1
|
Min X, Liao Y, Chen X, Yang Q, Ying J, Zou J, Yang C, Zhang J, Ge S, Xia N. PB-GPT: An innovative GPT-based model for protein backbone generation. Structure 2024; 32:1820-1833.e5. [PMID: 39173620 DOI: 10.1016/j.str.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/02/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.
Collapse
Affiliation(s)
- Xiaoping Min
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Yiyang Liao
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Xiao Chen
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Qianli Yang
- Institute of Artificial Intelligence, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Junjie Ying
- Institute of Artificial Intelligence, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Jiajun Zou
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Chongzhou Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; Institute of Artificial Intelligence, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; School of Public Health, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; School of Public Health, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; School of Public Health, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China.
| |
Collapse
|
2
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Padhi AK, Kalita P, Maurya S, Poluri KM, Tripathi T. From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics. J Phys Chem B 2023; 127:8717-8735. [PMID: 37815479 DOI: 10.1021/acs.jpcb.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The continuous emergence of novel SARS-CoV-2 variants and subvariants serves as compelling evidence that COVID-19 is an ongoing concern. The swift, well-coordinated response to the pandemic highlights how technological advancements can accelerate the detection, monitoring, and treatment of the disease. Robust surveillance systems have been established to understand the clinical characteristics of new variants, although the unpredictable nature of these variants presents significant challenges. Some variants have shown resistance to current treatments, but innovative technologies like computational protein design (CPD) offer promising solutions and versatile therapeutics against SARS-CoV-2. Advances in computing power, coupled with open-source platforms like AlphaFold and RFdiffusion (employing deep neural network and diffusion generative models), among many others, have accelerated the design of protein therapeutics with precise structures and intended functions. CPD has played a pivotal role in developing peptide inhibitors, mini proteins, protein mimics, decoy receptors, nanobodies, monoclonal antibodies, identifying drug-resistance mutations, and even redesigning native SARS-CoV-2 proteins. Pending regulatory approval, these designed therapies hold the potential for a lasting impact on human health and sustainability. As SARS-CoV-2 continues to evolve, use of such technologies enables the ongoing development of alternative strategies, thus equipping us for the "New Normal".
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
4
|
Kalita P, Tripathi T, Padhi AK. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. ACS CENTRAL SCIENCE 2023; 9:602-613. [PMID: 37122454 PMCID: PMC10042144 DOI: 10.1021/acscentsci.2c01513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
As the world struggles with the ongoing COVID-19 pandemic, unprecedented obstacles have continuously been traversed as new SARS-CoV-2 variants continually emerge. Infectious disease outbreaks are unavoidable, but the knowledge gained from the successes and failures will help create a robust health management system to deal with such pandemics. Previously, scientists required years to develop diagnostics, therapeutics, or vaccines; however, we have seen that, with the rapid deployment of high-throughput technologies and unprecedented scientific collaboration worldwide, breakthrough discoveries can be accelerated and insights broadened. Computational protein design (CPD) is a game-changing new technology that has provided alternative therapeutic strategies for pandemic management. In addition to the development of peptide-based inhibitors, miniprotein binders, decoys, biosensors, nanobodies, and monoclonal antibodies, CPD has also been used to redesign native SARS-CoV-2 proteins and human ACE2 receptors. We discuss how novel CPD strategies have been exploited to develop rationally designed and robust COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Parismita Kalita
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Regional
Director’s Office, Indira Gandhi
National Open University, Regional Centre Kohima, Kenuozou, Kohima 797001, India
| | - Aditya K. Padhi
- Laboratory
for Computational Biology & Biomolecular Design, School of Biochemical
Engineering, Indian Institute of Technology
(BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Jiao C, Wang B, Chen P, Jiang Y, Liu J. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol 2023; 14:1086297. [PMID: 36875062 PMCID: PMC9981632 DOI: 10.3389/fimmu.2023.1086297] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The conserved protective epitopes of hemagglutinin (HA) are essential to the design of a universal influenza vaccine and new targeted therapeutic agents. Over the last 15 years, numerous broadly neutralizing antibodies (bnAbs) targeting the HA of influenza A viruses have been isolated from B lymphocytes of human donors and mouse models, and their binding epitopes identified. This work has brought new perspectives for identifying conserved protective epitopes of HA. In this review, we succinctly analyzed and summarized the antigenic epitopes and functions of more than 70 kinds of bnAb. The highly conserved protective epitopes are concentrated on five regions of HA: the hydrophobic groove, the receptor-binding site, the occluded epitope region of the HA monomers interface, the fusion peptide region, and the vestigial esterase subdomain. Our analysis clarifies the distribution of the conserved protective epitope regions on HA and provides distinct targets for the design of novel vaccines and therapeutics to combat influenza A virus infection.
Collapse
Affiliation(s)
- Chenchen Jiao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Chen Y, Wang F, Yin L, Jiang H, Lu X, Bi Y, Zhang W, Shi Y, Burioni R, Tong Z, Song H, Qi J, Gao GF. Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. Nat Commun 2022; 13:7603. [PMID: 36494358 PMCID: PMC9734383 DOI: 10.1038/s41467-022-35236-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza infection continues are a persistent threat to public health. The identification and characterization of human broadly neutralizing antibodies can facilitate the development of antibody drugs and the design of universal influenza vaccines. Here, we present structural information for the human antibody PN-SIA28's heterosubtypic binding of hemagglutinin (HA) from circulating and emerging potential influenza A viruses (IAVs). Aside from group 1 and 2 conventional IAV HAs, PN-SIA28 also inhibits membrane fusion mediated by bat-origin H17 and H18 HAs. Crystallographic analyses of Fab alone or in complex with H1, H14, and H18 HA proteins reveal that PN-SIA28 binds to a highly conserved epitope in the fusion domain of different HAs, with the same CDRHs but different CDRLs for different HAs tested, distinguishing it from other structurally characterized anti-stem antibodies. The binding characteristics of PN-SIA28 provides information to support the design of increasingly potent engineered antibodies, antiviral drugs, and/or universal influenza vaccines.
Collapse
Affiliation(s)
- Yulu Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liwei Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihai Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xishan Lu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhai Bi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yi Shi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Roberto Burioni
- grid.15496.3f0000 0001 0439 0892Università Vita-Salute San Raffaele, Milano, 20132 Italy
| | - Zhou Tong
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hao Song
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianxun Qi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - George F. Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
7
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Pascha M, Thijssen V, Egido JE, Linthorst MW, van Lanen JH, van Dongen DAA, Hopstaken AJP, van Kuppeveld FJM, Snijder J, de Haan CAM, Jongkees SAK. Inhibition of H1 and H5 Influenza A Virus Entry by Diverse Macrocyclic Peptides Targeting the Hemagglutinin Stem Region. ACS Chem Biol 2022; 17:2425-2436. [PMID: 35926224 PMCID: PMC9486808 DOI: 10.1021/acschembio.2c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Influenza A viruses pose a serious pandemic risk, while generation of efficient vaccines against seasonal variants remains challenging. There is thus a pressing need for new treatment options. We report here a set of macrocyclic peptides that inhibit influenza A virus infection at low nanomolar concentrations by binding to hemagglutinin, selected using ultrahigh-throughput screening of a diverse peptide library. The peptides are active against both H1 and H5 variants, with no detectable cytotoxicity. Despite the high sequence diversity across hits, all tested peptides were found to bind to the same region in the hemagglutinin stem by HDX-MS epitope mapping. A mutation in this region identified in an escape variant confirmed the binding site. This stands in contrast to the immunodominance of the head region for antibody binding and suggests that macrocyclic peptides from in vitro display may be well suited for finding new druggable sites not revealed by antibodies. Functional analysis indicates that these peptides stabilize the prefusion conformation of the protein and thereby prevent virus-cell fusion. High-throughput screening of macrocyclic peptides is thus shown here to be a powerful method for the discovery of novel broadly acting viral fusion inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Mirte
N. Pascha
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands
| | - Vito Thijssen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Julia E. Egido
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands,Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mirte W. Linthorst
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jipke H. van Lanen
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands
| | - David A. A. van Dongen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Antonius J. P. Hopstaken
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for
Molecular and Life Sciences, VU Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands,
| | - Seino A. K. Jongkees
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands,Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for
Molecular and Life Sciences, VU Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands,
| |
Collapse
|
9
|
Ding W, Nakai K, Gong H. Protein design via deep learning. Brief Bioinform 2022; 23:bbac102. [PMID: 35348602 PMCID: PMC9116377 DOI: 10.1093/bib/bbac102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges and opportunities are also comprehensively discussed.
Collapse
Affiliation(s)
- Wenze Ding
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Kenta Nakai
- Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Havranek B, Chan KK, Wu A, Procko E, Islam SM. Computationally Designed ACE2 Decoy Receptor Binds SARS-CoV-2 Spike (S) Protein with Tight Nanomolar Affinity. J Chem Inf Model 2021; 61:4656-4669. [PMID: 34427448 PMCID: PMC8409145 DOI: 10.1021/acs.jcim.1c00783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/25/2022]
Abstract
Even with the availability of vaccines, therapeutic options for COVID-19 still remain highly desirable, especially in hospitalized patients with moderate or severe disease. Soluble ACE2 (sACE2) is a promising therapeutic candidate that neutralizes SARS CoV-2 infection by acting as a decoy. Using computational mutagenesis, we designed a number of sACE2 derivatives carrying three to four mutations. The top-predicted sACE2 decoy based on the in silico mutagenesis scan was subjected to molecular dynamics and free-energy calculations for further validation. After illuminating the mechanism of increased binding for our designed sACE2 derivative, the design was verified experimentally by flow cytometry and BLI-binding experiments. The computationally designed sACE2 decoy (ACE2-FFWF) bound the receptor-binding domain of SARS-CoV-2 tightly with low nanomolar affinity and ninefold affinity enhancement over the wild type. Furthermore, cell surface expression was slightly greater than wild-type ACE2, suggesting that the design is well-folded and stable. Having an arsenal of high-affinity sACE2 derivatives will help to buffer against the emergence of SARS CoV-2 variants. Here, we show that computational methods have become sufficiently accurate for the design of therapeutics for current and future viral pandemics.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of
Illinois at Chicago, Chicago, Illinois 60607, United
States
| | - Kui K. Chan
- Orthogonal Biologics Inc.,
Urbana, Illinois 61801, United States
| | - Austin Wu
- Department of Computer Science,
Northwestern University, Evanston, Illinois 60208,
United States
| | - Erik Procko
- Department of Biochemistry and Cancer Center at
Illinois, University of Illinois, Urbana, Illinois 61801,
United States
| | - Shahidul M. Islam
- Department of Chemistry, University of
Illinois at Chicago, Chicago, Illinois 60607, United
States
| |
Collapse
|
11
|
Recent applications of bio-engineering principles to modulate the functionality of proteins in food systems. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|
13
|
F Nahhas A, F Nahhas A, J Webster T. Nanoscale pathogens treated with nanomaterial-like peptides: a platform technology appropriate for future pandemics. Nanomedicine (Lond) 2021; 16:1237-1254. [PMID: 33988037 PMCID: PMC8120868 DOI: 10.2217/nnm-2020-0447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections are historically very difficult to treat. Although imperfect and time-consuming to develop, we do have some conventional vaccine and therapeutic approaches to stop viral spreading. Most importantly, all of this takes significant time while viruses continue to wreak havoc on our healthcare system. Furthermore, viral infections are accompanied by a weakened immune system which is often overlooked in antiviral drug strategies and requires additional drug development. In this review, for the first time, we touch on some promising alternative approaches to treat viral infections, specifically those focused on the use of platform nanomaterials with antiviral peptides. In doing so, this review presents a timely discussion of how we need to change our old way of treating viruses into one that can quickly meet the demands of COVID-19, as well as future pandemic-causing viruses, which will come.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, KSA
| | - Alrayan F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, KSA
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Kocabiyik O, Cagno V, Silva PJ, Zhu Y, Sedano L, Bhide Y, Mettier J, Medaglia C, Da Costa B, Constant S, Huang S, Kaiser L, Hinrichs WLJ, Huckriede A, Le Goffic R, Tapparel C, Stellacci F. Non-Toxic Virucidal Macromolecules Show High Efficacy Against Influenza Virus Ex Vivo and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001012. [PMID: 33552848 PMCID: PMC7856883 DOI: 10.1002/advs.202001012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Influenza is one of the most widespread viral infections worldwide and represents a major public health problem. The risk that one of the next pandemics is caused by an influenza strain is high. It is important to develop broad-spectrum influenza antivirals to be ready for any possible vaccine shortcomings. Anti-influenza drugs are available but they are far from ideal. Arguably, an ideal antiviral should target conserved viral domains and be virucidal, that is, irreversibly inhibit viral infectivity. Here, a new class of broad-spectrum anti-influenza macromolecules is described that meets these criteria and display exceedingly low toxicity. These compounds are based on a cyclodextrin core modified on its primary face with long hydrophobic linkers terminated either in 6'sialyl-N-acetyllactosamine (6'SLN) or in 3'SLN. SLN enables nanomolar inhibition of the viruses while the hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 pandemic influenza strain ex vivo. Importantly, it is shown that, in mice, one of the compounds provides therapeutic efficacy when administered 24 h post-infection allowing 90% survival as opposed to no survival for the placebo and oseltamivir.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| | - Valeria Cagno
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
- Department of Microbiology and Molecular MedicineUniversity of GenevaRue Michel Servet 1Geneva1205Switzerland
| | - Paulo Jacob Silva
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| | - Yong Zhu
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| | - Laura Sedano
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | - Yoshita Bhide
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningen9713GZThe Netherlands
- University Medical Center GroningenDepartment of Medical Microbiology and Infection Prevention (internal postcode EB88)University of GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Joelle Mettier
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | - Chiara Medaglia
- Department of Microbiology and Molecular MedicineUniversity of GenevaRue Michel Servet 1Geneva1205Switzerland
| | - Bruno Da Costa
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | | | - Song Huang
- Epithelix SasChemin des Aulx 18Geneva1228Switzerland
| | - Laurent Kaiser
- Hopital Universitaire de GenèveRue Gabrielle Perret Gentil 4Geneva1205Switzerland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningen9713GZThe Netherlands
| | - Anke Huckriede
- University Medical Center GroningenDepartment of Medical Microbiology and Infection Prevention (internal postcode EB88)University of GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Ronan Le Goffic
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | - Caroline Tapparel
- Department of Microbiology and Molecular MedicineUniversity of GenevaRue Michel Servet 1Geneva1205Switzerland
| | - Francesco Stellacci
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
- Bioengineering InstituteEcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| |
Collapse
|
15
|
Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes CO, Hsiang TY, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric RS, Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M, Blancas-Mejia LM, Yen HL, Silva DA. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020; 370:1208-1214. [PMID: 33154107 PMCID: PMC7920261 DOI: 10.1126/science.abe0075] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023]
Abstract
We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo human angiotensin-converting enzyme 2 (hACE2) decoys to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The best monovalent decoy, CTC-445.2, bound with low nanomolar affinity and high specificity to the receptor-binding domain (RBD) of the spike protein. Cryo-electron microscopy (cryo-EM) showed that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, showed ~10-fold improvement in binding. CTC-445.2d potently neutralized SARS-CoV-2 infection of cells in vitro, and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Su
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Katharina Esser-Nobis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kevin Yu
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Z Beau Reneer
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Yixuan J Hou
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Tanu Priya
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Avery Pong
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Uland Y Lau
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Jerry Chen
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Alex Chen
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Hong Peng
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | | | - Yu-Ru Lin
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | | | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | |
Collapse
|
16
|
Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Hsiang TY, Esser-Nobis K, Yu K, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric R, Walkey CD, Swanson R, Gale M, Blancas-Mejia LM, Yen HL, Silva DA. De novo design of ACE2 protein decoys to neutralize SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793910 DOI: 10.1101/2020.08.03.231340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins (∼18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.
Collapse
|
17
|
Nath Neerukonda S, Vassell R, Weiss CD. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Vaccines (Basel) 2020; 8:E382. [PMID: 32664628 PMCID: PMC7563823 DOI: 10.3390/vaccines8030382] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza continues to be a public health threat despite the availability of annual vaccines. While vaccines are generally effective at inducing strain-specific immunity, they are sub-optimal or ineffective when drifted or novel pandemic strains arise due to sequence changes in the major surface glycoprotein hemagglutinin (HA). The discovery of a large number of antibodies targeting the highly conserved stem region of HAs that are capable of potently neutralizing a broad range of virus strains and subtypes suggests new ways to protect against influenza. The structural characterization of HA stem epitopes and broadly neutralizing antibody paratopes has enabled the design of novel proteins, mini-proteins, and peptides targeting the HA stem, thus providing a foundation for the design of new vaccines. In this narrative, we comprehensively review the current knowledge about stem-directed broadly neutralizing antibodies and the structural features contributing to virus neutralization.
Collapse
Affiliation(s)
| | | | - Carol D. Weiss
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.N.N.); (R.V.)
| |
Collapse
|
18
|
Crook ZR, Sevilla GP, Mhyre AJ, Olson JM. Mammalian Surface Display Screening of Diverse Cystine-Dense Peptide Libraries for Difficult-to-Drug Targets. Methods Mol Biol 2020; 2070:363-396. [PMID: 31625107 DOI: 10.1007/978-1-4939-9853-1_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many diseases are mediated by targets that are not amenable to conventional small-molecule drug approaches. While antibody-based drugs have undeniable utility, peptides of the 1-9 kDa size range (10-80 amino acids) have drawn interest as alternate drug scaffolds This is born of a desire to identify compounds with the advantages of antibody-based therapeutics (affinity, potency, specificity, and ability to disrupt protein:protein interactions) without all of their liabilities (large size, expensive manufacturing, and necessity of humanization). Of these alternate scaffolds, cystine-dense peptides (CDPs) have several specific benefits. Due to their stable intra-chain disulfide bridges, CDPs often demonstrate resistance to heat and proteolysis, along with low immunogenicity. These properties do not require chemical modifications, permitting CDP screening by conventional genetic means. The cystine topology of a typical CDP requires an oxidative environment, and we have found that the mammalian secretory pathway is most effective at allowing diverse CDPs to achieve a stable fold. As such, high-diversity screens to identify CDPs that interact with targets of interest can be efficiently conducted using mammalian surface display. In this protocol, we present the theory and tools to conduct a mammalian surface display screen for CDPs that bind with targets of interest, including the steps to validate binding and mature the affinity of preliminary candidates. With these methods, CDPs of all kinds can be brought to bear against targets that would benefit from a peptide-based intervention.
Collapse
Affiliation(s)
- Zachary R Crook
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gregory P Sevilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
19
|
Barros EP, Schiffer JM, Vorobieva A, Dou J, Baker D, Amaro RE. Improving the Efficiency of Ligand-Binding Protein Design with Molecular Dynamics Simulations. J Chem Theory Comput 2019; 15:5703-5715. [PMID: 31442033 DOI: 10.1021/acs.jctc.9b00483] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Custom-designed ligand-binding proteins represent a promising class of macromolecules with exciting applications toward the design of new enzymes or the engineering of antibodies and small-molecule recruited proteins for therapeutic interventions. However, several challenges remain in designing a protein sequence such that the binding site organization results in high affinity interaction with a bound ligand. Here, we study the dynamics of explicitly solvated designed proteins through all-atom molecular dynamics (MD) simulations to gain insight into the causes that lead to the low affinity or instability of most of these designs, despite the prediction of their success by the computational design methodology. Simulations ranging from 500 to 1000 ns per replicate were conducted on 37 designed protein variants encompassing two distinct folds and a range of ligand affinities, resulting in more than 180 μs of combined sampling. The simulations provide retrospective insights into the properties affecting ligand affinity that can prove useful in guiding further steps of design optimization. Features indicate that entropic components are particularly important for affinity, which are not easily incorporated in the empirical models often used in design protocols. Additionally, we demonstrate that the application of machine learning approaches built upon the output from the simulations can help discriminate between successful and failed binders, such that MD could act as a screening step in protein design, resulting in a more efficient process.
Collapse
Affiliation(s)
| | - Jamie M Schiffer
- Janssen Pharmaceuticals, Inc. , San Diego , California 92121 , United States
| | | | | | | | | |
Collapse
|
20
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|
21
|
van Dongen MJP, Kadam RU, Juraszek J, Lawson E, Brandenburg B, Schmitz F, Schepens WBG, Stoops B, van Diepen HA, Jongeneelen M, Tang C, Vermond J, van Eijgen-Obregoso Real A, Blokland S, Garg D, Yu W, Goutier W, Lanckacker E, Klap JM, Peeters DCG, Wu J, Buyck C, Jonckers THM, Roymans D, Roevens P, Vogels R, Koudstaal W, Friesen RHE, Raboisson P, Dhanak D, Goudsmit J, Wilson IA. A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science 2019; 363:363/6431/eaar6221. [PMID: 30846569 DOI: 10.1126/science.aar6221] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.
Collapse
Affiliation(s)
- Maria J P van Dongen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands. .,Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jarek Juraszek
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Edward Lawson
- Discovery Sciences, Janssen Research & Development, 1400 McKean Rd., Spring House, PA, USA
| | - Boerries Brandenburg
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Frederike Schmitz
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Wim B G Schepens
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Bart Stoops
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Harry A van Diepen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Mandy Jongeneelen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Chan Tang
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Jan Vermond
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | | | - Sven Blokland
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Divita Garg
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wouter Goutier
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Ellen Lanckacker
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Jaco M Klap
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Daniëlle C G Peeters
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Jin Wu
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Christophe Buyck
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Peter Roevens
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Ronald Vogels
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Wouter Koudstaal
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Robert H E Friesen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Pierre Raboisson
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Dashyant Dhanak
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium.,Discovery Sciences, Janssen Research & Development, 1400 McKean Rd., Spring House, PA, USA
| | - Jaap Goudsmit
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA. .,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
22
|
Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. J Virol 2019; 93:JVI.00058-19. [PMID: 31189708 PMCID: PMC6694820 DOI: 10.1128/jvi.00058-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023] Open
Abstract
The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle. Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.
Collapse
|
23
|
Han L, Chen C, Han X, Lin S, Ao X, Han X, Wang J, Ye H. Structural Insights for Anti-Influenza Vaccine Design. Comput Struct Biotechnol J 2019; 17:475-483. [PMID: 31007873 PMCID: PMC6458449 DOI: 10.1016/j.csbj.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023] Open
Abstract
Influenza A virus are a persistent and significant threat to human health, and current vaccines do not provide sufficient protection due to antigenic drift, which allows influenza viruses to easily escape immune surveillance and antiviral drug activity. Influenza hemagglutinin (HA) is a glycoprotein needed for the entry of enveloped influenza viruses into host cells and is a potential target for anti-influenza humoral immune responses. In recent years, a number of broadly neutralizing antibodies (bnAbs) have been isolated, and their relative structural information obtained from the crystallization of influenza antigens in complex with bnAbs has provided some new insights into future influenza vaccine research. Here, we review the current knowledge of the HA-targeted bnAbs and the structure-based mechanisms contributing to neutralization. We also discuss the potential for this structure-based approach to overcome the challenge of obtaining a highly desired "universal" influenza vaccine, especially on small proteins and peptides.
Collapse
Affiliation(s)
- Lifen Han
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Xianlin Han
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Shujin Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Xiulan Ao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jianmin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Hanhui Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| |
Collapse
|
24
|
Puchades C, Kűkrer B, Diefenbach O, Sneekes-Vriese E, Juraszek J, Koudstaal W, Apetri A. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Sci Rep 2019; 9:4735. [PMID: 30894620 PMCID: PMC6427009 DOI: 10.1038/s41598-019-41179-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/22/2023] Open
Abstract
Epitope characterization is critical for elucidating the mechanism of action of drug candidates. However, traditional high-resolution epitope mapping techniques are not well suited for screening numerous drug candidates recognizing a similar target. Here, we use Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to explore the conformational impact of diverse drug molecules binding on Hemagglutinin (HA), the major surface antigen of influenza viruses. We optimized a semi-automated HDX-MS workflow to systematically probe distantly related HA subtypes in complex with 4 different drug candidates, ranging from a monoclonal antibody to a small synthetic peptide. This fast, cost-effective HDX-MS epitope mapping approach accurately determined the main antigenic site in all cases. Moreover, our studies reveal distinct changes in the local conformational dynamics of HA associated to the molecular mechanism of neutralization, establishing a marker for broad anti-HA activity. Taken together, these findings highlight the potential for HDX-MS epitope mapping-based screening to identify promising candidates against HA at early stages of drug discovery.
Collapse
Affiliation(s)
- Cristina Puchades
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Başak Kűkrer
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Otto Diefenbach
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Eveline Sneekes-Vriese
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Wouter Koudstaal
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Adrian Apetri
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands.
| |
Collapse
|
25
|
Faber MS, Whitehead TA. Data-driven engineering of protein therapeutics. Curr Opin Biotechnol 2019; 60:104-110. [PMID: 30822697 DOI: 10.1016/j.copbio.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/16/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022]
Abstract
Protein therapeutics requires a series of properties beyond biochemical activity, including serum stability, low immunogenicity, and manufacturability. Mutations that improve one property often decrease one or more of the other essential requirements for therapeutic efficacy, making the protein engineering challenge difficult. The past decade has seen an explosion of new techniques centered around cheaply reading and writing DNA. This review highlights the recent use of such high throughput technologies for engineering protein therapeutics. Examples include the use of human antibody repertoire sequence data to pair antibody heavy and light chains, comprehensive mutational analysis for engineering antibody specificity, and the use of ancestral and inter-species sequence data to engineer simultaneous improvements in enzyme catalytic efficiency and stability. We conclude with a perspective on further ways to integrate mature protein engineering pipelines with the exponential increases in the volume of sequencing data expected in the forthcoming decade.
Collapse
Affiliation(s)
- Matthew S Faber
- Dept. Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Timothy A Whitehead
- Dept. of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824, United States; Dept. of Biosystems Engineering, Michigan State University, East Lansing, MI 48824, United States; Dept. of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, United States; Institute for Quantitative Biology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
26
|
Aldeghi M, de Groot BL, Gapsys V. Accurate Calculation of Free Energy Changes upon Amino Acid Mutation. Methods Mol Biol 2019; 1851:19-47. [PMID: 30298390 DOI: 10.1007/978-1-4939-8736-8_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Molecular dynamics based free energy calculations allow for a robust and accurate evaluation of free energy changes upon amino acid mutation in proteins. In this chapter we cover the basic theoretical concepts important for the use of calculations utilizing the non-equilibrium alchemical switching methodology. We further provide a detailed step-by-step protocol for estimating the effect of a single amino acid mutation on protein thermostability. In addition, the potential caveats and solutions to some frequently encountered issues concerning the non-equilibrium alchemical free energy calculations are discussed. The protocol comprises details for the hybrid structure/topology generation required for alchemical transitions, equilibrium simulation setup, and description of the fast non-equilibrium switching. Subsequently, the analysis of the obtained results is described. The steps in the protocol are complemented with an illustrative practical application: a destabilizing mutation in the Trp cage mini protein. The concepts that are described are generally applicable. The shown example makes use of the pmx software package for the free energy calculations using Gromacs as a molecular dynamics engine. Finally, we discuss how the current protocol can readily be adapted to carry out charge-changing or multiple mutations at once, as well as large-scale mutational scans.
Collapse
Affiliation(s)
- Matteo Aldeghi
- Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Am Fassberg, 11, 37077, Göttingen, Germany.
| | - Bert L de Groot
- Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Am Fassberg, 11, 37077, Göttingen, Germany.
| | - Vytautas Gapsys
- Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Am Fassberg, 11, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Banegas-Luna AJ, Imbernón B, Llanes Castro A, Pérez-Garrido A, Cerón-Carrasco JP, Gesing S, Merelli I, D'Agostino D, Pérez-Sánchez H. Advances in distributed computing with modern drug discovery. Expert Opin Drug Discov 2018; 14:9-22. [PMID: 30484337 DOI: 10.1080/17460441.2019.1552936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Computational chemistry dramatically accelerates the drug discovery process and high-performance computing (HPC) can be used to speed up the most expensive calculations. Supporting a local HPC infrastructure is both costly and time-consuming, and, therefore, many research groups are moving from in-house solutions to remote-distributed computing platforms. Areas covered: The authors focus on the use of distributed technologies, solutions, and infrastructures to gain access to HPC capabilities, software tools, and datasets to run the complex simulations required in computational drug discovery (CDD). Expert opinion: The use of computational tools can decrease the time to market of new drugs. HPC has a crucial role in handling the complex algorithms and large volumes of data required to achieve specificity and avoid undesirable side-effects. Distributed computing environments have clear advantages over in-house solutions in terms of cost and sustainability. The use of infrastructures relying on virtualization reduces set-up costs. Distributed computing resources can be difficult to access, although web-based solutions are becoming increasingly available. There is a trade-off between cost-effectiveness and accessibility in using on-demand computing resources rather than free/academic resources. Graphics processing unit computing, with its outstanding parallel computing power, is becoming increasingly important.
Collapse
Affiliation(s)
- Antonio Jesús Banegas-Luna
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Baldomero Imbernón
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Antonio Llanes Castro
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Alfonso Pérez-Garrido
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - José Pedro Cerón-Carrasco
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Sandra Gesing
- b Center for Research Computing , University of Notre Dame , Notre Dame , IN , USA
| | - Ivan Merelli
- c Institute for Biomedical Technologies , National Research Council of Italy , Segrate (Milan) , Italy
| | - Daniele D'Agostino
- d Institute for Applied Mathematics and Information Technologies "E. Magenes" , National Research Council of Italy , Genoa , Italy
| | - Horacio Pérez-Sánchez
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| |
Collapse
|
28
|
Marcos E, Silva D. Essentials of
de novo
protein design: Methods and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Enrique Marcos
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Daniel‐Adriano Silva
- Department of BiochemistryUniversity of WashingtonSeattleWashington
- Institute for Protein DesignUniversity of WashingtonSeattleWashington
| |
Collapse
|
29
|
Rudraraju R, Subbarao K. Passive immunization with influenza haemagglutinin specific monoclonal antibodies. Hum Vaccin Immunother 2018; 14:2728-2736. [PMID: 29985756 DOI: 10.1080/21645515.2018.1489947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The isolation of broadly neutralising antibodies against the influenza haemagglutinin has spurred investigation into their clinical potential, and has led to advances in influenza virus biology and universal influenza vaccine development. Studies in animal models have been invaluable for demonstrating the prophylactic and therapeutic efficacy of broadly neutralising antibodies, for comparisons with antiviral drugs used as the standard of care, and for defining their mechanism of action and potential role in providing protection from airborne infection.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- a WHO Collaborating Centre for Reference and Research on Influenza and the Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Kanta Subbarao
- a WHO Collaborating Centre for Reference and Research on Influenza and the Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| |
Collapse
|
30
|
Zhou X, Zheng J, Ivan FX, Yin R, Ranganathan S, Chow VTK, Kwoh CK. Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses. BMC Genomics 2018; 19:88. [PMID: 29764421 PMCID: PMC5954268 DOI: 10.1186/s12864-018-4461-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased potential to spread among humans. Experimental studies have revealed several host and virulence markers, indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using computational approaches. RESULTS The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the change of residue-ligand interaction energy and detected the residues with conspicuous binding preference. CONCLUSION The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference were detected, which could facilitate monitoring the circulating influenza viruses.
Collapse
Affiliation(s)
- Xinrui Zhou
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Jie Zheng
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- 0000 0004 0637 0221grid.185448.4Genome Institute of Singapore, A*STAR, Singapore, 138672 Singapore
| | - Fransiskus Xaverius Ivan
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Rui Yin
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Shoba Ranganathan
- 0000 0001 2158 5405grid.1004.5Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Vincent T. K. Chow
- 0000 0001 2180 6431grid.4280.eDepartment of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| | - Chee-Keong Kwoh
- 0000 0001 2224 0361grid.59025.3bSchool of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|
31
|
Crowe JE. Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design. Cell Host Microbe 2018; 22:193-206. [PMID: 28799905 DOI: 10.1016/j.chom.2017.07.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antibodies are the principal immune effectors that mediate protection against reinfection following viral infection or vaccination. Robust techniques for human mAb isolation have been developed in the last decade. The study of human mAbs isolated from subjects with prior immunity has become a mainstay for rational structure-based, next-generation vaccine development. The plethora of detailed molecular and genetic studies coupling the structure of antigen-antibody complexes with their antiviral function has begun to reveal common principles of critical interactions on which we can build better vaccines and therapeutic antibodies. This review outlines the approaches to isolating and studying human antiviral mAbs and discusses the common principles underlying the basis for their activity. This review also examines progress toward the goal of achieving a comprehensive understanding of the chemical and physical basis for molecular recognition of viral surface proteins in order to build predictive molecular models that can be used for vaccine design.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Burbage M, Gasparrini F, Aggarwal S, Gaya M, Arnold J, Nair U, Way M, Bruckbauer A, Batista FD. Tuning of in vivo cognate B-T cell interactions by Intersectin 2 is required for effective anti-viral B cell immunity. eLife 2018; 7. [PMID: 29337666 PMCID: PMC5770159 DOI: 10.7554/elife.26556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an immune pathology associated with mutations in WAS protein (WASp) or in WASp interacting protein (WIP). Together with the small GTPase Cdc42 and other effectors, these proteins participate in the remodelling of the actin network downstream of BCR engagement. Here we show that mice lacking the adaptor protein ITSN2, a G-nucleotide exchange factor (GEF) for Cdc42 that also interacts with WASp and WIP, exhibited increased mortality during primary infection, incomplete protection after Flu vaccination, reduced germinal centre formation and impaired antibody responses to vaccination. These defects were found, at least in part, to be intrinsic to the B cell compartment. In vivo, ITSN2 deficient B cells show a reduction in the expression of SLAM, CD84 or ICOSL that correlates with a diminished ability to form long term conjugates with T cells, to proliferate in vivo, and to differentiate into germinal centre cells. In conclusion, our study not only revealed a key role for ITSN2 as an important regulator of adaptive immune-response during vaccination and viral infection but it is also likely to contribute to a better understanding of human immune pathologies.
Collapse
Affiliation(s)
- Marianne Burbage
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Francesca Gasparrini
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Shweta Aggarwal
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mauro Gaya
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Johan Arnold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Usha Nair
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas Bruckbauer
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Facundo D Batista
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| |
Collapse
|
33
|
Chevalier A, Silva DA, Rocklin GJ, Hicks DR, Vergara R, Murapa P, Bernard SM, Zhang L, Lam KH, Yao G, Bahl CD, Miyashita SI, Goreshnik I, Fuller JT, Koday MT, Jenkins CM, Colvin T, Carter L, Bohn A, Bryan CM, Fernández-Velasco DA, Stewart L, Dong M, Huang X, Jin R, Wilson IA, Fuller DH, Baker D. Massively parallel de novo protein design for targeted therapeutics. Nature 2017; 550:74-79. [PMID: 28953867 PMCID: PMC5802399 DOI: 10.1038/nature23912] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
Abstract
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Collapse
Affiliation(s)
- Aaron Chevalier
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Gabriel J Rocklin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Renan Vergara
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico
| | - Patience Murapa
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Christopher D Bahl
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - James T Fuller
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Merika T Koday
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
- Virvio Inc., Seattle, Washington 98195, USA
| | - Cody M Jenkins
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Tom Colvin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Alan Bohn
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Cassie M Bryan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - D Alejandro Fernández-Velasco
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xuhui Huang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
34
|
Kadam RU, Juraszek J, Brandenburg B, Buyck C, Schepens WBG, Kesteleyn B, Stoops B, Vreeken RJ, Vermond J, Goutier W, Tang C, Vogels R, Friesen RHE, Goudsmit J, van Dongen MJP, Wilson IA. Potent peptidic fusion inhibitors of influenza virus. Science 2017; 358:496-502. [PMID: 28971971 DOI: 10.1126/science.aan0516] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH-induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule- and peptide-based therapeutics against influenza virus.
Collapse
Affiliation(s)
- Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Christophe Buyck
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Wim B G Schepens
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Bart Kesteleyn
- Janssen Infectious Diseases and Vaccines, Beerse, Belgium
| | - Bart Stoops
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Rob J Vreeken
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Jan Vermond
- Janssen Prevention Center, Leiden, Netherlands
| | | | - Chan Tang
- Janssen Prevention Center, Leiden, Netherlands
| | | | | | - Jaap Goudsmit
- Janssen Prevention Center, Leiden, Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maria J P van Dongen
- Janssen Prevention Center, Leiden, Netherlands. .,Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA. .,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
35
|
Wrenbeck EE, Faber MS, Whitehead TA. Deep sequencing methods for protein engineering and design. Curr Opin Struct Biol 2017; 45:36-44. [PMID: 27886568 PMCID: PMC5440218 DOI: 10.1016/j.sbi.2016.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/01/2016] [Indexed: 11/27/2022]
Abstract
The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances.
Collapse
Affiliation(s)
- Emily E Wrenbeck
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States
| | - Matthew S Faber
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States; Departments of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
36
|
In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nat Commun 2017; 8:15371. [PMID: 28504265 PMCID: PMC5440694 DOI: 10.1038/ncomms15371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The relatively recent discovery and characterization of human broadly neutralizing antibodies (bnAbs) against influenza virus provide valuable insights into antiviral and vaccine development. However, the factors that influence the evolution of high-affinity bnAbs remain elusive. We therefore explore the functional sequence space of bnAb C05, which targets the receptor-binding site (RBS) of influenza haemagglutinin (HA) via a long CDR H3. We combine saturation mutagenesis with yeast display to enrich for C05 variants of CDR H3 that bind to H1 and H3 HAs. The C05 variants evolve up to 20-fold higher affinity but increase specificity to each HA subtype used in the selection. Structural analysis reveals that the fine specificity is strongly influenced by a highly conserved substitution that regulates receptor binding in different subtypes. Overall, this study suggests that subtle natural variations in the HA RBS between subtypes and species may differentially influence the evolution of high-affinity bnAbs. Broadly neutralizing antibodies (bnAbs) against influenza hemagglutinin (HA) have yielded insights for antiviral development. Here, the authors employ saturated mutagenesis of the paratope region of a bnAb combined with yeast display screening using H1 and H3 HAs, and find that a tradeoff exists between Ab affinity and breadth that influenced by disparate modes of receptor binding.
Collapse
|
37
|
Holthausen DJ, Lee SH, Kumar VTV, Bouvier NM, Krammer F, Ellebedy AH, Wrammert J, Lowen AC, George S, Pillai MR, Jacob J. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses. Immunity 2017; 46:587-595. [DOI: 10.1016/j.immuni.2017.03.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 01/11/2023]
|
38
|
Amarelle L, Lecuona E, Sznajder JI. Anti-Influenza Treatment: Drugs Currently Used and Under Development. ACTA ACUST UNITED AC 2017. [PMID: 27519544 DOI: 10.1016/j.arbr.2016.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
The coming of age of de novo protein design. Nature 2016; 537:320-7. [DOI: 10.1038/nature19946] [Citation(s) in RCA: 917] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
|
40
|
Amarelle L, Lecuona E, Sznajder JI. Anti-Influenza Treatment: Drugs Currently Used and Under Development. Arch Bronconeumol 2016; 53:19-26. [PMID: 27519544 PMCID: PMC6889083 DOI: 10.1016/j.arbres.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
La gripe es una enfermedad contagiosa altamente prevalente y con significativa morbimortalidad. El tratamiento disponible con fármacos antivirales, de ser administrado de forma precoz, puede reducir el riesgo de complicaciones severas; sin embargo, muchos tipos de virus desarrollan resistencia a estos fármacos, reduciendo notablemente su efectividad. Ha habido un gran interés en el desarrollo de nuevas opciones terapéuticas para combatir la enfermedad. Una gran variedad de fármacos han demostrado tener actividad antiinfluenza, pero aún no están disponibles para su uso en la clínica. Muchos de ellos tienen como objetivo componentes del virus, mientras que otros son dirigidos a elementos de la célula huésped que participan en el ciclo viral. Modular los componentes del huésped es una estrategia que minimiza el desarrollo de cepas resistentes, dado que estos no están sujetos a la variabilidad genética que tiene el virus. Por otro lado, la principal desventaja es que existe un mayor riesgo de efectos secundarios asociados al tratamiento. El objetivo de la presente revisión es describir los principales agentes farmacológicos disponibles en la actualidad, así como los nuevos fármacos en estudio con potencial beneficio en el tratamiento de la gripe.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América; Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, Estados Unidos de América.
| |
Collapse
|
41
|
Kallewaard NL, Corti D, Collins PJ, Neu U, McAuliffe JM, Benjamin E, Wachter-Rosati L, Palmer-Hill FJ, Yuan AQ, Walker PA, Vorlaender MK, Bianchi S, Guarino B, De Marco A, Vanzetta F, Agatic G, Foglierini M, Pinna D, Fernandez-Rodriguez B, Fruehwirth A, Silacci C, Ogrodowicz RW, Martin SR, Sallusto F, Suzich JA, Lanzavecchia A, Zhu Q, Gamblin SJ, Skehel JJ. Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. Cell 2016; 166:596-608. [PMID: 27453466 PMCID: PMC4967455 DOI: 10.1016/j.cell.2016.05.073] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/12/2023]
Abstract
Influenza virus remains a threat because of its ability to evade vaccine-induced immune responses due to antigenic drift. Here, we describe the isolation, evolution, and structure of a broad-spectrum human monoclonal antibody (mAb), MEDI8852, effectively reacting with all influenza A hemagglutinin (HA) subtypes. MEDI8852 uses the heavy-chain VH6-1 gene and has higher potency and breadth when compared to other anti-stem antibodies. MEDI8852 is effective in mice and ferrets with a therapeutic window superior to that of oseltamivir. Crystallographic analysis of Fab alone or in complex with H5 or H7 HA proteins reveals that MEDI8852 binds through a coordinated movement of CDRs to a highly conserved epitope encompassing a hydrophobic groove in the fusion domain and a large portion of the fusion peptide, distinguishing it from other structurally characterized cross-reactive antibodies. The unprecedented breadth and potency of neutralization by MEDI8852 support its development as immunotherapy for influenza virus-infected humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal, Humanized
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Antibody Specificity
- Binding Sites, Antibody
- Crystallography, X-Ray
- Epitopes/immunology
- Ferrets
- Humans
- Influenza Vaccines
- Alphainfluenzavirus/immunology
- Mice
- Orthomyxoviridae Infections/prevention & control
- Protein Conformation
Collapse
Affiliation(s)
- Nicole L Kallewaard
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Davide Corti
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Patrick J Collins
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, UK
| | - Ursula Neu
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, UK
| | - Josephine M McAuliffe
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Ebony Benjamin
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Leslie Wachter-Rosati
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Frances J Palmer-Hill
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Andy Q Yuan
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Philip A Walker
- Structural Biology Science Technology Platform, Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK
| | | | - Siro Bianchi
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Anna De Marco
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | | | - Gloria Agatic
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Debora Pinna
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Chiara Silacci
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Roksana W Ogrodowicz
- Structural Biology Science Technology Platform, Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - JoAnn A Suzich
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Qing Zhu
- Department of Infectious Disease and Vaccines, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA.
| | - Steven J Gamblin
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, UK
| | - John J Skehel
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, UK.
| |
Collapse
|