590-018-0304-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
γδ T cells have been retained as a lineage over the majority of vertebrate evolution, are able to respond to immune challenges in unique ways, and are of increasing therapeutic interest. However, one central mystery has endured: the identity of the ligands recognized by the γδ T cell antigen receptor. Here we discuss the inherent challenges in answering this question, the new opportunities provided by recent studies, and the criteria by which the field might judge success.
Collapse
Affiliation(s)
- Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
40
|
Reddehase MJ, Lemmermann NAW. Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the "Test of Time". Viruses 2018; 10:v10120693. [PMID: 30563202 PMCID: PMC6315540 DOI: 10.3390/v10120693] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Human Cytomegalovirus (hCMV), which is the prototype member of the β-subfamily of the herpesvirus family, is a pathogen of high clinical relevance in recipients of hematopoietic cell transplantation (HCT). hCMV causes multiple-organ disease and interstitial pneumonia in particular upon infection during the immunocompromised period before hematopoietic reconstitution restores antiviral immunity. Clinical investigation of pathomechanisms and of strategies for an immune intervention aimed at restoring antiviral immunity earlier than by hematopoietic reconstitution are limited in patients to observational studies mainly because of ethical issues including the imperative medical indication for chemotherapy with antivirals. Aimed experimental studies into mechanisms, thus, require animal models that match the human disease as close as possible. Any model for hCMV disease is, however, constrained by the strict host-species specificity of CMVs that prevents the study of hCMV in any animal model including non-human primates. During eons of co-speciation, CMVs each have evolved a set of "private genes" in adaptation to their specific mammalian host including genes that have no homolog in the CMV virus species of any other host species. With a focus on the mouse model of CD8 T cell-based immunotherapy of CMV disease after experimental HCT and infection with murine CMV (mCMV), we review data in support of the phenomenon of "biological convergence" in virus-host adaptation. This includes shared fundamental principles of immune control and immune evasion, which allows us to at least make reasoned predictions from the animal model as an experimental "proof of concept." The aim of a model primarily is to define questions to be addressed by clinical investigation for verification, falsification, or modification and the results can then give feedback to refine the experimental model for research from "bedside to bench".
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
41
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
42
|
Laboratory diagnostics of murine blood for detection of mouse cytomegalovirus (MCMV)-induced hepatitis. Sci Rep 2018; 8:14823. [PMID: 30287927 PMCID: PMC6172243 DOI: 10.1038/s41598-018-33167-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.
Collapse
|
43
|
Seelige R, Saddawi-Konefka R, Adams NM, Picarda G, Sun JC, Benedict CA, Bui JD. Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Sci Rep 2018; 8:13670. [PMID: 30209334 PMCID: PMC6135835 DOI: 10.1038/s41598-018-32011-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | | | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
44
|
Hunter S, Willcox CR, Davey MS, Kasatskaya SA, Jeffery HC, Chudakov DM, Oo YH, Willcox BE. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J Hepatol 2018; 69:654-665. [PMID: 29758330 PMCID: PMC6089840 DOI: 10.1016/j.jhep.2018.05.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS γδ T cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. Therefore, we aimed to elucidate the T cell receptor (TCR) diversity, immunophenotype and function of γδ T cells in the human liver. METHODS We characterised the TCR repertoire, immunophenotype and function of human liver infiltrating γδ T cells, by TCR sequencing analysis, flow cytometry, in situ hybridisation and immunohistochemistry. We focussed on the predominant tissue-associated Vδ2- γδ subset, which is implicated in liver immunopathology. RESULTS Intrahepatic Vδ2- γδ T cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T cells were predominantly CD27lo/- effector lymphocytes, whereas naïve CD27hi, TCR-diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RAhi Vδ2- γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2- γδ T cell pool also included a phenotypically distinct CD45RAlo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2- γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. CONCLUSION These findings suggest that the ability of Vδ2- γδ T cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues, such as the liver, which results in functionally distinct peripheral and liver-resident memory γδ T cell subsets. They also highlight the inherent functional plasticity within the Vδ2- γδ T cell compartment and provide information that could be used for the design of cellular therapies that suppress liver inflammation or combat liver cancer. LAY SUMMARY γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded. Moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance.
Collapse
Affiliation(s)
- Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology & Immunotherapy, University of Birmingham, United Kingdom
| | - Carrie R. Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Martin S. Davey
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sofya A. Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Hannah C. Jeffery
- Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology & Immunotherapy, University of Birmingham, United Kingdom
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia,Skolkovo Institute of Science and Technology, Moscow, Russia,Central European Institute of Technology, Masaryk University, Brno, Czech Republic,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ye H. Oo
- Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology & Immunotherapy, University of Birmingham, United Kingdom,University Hospital of Birmingham NHS Foundation Trust, United Kingdom,Corresponding authors. Addresses: Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel.: +44 (0) 121 414 2246; fax: +44 (0) 121 415 8701 (Y. H. Oo), or Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel.: +44 0121 414 9533; fax: +44 0121 414 4486 (B. Willcox).
| | - Benjamin E. Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,Corresponding authors. Addresses: Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel.: +44 (0) 121 414 2246; fax: +44 (0) 121 415 8701 (Y. H. Oo), or Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel.: +44 0121 414 9533; fax: +44 0121 414 4486 (B. Willcox).
| |
Collapse
|
45
|
Brown ZJ, Yu SJ, Heinrich B, Ma C, Fu Q, Sandhu M, Agdashian D, Zhang Q, Korangy F, Greten TF. Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma. Cancer Immunol Immunother 2018; 67:1305-1315. [PMID: 29959458 DOI: 10.1007/s00262-018-2190-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Immune checkpoint blockade with anti-CTLA-4 and anti-PD-1 antibodies has shown promising results in the treatment of patients with advanced HCC. The anti-PD-1 antibody, nivolumab, is now approved for patients who have had progressive disease on the current standard of care. However, a subset of patients with advanced HCC treated with immune checkpoint inhibitors failed to respond to therapy. Here, we provide evidence of adaptive resistance to immune checkpoint inhibitors through upregulation of indoleamine 2,3-dioxygenase (IDO) in HCC. Anti-CTLA-4 treatment promoted an induction of IDO1 in resistant HCC tumors but not in tumors sensitive to immune checkpoint blockade. Using both subcutaneous and hepatic orthotopic models, we found that the addition of an IDO inhibitor increases the efficacy of treatment in HCC resistant tumors with high IDO induction. Furthermore, in vivo neutralizing studies demonstrated that the IDO induction by immune checkpoint blockade was dependent on IFN-γ. Similar findings were observed with anti-PD-1 therapy. These results provide evidence that IDO may play a role in adaptive resistance to immune checkpoint inhibitors in patients with HCC. Therefore, inhibiting IDO in combination with immune checkpoint inhibitors may add therapeutic benefit in tumors which overexpress IDO and should be considered for clinical evaluation in HCC.
Collapse
Affiliation(s)
- Zachary J Brown
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Su Jong Yu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Bernd Heinrich
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Qiong Fu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Milan Sandhu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - David Agdashian
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Qianfei Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Firouzeh Korangy
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA. .,National Cancer Institute, Center for Cancer Research, Liver Cancer Program, Bethesda, USA.
| |
Collapse
|
46
|
Davey MS, Willcox CR, Baker AT, Hunter S, Willcox BE. Recasting Human Vδ1 Lymphocytes in an Adaptive Role. Trends Immunol 2018; 39:446-459. [PMID: 29680462 PMCID: PMC5980997 DOI: 10.1016/j.it.2018.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
γδ T cells are unconventional lymphocytes commonly described as 'innate-like' in function, which can respond in both a T cell receptor (TCR)-independent and also major histocompatibility complex (MHC)-unrestricted TCR-dependent manner. While the relative importance of TCR recognition had remained unclear, recent studies revealed that human Vδ1 T cells display unexpected parallels with adaptive αβ T cells. Vδ1 T cells undergo profound and highly focussed clonal expansion from an initially diverse and private TCR repertoire, most likely in response to specific immune challenges. Concomitantly, they differentiate from a Vδ1 T cell naïve (Tnaïve) to a Vδ1 T cell effector (Teffector) phenotype, marked by the downregulation of lymphoid homing receptors and upregulation of peripheral homing receptors and effector markers. This suggests that an adaptive paradigm applies to Vδ1 T cells, likely involving TCR-dependent but MHC-unrestricted responses to microbial and non-microbial challenges.
Collapse
Affiliation(s)
- Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; These authors contributed equally
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; These authors contributed equally
| | - Alfie T Baker
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
47
|
Abstract
Herpesviruses have coevolved with their hosts over hundreds of millions of years and exploit fundamental features of their biology. Cytomegaloviruses (CMVs) colonize blood-borne myeloid cells, and it has been hypothesized that systemic dissemination arises from infected stem cells in bone marrow. However, poor CMV transfer by stem cell transplantation argues against this being the main reservoir. To identify alternative pathways for CMV spread, we tracked murine CMV (MCMV) colonization after mucosal entry. We show that following intranasal MCMV infection, lung CD11c+ dendritic cells (DC) migrated sequentially to lymph nodes (LN), blood, and then salivary glands. Replication-deficient virus followed the same route, and thus, DC infected peripherally traversed LN to enter the blood. Given that DC are thought to die locally following their arrival and integration into LN, recirculation into blood represents a new pathway. We examined host and viral factors that facilitated this LN traverse. We show that MCMV-infected DC exited LN by a distinct route to lymphocytes, entering high endothelial venules and bypassing the efferent lymph. LN exit required CD44 and the viral M33 chemokine receptor, without which infected DC accumulated in LN and systemic spread was greatly reduced. Taken together, our studies provide the first demonstration of virus-driven DC recirculation. As viruses follow host-defined pathways, high endothelial venules may normally allow DC to pass from LN back into blood. Human cytomegalovirus (HCMV) causes devastating disease in the unborn fetus and in the immunocompromised. There is no licensed vaccine, and preventive measures are impeded by our poor understanding of early events in host colonization. HCMV and murine CMV (MCMV) both infect blood-borne myeloid cells. HCMV-infected blood cells are thought to derive from infected bone marrow stem cells. However, infected stem cells have not been visualized in vivo nor shown to produce virus ex vivo, and hematopoietic transplants poorly transfer infection. We show that MCMV-infected dendritic cells in the lungs reach the blood via lymph nodes, surprisingly migrating into high endothelial venules. Dissemination did not require viral replication. It depended on the constitutively active viral chemokine receptor M33 and on the host hyaluronan receptor CD44. Thus, viral chemokine receptors are a possible target to limit systemic CMV infections.
Collapse
|
48
|
Peripheral clonal selection shapes the human γδ T-cell repertoire. Cell Mol Immunol 2017; 14:733-735. [PMID: 28782752 DOI: 10.1038/cmi.2017.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023] Open
|
49
|
Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdörfer L, Reinhardt A, Ravens I, Beck M, Geffers R, von Kaisenberg C, Heuser M, Thol F, Ganser A, Förster R, Koenecke C, Prinz I. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 2017; 18:393-401. [DOI: 10.1038/ni.3686] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
|
50
|
Khairallah C, Déchanet-Merville J, Capone M. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection. Front Immunol 2017; 8:105. [PMID: 28232834 PMCID: PMC5298998 DOI: 10.3389/fimmu.2017.00105] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients.
Collapse
Affiliation(s)
| | | | - Myriam Capone
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| |
Collapse
|