1
|
Naicker V, Laher F, Bekker LG, Seaton KE, Allen M, De Rosa S, Yates NL, Mkhize NN, Saunders K, Heptinstall J, Malahleha M, Mngadi K, Daniels B, Innes C, Yu C, Modise T, Bekker V, Grunenberg N, Furch B, Miner MD, Phogat S, Diazgranados CA, Gurunathan S, Koutsoukos M, Van Der Meeren O, Roxby AC, Ferrari G, Morris L, Montefiori D, McElrath MJ, Tomaras GD, Moodie Z. Safety and immunogenicity after a 30-month boost of a subtype C ALVAC-HIV (vCP2438) vaccine prime plus bivalent subtype C gp120/MF59 vaccine boost (HVTN 100): A phase 1-2 randomized double-blind placebo-controlled trial. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003319. [PMID: 39302924 DOI: 10.1371/journal.pgph.0003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
Induction of broad, durable immune responses is a challenge in HIV vaccine development. HVTN 100 Part A administered subtype C-containing ALVAC-HIV at months 0 and 1, and ALVAC-HIV with bivalent subtype C gp120/MF59 at months 3, 6 and 12. As IgG binding antibody and T-cell responses were similar or greater at month 12.5 vs. month 6.5, but waned by month 18, we investigated vaccine-elicited immune responses after a month 30 boost in this study, HVTN 100 Part B. From 13 September 2017 to 7 August 2018, a subgroup of vaccinees was randomized to receive intramuscular injections of ALVAC+gp120/MF59 (n = 32) or gp120/MF59 alone (n = 31) and a subgroup of placebo recipients was administered placebo (n = 7) at month 30. Primary outcomes were safety, IgG binding antibodies (bAbs) to vaccine-specific and V1V2 Env proteins and vaccine-specific CD4+ T cells at month 30.5. Secondary outcomes included neutralizing and antibody dependent cellular cytotoxicity functions and durability at months 30 and 36. Both vaccine groups had an acceptable safety profile. There were no statistically significant differences in the occurrence or level of IgG bAbs between the vaccine boost groups for any vaccine-specific or V1V2 antigens. IgG responses were higher to vaccine-matched gp120 than to V1V2. The booster vaccination restored the magnitude-breadth IgG bAb response to V1V2 antigens at month 30.5. However, it rapidly waned by month 36. CD4+ T-cell response rates to the 3 vaccine-matched Env antigens for the combined vaccine groups ranged from 37% at month 30, boosted to as high as 91% at month 30.5, and waned by month 36 to as low as 44%, with no significant differences between the vaccine boost groups. Because these responses waned after 6 months, additional strategies may be needed to maintain the durability of prime-boost vaccine regimens and to generate these or other immune responses that confer protection. Trial registration: South African National Clinical Trials Register (SANCTR number: DOH-27-0215-4796) and ClinicalTrials.gov (NCT02404311).
Collapse
Affiliation(s)
- Vimla Naicker
- South African Medical Research Council, Durban, South Africa
| | - Fatima Laher
- Faculty of Health Sciences, Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Kelly E Seaton
- Departments of Surgery and Integrative Immunobiology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Mary Allen
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nicole L Yates
- Departments of Surgery and Integrative Immunobiology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kevin Saunders
- Departments of Surgery and Integrative Immunobiology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Jack Heptinstall
- Departments of Surgery and Integrative Immunobiology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | | | - Kathryn Mngadi
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Brodie Daniels
- South African Medical Research Council, Durban, South Africa
| | - Craig Innes
- Aurum Institute, Klerksdorp Research Centre, Klerksdorp, South Africa
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tandile Modise
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Valerie Bekker
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Briana Furch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Maurine D Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
- GSK, Wavre, Belgium
| | | | | | | | | | - Alison C Roxby
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- University of Washington Departments of Medicine and Global Health, Seattle, Washington, United States of America
| | - Guido Ferrari
- Department of Surgery, Center for Human System Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - David Montefiori
- Departments of Surgery and Integrative Immunobiology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Georgia D Tomaras
- Departments of Surgery and Integrative Immunobiology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Kim J, Villar Z, Jobe O, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, O'Connell RJ, Ake JA, Vasan S, Rao VB, Rao M. Broadly neutralizing antibodies and monoclonal V2 antibodies derived from RV305 inhibit capture and replication of HIV-1. Virology 2024; 597:110158. [PMID: 38941746 DOI: 10.1016/j.virol.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
An important approach to stopping the AIDS epidemic is the development of a vaccine that elicits antibodies that block virus capture, the initial interactions of HIV-1 with the target cells, and replication. We utilized a previously developed qRT-PCR-based assay to examine the effects of broadly neutralizing antibodies (bNAbs), plasma from vaccine trials, and monoclonal antibodies (mAbs) on virus capture and replication. A panel of bNAbs inhibited primary HIV-1 replication in PBMCs but not virus capture. Plasma from RV144 and RV305 trial vaccinees demonstrated inhibition of virus capture with the HIV-1 subtype prevalent in Thailand. Several RV305 derived V2-specific mAbs inhibited virus replication. One of these RV305 derived V2-specific mAbs inhibited both virus capture and replication, demonstrating that it is possible to elicit antibodies by vaccination that inhibit virus capture and replication. Induction of a combination of such antibodies may be the key to protection from HIV-1 acquisition.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - Zuzana Villar
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ousman Jobe
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Robert J O'Connell
- United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Julie A Ake
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC, 20064, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
3
|
Webb NE, Sevareid CM, Sanchez C, Tobin NH, Aldrovandi GM. Natural Variation in HIV-1 Entry Kinetics Map to Specific Residues and Reveal an Interdependence Between Attachment and Fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600587. [PMID: 38979136 PMCID: PMC11230229 DOI: 10.1101/2024.06.25.600587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
HIV-1 entry kinetics reflect the fluid motion of the HIV envelope glycoprotein through at least three major structural configurations that drive virus-cell membrane fusion. The lifetime of each state is an important component of potency for inhibitors that target them. We used the time-of-addition inhibitor assay and a novel analytical strategy to define the kinetics of pre-hairpin exposure (using T20) and co-receptor engagement (via. maraviroc), through a characteristic delay metric, across a variety of naturally occurring HIV Env isolates. Among 257 distinct HIV-1 envelope isolates we found a remarkable breadth of T20 and maraviroc delays ranging from as early as 30 seconds to as late as 60 minutes. The most extreme delays were observed among transmission-linked clade C isolates. We identified four single-residue determinants of late T20 and maraviroc delays that are associated with either receptor engagement or gp41 function. Comparison of these delays with T20 sensitivity suggest co-receptor engagement and fusogenic activity in gp41 act cooperatively but sequentially to drive entry. Our findings support current models of entry where co-receptor engagement drives gp41 eclipse and have strong implications for the design of entry inhibitors and antibodies that target transient entry states. Author Summary The first step of HIV-1 infection is entry, where virus-cell membrane fusion is driven by the HIV-1 envelope glycoprotein through a series of conformational changes. Some of the most broadly active entry inhibitors work by binding conformations that exist only transiently during entry. The lifetimes of these states and the kinetics of entry are important elements of inhibitor activity for which little is known. We demonstrate a remarkable range of kinetics among 257 diverse HIV-1 isolates and find that this phenotype is highly flexible, with multiple single-residue determinants. Examination of the kinetics of two conformational landmarks shed light on novel kinetic features that offer new details about the role of co-receptor engagement and provide a framework to explain entry inhibitor synergy.
Collapse
|
4
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
5
|
Wang S, Chan KW, Wei D, Ma X, Liu S, Hu G, Park S, Pan R, Gu Y, Nazzari AF, Olia AS, Xu K, Lin BC, Louder MK, McKee K, Doria-Rose NA, Montefiori D, Seaman MS, Zhou T, Kwong PD, Arthos J, Kong XP, Lu S. Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains. Nat Commun 2024; 15:4301. [PMID: 38773089 PMCID: PMC11109196 DOI: 10.1038/s41467-024-48514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Danlan Wei
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xiuwen Ma
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Shuying Liu
- SYL Consulting, Thousand Oak, CA, 91320, USA
| | - Guangnan Hu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Saeyoung Park
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - James Arthos
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
6
|
Van Ryk D, Vimonpatranon S, Hiatt J, Ganesan S, Chen N, McMurry J, Garba S, Min S, Goes LR, Girard A, Yolitz J, Licavoli I, Wei D, Huang D, Soares MA, Martinelli E, Cicala C, Arthos J. The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin ⍺4β7. PLoS Pathog 2023; 19:e1011860. [PMID: 38064524 PMCID: PMC10732398 DOI: 10.1371/journal.ppat.1011860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
The CD4 receptor, by stabilizing TCR-MHC II interactions, plays a central role in adaptive immunity. It also serves as the HIV docking receptor. The HIV gp120 envelope protein binds directly to CD4. This interaction is a prerequisite for viral entry. gp120 also binds to ⍺4β7, an integrin that is expressed on a subset of memory CD4+ T cells. HIV tropisms for CD4+ T cells and gut tissues are central features of HIV pathogenesis. We report that CD4 binds directly to ⍺4β7 in a dynamic way, consistent with a cis regulatory interaction. The molecular details of this interaction are related to the way in which gp120 interacts with both receptors. Like MAdCAM-1 and VCAM-1, two recognized ligands of ⍺4β7, the binding interface on CD4 includes 2 sites (1° and accessory), distributed across its two N-terminal IgSF domains (D1 and D2). The 1° site includes a sequence in the G β-strand of CD4 D2, KIDIV, that binds directly to ⍺4β7. This pentapeptide sequence occurs infrequently in eukaryotic proteins. However, a closely related and conserved sequence, KLDIV, appears in the V2 domain of gp120. KLDIV mediates gp120-⍺4β7 binding. The accessory ⍺4β7 binding site on CD4 includes Phe43. The Phe43 aromatic ring protrudes outward from one edge of a loop connecting the C'C" strands of CD4 D1. Phe43 is a principal contact for HIV gp120. It interacts with conserved residues in the recessed CD4 binding pocket. Substitution of Phe43 abrogates CD4 binding to both gp120 and ⍺4β7. As such, the interactions of gp120 with both CD4 and ⍺4β7 reflect elements of their interactions with each other. These findings indicate that gp120 specificities for CD4 and ⍺4β7 are interrelated and suggest that selective pressures which produced a CD4 tropic virus that replicates in gut tissues are linked to a dynamic interaction between these two receptors.
Collapse
Affiliation(s)
- Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sinmanus Vimonpatranon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Joe Hiatt
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nathalie Chen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jordan McMurry
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Saadiq Garba
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Susie Min
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Livia R. Goes
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Girard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Isabella Licavoli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dawei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Wang S, Chan KW, Wei D, Ma X, Liu S, Hu G, Park S, Pan R, Gu Y, Nazzari AF, Olia AS, Xu K, Lin BC, Louder MK, Doria-Rose NA, Montefiori D, Seaman MS, Zhou T, Kwong PD, Arthos J, Kong XP, Lu S. Human CD4-Binding Site Antibody Elicited by Polyvalent DNA Prime-Protein Boost Vaccine Neutralizes Cross-Clade Tier-2-HIV Strains. RESEARCH SQUARE 2023:rs.3.rs-3360161. [PMID: 37886518 PMCID: PMC10602183 DOI: 10.21203/rs.3.rs-3360161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The vaccine elicitation of HIV-neutralizing antibodies with tier-2-neutralization breadth has been a challenge. Here, we report the isolation and characteristics of a CD4-binding site specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent gp120 DNA prime-protein boost vaccine. HmAb64 derived from heavy chain variable germline gene IGHV1-18, light chain germline gene IGKV1-39, and had a 3rd heavy chain complementarity determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 21 (10%), including tier-2 neutralization resistant strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 bound to a conformation between prefusion closed and occluded open forms of envelope trimer, using both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4-binding site. A gp120 subunit-based vaccine can thus elicit an antibody capable of tier 2-HIV neutralization.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Danlan Wei
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Xiuwen Ma
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Guangnan Hu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Saeyoung Park
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James Arthos
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
8
|
Williams LD, Shen X, Sawant SS, Akapirat S, Dahora LC, Tay MZ, Stanfield-Oakley S, Wills S, Goodman D, Tenney D, Spreng RL, Zhang L, Yates NL, Montefiori DC, Eller MA, Easterhoff D, Hope TJ, Rerks-Ngarm S, Pittisuttithum P, Nitayaphan S, Excler JL, Kim JH, Michael NL, Robb ML, O’Connell RJ, Karasavvas N, Vasan S, Ferrari G, Tomaras GD, RV305 study team. Viral vector delivered immunogen focuses HIV-1 antibody specificity and increases durability of the circulating antibody recall response. PLoS Pathog 2023; 19:e1011359. [PMID: 37256916 PMCID: PMC10284421 DOI: 10.1371/journal.ppat.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 04/14/2023] [Indexed: 06/02/2023] Open
Abstract
The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.
Collapse
Affiliation(s)
- LaTonya D. Williams
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sheetal S. Sawant
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Siriwat Akapirat
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Matthew Zirui Tay
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Saintedym Wills
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - DeAnna Tenney
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicole L. Yates
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | - Punnee Pittisuttithum
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robert J. O’Connell
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicos Karasavvas
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Guido Ferrari
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | | |
Collapse
|
9
|
Gray MD, Feng J, Weidle CE, Cohen KW, Ballweber-Fleming L, MacCamy AJ, Huynh CN, Trichka JJ, Montefiori D, Ferrari G, Pancera M, McElrath MJ, Stamatatos L. Characterization of a vaccine-elicited human antibody with sequence homology to VRC01-class antibodies that binds the C1C2 gp120 domain. SCIENCE ADVANCES 2022; 8:eabm3948. [PMID: 35507661 PMCID: PMC9067929 DOI: 10.1126/sciadv.abm3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Broadly HIV-1-neutralizing VRC01-class antibodies bind the CD4-binding site of Env and contain VH1-2*02-derived heavy chains paired with light chains expressing five-amino acid-long CDRL3s. Their unmutated germline forms do not recognize HIV-1 Env, and their lack of elicitation in human clinical trials could be due to the absence of activation of the corresponding naïve B cells by the vaccine immunogens. To address this point, we examined Env-specific B cell receptor sequences from participants in the HVTN 100 clinical trial. Of all the sequences analyzed, only one displayed homology to VRC01-class antibodies, but the corresponding antibody (FH1) recognized the C1C2 gp120 domain. For FH1 to switch epitope recognition to the CD4-binding site, alterations in the CDRH3 and CDRL3 were necessary. Only germ line-targeting Env immunogens efficiently activated VRC01 B cells, even in the presence of FH1 B cells. Our findings support the use of these immunogens to activate VRC01 B cells in humans.
Collapse
Affiliation(s)
- Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Connor E. Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna J. MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Crystal N. Huynh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josephine J. Trichka
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Shepherd BO, Chang D, Vasan S, Ake J, Modjarrad K. HIV and SARS-CoV-2: Tracing a Path of Vaccine Research and Development. Curr HIV/AIDS Rep 2022; 19:86-93. [PMID: 35089535 PMCID: PMC8795326 DOI: 10.1007/s11904-021-00597-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW This review examines the major advances and obstacles in the field of HIV vaccine research as they pertain to informing the development of vaccines against SARS-CoV-2. RECENT FINDINGS Although the field of HIV research has yet to deliver a licensed vaccine, the technologies developed and knowledge gained in basic scientific disciplines, translational research, and community engagement have positively impacted the development of vaccines for other viruses, most notably and recently for SARS-CoV-2. These advances include the advent of viral vectors and mRNA as vaccine delivery platforms; the use of structural biology for immunogen design; an emergence of novel adjuvant formulations; a more sophisticated understanding of viral phylogenetics; improvements in the development and harmonization of accurate assays for vaccine immunogenicity; and maturation of the fields of bioethics and community engagement for clinical trials conducted in diverse populations. Decades of foundational research and investments into HIV biology, though yet to yield an authorized or approved vaccine for HIV/AIDS, have now paid dividends in the rapid development of safe and effective SARS-CoV-2 vaccines. This latter success presents an opportunity for feedback on improved pathways for development of safe and efficacious vaccines against HIV and other pathogens.
Collapse
Affiliation(s)
- Brittany Ober Shepherd
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Suite 2A14, Silver Spring, MD 20910 USA ,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817 USA
| | - David Chang
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910 USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Suite 2A14, Silver Spring, MD 20910 USA ,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817 USA ,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910 USA
| | - Julie Ake
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817 USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Suite 2A14, Silver Spring, MD, 20910, USA.
| |
Collapse
|
11
|
Kim J, Vasan S, Kim JH, Ake JA. Current approaches to HIV vaccine development: a narrative review. J Int AIDS Soc 2021; 24 Suppl 7:e25793. [PMID: 34806296 PMCID: PMC8606871 DOI: 10.1002/jia2.25793] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The development of an effective vaccine to protect against HIV is a longstanding global health need complicated by challenges inherent to HIV biology and to the execution of vaccine efficacy testing in the context of evolving biomedical prevention interventions. This review describes lessons learnt from previous efficacy trials, highlights unanswered questions, and surveys new approaches in vaccine development addressing these gaps. METHODS We conducted a targeted peer-reviewed literature search of articles and conference abstracts from 1989 through 2021 for HIV vaccine studies and clinical trials. The US National Library of Medicine's Clinical Trials database was accessed to further identify clinical trials involving HIV vaccines. The content of the review was also informed by the authors' own experience and engagement with collaborators in HIV vaccine research. DISCUSSION The HIV vaccine field has successfully developed multiple vaccine platforms through advanced clinical studies; however, the modest efficacy signal of the RV144 Thai trial remains the only demonstration of HIV vaccine protection in humans. Current vaccine strategies include prime-boost strategies to improve elicitation of immune correlates derived from RV144, combination mosaic antigens, novel viral vectors, antigens designed to elicit broadly neutralizing antibody, new nucleic acid platforms and potent adjuvants to enhance immunogenicity across multiple classes of emerging vaccine candidates. CONCLUSIONS HIV vaccine developers have applied lessons learnt from previous successes and failures to innovative vaccine design approaches. These strategies have yielded novel mosaic antigen constructs now in efficacy testing, produced a diverse pipeline of early-stage immunogens and novel adjuvants, and advanced the field towards a globally effective HIV vaccine.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Sandhya Vasan
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | | | - Julie A. Ake
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| |
Collapse
|
12
|
Bouba Y, Berno G, Fabeni L, Carioti L, Salpini R, Aquaro S, Svicher V, Perno CF, Ceccherini-Silberstein F, Santoro MM. Identification of gp120 polymorphisms in HIV-1 B subtype potentially associated with resistance to fostemsavir. J Antimicrob Chemother 2021; 75:1778-1786. [PMID: 32160290 DOI: 10.1093/jac/dkaa073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We evaluated natural resistance to the new antiretroviral fostemsavir and its potential association with other HIV-1 gp120 polymorphisms. METHODS A total of 1997 HIV-1 B subtype gp120 sequences from the Los Alamos HIV Database were analysed for mutation prevalence at fostemsavir resistance-associated positions and potential association with other gp120 polymorphisms. The role of each fostemsavir resistance-related position and the correlated gp120 mutations, both in protein stability and in reducing the binding affinity between antibody and/or T cell lymphocyte epitopes and the MHC molecules, was estimated. RESULTS The prevalence of fostemsavir resistance mutations was as follows: L116Q (0.05%), S375H/M/T (0.55%/1.35%/17.73%, the latter being far less relevant in determining resistance), M426L (7.56%), M434I (4.21%) and M475I (1.65%). Additionally, the M426R polymorphism had a prevalence of 16.32%. A significantly higher prevalence in X4 viruses versus R5 viruses was found only for S375M (0.69% versus 3.93%, P = 0.009) and S375T (16.60% versus 22.11%, P = 0.030). Some fostemsavirv resistance positions positively and significantly correlated with specific gp120 polymorphisms: S375T with I371V; S375M with L134W, I154V and I323T; M475I with K322A; and M426R with G167N, K192T and S195N. The topology of the dendrogram suggested the existence of three distinct clusters (bootstrap ≥0.98) involving these fostemsavir resistance mutations and gp120 polymorphisms. Interestingly, all clustered mutations are localized in class I/II-restricted T cell/antibody epitopes, suggesting a potential role in immune HIV escape. CONCLUSIONS A low prevalence of known fostemsavir resistance mutations was found in the HIV-1 B subtype. The detection of novel HIV-1 gp120 polymorphisms potentially relevant for fostemsavir resistance deserves new in-depth in vitro investigations.
Collapse
Affiliation(s)
- Yagai Bouba
- University of Rome 'Tor Vergata', Rome, Italy
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Giulia Berno
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - Lavinia Fabeni
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | | | | | - Stefano Aquaro
- University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | | | | | | | |
Collapse
|
13
|
Velarde de la Cruz E, Wang L, Bose D, Gangadhara S, Wilson RL, Amara RR, Kozlowski PA, Aldovini A. Oral Vaccination Approaches for Anti-SHIV Immunity. Front Immunol 2021; 12:702705. [PMID: 34234789 PMCID: PMC8256843 DOI: 10.3389/fimmu.2021.702705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
We modified a Sabin Oral Poliovirus Vaccine (OPV) vector to permit secretion of the antigens of interest with the goal of improving anti-HIV Env humoral responses in a SHIV mucosal immunization composed of DNA and recombinant OPVs. We evaluated stimulation of systemic and mucosal cell-mediated and humoral immunity in Rhesus macaques by two regimens, both involving a prime with a SHIVBG505 DNA construct producing non-infectious particles formulated in lipid nanoparticles, administered in the oral cavity, and two different viral vector boostings, administered in the oral cavity and intestinally. Group 1 was boosted with rMVA-SHIVBG505, expressing SIV Gag/Pol and HIVBG505 Env. Group 2 was boosted with a SHIVBG505-OPV vaccine including a non-secreting SIVmac239CA-p6-OPV, expressing Gag CA, NC and p6 proteins, and a HIVBG505C1-V2-OPV, secreting the C1-V2 fragment of HIV EnvBG505, recognized by the broadly neutralizing antibody PG16. A time course analysis of anti-SHIV Gag and Env CD4+ and CD8+ T-cell responses in PBMC and in lymph node, rectal, and vaginal MNC was carried out. Both regimens stimulated significant cell-mediated responses in all compartments, with SHIVBG505-OPV immunization stimulating more significant levels of responses than rMVA- SHIVBG505. Boolean analysis of these responses revealed predominantly monofunctional responses with multifunctional responses also present in all tissues. Stimulation of antibody responses was disappointing in both groups with negative anti-SHIV IgG in plasma, and IgA in salivary, rectal and vaginal secretions being restricted to a few animals. After repeated rectal challenge with SHIVBG505, two Group 1 animals remained uninfected at challenge termination. No significant differences were observed in post-infection viral loads between groups. After the acute phase decline, CD4+ T cell percentages returned to normal levels in vaccinated as well as control animals. However, when compared to controls, vaccinate groups had more significant preservation of PBMC and rectal MNC Th17/Treg ratios, considered the strongest surrogate marker of progression to AIDS. We conclude that the vaccine platforms used in this study are insufficient to stimulate significant humoral immunity at the tested doses and schedule but sufficient to stimulate significant mucosal and systemic cell-mediated immunity, impacting the preservation of key Th17 CD4+ T cells in blood and rectal mucosa.
Collapse
Affiliation(s)
- Erandi Velarde de la Cruz
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lingyun Wang
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Deepanwita Bose
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sailaja Gangadhara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Robert L. Wilson
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rama R. Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Anna Aldovini
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
A reversed phase HPLC method for the quantification of HIV gp145 glycoprotein levels from cell culture supernatants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122562. [PMID: 33571843 DOI: 10.1016/j.jchromb.2021.122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.
Collapse
|
15
|
Ng'uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front Immunol 2020; 11:590780. [PMID: 33193428 PMCID: PMC7655734 DOI: 10.3389/fimmu.2020.590780] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following the discovery of HIV as a causative agent of AIDS, the expectation was to rapidly develop a vaccine; but thirty years later, we still do not have a licensed vaccine. Progress has been hindered by the extensive genetic variability of HIV and our limited understanding of immune responses required to protect against HIV acquisition. Nonetheless, valuable knowledge accrued from numerous basic and translational science research studies and vaccine trials has provided insight into the structural biology of the virus, immunogen design and novel vaccine delivery systems that will likely constitute an effective vaccine. Furthermore, stakeholders now appreciate the daunting scientific challenges of developing an effective HIV vaccine, hence the increased advocacy for collaborative efforts among academic research scientists, governments, pharmaceutical industry, philanthropy, and regulatory entities. In this review, we highlight the history of HIV vaccine development efforts, highlighting major challenges and future directions.
Collapse
Affiliation(s)
- Tiza Ng'uni
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Caroline Chasara
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza M Ndhlovu
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
16
|
Fischinger S, Shin S, Boudreau CM, Ackerman M, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kim JH, Robb ML, Michael NL, O’Connell RJ, Vasan S, Streeck H, Alter G. Protein-based, but not viral vector alone, HIV vaccine boosting drives an IgG1-biased polyfunctional humoral immune response. JCI Insight 2020; 5:135057. [PMID: 32554928 PMCID: PMC7406243 DOI: 10.1172/jci.insight.135057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The RV144 HIV-1 vaccine trial results showed moderate reduction in viral infections among vaccinees as well as induction of antibody-dependent cellular cytotoxicity and vaccine-specific IgG and IgG3 responses directed at variable loop regions 1 and 2 of the HIV envelope protein. However, with the recent failure of the HVTN 702 clinical trial, comprehensive profiling of humoral immune responses may provide insight for these disappointing results. One of the changes included in the HVTN 702 study was the addition of a late boost, aimed at augmenting peak immunity and durability. The companion vaccine trial RV305 was designed to permit the evaluation of the immunologic impact of late boosting with either the boosting protein antigen alone, the canarypox viral vector ALVAC alone, or a combination of both. Although previous data showed elevated levels of IgG antibodies in both boosting arms, regardless of ALVAC-HIV vector incorporation, the effect on shaping antibody effector function remains unclear. Thus, here we analyzed the antibody and functional profile induced by RV305 boosting regimens and found that although IgG1 levels increased in both arms that included protein boosting, IgG3 levels were reduced compared with the original RV144 vaccine strategy. Most functional responses increased upon protein boosting, regardless of the viral vector-priming agent incorporation. These data suggest that the addition of a late protein boost alone is sufficient to increase functionally potent vaccine-specific antibodies previously associated with reduced risk of infection with HIV.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
- Institut für HIV Forschung, Universität Duisburg-Essen, Essen, Germany
| | - Sally Shin
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
| | - Carolyn M. Boudreau
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
- PhD Program in Virology, Harvard University, Boston, Massachusetts, USA
| | - Margaret Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Merlin L. Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert J. O’Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hendrik Streeck
- Institut für HIV Forschung, Universität Duisburg-Essen, Essen, Germany
- Institute of Virology, Universitätsklinikum Bonn, Bonn, Germany
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Lewis PE, Poteet EC, Liu D, Chen C, LaBranche CC, Stanfield-Oakley SA, Montefiori DC, Ferrari G, Yao Q. CTLA-4 Blockade, during HIV Virus-Like Particles Immunization, Alters HIV-Specific B-Cell Responses. Vaccines (Basel) 2020; 8:E284. [PMID: 32517277 PMCID: PMC7349993 DOI: 10.3390/vaccines8020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Studies have shown that blockade of CTLA-4 promoted the expansion of germinal center B-cells in viral infection or immunization with model antigens. Few studies have evaluated the immunological consequences of CTLA-4 blockade during immunization against relevant vaccine candidates. Here, we investigated the effects of CTLA-4 blockade on HIV virus-like particles (VLPs) vaccination in a C57BL/6J mouse model. We found that CTLA-4 blockade during HIV VLP immunization resulted in increased CD4+ T-cell activation, promoted the expansion of HIV envelope (Env)-specific follicular helper T cell (Tfh) cells, and significantly increased HIV Gag- and Env-specific IgG with higher avidity and antibody-dependent cellular cytotoxicity (ADCC) capabilities. Furthermore, after only a single immunization, CTLA-4 blockade accelerated T-cell dependent IgG class switching and the induction of significantly high serum levels of the B-cell survival factor, A proliferation-inducing ligand (APRIL). Although no significant increase in neutralizing antibodies was observed, increased levels of class-switched Env- and Gag-specific IgG are indicative of increased polyclonal B-cell activation, which demonstrated the ability to mediate and enhance ADCC in this study. Altogether, our findings show that CTLA-4 blockade can increase the levels of HIV antigen-specific B-cell and antigen-specific Tfh cell activity and impact humoral immune responses when combined with a clinically relevant HIV VLP-based vaccine.
Collapse
Affiliation(s)
- Phoebe E. Lewis
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan C. Poteet
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
| | - Celia C. LaBranche
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - Sherry A. Stanfield-Oakley
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - David C. Montefiori
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - Guido Ferrari
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Basu M, Piepenbrink MS, Francois C, Roche F, Zheng B, Spencer DA, Hessell AJ, Fucile CF, Rosenberg AF, Bunce CA, Liesveld J, Keefer MC, Kobie JJ. Persistence of HIV-1 Env-Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans. Cell Rep Med 2020; 1:100015. [PMID: 32577626 PMCID: PMC7311075 DOI: 10.1016/j.xcrm.2020.100015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 04/23/2020] [Indexed: 01/21/2023]
Abstract
Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.
Collapse
Affiliation(s)
- Madhubanti Basu
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Bo Zheng
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Catherine A. Bunce
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - Jane Liesveld
- Division of Hematology/Oncology, University of Rochester, Rochester, NY, USA
| | - Michael C. Keefer
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - James J. Kobie
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Pitisuttithum P, Nitayaphan S, Chariyalertsak S, Kaewkungwal J, Dawson P, Dhitavat J, Phonrat B, Akapirat S, Karasavvas N, Wieczorek L, Polonis V, Eller MA, Pegu P, Kim D, Schuetz A, Jongrakthaitae S, Zhou Y, Sinangil F, Phogat S, Diazgranados CA, Tartaglia J, Heger E, Smith K, Michael NL, Excler JL, Robb ML, Kim JH, O'Connell RJ, Vasan S. Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV 2020; 7:e238-e248. [PMID: 32035516 PMCID: PMC7247755 DOI: 10.1016/s2352-3018(19)30406-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The RV144 phase 3 vaccine trial in Thailand demonstrated that ALVAC-HIV (vCP1521) and AIDSVAX B/E administration over 6 months resulted in a 31% efficacy in preventing HIV acquisition. In this trial, we assessed the immunological effect of an additional vaccine boost to the RV144 regimen at varying intervals between the priming vaccine series and the boost. METHODS RV306 is a double-blind, placebo-controlled, randomised clinical trial done at three clinical sites in Thailand. Eligible volunteers were HIV-uninfected individuals aged 20-40 years who were at low risk for HIV infection and in good health. A randomisation schedule was centrally generated with fixed sized strata for Research Institute for Health Sciences Chiang Mai and combined Bangkok clinics. Participants were randomly assigned to one of five groups and then further randomly assigned to either vaccine or placebo. All participants received the primary RV144 vaccine series at months 0, 1, 3, and 6. Group 1 received no additional boost, group 2 received additional AIDSVAX B/E and ALVAC-HIV (vCP1521) or placebo at month 12, group 3 received AIDSVAX B/E alone or placebo at month 12, group 4a received AIDSVAX B/E and ALVAC-HIV or placebo at month 15, and group 4b received AIDSVAX B/E and ALVAC-HIV or placebo at month 18. Primary outcomes were safety and tolerability of these vaccination regimens and cellular and humoral immune responses compared between the RV144 series alone and regimens with late boosts at different timepoints. Safety and tolerability outcomes were assessed by evaluating local and systemic reactogenicity and adverse events in all participants. This trial is registered at ClinicalTrials.gov (NCT01931358); clinical follow-up is now complete. FINDINGS Between Oct 28, 2013, and April 29, 2014, 367 participants were enrolled, of whom 27 were assigned active vaccination in group 1, 102 in group 2, 101 in group 3, 52 in group 4a, 51 in group 4b, and 34 combined placebo across all the groups. No vaccine-related serious adverse events were recorded. Occurrence and severity of local and systemic reactogenicity were similar across active groups. Groups with late boosts (groups 2, 3, 4a, and 4b) had increased peak plasma IgG-binding antibody levels against gp70 V1V2 relative to group 1 vaccine recipients with no late boost (gp70 V1V2 92TH023 adjusted p<0·02 for each; gp70 V1V2 CaseA2 adjusted p<0·0001 for each). Boosting at month 12 (groups 2 and 3) did not increase gp120 responses compared with the peak responses after the RV144 priming regimen at month 6; however, boosting at month 15 (group 4a) improved responses to gp120 A244gD- D11 (p=0·0003), and boosting at month 18 (group 4b) improved responses to both gp120 A244gD- D11 (p<0·0001) and gp120 MNgD- D11 (p=0·0016). Plasma IgG responses were significantly lower among vaccine recipients boosted at month 12 (pooled groups 2 + 3) than at month 15 (group 4a; adjusted p<0·0001 for each, except for gp70 V1V2 CaseA2, p=0·0142) and at month 18 (group 4b; all adjusted p<0·001). Boosting at month 18 versus month 15 resulted in a significantly higher plasma IgG response to gp120 antigens (all adjusted p<0·01) but not gp70 V1V2 antigens. CD4 functionality and polyfunctionality scores after stimulation with HIV-1 Env peptides (92TH023) increased with delayed boosting. Groups with late boosts had increased functionality and polyfunctionality scores relative to vaccine recipients with no late boost (all adjusted p<0·05, except for the polyfunctionality score in group 1 vs group 4b, p<0·01). INTERPRETATION Taken together, these results suggest that additional boosting of the RV144 regimen with longer intervals between the primary vaccination series and late boost improved immune responses and might improve the efficacy of preventing HIV acquisition. FUNDING US National Institute of Allergy and Infectious Diseases and US Department of the Army.
Collapse
Affiliation(s)
- Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Suwat Chariyalertsak
- Research Institute for Health Sciences and Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Jaranit Kaewkungwal
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jittima Dhitavat
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benjaluck Phonrat
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Siriwat Akapirat
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Poonam Pegu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexandra Schuetz
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, PA, USA; GlaxoSmithKline, Siena, Italy
| | | | | | - Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Kirsten Smith
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; International Vaccine Institute, Seoul, South Korea
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; International Vaccine Institute, Seoul, South Korea
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandhya Vasan
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
20
|
Pitisuttithum P, Marovich MA. Prophylactic HIV vaccine: vaccine regimens in clinical trials and potential challenges. Expert Rev Vaccines 2020; 19:133-142. [PMID: 31951766 DOI: 10.1080/14760584.2020.1718497] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Ending the HIV epidemic will likely require an efficacious preventative HIV vaccine. As vaccine development progresses, new challenges emerge in the context of an evolving prevention landscape.Areas covered: The progress in HIV vaccine development including trial regimens, results, and impact of pre-exposure prophylaxis (PrEP) including trial design.Expert opinion: Building upon the modest RV144 efficacy results, a follow-up study was launched in South Africa using modified vaccine constructs, ALVAC-HIV vector and gp120 protein boosts (Clade C strains). An adjuvant, MF59, was used to improve durability. Another Phase 2b regimen using an Adenovirus-26 vector with multivalent mosaic antigen inserts and a Clade C gp140 boost advanced into efficacy testing. Current vaccine efficacy studies enroll participants at risk for HIV, offer robust prevention packages, and notably do not restrict PrEP usage. With increasingly efficacious prevention options, future clinical trial designs become more complex. While formally requiring PrEP in HIV vaccine trials (e.g. PrEP ± Vaccine) may maximize protection, it raises both ethical and incremental efficacy over PrEP. Increasing vaccine complexity may lead to persistent vaccine-induced seropositivity, which presents different challenges. Discussion with the community and broader stakeholder engagement will help create solutions to these challenges.
Collapse
Affiliation(s)
- Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mary Anne Marovich
- Vaccine Research Program, National Institute of Allergy and Infectious Diseases (NIAID, NIH), Bethesda, Maryland, United States
| |
Collapse
|
21
|
Laher F, Moodie Z, Cohen KW, Grunenberg N, Bekker LG, Allen M, Frahm N, Yates NL, Morris L, Malahleha M, Mngadi K, Daniels B, Innes C, Saunders K, Grant S, Yu C, Gilbert PB, Phogat S, DiazGranados CA, Koutsoukos M, Van Der Meeren O, Bentley C, Mkhize NN, Pensiero MN, Mehra VL, Kublin JG, Corey L, Montefiori DC, Gray GE, McElrath MJ, Tomaras GD. Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: A randomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Med 2020; 17:e1003038. [PMID: 32092060 PMCID: PMC7039414 DOI: 10.1371/journal.pmed.1003038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND HVTN 100 evaluated the safety and immunogenicity of an HIV subtype C pox-protein vaccine regimen, investigating a 12-month booster to extend vaccine-induced immune responses. METHODS AND FINDINGS A phase 1-2 randomized double-blind placebo-controlled trial enrolled 252 participants (210 vaccine/42 placebo; median age 23 years; 43% female) between 9 February 2015 and 26 May 2015. Vaccine recipients received ALVAC-HIV (vCP2438) alone at months 0 and 1 and with bivalent subtype C gp120/MF59 at months 3, 6, and 12. Antibody (IgG, IgG3 binding, and neutralizing) and CD4+ T-cell (expressing interferon-gamma, interleukin-2, and CD40 ligand) responses were evaluated at month 6.5 for all participants and at months 12, 12.5, and 18 for a randomly selected subset. The primary analysis compared IgG binding antibody (bAb) responses and CD4+ T-cell responses to 3 vaccine-matched antigens at peak (month 6.5 versus 12.5) and durability (month 12 versus 18) timepoints; IgG responses to CaseA2_gp70_V1V2.B, a primary correlate of risk in RV144, were also compared at these same timepoints. Secondary and exploratory analyses compared IgG3 bAb responses, IgG bAb breadth scores, neutralizing antibody (nAb) responses, antibody-dependent cellular phagocytosis, CD4+ polyfunctionality responses, and CD4+ memory sub-population responses at the same timepoints. Vaccines were generally safe and well tolerated. During the study, there were 2 deaths (both in the vaccine group and both unrelated to study products). Ten participants became HIV-infected during the trial, 7% (3/42) of placebo recipients and 3% (7/210) of vaccine recipients. All 8 serious adverse events were unrelated to study products. Less waning of immune responses was seen after the fifth vaccination than after the fourth, with higher antibody and cellular response rates at month 18 than at month 12: IgG bAb response rates to 1086.C V1V2, 21.0% versus 9.7% (difference = 11.3%, 95% CI = 0.6%-22.0%, P = 0.039), and ZM96.C V1V2, 21.0% versus 6.5% (difference = 14.5%, 95% CI = 4.1%-24.9%, P = 0.004). IgG bAb response rates to all 4 primary V1V2 antigens were higher 2 weeks after the fifth vaccination than 2 weeks after the fourth vaccination: 87.7% versus 75.4% (difference = 12.3%, 95% CI = 1.7%-22.9%, P = 0.022) for 1086.C V1V2, 86.0% versus 63.2% (difference = 22.8%, 95% CI = 9.1%-36.5%, P = 0.001) for TV1c8.2.C V1V2, 67.7% versus 44.6% (difference = 23.1%, 95% CI = 10.4%-35.7%, P < 0.001) for ZM96.C V1V2, and 81.5% versus 60.0% (difference = 21.5%, 95% CI = 7.6%-35.5%, P = 0.002) for CaseA2_gp70_V1V2.B. IgG bAb response rates to the 3 primary vaccine-matched gp120 antigens were all above 90% at both peak timepoints, with no significant differences seen, except a higher response rate to ZM96.C gp120 at month 18 versus month 12: 64.5% versus 1.6% (difference = 62.9%, 95% CI = 49.3%-76.5%, P < 0.001). CD4+ T-cell response rates were higher at month 18 than month 12 for all 3 primary vaccine-matched antigens: 47.3% versus 29.1% (difference = 18.2%, 95% CI = 2.9%-33.4%, P = 0.021) for 1086.C, 61.8% versus 38.2% (difference = 23.6%, 95% CI = 9.5%-37.8%, P = 0.001) for TV1.C, and 63.6% versus 41.8% (difference = 21.8%, 95% CI = 5.1%-38.5%, P = 0.007) for ZM96.C, with no significant differences seen at the peak timepoints. Limitations were that higher doses of gp120 were not evaluated, this study was not designed to investigate HIV prevention efficacy, and the clinical significance of the observed immunological effects is uncertain. CONCLUSIONS In this study, a 12-month booster of subtype C pox-protein vaccines restored immune responses, and slowed response decay compared to the 6-month vaccination. TRIAL REGISTRATION ClinicalTrials.gov NCT02404311. South African National Clinical Trials Registry (SANCTR number: DOH--27-0215-4796).
Collapse
Affiliation(s)
- Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Mary Allen
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nicole L. Yates
- Departments of Surgery and Immunology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Kathryn Mngadi
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Brodie Daniels
- South African Medical Research Council, Durban, South Africa
| | - Craig Innes
- Aurum Institute, Klerksdorp Research Centre, Klerksdorp, South Africa
| | - Kevin Saunders
- Departments of Surgery and Immunology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Shannon Grant
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | | | | | | | - Carter Bentley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael N. Pensiero
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vijay L. Mehra
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David C. Montefiori
- Departments of Surgery and Immunology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Glenda E. Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Durban, South Africa
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Departments of Surgery and Immunology, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Easterhoff D, Pollara J, Luo K, Tolbert WD, Young B, Mielke D, Jha S, O'Connell RJ, Vasan S, Kim J, Michael NL, Excler JL, Robb ML, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Sinangil F, Tartaglia J, Phogat S, Kepler TB, Alam SM, Wiehe K, Saunders KO, Montefiori DC, Tomaras GD, Moody MA, Pazgier M, Haynes BF, Ferrari G. Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. J Virol 2020; 94:e01120-19. [PMID: 31776278 PMCID: PMC6997759 DOI: 10.1128/jvi.01120-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial.IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.
Collapse
Affiliation(s)
| | | | - Kan Luo
- Duke University, Durham, North Carolina, USA
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brianna Young
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | | - Shalini Jha
- Duke University, Durham, North Carolina, USA
| | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- U.S. Army Medical Directorate, AFRIMS, Bangkok, Thailand
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jerome Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | | | - Faruk Sinangil
- Global Solutions of Infectious Diseases, South San Francisco, California, USA
| | | | | | | | | | - Kevin Wiehe
- Duke University, Durham, North Carolina, USA
| | | | | | | | | | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | |
Collapse
|
23
|
Easterhoff D, Pollara J, Luo K, Janus B, Gohain N, Williams LD, Tay MZ, Monroe A, Peachman K, Choe M, Min S, Lusso P, Zhang P, Go EP, Desaire H, Bonsignori M, Hwang KK, Beck C, Kakalis M, O’Connell RJ, Vasan S, Kim JH, Michael NL, Excler JL, Robb ML, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Sinangil F, Tartaglia J, Phogat S, Wiehe K, Saunders KO, Montefiori DC, Tomaras GD, Moody MA, Arthos J, Rao M, Joyce MG, Ofek G, Ferrari G, Haynes BF. HIV vaccine delayed boosting increases Env variable region 2-specific antibody effector functions. JCI Insight 2020; 5:131437. [PMID: 31996483 PMCID: PMC7098725 DOI: 10.1172/jci.insight.131437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
In the RV144 HIV-1 phase III trial, vaccine efficacy directly correlated with the magnitude of the variable region 2-specific (V2-specific) IgG antibody response, and in the presence of low plasma IgA levels, with the magnitude of plasma antibody-dependent cellular cytotoxicity. Reenrollment of RV144 vaccinees in the RV305 trial offered the opportunity to define the function, maturation, and persistence of vaccine-induced V2-specific and other mAb responses after boosting. We show that the RV144 vaccine regimen induced persistent V2 and other HIV-1 envelope-specific memory B cell clonal lineages that could be identified throughout the approximately 11-year vaccination period. Subsequent boosts increased somatic hypermutation, a critical requirement for antibody affinity maturation. Characterization of 22 vaccine-induced V2-specific mAbs with epitope specificities distinct from previously characterized RV144 V2-specific mAbs CH58 and CH59 found increased in vitro antibody-mediated effector functions. Thus, when inducing non-neutralizing antibodies, one method by which to improve HIV-1 vaccine efficacy may be through late boosting to diversify the V2-specific response to increase the breadth of antibody-mediated anti-HIV-1 effector functions.
Collapse
Affiliation(s)
- David Easterhoff
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | | | - Kan Luo
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Benjamin Janus
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Neelakshi Gohain
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Matthew Zirui Tay
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Anthony Monroe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kristina Peachman
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Misook Choe
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Susie Min
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Paolo Lusso
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Peng Zhang
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eden P. Go
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Heather Desaire
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Charles Beck
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Matina Kakalis
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | | | - Sandhya Vasan
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Jerome H. Kim
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
| | - Nelson L. Michael
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jean-Louis Excler
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Merlin L. Robb
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supachai Rerks-Ngarm
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Punnee Pitisuttithum
- Mahidol Bangkok School of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Mahidol Bangkok School of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - James Tartaglia
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Sanjay Phogat
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | | | | | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - James Arthos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mangala Rao
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
| | - M. Gordon Joyce
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gilad Ofek
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| |
Collapse
|
24
|
Gray GE, Huang Y, Grunenberg N, Laher F, Roux S, Andersen-Nissen E, De Rosa SC, Flach B, Randhawa AK, Jensen R, Swann EM, Bekker LG, Innes C, Lazarus E, Morris L, Mkhize NN, Ferrari G, Montefiori DC, Shen X, Sawant S, Yates N, Hural J, Isaacs A, Phogat S, DiazGranados CA, Lee C, Sinangil F, Michael NL, Robb ML, Kublin JG, Gilbert PB, McElrath MJ, Tomaras GD, Corey L. Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Sci Transl Med 2019; 11:eaax1880. [PMID: 31534016 PMCID: PMC7199879 DOI: 10.1126/scitranslmed.aax1880] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
One of the most successful HIV vaccines to date, the RV144 vaccine tested in Thailand, demonstrated correlates of protection including cross-clade V1V2 immunoglobulin G (IgG) breadth, Env-specific CD4+ T cell polyfunctionality, and antibody-dependent cellular cytotoxicity (ADCC) in vaccinees with low IgA binding. The HIV Vaccine Trials Network (HVTN) 097 trial evaluated this vaccine regimen in South Africa, where clade C HIV-1 predominates. We compared cellular and humoral responses at peak and durability immunogenicity time points in HVTN 097 and RV144 vaccinee samples, and evaluated vaccine-matched and cross-clade immune responses. At peak immunogenicity, HVTN 097 vaccinees exhibited significantly higher cellular and humoral immune responses than RV144 vaccinees. CD4+ T cell responses were more frequent in HVTN 097 irrespective of age and sex, and CD4+ T cell Env-specific functionality scores were higher in HVTN 097. Env-specific CD40L+ CD4+ T cells were more common in HVTN 097, with individuals having this pattern of expression demonstrating higher median antibody responses to HIV-1 Env. IgG and IgG3 binding antibody rates and response magnitude to gp120 vaccine- and V1V2 vaccine-matched antigens were higher or comparable in HVTN 097 than in RV144 ADCC, and ADCP functional antibody responses were elicited in HVTN 097. Env-specific IgG and CD4+ Env responses declined significantly over time in both trials. Overall, cross-clade immune responses associated with protection were better than expected in South Africa, suggesting wider applicability of this regimen.
Collapse
Affiliation(s)
- Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 1864, South Africa.
- South African Medical Research Council, Cape Town 7505, South Africa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 1864, South Africa
| | - Surita Roux
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town 8001, South Africa
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Britta Flach
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - April K Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ryan Jensen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Edith M Swann
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town 8001, South Africa
| | - Craig Innes
- The Aurum Institute, Klerksdorp 2570, South Africa
| | - Erica Lazarus
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 1864, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicole Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Abby Isaacs
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Carter Lee
- Global Solutions for Infectious Diseases, South San Francisco, CA 94080, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA 94080, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
25
|
Affiliation(s)
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
26
|
Heger E, Schuetz A, Vasan S. HIV Vaccine Efficacy Trials: RV144 and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:3-30. [PMID: 30030787 DOI: 10.1007/978-981-13-0484-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Despite progress in antiretroviral therapy, pre-exposure prophylaxis, microbicides, and other preventive strategies, a vaccine to prevent HIV-1 infection remains desperately needed. Development of an effective vaccine is challenged by several immunologic features of HIV-1 evidenced by the failure of five of the six HIV-1 candidate vaccine efficacy trials to date. This chapter reviews these efficacy trials with a focus on the Phase 3 RV144 trial in Thailand, the only HIV-1 vaccine efficacy trial to show a moderate protective effect of 31% with respect to placebo administration. Although modest, this protection has allowed for the study of potential immunologic correlates of protection to improve development of future HIV-1 pox-protein and other vaccine strategies. Trials in Thailand and South Africa have built upon the RV144 framework to provide additional immunologic insights which enable current and future efficacy testing of related vaccine candidates.
Collapse
Affiliation(s)
- Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Alexandra Schuetz
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sandhya Vasan
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation, Bethesda, MD, USA.
| |
Collapse
|
27
|
Robinson HL. HIV/AIDS Vaccines: 2018. Clin Pharmacol Ther 2018; 104:1062-1073. [PMID: 30099743 PMCID: PMC6282490 DOI: 10.1002/cpt.1208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) has infected 76 million people and killed an estimated 35 million. During its 40-year history, remarkable progress has been made on antiretroviral drugs. Progress toward a vaccine has also been made, although this has yet to deliver a licensed product. In 2007, I wrote a review, HIV AIDS Vaccines: 2007. This review, HIV AIDS Vaccines: 2018, focuses on the progress in the past 11 years. I begin with key challenges for the development of an AIDS vaccine and the lessons learned from the six completed efficacy trials, only one of which has met with some success.
Collapse
|
28
|
O’Rourke SM, Byrne G, Tatsuno G, Wright M, Yu B, Mesa KA, Doran RC, Alexander D, Berman PW. Robotic selection for the rapid development of stable CHO cell lines for HIV vaccine production. PLoS One 2018; 13:e0197656. [PMID: 30071025 PMCID: PMC6071959 DOI: 10.1371/journal.pone.0197656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023] Open
Abstract
The production of envelope glycoproteins (Envs) for use as HIV vaccines is challenging. The yield of Envs expressed in stable Chinese Hamster Ovary (CHO) cell lines is typically 10-100 fold lower than other glycoproteins of pharmaceutical interest. Moreover, Envs produced in CHO cells are typically enriched for sialic acid containing glycans compared to virus associated Envs that possess mainly high-mannose carbohydrates. This difference alters the net charge and biophysical properties of Envs and impacts their antigenic structure. Here we employ a novel robotic cell line selection strategy to address the problems of low expression. Additionally, we employed a novel gene-edited CHO cell line (MGAT1- CHO) to address the problems of high sialic acid content, and poor antigenic structure. We demonstrate that stable cell lines expressing high levels of gp120, potentially suitable for biopharmaceutical production can be created using the MGAT1- CHO cell line. Finally, we describe a MGAT1- CHO cell line expressing A244-rgp120 that exhibits improved binding of three major families of bN-mAbs compared to Envs produced in normal CHO cells. The new strategy described has the potential to eliminate the bottleneck in HIV vaccine development that has limited the field for more than 25 years.
Collapse
Affiliation(s)
- Sara M. O’Rourke
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Gabriel Byrne
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Gwen Tatsuno
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Yu
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Rachel C. Doran
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - David Alexander
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
29
|
Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host Microbe 2018; 23:759-765.e6. [PMID: 29861171 PMCID: PMC6002614 DOI: 10.1016/j.chom.2018.04.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/10/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development. HIV-1 broadly neutralizing antibodies are enriched with low-probability mutations Improbable mutations can be functionally critical for bnAb neutralization breadth Critical improbable mutations are high-value targets for selection with vaccines
Collapse
|
30
|
Trovato M, D'Apice L, Prisco A, De Berardinis P. HIV Vaccination: A Roadmap among Advancements and Concerns. Int J Mol Sci 2018; 19:1241. [PMID: 29671786 PMCID: PMC5979448 DOI: 10.3390/ijms19041241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Since the identification of the Human Immunodeficiency Virus type 1 (HIV-1) as the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome), many efforts have been made to stop the AIDS pandemic. A major success of medical research has been the development of the highly active antiretroviral therapy and its availability to an increasing number of people worldwide, with a considerable effect on survival. However, a safe and effective vaccine able to prevent and eradicate the HIV pandemic is still lacking. Clinical trials and preclinical proof-of-concept studies in nonhuman primate (NHP) models have provided insights into potential correlates of protection against the HIV-1 infection, which include broadly neutralizing antibodies (bnAbs), non-neutralizing antibodies targeting the variable loops 1 and 2 (V1V2) regions of the HIV-1 envelope (Env), polyfunctional antibody, and Env-specific T-cell responses. In this review, we provide a brief overview of different HIV-1 vaccine approaches and discuss the current understanding of the cellular and humoral correlates of HIV-1 immunity.
Collapse
Affiliation(s)
- Maria Trovato
- INSERM u1016, Institut Cochin, 27 Rue du Faubourg Saint Jacques, 75014 Paris, France.
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Luciana D'Apice
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | | |
Collapse
|
31
|
Snijder J, Ortego MS, Weidle C, Stuart AB, Gray MD, McElrath MJ, Pancera M, Veesler D, McGuire AT. An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus. Immunity 2018; 48:799-811.e9. [PMID: 29669253 PMCID: PMC5909843 DOI: 10.1016/j.immuni.2018.03.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) is a causative agent of infectious mononucleosis and is associated with 200,000 new cases of cancer and 140,000 deaths annually. Subunit vaccines against this pathogen have focused on the gp350 glycoprotein and remain unsuccessful. We isolated human antibodies recognizing the EBV fusion machinery (gH/gL and gB) from rare memory B cells. One anti-gH/gL antibody, AMMO1, potently neutralized infection of B cells and epithelial cells, the two major cell types targeted by EBV. We determined a cryo-electron microscopy reconstruction of the gH/gL-gp42-AMMO1 complex and demonstrated that AMMO1 bound to a discontinuous epitope formed by both gH and gL at the Domain-I/Domain-II interface. Integrating structural, biochemical, and infectivity data, we propose that AMMO1 inhibits fusion of the viral and cellular membranes. This work identifies a crucial epitope that may aid in the design of next-generation subunit vaccines against this major public health burden.
Collapse
Affiliation(s)
- Joost Snijder
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael S Ortego
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA
| | - Connor Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA
| | - Andrew B Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA.
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. PO Box 19024, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
33
|
Auclair S, Liu F, Niu Q, Hou W, Churchyard G, Morgan C, Frahm N, Nitayaphan S, Pitisuthithum P, Rerks-Ngarm S, Kimata JT, Soong L, Franchini G, Robb M, Kim J, Michael N, Hu H. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection. PLoS Pathog 2018; 14:e1006888. [PMID: 29474461 PMCID: PMC5841825 DOI: 10.1371/journal.ppat.1006888] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/07/2018] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination.
Collapse
Affiliation(s)
- Sarah Auclair
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Fengliang Liu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Qingli Niu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | | | - Cecilia Morgan
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sorachai Nitayaphan
- Royal Thai Army Expert, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Punnee Pitisuthithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supachai Rerks-Ngarm
- Department of Disease Control, C/O Ministry of Public Health, Nonthaburi, Thailand
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, MD, United States of America
| | - Merlin Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jerome Kim
- International Vaccine Institute, Gwanak-gu, Seoul, ROK
| | - Nelson Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Collapse
|
35
|
Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology 2017; 514:106-117. [PMID: 29175625 PMCID: PMC5770335 DOI: 10.1016/j.virol.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022]
Abstract
HIV-1 envelope (Env)-based vaccines have so far largely failed to induce antibodies that prevent HIV-1 infection. One factor proposed to limit the immunogenicity of cell-associated Env is its low level of expression on the cell surface, restricting accessibility to antibodies. Using a vaccinia prime/protein boost protocol in mice, we explored the immunologic effects of mutations in the Env cytoplasmic tail (CT) that increased surface expression, including partial truncation and ablation of a tyrosine-dependent endocytosis motif. After vaccinia primes, CT-modified Envs induced up to 7-fold higher gp120-specific IgG, and after gp120 protein boosts, they elicited up to 16-fold greater Tier-1 HIV-1 neutralizing antibody titers, although results were variable between isolates. These data indicate that the immunogenicity of HIV-1 Env in a prime/boost vaccine can be enhanced in a strain-dependent manner by CT mutations that increase Env surface expression, thus highlighting the importance of the prime in this vaccine format. Novel HIV Env cytoplasmic tail (CT) modifications increase surface expression. Vaccinia vector vaccination with CT-modified Envs induces high gp120-specific IgG. gp120 boosts in mice primed with CT-modified Envs induce high Tier-1 Nabs.
Collapse
|
36
|
Abstract
Purpose of review The ability to induce broadly neutralizing antibody (bNAb) responses is likely essential for development of a globally effective HIV vaccine. Unfortunately, human vaccine trials conducted to date have failed to elicit broad plasma neutralization of primary virus isolates. Despite this limitation, in-depth analysis of the vaccine-induced memory B-cell repertoire can provide valuable insights into the presence and function of subdominant B-cell responses, and identify initiation of antibody lineages that may be on a path towards development of neutralization breadth. Recent findings Characterization of the functional capabilities of monoclonal antibodies isolated from a HIV-1 vaccine trial with modest efficacy has revealed mechanisms by which non-neutralizing antibodies are presumed to have mediated protection. In addition, B-cell repertoire analysis has demonstrated that vaccine boosts shifted the HIV-specific B-cell repertoire, expanding pools of cells with long third heavy chain complementarity determining regions – a characteristic of some bNAb lineages. Summary Detailed analysis of memory B-cell repertoires and evaluating the effector functions of isolated monoclonal antibodies expands what we can learn from human vaccine trails, and may provide knowledge that can enable rational design of novel approaches to drive maturation of subdominant disfavored bNAb lineages.
Collapse
|