1
|
Yang Z, Zheng Y, Ren K, Wang W, Li S. Hydroxy-selenomethionine helps cows to overcome heat stress by enhancing antioxidant capacity and alleviating blood-milk barrier damage. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:171-181. [PMID: 39967694 PMCID: PMC11833791 DOI: 10.1016/j.aninu.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 02/20/2025]
Abstract
Heat stress can lead to decreased feed intake, apoptosis of mammary epithelial cells, and decreased milk yield and quality. Selenium is an important element in the composition of at least 25 selenoproteins. Hydroxy-selenomethionine (HMSeBA) is a novel organic selenium that has been shown to have a better deposition effect. However, whether HMSeBA alleviates damage to the mammary gland blood-milk barrier caused by heat stress and how this affects the performance of dairy cows remain largely unexplored. Therefore, 32 healthy Holstein cows with similar gestation days (150.41 ± 20.07 d), milk yield (36.15 ± 3.02 kg) and parity (3.25 ± 0.51) were selected and randomly divided into two total mixed rations with different selenium (Se) sources: sodium selenite (SSe) and HMSeBA. This study evaluated the outcomes of HMSeBA on antioxidant capacity, immunity, and blood-milk barrier damage in dairy cows during heat stress by collecting the samples of blood, rumen fluid and mammary gland biopsy. The experiment was conducted over 35 d, including a 5-day pre-feeding period and a 30-day experimental period. The temperature and humidity index (THI) were all above 80 throughout the experiment period. The results showed that HMSeBA decreased the respiratory rate (P < 0.001) and the content of inflammatory cytokines in the serum and increased the content of immune factors and antioxidant capacity (P < 0.05). In addition, HMSeBA reduced the expression of inflammatory cytokines and heat shock proteins in mammary gland (P < 0.05). Hematoxylin-eosin-stained pathological sections showed massive thickening of acinar walls and severe destruction of glandular structures in the SSe group, but the structure of the acinar mammary gland in the HMSeBA group was intact. Furthermore, HMSeBA promoted the expression of the phosphatidylinositol 3-kinase (PI3K, P < 0.001)/protein kinase B (AKT, P = 0.011)/mammalian target of rapamycin (mTOR, P = 0.008) pathway and improved the expression of zonula occludens-1 (ZO-1, P = 0.014) and occluding (OCLN, P = 0.012) in the mammary gland, suggesting less damage caused by heat stress to the blood-milk barrier. Our results demonstrated that HMSeBA can improve the antioxidant capacity and immunity of dairy cows and the expression of tight junction proteins in mammary gland to help alleviate the blood-milk barrier damage by heat stress, which could reduce the damage of heat stress on milk yield.
Collapse
Affiliation(s)
- Zhantao Yang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuhui Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Sk MS, Mwangomo R, Daniel L, Gilmore J. Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology. J Biomed Mater Res B Appl Biomater 2025; 113:e35513. [PMID: 39854136 DOI: 10.1002/jbm.b.35513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 11/10/2024] [Indexed: 01/26/2025]
Abstract
Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic. However, precisely engineered design can outperform the risk with myriad benefits. Wound care technologies are evolving, and products involved in wound care management have a yearly market value of $15-22 billion. Solution blow spinning (SBS) is a facile technique to synthesize biocompatible nanofibers with scalable processing variables for multidirectional biomedical applications. SBS is feasible for a wide range of thermoplastic polymers and nanomaterials to fabricate nanocomposites. This review will focus on the relevance of SBS technology for wound care, including dressings, drug delivery, tissue engineering scaffolds, and sensors.
Collapse
Affiliation(s)
- Md Salauddin Sk
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Ruth Mwangomo
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Luke Daniel
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Jordon Gilmore
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Li Y, Wang X, Ren Y, Han BZ, Xue Y. Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review. Crit Rev Food Sci Nutr 2025:1-26. [PMID: 39757837 DOI: 10.1080/10408398.2024.2448768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation. This review explores the food hazards, including microbial and abiotic factors, that may trigger NLRP3-mediated illnesses and inflammation. It also highlights bioactive compounds in food that can suppress NLRP3 inflammasome activation through various mechanisms, linking its activation and inhibition to different pathways. Especially, this review provided further insight into NLRP3-related targets where food bioactive compounds can interact to block the NLRP3 inflammasome activation process, as well as mechanisms on how these compounds facilitate inactivation processes.
Collapse
Affiliation(s)
- Yabo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyi Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 Inflammasomes: Dual Function in Infectious Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:407-417. [PMID: 39102612 PMCID: PMC11299487 DOI: 10.4049/jimmunol.2300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has been the most distinctive polymer protein complex. After recognizing the endogenous and exogenous danger signals, NLRP3 can cause inflammation by pyroptosis and secretion of mature, bioactive forms of IL-1β and IL-18. The NLRP3 inflammasome is essential in the genesis and progression of infectious illnesses. Herein, we provide a comprehensive review of the NLRP3 inflammasome in infectious diseases, focusing on its two-sided effects. As an essential part of host defense with a protective impact, abnormal NLRP3 inflammasome activation, however, result in a systemic high inflammatory response, leading to subsequent damage. In addition, scientific evidence of small molecules, biologics, and phytochemicals acting on the NLRP3 inflammasome has been reviewed. We believe that the NLRP3 inflammasome helps us understand the pathological mechanism of different stages of infectious diseases and that inhibitors targeting the NLRP3 inflammasome will become a new and valuable research direction for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Qingjuan Wu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| |
Collapse
|
5
|
Zheng H, Triplett KD, Prossnitz ER, Hall PR, Daly SM. G protein-coupled estrogen receptor agonist G-1 decreases ADAM10 levels and NLRP3-inflammasome component activation in response to Staphylococcus aureus alpha-hemolysin. Microbiologyopen 2024; 13:e23. [PMID: 38867416 PMCID: PMC11168966 DOI: 10.1002/mbo3.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The G protein-coupled estrogen receptor, also known as GPER1 or originally GPR30, is found in various tissues, indicating its diverse functions. It is typically present in immune cells, suggesting its role in regulating immune responses to infectious diseases. Our previous studies have shown that G-1, a selective GPER agonist, can limit the pathogenesis mediated by Staphylococcus aureus alpha-hemolysin (Hla). It aids in clearing bacteria in a mouse skin infection model and restricts the surface display of the Hla receptor, ADAM10 (a disintegrin and metalloprotease 10) in HaCaT keratinocytes. In this report, we delve into the modulation of GPER in human immune cells in relation to the NLRP3 inflammasome. We used macrophage-like differentiated THP-1 cells for our study. We found that treating these cells with G-1 reduces ATP release, decreases the activity of the caspase-1 enzyme, and lessens cell death following Hla intoxication. This is likely due to the reduced levels of ADAM10 and NLRP3 proteins, as well as the decreased display of the ADAM10 receptor in the G-1-treated THP-1 cells. Our studies, along with our previous work, suggest the potential therapeutic use of G-1 in reducing Hla susceptibility in humans. This highlights the importance of GPER in immune regulation and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Huayu Zheng
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Kathleen D. Triplett
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Eric R. Prossnitz
- Department of Internal Medicine, School of Medicine, Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism and University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Pamela R. Hall
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Seth M. Daly
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| |
Collapse
|
6
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Bayer J, Becker J, Liu X, Gritsch L, Daiber E, Korn N, Oesterhelt F, Fraunholz M, Weber A, Wolz C. Differential survival of Staphylococcal species in macrophages. Mol Microbiol 2024; 121:470-480. [PMID: 37898563 DOI: 10.1111/mmi.15184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.
Collapse
Affiliation(s)
- Janina Bayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Janna Becker
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Xiao Liu
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ellen Daiber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Martin Fraunholz
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alexander Weber
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Paudel S, Kumar R, Rogers KA, Saini Y, Patial S, Kulkarni R. The NLRP3 Inflammasome Is Dispensable in Methicillin-Resistant Staphylococcus aureus Urinary Tract Infection. Pathogens 2024; 13:106. [PMID: 38392844 PMCID: PMC10893321 DOI: 10.3390/pathogens13020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The NLRP3 inflammasome is a cytoplasmic complex that senses molecular patterns from pathogens or damaged cells to trigger an innate immune defense response marked by the production of proinflammatory cytokines IL-1β and IL-18 and an inflammatory death called pyroptosis. The NLRP3 inflammasome is activated in the urinary tract by a variety of infectious and non-infectious insults. In this study, we investigated the role of the NLRP3 inflammasome by comparing the pathophysiology of methicillin-resistant Staphylococcus aureus (MRSA) ascending UTI in wild-type (WT) and Nlrp3-/- mice. The difference in the bacterial burden detected in the urinary tracts of MRSA-infected WT and Nlrp3-/- was not statistically significant at 6, 24, and 72 h post-infection (hpi). The levels of pro-inflammatory cytokines and chemokines as well as the numbers of granulocytes recruited to bladder and kidney tissues at 24 hpi were also similar between Nlrp3-/- and WT mice. The histopathological analysis of MRSA-infected bladder and kidney sections from Nlrp3-/- and WT mice showed similar inflammation. Overall, these results suggest that MRSA-induced urinary NLRP3 activity does not play a role in the pathophysiology of the ascending UTI.
Collapse
Affiliation(s)
- Santosh Paudel
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| | - Rahul Kumar
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Sonika Patial
- National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, NC 27709, USA
| | - Ritwij Kulkarni
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| |
Collapse
|
9
|
Gonzalez JJI, Hossain MF, Neef J, Zwack EE, Tsai CM, Raafat D, Fechtner K, Herzog L, Kohler TP, Schlüter R, Reder A, Holtfreter S, Liu GY, Hammerschmidt S, Völker U, Torres VJ, van Dijl JM, Lillig CH, Bröker BM, Darisipudi MN. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 2024; 15:e0022523. [PMID: 38112465 PMCID: PMC10790753 DOI: 10.1128/mbio.00225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.
Collapse
Affiliation(s)
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Herzog
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - George Y. Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Christopher H. Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Murty N. Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Zhu Z, Hu Z, Li S, Fang R, Ono HK, Hu DL. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int J Mol Sci 2023; 25:395. [PMID: 38203566 PMCID: PMC10778951 DOI: 10.3390/ijms25010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| |
Collapse
|
11
|
Ilmain JK, Perelman SS, Panepinto MC, Irnov I, Coudray N, Samhadaneh N, Pironti A, Ueberheide B, Ekiert DC, Bhabha G, Torres VJ. Unlatching of the stem domains in the Staphylococcus aureus pore-forming leukocidin LukAB influences toxin oligomerization. J Biol Chem 2023; 299:105321. [PMID: 37802313 PMCID: PMC10665946 DOI: 10.1016/j.jbc.2023.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric β-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.
Collapse
Affiliation(s)
- Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sofya S Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Maria C Panepinto
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Irnov Irnov
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nicolas Coudray
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nora Samhadaneh
- Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA; Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Damian C Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA; Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
12
|
Krantz M, Eklund D, Särndahl E, Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Front Immunol 2023; 14:1233680. [PMID: 38077364 PMCID: PMC10699087 DOI: 10.3389/fimmu.2023.1233680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1β and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1β and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.
Collapse
Affiliation(s)
- Marcus Krantz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Chen M, Yu S, Gao Y, Li J, Wang X, Wei B, Meng G. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating "one-step" NLRP3 inflammasome in human monocytes. Cytokine 2023; 169:156302. [PMID: 37480791 DOI: 10.1016/j.cyto.2023.156302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Gram-positive bacterial infection causes high morbidity and mortality worldwide, while the underlying mechanism for host sensing bacterial components and initiating immune responses remains elusive. The NLRP3 inflammasome is a cytosolic multi-protein complex sensing a broad spectrum of endogenous danger signals and environmental irritants. In contrast to canonical NLRP3 inflammasome activation that needs both priming and activation signals, Lipopolysaccharide (LPS) from gram-negative bacteria activates the "one-step" NLRP3 inflammasome in human monocytes, which relies on the TLR4-TRIF-Caspase-8 signaling. Here, we show that in human monocytes, TLR2 agonists such as heat-killed gram-positive bacteria, peptidoglycan (PGN) or synthetic bacterial lipoprotein analog Pam3CysSerLys4 (Pam3CSK4) are able to induce the "one-step" NLRP3 inflammasome activation. Using genetic targeting and pharmacological inhibition approaches, it was found that TLR2 propagates signal through TRAF6, TAK1 and IKKβ, ultimately activated NLRP3 independent of RelA. In addition, IKKβ interacts with NLRP3 directly and affects NLRP3 inflammasome activation. These results reveal the signaling cascade downstream of TLR2 upon sensing gram-positive bacterial infection and activating the "one-step" NLRP3 inflammasome in human monocytes, which provides clue for controlling gram-positive bacterial infection-related inflammation.
Collapse
Affiliation(s)
- Mengdan Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi Yu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhui Gao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaxun Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xun Wang
- Shanghai Blood Center, Shanghai 200051, China
| | - Bin Wei
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China; Pasteurien College, Soochow University, Suzhou, Jiangsu 215006, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu 211135, China.
| |
Collapse
|
14
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
15
|
Buckley PT, Chan R, Fernandez J, Luo J, Lacey KA, DuMont AL, O'Malley A, Brezski RJ, Zheng S, Malia T, Whitaker B, Zwolak A, Payne A, Clark D, Sigg M, Lacy ER, Kornilova A, Kwok D, McCarthy S, Wu B, Morrow B, Nemeth-Seay J, Petley T, Wu S, Strohl WR, Lynch AS, Torres VJ. Multivalent human antibody-centyrin fusion protein to prevent and treat Staphylococcus aureus infections. Cell Host Microbe 2023; 31:751-765.e11. [PMID: 37098341 DOI: 10.1016/j.chom.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.
Collapse
Affiliation(s)
- Peter T Buckley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA.
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Jeffrey Fernandez
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Jinquan Luo
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Ashley L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Randall J Brezski
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Songmao Zheng
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Thomas Malia
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Whitaker
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Adam Zwolak
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Angela Payne
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Desmond Clark
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Martin Sigg
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Eilyn R Lacy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Anna Kornilova
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Debra Kwok
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Steve McCarthy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Bingyuan Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Morrow
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Ted Petley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Sam Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - William R Strohl
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
16
|
Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol 2023; 14:1075834. [PMID: 36761775 PMCID: PMC9902775 DOI: 10.3389/fimmu.2023.1075834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1β and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.
Collapse
Affiliation(s)
- A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Hu H, Liu S, Hon K, Psaltis AJ, Wormald PJ, Vreugde S. Staphylococcal protein A modulates inflammation by inducing interferon signaling in human nasal epithelial cells. Inflamm Res 2023; 72:251-262. [PMID: 36527461 PMCID: PMC9925485 DOI: 10.1007/s00011-022-01656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE AND DESIGN Staphylococcus aureus (S. aureus) is one of the leading causes of human respiratory tract infections. The function of Staphylococcal protein A (SpA), expressed on the S. aureus bacterial membrane and released in the environment, on human nasal epithelial cells (HNECs) have not been fully elucidated. In this study, we tested the SpA expression in S. aureus from chronic rhinosinusitis patients and investigated the effects of SpA on HNECs inflammation through Interferon Gamma Receptor 1(IFNGR1)/phosphorylated Janus Kinase 2 (p-JAK2) pathway. METHODS RNA profiling was performed to investigate inflammatory activation in a S. aureus chronic rhinosinusitis (CRS) mouse model. SpA release by S. aureus clinical isolates was determined using ELISA. The effect of purified SpA and SpA enriched conditioned media from S. aureus clinical isolates on HNECs cytotoxicity, apoptosis and release of inflammatory cytokines was evaluated using lactate dehydrogenase assays, and flow cytometry. SpA dependent IFNGR1 and p-JAK2 expression were assessed by qPCR, immunofluorescence and western blot in HNECs. RESULTS 49 genes were significantly induced in S. aureus CRS mice indicative of activation of interferon signaling. SpA release was significantly higher in S. aureus clinical isolates from chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Purified SpA significantly increased IFNGR1 mRNA and protein expression in HNECs. SpA induced cytotoxic effects and induced the release of Interleukin-6 (IL-6) and IL-8 in an IFNGR1 dependent way. CONCLUSION SpA induces interferon signaling through activation of the IFNGR1-JAK-2 pathway, which provides an understanding of how S. aureus SpA affects the inflammatory process in the upper airways.
Collapse
Affiliation(s)
- Hua Hu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia ,Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Sha Liu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Karen Hon
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Alkis J. Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Peter John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia. .,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
18
|
Barrios-Villa E, Mendez-Pfeiffer P, Valencia D, Caporal-Hernandez L, Ballesteros-Monrreal MG. Intracellular bacterial communities in patient with recurrent urinary tract infection caused by Staphylococcus spp and Streptococcus agalactiae: a case report and literature review. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urinary tract infections (UTI) are among the most frequent pathologies worldwide. Uropathogenic Escherichia coli (UPEC) is the leading etiological agent; however, depending on the patient's characteristics, the etiology may include some atypical pathogens. Some pathogenic bacteria can internalize in the urothelial and phagocytic cells complicating treatment and timely diagnosis.
Case presentation
We present a clinical case of a married female patient with urological alteration, constant catheterization, and urethral dilation with recurrent UTI for ten years, with five episodes per year and reports of negative urine culture. The microscopic analysis revealed intracellular bacterial communities (IBC) and pyocytes with active bacteria. A protocol was designed for the release of intracellular bacteria in urine samples; without the proposed treatment, the urine culture was negative. However, upon releasing the internalized bacteria, we obtained a polymicrobial urine culture. We isolated and identified Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus simulans, and Streptococcus agalactiae. All microorganisms were sensitive to nitrofurans and sulfas. The patient is under treatment with nitrofurantoin and continuous follow-up by our workgroup.
Conclusions
It is essential to look for IBC and pyocytes with active bacteria in patients with recurrent UTIs to avoid false-negative urine culture results and provide timely treatment. Polymicrobial culture must be considered depending on the patient and clinical history.
Collapse
|
19
|
Zheng Y, Zhao Y, He W, Wang Y, Cao Z, Yang H, Wang W, Li S. Novel organic selenium source hydroxy-selenomethionine counteracts the blood-milk barrier disruption and inflammatory response of mice under heat stress. Front Immunol 2022; 13:1054128. [PMID: 36532046 PMCID: PMC9757697 DOI: 10.3389/fimmu.2022.1054128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, ; Shengli Li,
| | - Shengli Li
- *Correspondence: Wei Wang, ; Shengli Li,
| |
Collapse
|
20
|
Langouët-Astrié C, Oshima K, McMurtry SA, Yang Y, Kwiecinski JM, LaRivière WB, Kavanaugh JS, Zakharevich I, Hansen KC, Shi D, Zhang F, Boguslawski KM, Perelman SS, Su G, Torres VJ, Liu J, Horswill AR, Schmidt EP. The influenza-injured lung microenvironment promotes MRSA virulence, contributing to severe secondary bacterial pneumonia. Cell Rep 2022; 41:111721. [PMID: 36450248 PMCID: PMC10082619 DOI: 10.1016/j.celrep.2022.111721] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Influenza infection is substantially worsened by the onset of secondary pneumonia caused by bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). The bidirectional interaction between the influenza-injured lung microenvironment and MRSA is poorly understood. By conditioning MRSA ex vivo in bronchoalveolar lavage fluid collected from mice at various time points of influenza infection, we found that the influenza-injured lung microenvironment dynamically induces MRSA to increase cytotoxin expression while decreasing metabolic pathways. LukAB, a SaeRS two-component system-dependent cytotoxin, is particularly important to the severity of post-influenza MRSA pneumonia. LukAB's activity is likely shaped by the post-influenza lung microenvironment, as LukAB binds to (and is activated by) heparan sulfate (HS) oligosaccharide sequences shed from the epithelial glycocalyx after influenza. Our findings indicate that post-influenza MRSA pneumonia is shaped by bidirectional host-pathogen interactions: host injury triggers changes in bacterial expression of toxins, the activity of which may be shaped by host-derived HS fragments.
Collapse
Affiliation(s)
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sarah A McMurtry
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yimu Yang
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jakub M Kwiecinski
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30387, Poland
| | - Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kavanaugh
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Igor Zakharevich
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045, USA
| | - Deling Shi
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sofya S Perelman
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Gouwei Su
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jian Liu
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Alexander R Horswill
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA
| |
Collapse
|
21
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
22
|
Yang Y, Lv S, Wang Z, Liu J. Selenium Ameliorates S. aureus-Induced Inflammation in Bovine Mammary Epithelial Cells by Regulating ROS-Induced NLRP3 Inflammasome. Biol Trace Elem Res 2022; 200:3171-3175. [PMID: 34535880 DOI: 10.1007/s12011-021-02924-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
In this study, the regulation effects of selenium (Se) on the expression of pyrin domain-containing protein (NLRP) 3 inflammasome and reactive oxygen species (ROS) in bovine mammary epithelial cells (bMECs) infected by Staphylococcus aureus (S. aureus) were detected. bMECs were treated with 8 μmol/L Na2SeO3 for 12 h before infection with S. aureus for 2 h. Through flow cytometry, Western blot, and qRT-PCR analysis, the expression of ROS and NLRP3 imflammasome was detected. Results showed Se significantly reduced the ROS level in bMECs; at the same time, the expressions of NLRP3, ASC, caspase-1, Pro-IL-1β, and IL-1β were also decreased. In conclusion, Se inhibits S. aureus-induced inflammation by suppressing the activation of NLRP3 inflammasome and ROS in bMECs.
Collapse
Affiliation(s)
- Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, 276012, China
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, China
| | - Zhennan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, China.
| | - Junjun Liu
- College of Veterinary Medicine, Hebei Agricultural University, Hebei, 071001, China.
| |
Collapse
|
23
|
Zheng X, Ma SX, St. John A, Torres VJ. The Major Autolysin Atl Regulates the Virulence of Staphylococcus aureus by Controlling the Sorting of LukAB. Infect Immun 2022; 90:e0005622. [PMID: 35258336 PMCID: PMC9022505 DOI: 10.1128/iai.00056-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/14/2023] Open
Abstract
Infections caused by the Gram-positive bacterium Staphylococcus aureus remain a significant health threat globally. The production of bicomponent pore-forming leukocidins plays an important role in S. aureus pathogenesis. Transcriptionally, these toxins are primarily regulated by the Sae and Agr regulatory systems. However, the posttranslational regulation of these toxins is largely unexplored. In particular, one of the leukocidins, LukAB, has been shown to be both secreted into the extracellular milieu and associated with the bacterial cell envelope. Here, we report that a major cell wall hydrolase, autolysin (Atl), controls the sorting of LukAB from the cell envelope to the extracellular milieu, an effect independent of transcriptional regulation. By influencing the sorting of LukAB, Atl modulates S. aureus cytotoxicity toward primary human neutrophils. Mechanistically, we found that the reduction in peptidoglycan cleavage and increased LukAB secretion in the atl mutant can be reversed through the supplementation of exogenous mutanolysin. Altogether, our study revealed that the cell wall hydrolase activity of Atl and the cleavage of peptidoglycan play an important role in controlling the sorting of S. aureus toxins during secretion.
Collapse
Affiliation(s)
- Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sheya Xiao Ma
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
24
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
25
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
26
|
Wei MJ, Wang ZN, Yang Y, Zhang SJ, Tang H, Li H, Bi CL. Selenium Attenuates S. aureus-Induced Inflammation by Regulation TLR2 Signaling Pathway and NLRP3 Inflammasome in RAW 264.7 Macrophages. Biol Trace Elem Res 2022; 200:761-767. [PMID: 33754304 DOI: 10.1007/s12011-021-02676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the effects of selenium (Se) on the expression of Toll-like receptor (TLR) 2 and pyrin domain-containing protein (NLRP)3 inflammasome in macrophages infected by Staphylococcus aureus (S. aureus). RAW 264.7 macrophages were treated with 2 μmol/L Na2SeO3 for 12 h before infection with S. aureus for 2 h. Through Western blot, qRT-PCR, and ELISA analysis, the core molecules of TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages were detected. Results showed that Se significantly reduced the elevated mRNA expression of TLR2, myeloid differentiation factor-88 (Myd88), NLRP3, Caspase-recruitment domain (ASC), and Caspase-1 induced by S. aureus. Furthermore, compared with I group, the protein expression of TLR2, Myd88, NLRP3, ASC, and Caspase-1 were suppressed in T group. In addition, the mRNA and protein expression of interleukin-1 beta (IL-1β) induced by S. aureus were also decreased after Se treatment. In conclusion, Se inhibits S. aureus-induced inflammation by suppressing the activation of the TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ming-Ji Wei
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Zhen-Nan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, 276012, Shandong, China
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
- Drug Micro Vector Engineering Center of Linyi, Shuangling Road, Linyi, 276005, Shandong, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China.
| |
Collapse
|
27
|
Wong Fok Lung T, Chan LC, Prince A, Yeaman MR, Archer NK, Aman MJ, Proctor RA. Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front Cell Infect Microbiol 2022; 12:1060810. [PMID: 36636720 PMCID: PMC9831658 DOI: 10.3389/fcimb.2022.1060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.
Collapse
Affiliation(s)
| | - Liana C Chan
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Richard A Proctor
- Department of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
28
|
Liu C, Hao K, Liu Z, Liu Z, Guo N. Epigallocatechin gallate (EGCG) attenuates staphylococcal alpha-hemolysin (Hla)-induced NLRP3 inflammasome activation via ROS-MAPK pathways and EGCG-Hla interactions. Int Immunopharmacol 2021; 100:108170. [PMID: 34562843 DOI: 10.1016/j.intimp.2021.108170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Alpha-hemolysin (Hla), the virulence factor secreted by Staphylococcus aureus (S. aureus), plays a critical role in infection and inflammation, which is a severe health burden worldwide. Therefore, it is necessary to develop a drug against Hla. Epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, has excellent anti-inflammatory activity. In this study, we investigated the inhibitory effect of EGCG on Hla-induced NLRP3 inflammasome activation in vitro and in vivo and elucidated the potential molecular mechanism. We found that EGCG attenuated the hemolysis of Hla by inhibiting its secretion. Besides, EGCG significantly decreased overproduction of ROS and activation of MAPK signaling pathway induced by Hla, thereby markedly attenuating the expression of NLRP3 inflammasome-related proteins in THP-1 cells. Notably, EGCG could spontaneously bind to Hla with affinity constant of 1.71 × 10-4 M, thus blocking the formation of the Hla heptamer. Moreover, Hla-induced expression of NLRP3, ASC and caspase-1 protein and generation of IL-1β and IL-18 in the damaged liver tissue of mice were also significantly suppressed by EGCG in a dose-dependent manner. Collectively, EGCG could be a promising candidate for alleviating Hla-induced the activation of NLRP3 inflammasome, depending on ROS mediated MAPK signaling pathway, and inhibition of Hla secretion and heptamer formation. These findings will enlighten the applications of EGCG to reduce the S. aureus infection by targeting Hla in food and related pharmaceutical fields.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kun Hao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zonghui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
29
|
The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nat Commun 2021; 12:6193. [PMID: 34702812 PMCID: PMC8548510 DOI: 10.1038/s41467-021-26517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus bi-component pore-forming leukocidins are secreted toxins that directly target and lyse immune cells. Intriguingly, one of the leukocidins, Leukocidin AB (LukAB), is found associated with the bacterial cell envelope in addition to secreted into the extracellular milieu. Here, we report that retention of LukAB on the bacterial cells provides S. aureus with a pre-synthesized active toxin that kills immune cells. On the bacteria, LukAB is distributed as discrete foci in two distinct compartments: membrane-proximal and surface-exposed. Through genetic screens, we show that a membrane lipid, lysyl-phosphatidylglycerol (LPG), and lipoteichoic acid (LTA) contribute to LukAB deposition and release. Furthermore, by studying non-covalently surface-bound proteins we discovered that the sorting of additional exoproteins, such as IsaB, Hel, ScaH, and Geh, are also controlled by LPG and LTA. Collectively, our study reveals a multistep secretion system that controls exoprotein storage and protein translocation across the S. aureus cell wall.
Collapse
|
30
|
Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathog 2021; 17:e1009874. [PMID: 34473800 PMCID: PMC8443034 DOI: 10.1371/journal.ppat.1009874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.
Collapse
|
31
|
Deng J, Zhang BZ, Chu H, Wang XL, Wang Y, Gong HR, Li R, Yang D, Li C, Dou Y, Gao P, Cai JP, Jin M, Du Q, Chan JFW, Kao RYT, Yuen KY, Huang JD. Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity. EBioMedicine 2021; 70:103505. [PMID: 34332295 PMCID: PMC8340124 DOI: 10.1016/j.ebiom.2021.103505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Staphylococcus aureus is a common human pathogen capable of causing diverse illnesses with possible recurrent infections. Although recent studies have highlighted the role of cellular immunity in recurrent infections, the mechanism by which S. aureus evades host responses remains largely unexplored. Methods: This study utilizes in vitro and in vivo infection experiments to investigate difference of pro-inflammatory responses and subsequent adaptive immune responses between adsA mutant and WT S. aureus strain infection. Findings: We demonstrated that adenosine synthase A (AdsA), a potent S. aureus virulence factor, can alter Th17 responses by interfering with NLRP3 inflammasome-mediated IL-1β production. Specifically, S. aureus virulence factor AdsA dampens Th1/Th17 immunity by limiting the release of IL-1β and other Th polarizing cytokines. In particular, AdsA obstructs the release of IL-1β via the adenosine/A2aR/NLRP3 axis. Using a murine infection model, pharmacological inhibition of A2a receptor enhanced S. aureus-specific Th17 responses, whereas inhibition of NLRP3 and caspase-1 downregulated these responses. Our results showed that AdsA contributes to recurrent S. aureus infection by restraining protective Th1/Th17 responses. Interpretation: Our study provides important mechanistic insights for therapeutic and vaccination strategies against S. aureus infections.
Collapse
Affiliation(s)
- Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hin Chu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Xiao-Lei Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yixin Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Hua-Rui Gong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Renhao Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dong Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Cun Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ying Dou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Peng Gao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Meilin Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Du
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
32
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Alphonse MP, Rubens JH, Ortines RV, Orlando NA, Patel AM, Dikeman D, Wang Y, Vuong I, Joyce DP, Zhang J, Mumtaz M, Liu H, Liu Q, Youn C, Patrick GJ, Ravipati A, Miller RJ, Archer NK, Miller LS. Pan-caspase inhibition as a potential host-directed immunotherapy against MRSA and other bacterial skin infections. Sci Transl Med 2021; 13:13/601/eabe9887. [PMID: 34233954 DOI: 10.1126/scitranslmed.abe9887] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1β (IL-1β) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1β, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.
Collapse
Affiliation(s)
- Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jessica H Rubens
- Divison of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas A Orlando
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aman M Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ivan Vuong
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammed Mumtaz
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Garrett J Patrick
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
34
|
Arroyave E, Hyseni I, Burkhardt N, Kuo YF, Wang T, Munderloh U, Fang R. Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens 2021; 10:pathogens10070819. [PMID: 34208806 PMCID: PMC8308654 DOI: 10.3390/pathogens10070819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Although rickettsiae can cause life-threatening infections in humans worldwide, no licensed vaccine is currently available. To evaluate the suitability of live-attenuated vaccine candidates against rickettsioses, we generated a Rickettsia parkeri mutant RPATATE_0245::pLoxHimar (named 3A2) by insertion of a modified pLoxHimar transposon into the gene encoding a phage integrase protein. For visualization and selection, R. parkeri 3A2 expressed mCherry fluorescence and resistance to spectinomycin. Compared to the parent wild type (WT) R. parkeri, the virulence of R. parkeri 3A2 was significantly attenuated as demonstrated by significantly smaller size of plaque, failure to grow in human macrophage-like cells, rapid elimination of Rickettsia and ameliorated histopathological changes in tissues in intravenously infected mice. A single dose intradermal (i.d.) immunization of R. parkeri 3A2 conferred complete protection against both fatal R. parkeri and R. conorii rickettsioses in mice, in association with a robust and durable rickettsiae-specific IgG antibody response. In summary, the disruption of RPATATE_0245 in R. parkeri resulted in a mutant with a significantly attenuated phenotype, potent immunogenicity and protective efficacy against two spotted fever group rickettsioses. Overall, this proof-of-concept study highlights the potential of R. parkeri mutants as a live-attenuated and multivalent vaccine platform in response to emergence of life-threatening spotted fever rickettsioses.
Collapse
Affiliation(s)
- Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Ilirjana Hyseni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Nicole Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Tian Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| |
Collapse
|
35
|
Perelman SS, James DBA, Boguslawski KM, Nelson CW, Ilmain JK, Zwack EE, Prescott RA, Mohamed A, Tam K, Chan R, Narechania A, Pawline MB, Vozhilla N, Moustafa AM, Kim SY, Dittmann M, Ekiert DC, Bhabha G, Shopsin B, Planet PJ, Koralov SB, Torres VJ. Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nat Microbiol 2021; 6:731-745. [PMID: 33875847 PMCID: PMC8597016 DOI: 10.1038/s41564-021-00890-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
Collapse
Affiliation(s)
- Sofya S Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - David B A James
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chase W Nelson
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Erin E Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel A Prescott
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adil Mohamed
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Miranda B Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed M Moustafa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sang Y Kim
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Office of Collaborative Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
37
|
Fernandez J, Sanders H, Henn J, Wilson JM, Malone D, Buoninfante A, Willms M, Chan R, DuMont AL, McLahan C, Grubb K, Romanello A, van den Dobbelsteen G, Torres VJ, Poolman JT. Vaccination with Detoxified Leukocidin AB Reduces Bacterial Load in a Staphylococcus aureus Minipig Deep Surgical Wound Infection Model. J Infect Dis 2021; 225:1460-1470. [PMID: 33895843 PMCID: PMC9016470 DOI: 10.1093/infdis/jiab219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Vaccines against Staphylococcus aureus have eluded researchers for >3 decades while the burden of staphylococcal diseases has increased. Early vaccine attempts mainly used rodents to characterize preclinical efficacy, and all subsequently failed in human clinical efficacy trials. More recently, leukocidin AB (LukAB) has gained interest as a vaccine antigen. We developed a minipig deep surgical wound infection model offering 3 independent efficacy readouts: bacterial load at the superficial and at the deep-seated surgical site, and dissemination of bacteria. Due to similarities with humans, minipigs are an attractive option to study novel vaccine candidates. With this model, we characterized the efficacy of a LukAB toxoid as vaccine candidate. Compared to control animals, a 3-log reduction of bacteria at the deep-seated surgical site was observed in LukAB-treated minipigs and dissemination of bacteria was dramatically reduced. Therefore, LukAB toxoids may be a useful addition to S. aureus vaccines and warrant further study.
Collapse
Affiliation(s)
| | - H Sanders
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - J Henn
- Bacterial Vaccines, Spring House, PA, USA
| | | | - D Malone
- Bacterial Vaccines, Spring House, PA, USA
| | - A Buoninfante
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - M Willms
- Bacterial Vaccines, Spring House, PA, USA
| | - R Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - A L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - C McLahan
- In Vivo Sciences, Spring House, PA, USA
| | - K Grubb
- Bacterial Vaccines, Spring House, PA, USA
| | | | | | - V J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - J T Poolman
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
38
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
39
|
Choudhuri S, Chowdhury IH, Garg NJ. Mitochondrial Regulation of Macrophage Response Against Pathogens. Front Immunol 2021; 11:622602. [PMID: 33679710 PMCID: PMC7925834 DOI: 10.3389/fimmu.2020.622602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells play the first line of defense against pathogens. Phagocytosis or invasion by pathogens can affect mitochondrial metabolism in macrophages by diverse mechanisms and shape the macrophage response (proinflammatory vs. immunomodulatory) against pathogens. Besides β-nicotinamide adenine dinucleotide 2'-phosphate, reduced (NADPH) oxidase, mitochondrial electron transport chain complexes release superoxide for direct killing of the pathogen. Mitochondria that are injured are removed by mitophagy, and this process can be critical for regulating macrophage activation. For example, impaired mitophagy can result in cytosolic leakage of mitochondrial DNA (mtDNA) that can lead to activation of cGAS-STING signaling pathway of macrophage proinflammatory response. In this review, we will discuss how metabolism, mtDNA, mitophagy, and cGAS-STING pathway shape the macrophage response to infectious agents.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, United States
| |
Collapse
|
40
|
Bi CL, Zhang SJ, Shen YZ, Pauline M, Li H, Tang H. Selenium Plays an Anti-Inflammatory Role by Regulation NLRP3 Inflammasome in Staphylococcus aureus-Infected Mouse Mammary Gland. Biol Trace Elem Res 2021; 199:604-610. [PMID: 32436066 DOI: 10.1007/s12011-020-02166-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an essential micronutrient that plays an important role in immunity. However, the mechanism that Selenium modulates mastitis is not fully clear. In this experiment, we investigated whether selenium can inhibit the activation of the NLRP3 inflammasome in a mouse model of Staphylococcus aureus-induced mastitis. Eighty BALB/c female mice were fed with experimental Selenium deficiency basal diet for 2 weeks to achieve the purpose of selenium consumption until pregnancy. Pregnant mice were randomly divided into four groups (control group; selenium supplement group; Staphylococcus aureus infection group and Staphylococcus aureus infection after selenium supplement group). Twenty-four hours after challenging, all mice were euthanized and mammary tissue samples were aseptically collected. Through pathological staining, western blot analysis, real-time fluorescence quantitative polymerase chain reaction analysis, and enzyme-linked immunosorbent assay, the regulation effect of Selenium on NLRP3 inflammasome was detected. The result showed that compared with the control group, selenium significantly inhibited the expression of NLRP3, ASC, Caspase-1, Caspase-1 p20, and Pro-IL-1β (p < 0.01). Meanwhile the mRNA expression and release of IL-1β was suppressed in the treatment group compared with Staphylococcus aureus infection group (p < 0.01). Therefore, these results suggest that dietary selenium can attenuate Staphylococcus aureus mastitis by inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China.
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China.
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| | - Yi-Zhao Shen
- College of animal science and technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, China
| | - Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| |
Collapse
|
41
|
Pore-forming toxins in infection and immunity. Biochem Soc Trans 2021; 49:455-465. [PMID: 33492383 DOI: 10.1042/bst20200836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
The integrity of the plasma membranes is extremely crucial for the survival and proper functioning of the cells. Organisms from all kingdoms of life employ specialized pore-forming proteins and toxins (PFPs and PFTs) that perforate cell membranes, and cause detrimental effects. PFPs/PFTs exert their damaging actions by forming oligomeric pores in the membrane lipid bilayer. PFPs/PFTs play important roles in diverse biological processes. Many pathogenic bacteria secrete PFTs for executing their virulence mechanisms. The immune system of the higher vertebrates employs PFPs to kill pathogen-infected cells and transformed cancer cells. The most obvious consequence of membrane pore-formation by the PFPs/PFTs is the killing of the target cells due to the disruption of the permeability barrier function of the plasma membranes. PFPs/PFTs can also activate diverse cellular processes that include activation of the stress-response pathways, induction of programmed cell death, and inflammation. Upon attack by the PFTs, host cells may also activate pathways to repair the injured membranes, restore cellular homeostasis, and trigger inflammatory immune responses. In this article, we present an overview of the diverse cellular responses that are triggered by the PFPs/PFTs, and their implications in the process of pathogen infection and immunity.
Collapse
|
42
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
44
|
Jing W, Lo Pilato J, Kay C, Man SM. Activation mechanisms of inflammasomes by bacterial toxins. Cell Microbiol 2021; 23:e13309. [PMID: 33426791 DOI: 10.1111/cmi.13309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic innate immune complexes, which assemble in mammalian cells in response to microbial components and endogenous danger signals. A major family of inflammasome activators is bacterial toxins. Inflammasome sensor proteins, such as the nucleotide-binding oligomerisation domain-like receptor (NLR) family members NLRP1b and NLRP3, and the tripartite motif family member Pyrin+ efflux triggered by pore-forming toxins or by other toxin-induced homeostasis-altering events such as lysosomal rupture. Pyrin senses perturbation of host cell functions induced by certain enzymatic toxins resulting in impairment of RhoA GTPase activity. Assembly of the inflammasome complex activates the cysteine protease caspase-1, leading to the proteolytic cleavage of the proinflammatory cytokines IL-1β and IL-18, and the pore-forming protein gasdermin D causing pyroptosis. In this review, we discuss the latest progress in our understanding on the activation mechanisms of inflammasome complexes by bacterial toxins and effector proteins and explore avenues for future research into the relationships between inflammasomes and bacterial toxins.
Collapse
Affiliation(s)
- Weidong Jing
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jordan Lo Pilato
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Callum Kay
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
45
|
Viana AS, Nunes Botelho AM, Moustafa AM, Boge CL, Pires Ferreira AL, da Silva Carvalho MC, Guimarães MA, Costa BDSS, de Mattos MC, Maciel SP, Echevarria-Lima J, Narechania A, O’Brien K, Ryan C, Gerber JS, Carvalho BTF, Figueiredo AMS, Planet PJ. Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Bacteremia and Monocyte Evasion, Rio de Janeiro, Brazil. Emerg Infect Dis 2021; 27:2825-2835. [PMID: 34670645 PMCID: PMC8544994 DOI: 10.3201/eid2711.210097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We typed 600 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 51 hospitals in the Rio de Janeiro, Brazil, metropolitan area during 2014-2017. We found that multiple new clonal complex (CC) 5 sequence types had replaced previously dominant MRSA lineages in hospitals. Whole-genome analysis of 208 isolates revealed an emerging sublineage of multidrug-resistant MRSA, sequence type 105, staphylococcal cassette chromosome mec II, spa t002, which we designated the Rio de Janeiro (RdJ) clone. Using molecular clock analysis, we hypothesized that this lineage began to expand in the Rio de Janeiro metropolitan area in 2009. Multivariate analysis supported an association between bloodstream infections and the CC5 lineage that includes the RdJ clone. Compared with other closely related isolates, representative isolates of the RdJ clone more effectively evaded immune function related to monocytic cells, as evidenced by decreased phagocytosis rate and increased numbers of viable unphagocytosed (free) bacteria after in vitro exposure to monocytes.
Collapse
Affiliation(s)
| | | | | | - Craig L.K. Boge
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Adriana Lucia Pires Ferreira
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Maria Cícera da Silva Carvalho
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Márcia Aparecida Guimarães
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | | | - Marcos Corrêa de Mattos
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Sabrina Pires Maciel
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Juliana Echevarria-Lima
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Apurva Narechania
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Kelsey O’Brien
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Chanelle Ryan
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Jeffrey S. Gerber
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Bernadete Teixeira Ferreira Carvalho
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | | | | |
Collapse
|
46
|
Huang XH, Ma Y, Zheng MM, Chen N, Hu MN, Wu LY, Zheng Y, Lou YL, Xie DL. NLRP3 and mTOR Reciprocally Regulate Macrophage Phagolysosome Formation and Acidification Against Vibrio vulnificus Infection. Front Cell Dev Biol 2020; 8:587961. [PMID: 33117816 PMCID: PMC7578225 DOI: 10.3389/fcell.2020.587961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
The marine bacterium Vibrio vulnificus causes potentially fatal bloodstream infections, typically in patients with chronic liver diseases. The inflammatory response and anti-bacterial function of phagocytes are crucial for limiting bacterial infection in the human hosts. How V. vulnificus affects macrophages after phagocytosis is unclear. In this report, we found that the bactericidal activity of macrophages to internalize V. vulnificus was dependent on mammalian target of rapamycin (mTOR) and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) interaction. Additionally, the NLRP3 expression was dependent on mTORC1 activation. Inhibited mTORC1 or absence of NLRP3 in macrophages impaired V. vulnificus-induced phagosome acidification and phagolysosome formation, leading to a reduction of intracellular bacterial clearance. mTORC1 signaling overactivation could increase NLRP3 expression and restore insufficient phagosome acidification. Together, these findings indicate that the intracellular bactericidal activity of macrophages responding to V. vulnificus infection is tightly controlled by the crosstalk of NLRP3 and mTOR and provide critical insight into the host bactericidal activity basis of clearance of V. vulnificus through lyso/phagosome.
Collapse
Affiliation(s)
- Xian-Hui Huang
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yao Ma
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Meng-Meng Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Na Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Mei-Na Hu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Liu-Ying Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yi Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yong-Liang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Dan-Li Xie
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|
47
|
Shang Z, Chan SY, Song Q, Li P, Huang W. The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2016201. [PMID: 33083786 PMCID: PMC7539235 DOI: 10.34133/2020/2016201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
Abstract
The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
48
|
Bhattacharya M, Berends ETM, Zheng X, Hill PJ, Chan R, Torres VJ, Wozniak DJ. Leukocidins and the Nuclease Nuc Prevent Neutrophil-Mediated Killing of Staphylococcus aureus Biofilms. Infect Immun 2020; 88:e00372-20. [PMID: 32719153 PMCID: PMC7504955 DOI: 10.1128/iai.00372-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial biofilms are linked with chronic infections and have properties distinct from those of planktonic, single-celled bacteria. The virulence mechanisms associated with Staphylococcus aureus biofilms are becoming better understood. Human neutrophils are critical for the innate immune response to S. aureus infection. Here, we describe two virulence strategies that converge to promote the ability of S. aureus biofilms to evade killing by neutrophils. Specifically, we show that while neutrophils exposed to S. aureus biofilms produce extracellular traps (NETs) and phagocytose bacteria, both mechanisms are inefficient in clearance of the biofilm biomass. This is attributed to the leukocidin LukAB, which promotes S. aureus survival during phagocytosis. We also show that the persistence of biofilm bacteria trapped in NETs is facilitated by S. aureus nuclease (Nuc)-mediated degradation of NET DNA. This study describes key aspects of the interaction between primary human neutrophils and S. aureus biofilms and provides insight into how S. aureus evades the neutrophil response to cause persistent infections.
Collapse
Affiliation(s)
| | - Evelien T M Berends
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Preston J Hill
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Daniel J Wozniak
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
49
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
50
|
Consequences of Metabolic Interactions during Staphylococcus aureus Infection. Toxins (Basel) 2020; 12:toxins12090581. [PMID: 32917040 PMCID: PMC7551354 DOI: 10.3390/toxins12090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a metabolically flexible pathogen that causes infection in diverse settings. An array of virulence factors, including the secreted toxins, enables S. aureus to colonize different environmental niches and initiate infections by any of several discrete pathways. During these infections, both S. aureus and host cells compete with each other for nutrients and remodel their metabolism for survival. This metabolic interaction/crosstalk determines the outcome of the infection. The reprogramming of metabolic pathways in host immune cells not only generates adenosine triphosphate (ATP) to meet the cellular energy requirements during the infection process but also activates antimicrobial responses for eventual bacterial clearance, including cell death pathways. The selective pressure exerted by host immune cells leads to the emergence of bacterial mutants adapted for chronicity. These host-adapted mutants are often characterized by substantial changes in the expression of their own metabolic genes, or by mutations in genes involved in metabolism and biofilm formation. Host-adapted S. aureus can rewire or benefit from the metabolic activities of the immune cells via several mechanisms to cause persistent infection. In this review, we discuss how S. aureus activates host innate immune signaling, which results in an immune metabolic pressure that shapes S. aureus metabolic adaptation and determines the outcome of the infection.
Collapse
|