1
|
Phillips CM, Smyth JW. Viral Infection and Connexin Dysfunction in the Heart. Curr Cardiol Rep 2025; 27:76. [PMID: 40146392 PMCID: PMC11950093 DOI: 10.1007/s11886-025-02227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
PURPOSE OF REVIEW Gap junctions, comprising connexin proteins, enable the direct intercellular electrical coupling of cardiomyocytes, and disruption of this process is arrhythmogenic. In addition, gap junctions effect metabolic coupling and of relevance to this review, propagate host antiviral immune responses. Accordingly, connexins have emerged as viral targets during infection. This review summarizes current knowledge regarding contributions of inflammation vs virally encoded factors in driving alterations to cardiac gap junction function. RECENT FINDINGS In addition to host immune-mediated effects on cardiac electrophysiology and gap junctions in myocarditis, there is now increasing appreciation for virally encoded factors targeting connexin function in acute/active infection. We now know diverse viral species have independently evolved to directly target connexin function during infection. Understanding both the direct and indirect effects of viral infection on cardiac gap junctions is critical to inform treatment strategies and development of novel therapeutics for acute infection as a distinct disease process from chronic myocarditis.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Tisoncik-Go J, Lewis TB, Whitmore LS, Voss K, Niemeyer S, Dai J, Kim P, Hubbell K, Iwayama N, Ahrens C, Wangari S, Murnane R, Edlefsen PT, Guerriero KA, Gale M, Fuller DH, O’Connor MA. Persistent innate immune dysfunction and ZIKV replication in the gastrointestinal tract during SIV infection in pigtail macaques. Front Immunol 2025; 16:1535807. [PMID: 40103823 PMCID: PMC11913663 DOI: 10.3389/fimmu.2025.1535807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Mosquito-borne flaviviruses, including dengue (DENV) and Zika (ZIKV) viruses, have caused widespread epidemics in areas with high HIV prevalence, partly due to the expanded geographic range of arthropod vectors. Despite the occurrence of large flavivirus outbreaks in areas with high HIV prevalence, little is known about the effects of flavivirus infection in people living with HIV (PLWH). Here, we use a pigtail macaque model of HIV/AIDS to investigate the impact of simian immunodeficiency virus (SIV)-induced immunosuppression on ZIKV replication and pathogenesis. During acute SIV infection, peripheral ZIKV cellular targets expanded and innate immune activation increased. In vitro, peripheral blood mononuclear cells (PBMC) from SIV infected pigtail macaques were less permissive to ZIKV infection. In vivo, ZIKV viremia was delayed and ZIKV was more persistent in the gastrointestinal tissues of SIV-ZIKV co-infected animals. This persistence was associated with changes in innate cellular (monocytes, neutrophils) recruitment to the blood and tissues, reduced anti-ZIKV immunity, and sustained expression of peripheral inflammatory and innate immune genes. Collectively, these findings uniquely suggest that untreated SIV infection may promote inflammatory cellular innate responses and create a state of persistent immune activation that contributes to prolonged ZIKV viremia and persistence in the gastrointestinal tract. Furthermore, these results suggest that PLWH and other immunocompromised individuals could be at higher risk for prolonged ZIKV infection, potentially extending the window of ZIKV transmission. These insights highlight the importance of including PLWH in strategies for deploying vaccines and treatments against ZIKV.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, United States
| | - Thomas B. Lewis
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Leanne S. Whitmore
- Department of Immunology, University of Washington, Seattle, WA, United States
| | - Kathleen Voss
- Department of Immunology, University of Washington, Seattle, WA, United States
| | - Skyler Niemeyer
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Jin Dai
- Department of Immunology, University of Washington, Seattle, WA, United States
| | - Paul Kim
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kai Hubbell
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Naoto Iwayama
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Chul Ahrens
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Solomon Wangari
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Paul T. Edlefsen
- Biostatistics Bioinformatics and Epidemiology (BBE), Program of the Vaccine and Infectious Disease (ViDD) Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kathryn A. Guerriero
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Michael Gale
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, United States
- Department of Microbiology and Immunology, Institute on Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Deborah H. Fuller
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Megan A. O’Connor
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Pagani I, Ghezzi S, Aimola G, Podini P, Genova F, Vicenzi E, Poli G. Restriction of Zika Virus Replication in Human Monocyte-Derived Macrophages by Pro-Inflammatory (M1) Polarization. Int J Mol Sci 2025; 26:951. [PMID: 39940721 PMCID: PMC11816608 DOI: 10.3390/ijms26030951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Zika virus (ZIKV), a member of the Flaviviridae family, is primarily transmitted through mosquito bites, but can also spread via sexual contact and from mother to fetus. While often asymptomatic, ZIKV can lead to severe neurological conditions, including microcephaly in fetuses and Guillain-Barré Syndrome in adults. ZIKV can infect placental macrophages and fetal microglia in vivo as well as human monocytes and monocyte-derived macrophages (MDMs) in vitro. Here, we observed that both human monocytes, and MDM particularly, supported ZIKV replication without evident cytopathicity, with virions accumulating in cytoplasmic vacuoles. We also investigated whether the cytokine-induced polarization of MDMs into M1 or M2 cells affected ZIKV replication. The stimulation of MDMs with pro-inflammatory cytokines (interferon-γ and tumor necrosis factor-α) polarized MDMs into M1 cells, significantly reducing ZIKV replication, akin to previous observations with a human immunodeficiency virus type-1 infection. In contrast, M2 polarization, induced by interleukin-4, did not affect ZIKV replication in MDMs. M1 polarization selectively reduced the expression of MERTK, a TAM family putative entry receptor, and increased the expression of several interferon-stimulated genes (ISGs) previously associated with the containment of ZIKV infection; of interest, ZIKV infection transiently boosted the expression of some ISGs in M1-MDMs. These findings suggest a dual mechanism of ZIKV restriction in M1-MDMs and highlight potential antiviral strategies targeting innate immune responses.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Giulia Aimola
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Paola Podini
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Francesca Genova
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Guido Poli
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
4
|
Wang J, Yu Z, Chen Z, Ye F, Sun Z. The Potential Role of Zika and Dengue Virus Infection in the Urogenital System Disorders: An Overview. Rev Med Virol 2025; 35:e70010. [PMID: 39804234 DOI: 10.1002/rmv.70010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 05/02/2025]
Abstract
Arboviruses currently are regarded as a major worldwide public health concern. The clinical outcomes associated with this group of viruses may vary from asymptomatic infections to severe forms of haemorrhagic fever characterised by bleeding disorders. Similar to other systemic viral infections, arboviruses can either directly or indirectly affect different parts of the body, such as the urogenital system. The human urogenital system anatomically consists of two major subdivisions: (i) the urinary system, including the kidneys, ureters, bladder, and urethra, which plays a significant role in osmoregulation, control of blood volume, pressure, and PH, absorption/excretion of different ions, and toxin metabolism, and (ii) the genital system, composed of the prostate, uterus, testes, ovaries, penis, and vagina, which are responsible for reproductive functions. Arboviruses can impair normal urogenital system functions by direct viral pathogen activity, systemic forms of inflammation, haemorrhagic events and related dysfunctions, and the nephrotoxic side effects of specific medications employed for treatment leading to various urogenital disorders. The present review provides an overview of the potential capacity of two main arboviruses, known as Zika and dengue viruses, to affect the urogenital system. Moreover, it addresses Zika virus as a potential therapeutic oncolytic virus for urogenital cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, The Second People's Hospital of Meishan City, Sichuan, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zongze Yu
- Department of Urology, The Second People's Hospital of Meishan City, Sichuan, China
| | - Zhigui Chen
- Department of Urology, The Second People's Hospital of Meishan City, Sichuan, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Victorio CBL, Ganasarajah A, Novera W, Ong J, Msallam R, Chacko AM. Translocator protein (TSPO) is a biomarker of Zika virus (ZIKV) infection-associated neuroinflammation. Emerg Microbes Infect 2024; 13:2348528. [PMID: 38662785 PMCID: PMC11132733 DOI: 10.1080/22221751.2024.2348528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Zika is a systemic inflammatory disease caused by infection with Zika virus (ZIKV). ZIKV infection in adults is associated with encephalitis marked by elevated expression of pro-inflammatory cytokines and chemokines, as well as increased brain infiltration of immune cells. In this study, we demonstrate that ZIKV encephalitis in a mouse infection model exhibits increased brain TSPO expression. TSPO expression on brain-resident and infiltrating immune cells in ZIKV infection correlates with disease and inflammation status in the brain. Brain TSPO expression can also be sensitively detected ex vivo and in vitro using radioactive small molecule probes that specifically bind to TSPO, such as [3H]PK11195. TSPO expression on brain-resident and infiltrating immune cells is a biomarker of ZIKV neuroinflammation, which can also be a general biomarker of acute viral neuroinflammatory disease.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Arun Ganasarajah
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Rasha Msallam
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Herrmann C, Zaldana K, Agostino EL, Koralov SB, Cadwell K. Stress from environmental change drives clearance of a persistent enteric virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622373. [PMID: 39574746 PMCID: PMC11580998 DOI: 10.1101/2024.11.06.622373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Persistent viral infections are associated with long-term health issues and prolonged transmission. How external perturbations after initial exposure affect the duration of infection is unclear. We discovered that murine astrovirus, an enteric RNA virus, persists indefinitely when mice remain unperturbed but is cleared rapidly after cage change. Besides eliminating the external viral reservoir, cage change also induced a transcriptional defense response in the intestinal epithelium. We further identified that displacing infected animals initially caused a temporary period of immune suppression through the stress hormone corticosterone, which was followed by an immune rebound characterized by an increase in CD8 T cells responsible for the epithelial antiviral responses. Our findings show how viral persistence can be disrupted by preventing re-exposure and activating immunity upon stress recovery, indicating that external factors can be manipulated to shorten the duration of a viral infection.
Collapse
|
7
|
Tajik S, Farahani AV, Ardekani OS, Seyedi S, Tayebi Z, Kami M, Aghaei F, Hosseini TM, Nia MMK, Soheili R, Letafati A. Zika virus tropism and pathogenesis: understanding clinical impacts and transmission dynamics. Virol J 2024; 21:271. [PMID: 39472938 PMCID: PMC11523830 DOI: 10.1186/s12985-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The Zika virus (ZIKV) is classified within the Flavivirus genus of the Flaviviridae family and is categorized as an arbovirus. The virus was initially identified in a rhesus monkey in Uganda in 1947 and later in a human in Nigeria in 1952. Since 2007, the prevalence of the virus has been on the rise, culminating in a major outbreak in the United States (US) in 2015. During this outbreak, the adult population was severely impacted, experiencing a range of symptoms, including organ failure, microcephaly, fetal death, and Guillain-Barré syndrome (GBS). Additionally, skin rash, limb swelling, fever, headache, and heightened sensitivity are found in most adults with Zika syndrome. Although the virus can be transmitted through blood, vertical transmission from mother to child, and sexual contact, the primary way of transmission of the virus is through the Aedes mosquito. Cells such as neurons, macrophages, peripheral dendritic cells, and placental cells are among the target cells that the virus can infect. The TAM AXL receptor plays a crucial role in infection. After the virus enters the body through the bloodstream, it spreads in the body with a latent period of 3 to 12 days. Currently, there is no specific treatment or publicly available vaccine for the ZIKV. Limited laboratory testing has been conducted, and existing drugs originally designed for other pathogens have been repurposed for treatment. Given the Aedes mosquito's role as a vector and the wide geographical impact of the virus, this study aims to comprehensively investigate Zika's pathogenesis and clinical symptoms based on existing knowledge and research. By doing so, we seek to enhance our understanding of the virus and inform future prevention and treatment strategies.
Collapse
Affiliation(s)
- Saeed Tajik
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Vasheghani Farahani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Tayebi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Kami
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pathology, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | - Faezeh Aghaei
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Mohammad Mahdi Khosravi Nia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Student Research Committee, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roben Soheili
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arash Letafati
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Domitien Payet L, Bedin AS, Desselas É, Marie-Jeanne C, Mollevi C, Malergue F, Bourgoin P, Van de Perre P, Tuaillon É, Jeziorski É. Leukocyte activation patterns in hospitalized children: comparing SARS-CoV-2, bacterial infections, and inflammatory pathologies. J Leukoc Biol 2024; 116:830-837. [PMID: 38648502 DOI: 10.1093/jleuko/qiae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
In adults, monocytes and neutrophils play important roles in the hyperinflammatory responses characteristic of severe forms of SARS-CoV-2 infection. We assessed leukocyte activation in 55 children attending the emergency department for acute fever between March 2020 and September 2021. The following markers were analyzed by flow cytometry: CD169 and HLA-DR on monocytes, CD64 and CD16 on neutrophils, and CD38 on lymphocytes TCD8. Fifteen of the children had SARS-CoV-2 infection, 15 had bacterial infections, and 15 had inflammatory diseases. We observed overexpression of CD169 on monocytes and CD38 on T lymphocytes in all patients with a diagnosis of SARS-CoV-2, while overexpression of CD64 on neutrophils was observed with bacterial infections and inflammatory diseases. There was a decrease in the expression of HLA-DR on monocytes in the bacterial infection and inflammatory pathology groups. Leukocyte analysis identifies distinct activation patterns in children during SARS-CoV-2 infections, bacterial infections, and inflammatory diseases.
Collapse
Affiliation(s)
- Léa Domitien Payet
- Department of General Pediatrics, Infectiology and Clinical Immunology, Arnaud de Villeneuve UHC, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
| | - Anne Sophie Bedin
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
| | - Émilie Desselas
- Department of General Pediatrics, Infectiology and Clinical Immunology, Arnaud de Villeneuve UHC, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Carole Marie-Jeanne
- Department of General Pediatrics, Infectiology and Clinical Immunology, Arnaud de Villeneuve UHC, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Caroline Mollevi
- France Institute Desbrest of Epidemiology and Public Health, University Montpellier, INSERM, CHU Montpellier, 641 Avenue du Doyen Gaston GIRAUD, 34090 Montpellier, France
| | - Fabrice Malergue
- Department of Research and Development, Immunotech-Beckman Coulter, 130 Avenue du Maréchal de Lattre de Tassigny, 13276 Marseille, France
| | - Penelope Bourgoin
- Department of Research and Development, Immunotech-Beckman Coulter, 130 Avenue du Maréchal de Lattre de Tassigny, 13276 Marseille, France
| | - Philippe Van de Perre
- Virology Laboratory at Montpellier University Hospital, Lapeyronie UHC, 191 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Édouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
- Virology Laboratory at Montpellier University Hospital, Lapeyronie UHC, 191 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| | - Éric Jeziorski
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Montpellier UHC, University of Montpellier, 60 rue de Navacelles, 34394 Montpellier Cedex 5, France
- Department of General Pediatrics, Infectiology, and Clinical Immunology, Department of Emergency, Post-Emergency Department, University Hospital of Montpellier, 371 Avenue du Doyen Gaston GIRAUD, 34295 Montpellier Cedex 5, France
| |
Collapse
|
9
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
10
|
Egloff C, Fovet CM, Denis J, Pascal Q, Bossevot L, Luccantoni S, Leonec M, Dereuddre-Bosquet N, Leparc-Goffart I, Le Grand R, Durand GA, Badaut C, Picone O, Roques P. Fetal Zika virus inoculation in macaques revealed control of the fetal viral load during pregnancy. Virol J 2024; 21:209. [PMID: 39227837 PMCID: PMC11373269 DOI: 10.1186/s12985-024-02468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.
Collapse
Affiliation(s)
- Charles Egloff
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Claire-Maëlle Fovet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Jessica Denis
- Unité interactions hôtes-pathogènes, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Laetitia Bossevot
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Marco Leonec
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Cyril Badaut
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Olivier Picone
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Pierre Roques
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France.
- Virology Unit, Institut Pasteur de Guinée (IPGui), BP4416, Conakry, Guinea.
| |
Collapse
|
11
|
Tisoncik-Go J, Lewis TB, Whitmore LS, Voss K, Niemeyer S, Dai J, Kim P, Hubbell K, Iwayama N, Ahrens C, Wangari S, Murnane R, Edlefsen PT, Guerriero KA, Gale M, Fuller DH, O'Connor MA. Chronic innate immune impairment and ZIKV persistence in the gastrointestinal tract during SIV infection in pigtail macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609309. [PMID: 39229223 PMCID: PMC11370579 DOI: 10.1101/2024.08.23.609309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mosquito borne flaviviruses, including dengue (DENV) and Zika (ZIKV) viruses, have caused global epidemics in areas with high HIV prevalence due to the expanded geographic range of arthropod vectors. Despite the occurrence of large flavivirus outbreaks in countries with high HIV prevalence, there is little knowledge regarding the effects of flavivirus infection in people living with HIV (PLWH). Here, we use a pigtail macaque model of HIV/AIDS to investigate the impact of simian immunodeficiency virus (SIV)-induced immunosuppression on ZIKV replication and pathogenesis. Early acute SIV infection induced expansion of peripheral ZIKV cellular targets and increased innate immune activation and peripheral blood mononuclear cells (PBMC) from SIV infected macaques were less permissive to ZIKV infection in vitro. In SIV-ZIKV co-infected animals, we found increased persistence of ZIKV in the periphery and tissues corresponding to alterations in innate cellular (monocytes, neutrophils) recruitment to the blood and tissues, decreased anti-ZIKV immunity, and chronic peripheral inflammatory and innate immune gene expression. Collectively, these findings suggest that untreated SIV infection may impair cellular innate responses and create an environment of chronic immune activation that promotes prolonged ZIKV viremia and persistence in the gastrointestinal tract. These results suggest that PLWH or other immunocompromised individuals could be at a higher risk for chronic ZIKV replication, which in turn could increase the timeframe of ZIKV transmission. Thus, PLWH are important populations to target during the deployment of vaccine and treatment strategies against ZIKV.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Immunology, University of Washington (Seattle, Washington)
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington (Seattle, Washington)
| | - Thomas B Lewis
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Leanne S Whitmore
- Department of Immunology, University of Washington (Seattle, Washington)
| | - Kathleen Voss
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Immunology, University of Washington (Seattle, Washington)
| | - Skyler Niemeyer
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Jin Dai
- Department of Immunology, University of Washington (Seattle, Washington)
| | - Paul Kim
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Kai Hubbell
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Naoto Iwayama
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Chul Ahrens
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Solomon Wangari
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | | | - Kathryn A Guerriero
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Michael Gale
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Immunology, University of Washington (Seattle, Washington)
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington (Seattle, Washington)
- Department of Global Health, University of Washington (Seattle, Washington)
| | - Deborah H Fuller
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Megan A O'Connor
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Microbiology, University of Washington (Seattle, Washington)
| |
Collapse
|
12
|
Yan Y, Yang H, Yang Y, Wang J, Zhou Y, Tang C, Li B, Huang Q, An R, Liang X, Lin D, Yu W, Fan C, Lu S. The inoculum dose of Zika virus can affect the viral replication dynamics, cytokine responses and survival rate in immunocompromised AG129 mice. MOLECULAR BIOMEDICINE 2024; 5:30. [PMID: 39095588 PMCID: PMC11297010 DOI: 10.1186/s43556-024-00195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Zika virus, a mosquito-borne arbovirus, has repeatedly caused large pandemics with symptoms worsening from mild and self-limiting diseases to Guillain-Barré syndrome in adults and fetal microcephaly in newborns. In recent years, Zika virus diseases have posed a serious threat to human health. The shortage of susceptible small animal models makes it difficult to study pathogenic mechanisms and evaluate potential therapies for Zika virus infection. Therefore, we chose immunocompromised mice (AG129 mice) deficient in IFN-α/β and IFN-γ receptors, which can abolish the innate immune system that prevents Zika virus infection early. AG129 mice were infected with the Zika virus, and this mouse model exhibited replication dynamics, tissue tropism, pathological lesion and immune activation of the Zika virus. Our results suggest that the inoculum dose of Zika virus can affect the viral replication dynamics, cytokine responses and survival rate in AG129 mice. By testing the potential antiviral drug favipiravir, several critical indicators, including replication dynamics and survival rates, were identified in AG129 mice after Zika virus infection. It is suggested that the model is reliable for drug evaluation. In brief, this model provides a potential platform for studies of the infectivity, virulence, and pathogenesis of the Zika virus. Moreover, the development of an accessible mouse model of Zika virus infection will expedite the research and deployment of therapeutics and vaccines.
Collapse
Affiliation(s)
- Yuhuan Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Bai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Ran An
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xiaoming Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Dongdong Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| | - Changfa Fan
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China.
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Kunming, China.
| |
Collapse
|
13
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Yao Z, Liang M, Zhu S. Infectious factors in myocarditis: a comprehensive review of common and rare pathogens. Egypt Heart J 2024; 76:64. [PMID: 38789885 PMCID: PMC11126555 DOI: 10.1186/s43044-024-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Myocarditis is a significant health threat today, with infectious agents being the most common cause. Accurate diagnosis of the etiology of infectious myocarditis is crucial for effective treatment. MAIN BODY Infectious myocarditis can be caused by viruses, prokaryotes, parasites, and fungi. Viral infections are typically the primary cause. However, some rare opportunistic pathogens can also damage heart muscle cells in patients with immunodeficiencies, neoplasms and those who have undergone heart surgery. CONCLUSIONS This article reviews research on common and rare pathogens of infectious myocarditis, emphasizing the complexity of its etiology, with the aim of helping clinicians make an accurate diagnosis of infectious myocarditis.
Collapse
Affiliation(s)
- Zongjie Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qindao, China.
| | - Mingjun Liang
- Department of Intensive Care Medicine, Shanghai Six People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Zhu
- Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Ravindran S, Lahon A. Tropism and immune response of chikungunya and zika viruses: An overview. Cytokine 2023; 170:156327. [PMID: 37579710 DOI: 10.1016/j.cyto.2023.156327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Zika virus (ZIKV) and chikungunya virus (CHIKV) are two medically important vector-borne viruses responsible for causing significant disease burden in humans, including neurological sequelae/complications. Besides sharing some common clinical features, ZIKV has major shares in causing microcephaly and brain malformations in developing foetus, whereas CHIKV causes chronic joint pain/swelling in infected individuals. Both viruses have a common route of entry to the host body. i.e., dermal site of inoculation through the bite of an infected mosquito and later taken up by different immune cells for further dissemination to other areas of the host body that lead to a range of immune responses via different pathways. The immune responses generated by both viruses have similar characteristics with varying degrees of inflammation and activation of immune cells. However, the overall response of immune cells is not fully explored in the context of ZIKV and CHIKV infection. The knowledge of cellular tropism and the immune response is the key to understanding the mechanisms of viral immunity and pathogenesis, which may allow to develop novel therapeutic strategies for these viral infections. This review aims to discuss recent advancements and identify the knowledge gaps in understanding the mechanism of cellular tropism and immune response of CHIKV and ZIKV.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India
| | - Anismrita Lahon
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India.
| |
Collapse
|
16
|
Krabbe NP, Razo E, Abraham HJ, Spanton RV, Shi Y, Bhattacharya S, Bohm EK, Pritchard JC, Weiler AM, Mitzey AM, Eickhoff JC, Sullivan E, Tan JC, Aliota MT, Friedrich TC, O’Connor DH, Golos TG, Mohr EL. Control of maternal Zika virus infection during pregnancy is associated with lower antibody titers in a macaque model. Front Immunol 2023; 14:1267638. [PMID: 37809089 PMCID: PMC10556460 DOI: 10.3389/fimmu.2023.1267638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.
Collapse
Affiliation(s)
- Nicholas P. Krabbe
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Elaina Razo
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hunter J. Abraham
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel V. Spanton
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yujia Shi
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Saswati Bhattacharya
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann M. Mitzey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Healthy, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric Sullivan
- Nimble Therapeutics, Inc, Madison, WI, United States
| | - John C. Tan
- Nimble Therapeutics, Inc, Madison, WI, United States
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Adam A, Lee C, Wang T. Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens 2023; 12:194. [PMID: 36839466 PMCID: PMC9963317 DOI: 10.3390/pathogens12020194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Zika virus (ZIKV), a re-emerging mosquito-borne flavivirus, has caused outbreaks in Africa, Asia, the Pacific, and, more recently, in the Americas. ZIKV has been associated with the neurological autoimmune disorder Guillain-Barre syndrome in adults and congenital Zika syndrome in fetuses and infants, including microcephaly, spontaneous abortion, and intrauterine growth restriction. It is considered to be a major threat to global public health due to its unprecedented clinical impact on humans. Currently, there are no specific prophylactics or therapeutics available to prevent or treat ZIKV infection. The development of a safe and efficacious ZIKV vaccine remains a global health priority. Since the recent outbreak, multiple platforms have been used in the development of candidate ZIKV vaccines. The candidate vaccines have been shown to elicit strong T cell and neutralization antibody responses and protect against ZIKV infection in animal models. Some candidates have progressed successfully to clinical trials. Live-attenuated vaccines, which induce rapid and durable protective immunity, are one of the most important strategies for controlling flavivirus diseases. In this review, we discuss recent progress in the development of candidate live-attenuated ZIKV vaccines.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christy Lee
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Hanrath AT, Hatton CF, Gothe F, Browne C, Vowles J, Leary P, Cockell SJ, Cowley SA, James WS, Hambleton S, Duncan CJA. Type I interferon receptor ( IFNAR2) deficiency reveals Zika virus cytopathicity in human macrophages and microglia. Front Immunol 2022; 13:1035532. [PMID: 36439115 PMCID: PMC9691778 DOI: 10.3389/fimmu.2022.1035532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.
Collapse
Affiliation(s)
- Aidan T. Hanrath
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Catherine F. Hatton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Florian Gothe
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Cathy Browne
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jane Vowles
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter Leary
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| | - Simon J. Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle, United Kingdom
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - William S. James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sophie Hambleton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Christopher J. A. Duncan
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
19
|
Zika Virus Infection and Development of Drug Therapeutics. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that is associated with neurological complications, such as neuroinflammatory Guillain Barré Syndrome in adults and microcephaly in newborns, and remains a potentially significant and international public health concern. The World Health Organization is urging the development of novel antiviral therapeutic strategies against ZIKV, as there are no clinically approved vaccines or drugs against this virus. Given the public health crisis that is related to ZIKV cases in the last decade, efficient strategies should be identified rapidly to combat or treat ZIKV infection. Several promising strategies have been reported through drug repurposing studies, de novo design, and the high-throughput screening of compound libraries in only a few years. This review summarizes the genome and structure of ZIKV, viral life cycle, transmission cycle, clinical manifestations, cellular and animal models, and antiviral drug developments, with the goal of increasing our understanding of ZIKV and ultimately defeating it.
Collapse
|
20
|
Detection of Neutralizing Antibodies against Zika Virus in Wild Nonhuman Primates in Rwanda. J Wildl Dis 2022; 58:939-942. [PMID: 36136588 DOI: 10.7589/jwd-d-22-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
The range of nonhuman primate (NHP) species involved in Zika virus (ZIKV) sylvatic transmission is not known. We tested 97 NHP archived sera, collected from 2006 to 2016 in Rwandan National Parks, for neutralizing antibodies to ZIKV. Serum from one olive baboon (Papio anubis) was positive for ZIKV antibodies.
Collapse
|
21
|
Kim S, Shin HY. Understanding the Tissue Specificity of ZIKV Infection in Various Animal Models for Vaccine Development. Vaccines (Basel) 2022; 10:1517. [PMID: 36146595 PMCID: PMC9504629 DOI: 10.3390/vaccines10091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flavivirus genus and is principally transmitted by Aedes aegypti mosquitoes. ZIKV infection often causes no or only mild symptoms, but it can also trigger severe consequences, including microcephaly in infants and Guillain-Barré syndrome, uveitis, and neurologic manifestations in adults. There is no ZIKV vaccine or treatment currently approved for clinical use. The primary target of ZIKV infection has been recognized as the maternal placenta, with vertical transmission to the fetal brain. However, ZIKV can also spread to multiple tissues in adults, including the sexual organs, eyes, lymph nodes, and brain. Since numerous studies have indicated that there are slightly different tissue-specific pathologies in each animal model of ZIKV, the distinct ZIKV tropism of a given animal model must be understood to enable effective vaccine development. Here, we comprehensively discussed the tissue specificity of ZIKV reported in each animal model depending on the genetic background and route of administration. This review should facilitate the selection of appropriate animal models when studying the fundamental pathogenesis of ZIKV infection, thereby supporting the design of optimal preclinical and clinical studies for the development of vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
22
|
Berry N, Stein M, Ferguson D, Ham C, Hall J, Giles E, Kempster S, Adedeji Y, Almond N, Herrera C. Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques. Pathogens 2022; 11:1033. [PMID: 36145466 PMCID: PMC9503824 DOI: 10.3390/pathogens11091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Zika virus (ZIKV) cases continue to be reported, and no vaccine or specific antiviral agent has been approved for the prevention or treatment of infection. Though ZIKV is primarily transmitted by mosquitos, cases of sexual transmission and prolonged viral RNA presence in semen have been reported. In this observational study, we report the mucosal responses to sub-cutaneous and mucosal ZIKV exposure in cynomolgus macaques during acute and late chronic infection. Subcutaneous challenge induced a decrease in the growth factor VEGF in colorectal and cervicovaginal tissues 100 days post-challenge, in contrast to the observed increase in these tissues following vaginal infection. This different pattern was not observed in the uterus, where VEGF was upregulated independently of the challenge route. Vaginal challenge induced a pro-inflammatory profile in all mucosal tissues during late chronic infection. Similar responses were already observed during acute infection in a vaginal tissue explant model of ex vivo challenge. Non-productive and productive infection 100 days post-in vivo vaginal challenge induced distinct proteomic profiles which were characterized by further VEGF increase and IL-10 decrease in non-infected animals. Ex vivo challenge of mucosal explants revealed tissue-specific modulation of cytokine levels during the acute phase of infection. Mucosal cytokine profiles could represent biosignatures of persistent ZIKV infection.
Collapse
Affiliation(s)
- Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Monja Stein
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Claire Ham
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Jo Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Elaine Giles
- Division of Analytical and Biological Sciences, NIBSC, Potters Bar EN6 3QC, UK
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Yemisi Adedeji
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
23
|
Michel M, Malergue F, Ait Belkacem I, Bourgoin P, Morange PE, Arnoux I, Miloud T, Million M, Tissot-Dupont H, Mege JL, Vitte J, Busnel JM. A rapid, easy, and scalable whole blood monocyte CD169 assay for outpatient screening during SARS-CoV-2 outbreak, and potentially other emerging disease outbreaks. SAGE Open Med 2022; 10:20503121221115483. [PMID: 35959245 PMCID: PMC9358337 DOI: 10.1177/20503121221115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The COVID-19 corona virus disease outbreak is globally challenging health systems and societies. Its diagnosis relies on molecular methods, with drawbacks revealed by mass screening. Upregulation of neutrophil CD64 or monocyte CD169 has been abundantly reported as markers of bacterial or acute viral infection, respectively. We evaluated the sensitivity of an easy, one-step whole blood flow cytometry assay to measure these markers within 10 min, as a potential screening test for COVID-19 patients. Methods Patients (n = 177) with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were tested on 10 µL blood and results were compared with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Results We observed 98% and 100% sensitivity in early-stage (n = 52) and asymptomatic patients (n = 9), respectively. Late-stage patients, who presented for a second control RT-qPCR, were negative for both assays in most cases. Conversely, neutrophil CD64 expression was unchanged in 75% of cases, without significant differences between groups. Conclusion Monocyte CD169 evaluation was highly sensitive for detecting SARS-CoV-2 infection in first-presentation patients; and it returns to basal level upon infection clearance. The potential ease of fingerprick collection, minimal time-to-result, and low cost rank this biomarker measurement as a potential viral disease screening tool, including COVID-19. When the virus prevalence in the tested population is usually low (1%-10%), such an approach could increase the testing capacity 10 to 100-fold, with the same limited molecular testing resources, which could focus on confirmation purposes only.
Collapse
Affiliation(s)
- Moïse Michel
- Aix-Marseille University, Marseille,
France
- APHM Hôpitaux Universitaires de
Marseille, Hôpital Timone, Marseille, France
| | | | | | | | | | - Isabelle Arnoux
- APHM Hôpitaux Universitaires de
Marseille, Hôpital Timone, Marseille, France
| | | | - Matthieu Million
- APHM Hôpitaux Universitaires de
Marseille, Hôpital Timone, Marseille, France
- IHU Méditerranée Infection, Marseille,
France
| | - Hervé Tissot-Dupont
- APHM Hôpitaux Universitaires de
Marseille, Hôpital Timone, Marseille, France
- IHU Méditerranée Infection, Marseille,
France
| | - Jean-Louis Mege
- Aix-Marseille University, Marseille,
France
- IHU Méditerranée Infection, Marseille,
France
| | - Joana Vitte
- Aix-Marseille University, Marseille,
France
- APHM Hôpitaux Universitaires de
Marseille, Hôpital Timone, Marseille, France
- IHU Méditerranée Infection, Marseille,
France
| | | |
Collapse
|
24
|
Combination of the Focus-Forming Assay and Digital Automated Imaging Analysis for the Detection of Dengue and Zika Viral Loads in Cultures and Acute Disease. J Trop Med 2022; 2022:2177183. [PMID: 35911823 PMCID: PMC9325612 DOI: 10.1155/2022/2177183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Optimized methods for the detection of flavivirus infections in hyperendemic areas are still needed, especially for working with patient serum as a starting material. The focus-forming assay (FFA) reveals critical aspects of virus-host interactions, as it is a quantitative assay to determine viral loads. Automated image analysis provides evaluations of relative amounts of intracellular viral protein at the single-cell level. Here, we developed an optimized FFA for the detection of infectious Zika virus (ZIKV) and dengue virus (DENV) viral particles in cell cultures and clinical serum samples, respectively. Vero-76 cells were infected with DENV-2 (16681) or ZIKV (PRVA BC59). Using a panel of anti-DENV and anti-ZIKV NS1-specific monoclonal antibodies (mAbs), the primary mAbs, concentration, and the optimal time of infection were determined. To determine whether intracellular accumulation of NS1 improved the efficiency of the FFA, brefeldin A was added to the cultures. Focus formation was identified by conventional optical microscopy combined with CellProfiler™ automated image analysis software. The FFA was used with spike assays for ZIKV and clinical specimens from natural infection by DENV-1 and DENV-2. mAb 7744-644 for ZIKV and mAb 724-323 for DENV used at a concentration of 1 μg/ml and a time of 24 hours postinfection produced the best detection of foci when combining conventional counting and automated digital analysis. Brefeldin A did not improve the assessment of FFUs or their digitally assessed intensity at single-cell level. The FFA showed 95% ZIKV recovery and achieved the detection of circulating DENV-1 and DENV-2 in the plasma of acutely ill patients. The combination of the two techniques optimized the FFA, allowing the study of DENV and ZIKV in culture supernatants and clinical specimens from natural infection in hyperendemic areas.
Collapse
|
25
|
Ball EE, Pesavento PA, Van Rompay KKA, Keel MK, Singapuri A, Gomez-Vazquez JP, Dudley DM, O’Connor DH, Breitbach ME, Maness NJ, Schouest B, Panganiban A, Coffey LL. Zika virus persistence in the male macaque reproductive tract. PLoS Negl Trop Dis 2022; 16:e0010566. [PMID: 35788751 PMCID: PMC9299295 DOI: 10.1371/journal.pntd.0010566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in that it is also vertically and sexually transmitted by humans. The male reproductive tract is thought to be a ZIKV reservoir; however, the reported magnitude and duration of viral persistence in male genital tissues vary widely in humans and non-human primate models. ZIKV tissue and cellular tropism and potential effects on male fertility also remain unclear. The objective of this study was to resolve these questions by analyzing archived genital tissues from 51 ZIKV-inoculated male macaques and correlating data on plasma viral kinetics, tissue tropism, and ZIKV-induced pathological changes in the reproductive tract. We hypothesized that ZIKV would persist in the male macaque genital tract for longer than there was detectable viremia, where it would localize to germ and epithelial cells and associate with lesions. We detected ZIKV RNA and infectious virus in testis, epididymis, seminal vesicle, and prostate gland. In contrast to prepubertal males, sexually mature macaques were significantly more likely to harbor persistent ZIKV RNA or infectious virus somewhere in the genital tract, with detection as late as 60 days post-inoculation. ZIKV RNA localized primarily to testicular stem cells/sperm precursors and epithelial cells, including Sertoli cells, epididymal duct epithelium, and glandular epithelia of the seminal vesicle and prostate gland. ZIKV infection was associated with microscopic evidence of inflammation in the epididymis and prostate gland of sexually mature males, pathologies that were absent in uninfected controls, which could have significant effects on male fertility. The findings from this study increase our understanding of persistent ZIKV infection which can inform risk of sexual transmission during assisted reproductive therapies as well as potential impacts on male fertility. Zika virus (ZIKV) spread since 2015 led to establishment of urban epidemic cycles involving humans and Aedes mosquitoes. ZIKV is also sexually and vertically transmitted and causes congenital Zika syndrome. Together, these features show that ZIKV poses significant global public health risks. By virtue of similar reproductive anatomy and physiology to humans, macaques serve as a useful model for ZIKV infection. However, macaque studies to date have been limited by small sample size, typically 1 to 5 animals. Although mounting evidence identifies the male reproductive tract as a significant ZIKV reservoir, data regarding the duration of ZIKV persistence, potential for sexual transmission, and male genitourinary sequelae remain sparse. Here, we analyzed archived genital tissues from more than 50 ZIKV-inoculated male macaques. Our results show that ZIKV can persist in the male macaque reproductive tract after the resolution of viremia, with virus localization to sperm precursors and epithelial cells, and microscopic evidence of inflammation in the epididymis and prostate gland. Our findings help explain cases of sexual transmission of ZIKV in humans, which also carries a risk for transmission via assisted fertility procedures, even after resolution of detectable viremia.
Collapse
Affiliation(s)
- Erin E. Ball
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- United States Army, Veterinary Corps
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Koen K. A. Van Rompay
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - M. Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Anil Singapuri
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Jose P. Gomez-Vazquez
- Center for Animal Disease Modeling and Surveillance, University of California, Davis, California, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Blake Schouest
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Antonito Panganiban
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chapagain S, Pal Singh P, Le K, Safronetz D, Wood H, Karniychuk U. Japanese encephalitis virus persists in the human reproductive epithelium and porcine reproductive tissues. PLoS Negl Trop Dis 2022; 16:e0010656. [PMID: 35905074 PMCID: PMC9337681 DOI: 10.1371/journal.pntd.0010656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the emerging and geographically expanding flavivirus and the major causative agent of encephalitis in humans in Asia. There are risks of JEV introduction into the Americas given a large population of amplifying hosts-pigs and wild boars, and insect vectors-Culex mosquitoes. There are emerging concerns about vector-free ways of flavivirus transmission, for example sexual and transplacental Zika virus transmissions, which may change flavivirus epidemiology and expand the geographical range to territories with no insect vectors. It is unknown whether JEV has tropism in the female lower reproductive tract and the potential for sexual transmission in humans. While clinical outcomes of transplacental JEV infection are described in humans and pigs, cellular targets and tissue tropism in the upper reproductive tract are also unknown. Here, we studied JEV infection phenotypes and host transcriptional responses in human reproductive epithelial cells. We found that JEV caused persistent infection and cytopathology in the vaginal epithelium, endometrial epithelium, and trophoblast. Human vaginal epithelial cells infected with JEV had altered transcriptional responses associated with inflammation and disruption of epithelial barrier function. Also, using pigs-the native amplifying host for JEV, we confirmed JEV tropism in the female lower and upper reproductive tracts. We discovered that JEV persists in the vaginal mucosa for at least 28 days and pigs shed the virus in vaginal secretions. We also found JEV persistence in the endometrium and placenta with transplacental and fetal infections. Altogether, we discovered that JEV targets the vaginal epithelium and has the potential for sexual transmission in humans. We also contributed to a better understanding of JEV pathogenesis during transplacental infection. Further studies are needed to better understand the interactions of JEV with reproductive tissues, how persistent infection affects female reproductive functions, and the risks for non-vector transmission.
Collapse
Affiliation(s)
- Subash Chapagain
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Prince Pal Singh
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Khanh Le
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | - David Safronetz
- The National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Heidi Wood
- The National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
27
|
Aggio JB, Porto BN, Duarte dos Santos CN, Mosimann ALP, Wowk PF. Human Neutrophils Present Mild Activation by Zika Virus But Reduce the Infection of Susceptible Cells. Front Immunol 2022; 13:784443. [PMID: 35747137 PMCID: PMC9210994 DOI: 10.3389/fimmu.2022.784443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the Zika virus (ZIKV) has highlighted the need for a deeper understanding of virus-host interactions in order to pave the way for the development of antiviral therapies. The present work aimed to address the response of neutrophils during ZIKV infection. Neutrophils are important effector cells in innate immunity implicated in the host’s response to neurotropic arboviruses. Our results indicate that human neutrophils were not permissive to Asian or African ZIKV strain replication. In fact, after stimulation with ZIKV, neutrophils were mild primed against the virus as evaluated through CD11b and CD62L modulation, secretion of inflammatory cytokines and granule content, production of reactive oxygen species, and neutrophil extracellular traps formation. Overall, neutrophils did not affect ZIKV infectivity. Moreover, in vitro ZIKV infection of primary innate immune cells did not trigger neutrophil migration. However, neutrophils co-cultured with ZIKV susceptible cell lineages resulted in lower cell infection frequencies, possibly due to cell-to-cell contact. In vivo, neutrophil depletion in immunocompetent mice did not affect ZIKV spreading to the draining lymph nodes. The data suggest that human neutrophils do not play an antiviral role against ZIKV per se, but these cells might participate in an infected environment shaping the ZIKV infection in other target cells.
Collapse
Affiliation(s)
- Juliana Bernardi Aggio
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Bárbara Nery Porto
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| |
Collapse
|
28
|
Abstract
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?
Collapse
|
29
|
Mask E, Hodara VL, Callery JE, Parodi LM, Obregon-Perko V, Yagi S, Glenn J, Frost P, Clemmons E, Patterson JL, Cox LA, Giavedoni LD. Molecular Approaches for the Validation of the Baboon as a Nonhuman Primate Model for the Study of Zika Virus Infection. Front Cell Infect Microbiol 2022; 12:880860. [PMID: 35493734 PMCID: PMC9046911 DOI: 10.3389/fcimb.2022.880860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans.
Collapse
Affiliation(s)
- Emma Mask
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Vida L. Hodara
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jessica E. Callery
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Laura M. Parodi
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, United States
| | - Jeremy Glenn
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Patrice Frost
- Southwest National Primate Research Center, San Antonio, TX, United States
| | - Elizabeth Clemmons
- Southwest National Primate Research Center, San Antonio, TX, United States
| | | | - Laura A. Cox
- Southwest National Primate Research Center, San Antonio, TX, United States,Center for Precision Medicine, Wake Forest Health Sciences University, Winston Salem, NC, United States
| | - Luis D. Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States,Southwest National Primate Research Center, San Antonio, TX, United States,*Correspondence: Luis D. Giavedoni,
| |
Collapse
|
30
|
Rashid MU, Lao Y, Spicer V, Coombs KM. Zika Virus Infection of Sertoli Cells Alters Protein Expression Involved in Activated Immune and Antiviral Response Pathways, Carbohydrate Metabolism and Cardiovascular Disease. Viruses 2022; 14:v14020377. [PMID: 35215967 PMCID: PMC8878972 DOI: 10.3390/v14020377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV), a re-emerging virus, causes congenital brain abnormalities and Guillain–Barré syndrome. It is mainly transmitted by Aedes mosquitoes, but infections are also linked to sexual transmissions. Infectious ZIKV has been isolated, and viral RNA has been detected in semen over a year after the onset of initial symptoms, but the mode of long-term persistence is not yet understood. ZIKV can proliferate in human Sertoli cells (HSerC) for several weeks in vitro, suggesting that it might be a reservoir for persistent ZIKV infection. This study determined proteomic changes in HSerC during ZIKV infections by TMT-mass spectrometry analysis. Levels of 4416 unique Sertoli cell proteins were significantly altered at 3, 5, and 7 days after ZIKV infection. The significantly altered proteins include enzymes, transcription regulators, transporters, kinases, peptidases, transmembrane receptors, cytokines, ion channels, and growth factors. Many of these proteins are involved in pathways associated with antiviral response, antigen presentation, and immune cell activation. Several immune response pathway proteins were significantly activated during infection, e.g., interferon signaling, T cell receptor signaling, IL-8 signaling, and Th1 signaling. The altered protein levels were linked to predicted activation of immune response in HSerC, which was predicted to suppress ZIKV infection. ZIKV infection also affected the levels of critical regulators of gluconeogenesis and glycolysis pathways such as phosphoglycerate mutase, phosphoglycerate kinase, and enolase. Interestingly, many significantly altered proteins were associated with cardiac hypertrophy, which may induce heart failure in infected patients. In summary, our research contributes to a better understanding of ZIKV replication dynamics and infection in Sertoli cells.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- Department of Medical Microbiology and Infectious Diseases, The University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
- Correspondence:
| | - Ying Lao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
| | - Victor Spicer
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, The University of Manitoba, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada; (Y.L.); (V.S.)
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
31
|
Hsu DC, Chumpolkulwong K, Corley MJ, Hunsawong T, Inthawong D, Schuetz A, Imerbsin R, Silsorn D, Nadee P, Sopanaporn J, Phuang-Ngern Y, Klungthong C, Reed M, Fernandez S, Ndhlovu LC, Paul R, Lugo-Roman L, Michael NL, Modjarrad K, Vasan S. Neurocognitive impact of Zika virus infection in adult rhesus macaques. J Neuroinflammation 2022; 19:40. [PMID: 35130924 PMCID: PMC8822695 DOI: 10.1186/s12974-022-02402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Zika virus (ZIKV) is a mosquito-transmitted flavivirus that affects many regions of the world. Infection, in utero, causes microcephaly and later developmental and neurologic impairments. The impact of ZIKV infection on neurocognition in adults has not been well described. The objective of the study was to assess the neurocognitive impact of ZIKV infection in adult rhesus macaques. Methods Neurocognitive assessments were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen and modified Brinkman Board before and after subcutaneous ZIKV inoculation. Immune activation markers were measured in the blood and cerebral spinal fluid (CSF) by multiplex assay and flow cytometry. Results All animals (N = 8) had detectable ZIKV RNA in plasma at day 1 post-inoculation (PI) that peaked at day 2 PI (median 5.9, IQR 5.6–6.2 log10 genome equivalents/mL). In all eight animals, ZIKV RNA became undetectable in plasma by day 14 PI, but persisted in lymphoid tissues. ZIKV RNA was not detected in the CSF supernatant at days 4, 8, 14 and 28 PI but was detected in the brain of 2 animals at days 8 and 28 PI. Elevations in markers of immune activation in the blood and CSF were accompanied by a reduction in accuracy and reaction speed on the CANTAB in the majority of animals. Conclusions The co-occurrence of systemic and CSF immune perturbations and neurocognitive impairment establishes this model as useful for studying the impact of neuroinflammation on neurobehavior in rhesus macaques, as it pertains to ZIKV infection and potentially other pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02402-4.
Collapse
Affiliation(s)
- Denise C Hsu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA. .,Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA.
| | | | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Taweewun Hunsawong
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Dutsadee Inthawong
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA
| | - Rawiwan Imerbsin
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Decha Silsorn
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Panupat Nadee
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Jumpol Sopanaporn
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | | | | | - Matthew Reed
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, 63143, USA
| | - Luis Lugo-Roman
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA.,Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
32
|
Akhigbe RE, Dutta S, Hamed MA, Ajayi AF, Sengupta P, Ahmad G. Viral Infections and Male Infertility: A Comprehensive Review of the Role of Oxidative Stress. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:782915. [PMID: 36303638 PMCID: PMC9580820 DOI: 10.3389/frph.2022.782915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Viral infections have been a part of human existence to date, though viruses have posed a huge threat with various outbreaks lately. These threats are associated with reproductive health challenges, especially male infertility. The prime focus of this review is to highlight the mechanisms associated with viral infection-induced male infertility/subfertility and identify new treatment strategies with the aim to preserve male fertility. The reviewed data showed that viral infections stimulate inflammatory responses, resulting in the release of proinflammatory cytokines, which induces oxidative stress. This oxido-inflammatory cycle could continue in a vicious cycle and threaten male fertility. Existing data from human and experimental studies show that viral infection-induced oxido-inflammatory response results in testicular damage, atrophy of the seminiferous tubules and Sertoli cells, and reduced Leydig cell mass. This is accompanied by reduced circulatory testosterone, impaired spermatogenesis, reduced sperm motility, lipid peroxidation, DNA fragmentation and apoptosis of the sperm cells. Based on the available pieces of evidence, antioxidant therapy, in vivo and in vitro, may be beneficial and protects against the potential risk of male infertility from viral infection. It is, however recommended that more clinical studies be conducted to demonstrate the possible protective roles of antioxidants used as adjuvant therapy in viral infections, and in the in vitro treatment of semen samples for those utilizing semen washing and artificial reproductive techniques.
Collapse
Affiliation(s)
- Roland E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Nigeria
- Brainwill Laboratories, Osogbo, Nigeria
| | - Ayodeji F. Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Gulfam Ahmad
- Redox Biology Group, Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Vue D, Tang Q. Zika Virus Overview: Transmission, Origin, Pathogenesis, Animal Model and Diagnosis. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10.15212/zoonoses-2021-0017. [PMID: 34957474 PMCID: PMC8698461 DOI: 10.15212/zoonoses-2021-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zika virus (ZIKV) was first discovered in 1947 in Uganda. ZIKV did not entice much attention until Brazil hosted the 2016 Summer Olympics Game, where ZIKV attracted a global audience. ZIKV is a flavivirus that can be transmitted chiefly through the biting of the mosquito or sexually or by breastfeeding at a lower scale. As time passed, the recent discovery of how the ZIKV causes congenital neurodevelopmental defects, including microcephaly, makes us reevaluate the importance of ZIKV interaction with centrosome organization because centrosome plays an important role in cell division. When the ZIKV disrupts centrosome organization and mitotic abnormalities, this will alter neural progenitor differentiation. Altering the neural progenitor differentiation will lead to cell cycle arrest, increase apoptosis, and inhibit the neural progenitor cell differentiation, as this can lead to abnormalities in neural cell development resulting in microcephaly. Understanding the importance of ZIKV infection throughout the years, this review article gives an overview of the history, transmission routes, pathogenesis, animal models, and diagnosis.
Collapse
Affiliation(s)
- Dallas Vue
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW Washington, DC 20059, USA
| |
Collapse
|
34
|
Broeckel RM, Feldmann F, McNally KL, Chiramel AI, Sturdevant GL, Leung JM, Hanley PW, Lovaglio J, Rosenke R, Scott DP, Saturday G, Bouamr F, Rasmussen AL, Robertson SJ, Best SM. A pigtailed macaque model of Kyasanur Forest disease virus and Alkhurma hemorrhagic disease virus pathogenesis. PLoS Pathog 2021; 17:e1009678. [PMID: 34855915 PMCID: PMC8638978 DOI: 10.1371/journal.ppat.1009678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.
Collapse
MESH Headings
- Animals
- Chlorocebus aethiops
- Cytokines/blood
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/virology
- Female
- HEK293 Cells
- Hemorrhagic Fevers, Viral/immunology
- Hemorrhagic Fevers, Viral/pathology
- Hemorrhagic Fevers, Viral/virology
- Humans
- Lymph Nodes/virology
- Macaca nemestrina
- Vero Cells
- Viremia
Collapse
Affiliation(s)
- Rebecca M. Broeckel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kristin L. McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gail L. Sturdevant
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jacqueline M. Leung
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Center for Global Health Science and Security, Georgetown University, Washington, District of Columbia, United States of America
| | - Shelly J. Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
35
|
Haese NN, Smith H, Onwuzu K, Kreklywich CN, Smith JL, Denton M, Kreklywich N, Streblow AD, Frias AE, Morgan TK, Hirsch AJ, Bimber BN, Roberts VH, Streblow DN. Differential Type 1 IFN Gene Expression in CD14+ Placenta Cells Elicited by Zika Virus Infection During Pregnancy. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:783407. [PMID: 40012721 PMCID: PMC11864791 DOI: 10.3389/fviro.2021.783407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Zika virus (ZIKV) is an arthropod-borne Flavivirus that can also be transmitted vertically from infected mother to fetus. Infection of the fetus during pregnancy can lead to congenital malformations and severely impact fetal brain development causing a myriad of diseases now labeled Congenital Zika Syndrome (CZS). The mechanisms by which ZIKV crosses the placenta into the fetal circulation and the extent of ZIKV-induced changes remain unclear. We have previously shown that ZIKV infection of pregnant rhesus macaques results in abnormal oxygen transport across the placenta which may promote uterine vasculitis and placental villous damage. Changes in immune cell frequencies and activation status were also detected, as were distinct changes in the proportions of CD14+ cell subsets with an altered ratio of classical to non-classical CD14+ monocyte cells in both the maternal decidua and placental villous from ZIKV-infected animals compare to uninfected controls. In the current study, we performed single cell RNA sequencing on CD14+ cells isolated from the decidua of animals that were ZIKV infected at 31, 51, or 115 days of gestation (where term is ~168 days) compared to pregnant, time-matched uninfected controls. Bioinformatic analysis identified unique transcriptional phenotypes between CD14+ cells of infected and uninfected animals suggesting a distinct and sustained difference in transcriptomes between infected and uninfected CD14+ cells derived from the decidua. The timing of ZIKV infection had no effect on the CD14+ cell transcriptional profiles. Interestingly, ZIKV infection caused changes in expression of genes in pathways related to cellular stress and metabolism as well as immune response activation. Type 1 interferon response genes (ISGs) were among those that were differentially expressed following infection and these included members of the ISG12 family, IFI27 and IFI6. These ISGs have been recently described as effectors of the IFN response to flaviviruses. Supplementing our animal findings, in CD14+ cells isolated from human placenta, ZIKV infection similarly induced the expression of IFI27 and IFI6. Overall, our results showed that ZIKV infection during pregnancy induces the stable expression of antiviral genes within CD14+ cells of the placenta, which may provide an immune shield to protect the placenta from further infection and damage.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Hannah Smith
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Kosiso Onwuzu
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Craig N. Kreklywich
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Jessica L. Smith
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Michael Denton
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Nicholas Kreklywich
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Aaron D. Streblow
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Antonio E. Frias
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
- Department of Obstetrics & Gynecology, OHSU, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Terry K. Morgan
- Department of Obstetrics & Gynecology, OHSU, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Benjamin N. Bimber
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Victoria H.J. Roberts
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| |
Collapse
|
36
|
Goetzl L, Stephens AJ, Schlesinger Y, Darbinian N, Merabova N, Hillel M, Hirsch AJ, Streblow DN, Frias AE, Roberts VHJ, Haese NN, Mani A, Eldar-Yedidia Y. Fetal Central Nervous System Derived Extracellular Vesicles: Potential for Non-invasive Tracking of Viral Mediated Fetal Brain Injury. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:782863. [PMID: 40012720 PMCID: PMC11864790 DOI: 10.3389/fviro.2021.782863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Introduction Extracellular vesicles derived from the fetal central nervous system (FCNSEs) can be purified from maternal serum or plasma using the protein Contactin-2/TAG1that is expressed almost exclusively by developing neurons in the hippocampus, cerebral cortex and cerebellum. We hypothesized that fetal CNSEs could be used to non-invasively detect and quantify viral mediated in-utero brain injury in the first trimester. Materials and Methods First trimester maternal samples were collected from a human clinical population infected with primary cytomegalovirus (CMV) and a non-human primate model of Zika (ZIKV) infection. In the CMV cohort, a nested case control study was performed comparing pregnancies with and without fetal infection. Cases of fetal infection were further subdivided into those with and without adverse neurologic outcome. ZIKV samples were collected serially following maternal inoculation or saline. All ZIKV cases had histopathologic findings on necropsy. Serum was precipitated with ExoQuick solution and FCEs were isolated with biotinylated anti-Contactin-2/TAG1 antibody-streptavidin matrix immunoabsorption. FCE Synaptopodin (SYNPO) and Neurogranin (NG) protein levels were measured using standard ELISA kits and normalized to the exosome marker CD81. Results Fetal CNSE SYNPO and NG were significantly reduced in cases of first trimester fetal CMV infection compared to those with infection limited to the mother but could not discriminate between fetal infection with and without adverse neurologic outcome. Following ZIKV inoculation, fetal CNSE SYNPO was reduced by 48 h and significantly reduced by day 4. Discussion These data are the first to suggest that first trimester non-invasive diagnosis of fetal viral infection is possible. Fetal CNSEs have the potential to augment clinical and pre-clinical studies of perinatal viral infection. Serial sampling may be needed to discriminate between fetuses that are responding to treatment and/or recovering due to innate defenses and those that have ongoing neuronal injury. If confirmed, this technology may advance the paradigm of first trimester prenatal diagnosis and change the calculus for the cost benefit of CMV surveillance programs in pregnancy.
Collapse
Affiliation(s)
- Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Angela J. Stephens
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Nune Darbinian
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nana Merabova
- Department of Family Medicine, Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | | | - Alec J. Hirsch
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Daniel N. Streblow
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Antonio E. Frias
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Nicole N. Haese
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
37
|
Haese NN, Roberts VHJ, Chen A, Streblow DN, Morgan TK, Hirsch AJ. Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy. Viruses 2021; 13:2088. [PMID: 34696518 PMCID: PMC8539636 DOI: 10.3390/v13102088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the explosive outbreak of Zika virus in Brazil and South/Central America in 2015-2016, the frequency of infections has subsided, but Zika virus remains present in this region as well as other tropical and sub-tropical areas of the globe. The most alarming aspect of Zika virus infection is its association with severe birth defects when infection occurs in pregnant women. Understanding the mechanism of Zika virus pathogenesis, which comprises features unique to Zika virus as well as shared with other teratogenic pathogens, is key to future prophylactic or therapeutic interventions. Nonhuman primate-based research has played a significant role in advancing our knowledge of Zika virus pathogenesis, especially with regard to fetal infection. This review summarizes what we have learned from these models and potential future research directions.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
| | - Victoria H. J. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA;
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
38
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Duarte-Neto AN, Teixeira TA, Caldini EG, Kanamura CT, Gomes-Gouvêa MS, Dos Santos ABG, Monteiro RAA, Pinho JRR, Mauad T, da Silva LFF, Saldiva PHN, Dolhnikoff M, Leite KRM, Hallak J. Testicular pathology in fatal COVID-19: A descriptive autopsy study. Andrology 2021; 10:13-23. [PMID: 34196475 PMCID: PMC8444746 DOI: 10.1111/andr.13073] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Multi-organ damage is a common feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, going beyond the initially observed severe pneumonia. Evidence that the testis is also compromised is growing. OBJECTIVE To describe the pathological findings in testes from fatal cases of COVID-19, including the detection of viral particles and antigens, and inflammatory cell subsets. MATERIALS AND METHODS Postmortem testicular samples were obtained by percutaneous puncture from 11 deceased men and examined by reverse-transcription polymerase chain reaction (RT-PCR) for RNA detection and by light and electron microscopy (EM) for SARS-CoV-2. Immunohistochemistry (IHC) for the SARS-CoV-2 N-protein and lymphocytic and histiocytic markers was also performed. RESULTS Eight patients had mild interstitial orchitis, composed mainly of CD68+ and TCD8+ cells. Fibrin thrombi were detected in five cases. All cases presented congestion, interstitial edema, thickening of the tubular basal membrane, decreased Leydig and Sertoli cells with reduced spermatogenesis, and strong expression of vascular cell adhesion molecule (VCAM) in vessels. IHC detected SARS-Cov-2 antigen in Leydig cells, Sertoli cells, spermatogonia, and fibroblasts in all cases. EM detected viral particles in the cytoplasm of fibroblasts, endothelium, Sertoli and Leydig cells, spermatids, and epithelial cells of the rete testis in four cases, while RT-PCR detected SARS-CoV-2 RNA in three cases. DISCUSSION AND CONCLUSION The COVID-19-associated testicular lesion revealed a combination of orchitis, vascular changes, basal membrane thickening, Leydig and Sertoli cell scarcity, and reduced spermatogenesis associated with SARS-CoV-2 local infection that may impair hormonal function and fertility in men.
Collapse
Affiliation(s)
- Amaro N Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Adolfo Lutz, São Paulo, Brazil
| | - Thiago A Teixeira
- Departamento de Cirurgia, Disciplina de Urologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elia G Caldini
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Michele S Gomes-Gouvêa
- Departamento de Gastroenterologia (LIM-07), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Angela B G Dos Santos
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Renata A A Monteiro
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - João R R Pinho
- Departamento de Gastroenterologia (LIM-07), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz F F da Silva
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo H N Saldiva
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Katia R M Leite
- Departamento de Cirurgia, Disciplina de Urologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Hallak
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Departamento de Cirurgia, Disciplina de Urologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol 2021; 12:698169. [PMID: 34248921 PMCID: PMC8260991 DOI: 10.3389/fmicb.2021.698169] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of coronavirus disease 2019 (COVID-19). Across the globe, a subset of patients who sustain an acute SARS-CoV-2 infection are developing a wide range of persistent symptoms that do not resolve over the course of many months. These patients are being given the diagnosis Long COVID or Post-acute sequelae of COVID-19 (PASC). It is likely that individual patients with a PASC diagnosis have different underlying biological factors driving their symptoms, none of which are mutually exclusive. This paper details mechanisms by which RNA viruses beyond just SARS-CoV-2 have be connected to long-term health consequences. It also reviews literature on acute COVID-19 and other virus-initiated chronic syndromes such as post-Ebola syndrome or myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) to discuss different scenarios for PASC symptom development. Potential contributors to PASC symptoms include consequences from acute SARS-CoV-2 injury to one or multiple organs, persistent reservoirs of SARS-CoV-2 in certain tissues, re-activation of neurotrophic pathogens such as herpesviruses under conditions of COVID-19 immune dysregulation, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation issues, dysfunctional brainstem/vagus nerve signaling, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage care for specific patients with the diagnosis.
Collapse
Affiliation(s)
- Amy D. Proal
- PolyBio Research Foundation, Kenmore, WA, United States
| | - Michael B. VanElzakker
- PolyBio Research Foundation, Kenmore, WA, United States
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
de Alwis R, Zellweger RM, Chua E, Wang LF, Chawla T, Sessions OM, Marlier D, Connolly JE, von Messling V, Anderson DE. Systemic inflammation, innate immunity and pathogenesis after Zika virus infection in cynomolgus macaques are modulated by strain-specificity within the Asian lineage. Emerg Microbes Infect 2021; 10:1457-1470. [PMID: 34120576 PMCID: PMC8300938 DOI: 10.1080/22221751.2021.1943536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zika virus (ZIKV) is an emerging arbovirus with recent global expansion. Historically, ZIKV infections with Asian lineages have been associated with mild disease such as rash and fever. However, recent Asian sub-lineages have caused outbreaks in the South Pacific and Latin America with increased prevalence of neurological disorders in infants and adults. Asian sub-lineage differences may partially explain the range of disease severity observed. However, the effect of Asian sub-lineage differences on pathogenesis remains poorly characterized. Current study conducts a head-to-head comparison of three Asian sub-lineages that are representative of the circulating ancestral mild Asian strain (ZIKV-SG), the 2007 epidemic French Polynesian strain (ZIKV-FP), and the 2013 epidemic Brazil strain (ZIKV-Brazil) in adult Cynomolgus macaques. Animals infected intervenously or subcutaneously with either of the three clinical isolates showed sub-lineage-specific differences in viral pathogenesis, early innate immune responses and systemic inflammation. Despite the lack of neurological symptoms in infected animals, the epidemiologically neurotropic ZIKV sub-lineages (ZIKV-Brazil and/or ZIKV-FP) were associated with more sustained viral replication, higher systemic inflammation (i.e. higher levels of TNFα, MCP-1, IL15 and G-CSF) and greater percentage of CD14+ monocytes and dendritic cells in blood. Multidimensional analysis showed clustering of ZIKV-SG away from ZIKV-Brazil and ZIKV-FP, further confirming sub-lineage differences in the measured parameters. These findings highlight greater systemic inflammation and monocyte recruitment as possible risk factors of adult ZIKV disease observed during the 2007 FP and 2013 Brazil epidemics. Future studies should explore the use of anti-inflammatory therapeutics as early treatment to prevent ZIKV-associated disease in adults.
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Viral Research and Experimental Medicine Centre, SingHealth-Duke NUS, Singapore
| | | | - Edmond Chua
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Tanu Chawla
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - October M Sessions
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore
| | - Damien Marlier
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, A*STAR, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Veronika von Messling
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
42
|
Strange DP, Jiyarom B, Sadri-Ardekani H, Cazares LH, Kenny TA, Ward MD, Verma S. Paracrine IFN Response Limits ZIKV Infection in Human Sertoli Cells. Front Microbiol 2021; 12:667146. [PMID: 34079533 PMCID: PMC8165286 DOI: 10.3389/fmicb.2021.667146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in its ability to be sexually transmitted. The testes have been implicated as sites of long-term ZIKV replication, and our previous studies have identified Sertoli cells (SC), the nurse cells of the seminiferous epithelium that govern spermatogenesis, as major targets of ZIKV infection. To improve our understanding of the interaction of ZIKV with human SC, we analyzed ZIKV-induced proteome changes in these cells using high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data demonstrated that interferon (IFN) signaling was the most significantly enriched pathway and the antiviral proteins MX1 and IFIT1 were among the top upregulated proteins in SC following ZIKV infection. The dynamic between IFN response and ZIKV infection kinetics in SC remains unclear, therefore we further determined whether MX1 and IFIT1 serve as antiviral effectors against ZIKV. We found that increased levels of MX1 at the later time points of infection coincided with diminished ZIKV infection while the silencing of MX1 and IFIT1 enhanced peak ZIKV propagation in SC. Furthermore, although IFN-I exposure was found to significantly hinder ZIKV replication in SC, IFN response was attenuated in these cells as compared to other cell types. The data in this study highlight IFN-I as a driver of the antiviral state that limits ZIKV infection in SC and suggests that MX1 and IFIT1 function as antiviral effectors against ZIKV in SC. Collectively, this study provides important biological insights into the response of SC to ZIKV infection and the ability of the virus to persist in the testes.
Collapse
Affiliation(s)
- Daniel P. Strange
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lisa H. Cazares
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Tara A. Kenny
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Michael D. Ward
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| |
Collapse
|
43
|
Bourgoin P, Soliveres T, Barbaresi A, Loundou A, Belkacem IA, Arnoux I, Bernot D, Loosveld M, Morange PE, Michelet P, Malergue F, Markarian T. CD169 and CD64 could help differentiate bacterial from CoVID-19 or other viral infections in the Emergency Department. Cytometry A 2021; 99:435-445. [PMID: 33491921 PMCID: PMC8014466 DOI: 10.1002/cyto.a.24314] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
The identification of a bacterial, viral, or even noninfectious cause is essential in the management of febrile syndrome in the emergency department (ED), especially in epidemic contexts such as flu or CoVID-19. The aim was to assess discriminative performances of two biomarkers, CD64 on neutrophils (nCD64) and CD169 on monocytes (mCD169), using a new flow cytometry procedure, in patients presenting with fever to the ED during epidemics. Eighty five adult patients presenting with potential infection were included during the 2019 flu season in the ED of La Timone Hospital. They were divided into four diagnostic outcomes according to their clinical records: no-infection, bacterial infection, viral infection and co-infection. Seventy six patients with confirmed SARS-CoV-2 infection were also compared to 48 healthy volunteers. For the first cohort, 38 (45%) patients were diagnosed with bacterial infections, 11 (13%) with viral infections and 29 (34%) with co-infections. mCD169 was elevated in patients with viral infections, with a majority of Flu A virus or Respiratory Syncytial Virus, while nCD64 was elevated in subjects with bacterial infections, with a majority of Streptococcus pneumoniae and Escherichia coli. nCD64 and mCD169 showed 90% and 80% sensitivity, and 78% and 91% specificity, respectively, for identifying patients with bacterial or viral infections. When studied in a second cohort, mCD169 was elevated in 95% of patients with SARS-CoV-2 infections and remained at normal level in 100% of healthy volunteers. nCD64 and mCD169 have potential for accurately distinguishing bacterial and acute viral infections. Combined in an easy and rapid flow cytometry procedure, they constitute a potential improvement for infection management in the ED, and could even help for triage of patients during emerging epidemics.
Collapse
Affiliation(s)
- Pénélope Bourgoin
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, Marseille, France.,Aix Marseille University, INSERM, INRAE, Marseille, France
| | - Thomas Soliveres
- Department of Emergency Medicine and Intensive Care, Timone University Hospital, APHM, Marseille, France
| | - Alexandra Barbaresi
- Department of Emergency Medicine and Intensive Care, Timone University Hospital, APHM, Marseille, France
| | - Anderson Loundou
- Department of Public Health, EA3279 Self-Perceived Health Assessment Research Unit, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Inès Ait Belkacem
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, Marseille, France.,UMR 7280, Marseille-Luminy Immunology Center (CIML), Marseille, France
| | - Isabelle Arnoux
- Department of Hematology Laboratory, Timone University Hospital, APHM, Marseille, France
| | - Denis Bernot
- Department of Hematology Laboratory, Timone University Hospital, APHM, Marseille, France
| | - Marie Loosveld
- Department of Hematology Laboratory, Timone University Hospital, APHM, Marseille, France
| | - Pierre-Emmanuel Morange
- Aix Marseille University, INSERM, INRAE, Marseille, France.,Department of Hematology Laboratory, Timone University Hospital, APHM, Marseille, France
| | - Pierre Michelet
- Aix Marseille University, INSERM, INRAE, Marseille, France.,Department of Emergency Medicine and Intensive Care, Timone University Hospital, APHM, Marseille, France
| | - Fabrice Malergue
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, Marseille, France
| | - Thibaut Markarian
- Aix Marseille University, INSERM, INRAE, Marseille, France.,Department of Emergency Medicine and Intensive Care, Timone University Hospital, APHM, Marseille, France
| |
Collapse
|
44
|
Halabi J, Jagger BW, Salazar V, Winkler ES, White JP, Humphrey PA, Hirsch AJ, Streblow DN, Diamond MS, Moley K. Zika Virus Causes Acute and Chronic Prostatitis in Mice and Macaques. J Infect Dis 2021; 221:1506-1517. [PMID: 31616920 DOI: 10.1093/infdis/jiz533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract has raised concerned for potential damaging effects on function. Animal studies have demonstrated that ZIKV virus can infect and damage the testis and epididymis, and these results has been correlated to lower sperm counts in ZIKV-infected humans. The prostate plays a vital role in the male reproductive tract, with acute and chronic prostatitis linked to male infertility. METHODS In this study, we evaluated the effects of ZIKV virus on the prostate in mice and nonhuman primates. RESULTS In mice, ZIKV infected the prostate and triggered inflammation that persisted even after virus clearance. Evidence of chronic prostatitis associated with ZIKV infection remained for several months. Similar histological findings were observed in the prostate of ZIKV-infected rhesus macaques. CONCLUSIONS These studies establish that ZIKV replicates in the prostate and can cause acute and chronic inflammatory and proliferative changes in mouse and nonhuman primate models.
Collapse
Affiliation(s)
- Jacques Halabi
- Department of Obstetrics and Gynecology, Washington University School of Medicine St. Louis, Missouri, USA
| | - Brett W Jagger
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA St. Louis, Missouri, USA
| | - Vanessa Salazar
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - James P White
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine New Haven, Connecticut, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University Beaverton, Oregon, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University Beaverton, Oregon, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine St. Louis, Missouri, USA
| | - Kelle Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine St. Louis, Missouri, USA
| |
Collapse
|
45
|
Reply to "Questioning the Use of Zika Virus Injection in Dogs with Advanced-Stage Brain Tumors". Mol Ther 2021; 29:6-7. [PMID: 33321096 DOI: 10.1016/j.ymthe.2020.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
Kaur G, Wright K, Verma S, Haynes A, Dufour JM. The Good, the Bad and the Ugly of Testicular Immune Regulation: A Delicate Balance Between Immune Function and Immune Privilege. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:21-47. [PMID: 34453730 DOI: 10.1007/978-3-030-77779-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The testis is one of several immune privilege sites. These sites are necessary to decrease inflammation and immune responses that could be damaging to the host. For example, inflammation in the brain, eye or placenta could result in loss of cognitive function, vision or rejection of the semi-allogeneic fetus, respectively. In the testis, immune privilege is "good" as it is necessary for protection of the developing auto-immunogenic germ cells. However, there is also a downside or "bad" part of immune privilege, where pathogens and cancers can take advantage of this privilege and persist in the testis as a sanctuary site. Even worse, the "ugly" of privilege is how re-emerging viruses, such as Ebola and Zika viruses, can establish persistence in the testes and be sexually transmitted even months after they have been cleared from the bloodstream. In this review, we will discuss the delicate balance within the testis that provides immune privilege to protect the germ cells while still allowing for immune function to fight off pathogens and tumors.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kandis Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Allan Haynes
- Department of Urology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
47
|
Teixeira TA, Oliveira YC, Bernardes FS, Kallas EG, Duarte-Neto AN, Esteves SC, Drevet JR, Hallak J. Viral infections and implications for male reproductive health. Asian J Androl 2021; 23:335-347. [PMID: 33473014 PMCID: PMC8269834 DOI: 10.4103/aja.aja_82_20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral infections have haunted humankind since times immemorial. Overpopulation, globalization, and extensive deforestation have created an ideal environment for a viral spread with unknown and multiple shedding routes. Many viruses can infect the male reproductive tract, with potential adverse consequences to male reproductive health, including infertility and cancer. Moreover, some genital tract viral infections can be sexually transmitted, potentially impacting the resulting offspring's health. We have summarized the evidence concerning the presence and adverse effects of the relevant viruses on the reproductive tract (mumps virus, human immunodeficiency virus, herpes virus, human papillomavirus, hepatitis B and C viruses, Ebola virus, Zika virus, influenza virus, and coronaviruses), their routes of infection, target organs and cells, prevalence and pattern of virus shedding in semen, as well as diagnosis/testing and treatment strategies. The pathophysiological understanding in the male genital tract is essential to assess its clinical impact on male reproductive health and guide future research.
Collapse
Affiliation(s)
- Thiago A Teixeira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa 68903-419, AP, Brazil
| | - Yasmin C Oliveira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa 68903-419, AP, Brazil
| | - Felipe S Bernardes
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, São Paulo 05403-000, SP, Brazil
| | - Amaro N Duarte-Neto
- BIAS - Brazilian Image Autopsy Study Group, Department of Pathology, University of São Paulo, São Paulo 05403-000, SP, Brazil
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas 13075-460, SP, Brazil.,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas 13083-968, SP, Brazil.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus 8000, Denmark
| | - Joël R Drevet
- GReD Institute, CNRS-INSERM-Université Clermont Auvergne, Faculty of Medicine, Clermont-Ferrand 63000, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
48
|
Gasco S, Muñoz-Fernández MÁ. A Review on the Current Knowledge on ZIKV Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. Int J Mol Sci 2020; 22:ijms22010035. [PMID: 33375140 PMCID: PMC7792973 DOI: 10.3390/ijms22010035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) acquired a special relevance due to the pandemic that occurred in the Americas in 2015, when an important number of fetal microcephaly cases occurred. Since then, numerous studies have tried to elucidate the pathogenic mechanisms and the potential therapeutic approaches to combat the virus. Cellular and animal models have proved to be a basic resource for this research, with the more recent addition of organoids as a more realistic and physiological 3D culture for the study of ZIKV. Nanotechnology can also offer a promising therapeutic tool, as the nanoparticles developed by this field can penetrate cells and deliver a wide array of drugs in a very specific and controlled way inside the cells. These two state-of-the-art scientific tools clearly provide a very relevant resource for the study of ZIKV, and will help researchers find an effective treatment or vaccine against the virus.
Collapse
Affiliation(s)
- Samanta Gasco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28001 Madrid, Spain;
- Laboratorio InmunoBiología Molecular (HGUGM), 28001 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28001 Madrid, Spain;
- Laboratorio InmunoBiología Molecular (HGUGM), 28001 Madrid, Spain
- Spanish HIV-HGM BioBank, 28001 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28001 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-462-4684
| |
Collapse
|
49
|
Low Aedes aegypti Vector Competence for Zika Virus from Viremic Rhesus Macaques. Viruses 2020; 12:v12121345. [PMID: 33255150 PMCID: PMC7759330 DOI: 10.3390/v12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
Despite worldwide efforts to understand the transmission dynamics of Zika virus (ZIKV), scanty evaluation has been made on the vector competence of Aedes aegypti fed directly on viremic human and non-human primates (NHPs). We blood-fed Ae. aegypti from two districts in Rio de Janeiro on six ZIKV infected pregnant rhesus macaques at several time points, half of which were treated with Sofosbuvir (SOF). Mosquitoes were analyzed for vector competence after 3, 7 and 14 days of incubation. Although viremia extended up to eight days post monkey inoculation, only mosquitoes fed on the day of the peak of viremia, recorded on day two, became infected. The influence of SOF treatment could not be assessed because the drug was administered just after mosquito feeding on day two. The global infection, dissemination and transmission rates were quite low (4.09%, 1.91% and 0.54%, respectively); no mosquito was infected when viremia was below 1.26 × 105 RNA copies/mL. In conclusion, Ae. aegypti vector competence for ZIKV from macaques is low, likely to be due to low viral load and the short duration of ZIKV viremia in primates suitable for infecting susceptible mosquitoes. If ZIKV infection in human and macaques behaves similarly, transmission of the Zika virus in nature is most strongly affected by vector density.
Collapse
|
50
|
Li Z, Xu J, Lang Y, Fan X, Kuo L, D'Brant L, Hu S, Samrat SK, Trudeau N, Tharappel AM, Rugenstein N, Koetzner CA, Zhang J, Chen H, Kramer LD, Butler D, Zhang QY, Zhou J, Li H. JMX0207, a Niclosamide Derivative with Improved Pharmacokinetics, Suppresses Zika Virus Infection Both In Vitro and In Vivo. ACS Infect Dis 2020; 6:2616-2628. [PMID: 32866370 PMCID: PMC7559020 DOI: 10.1021/acsinfecdis.0c00217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flaviviruses causes significant human disease. Recent outbreaks of the Zika virus highlight the need to develop effective therapies for this class of viruses. Previously we identified niclosamide as a broad-spectrum inhibitor for flaviviruses by targeting the interface between viral protease NS3 and its cofactor NS2B. Here, we screened a small library of niclosamide derivatives and identified a new analogue with improved pharmacokinetic properties. Compound JMX0207 showed improved efficacy in inhibition of the molecular interaction between NS3 and NS2B, better inhibition of viral protease function, and enhanced antiviral efficacy in the cell-based antiviral assay. The derivative also significantly reduced Zika virus infection on 3D mini-brain organoids derived from pluripotent neural stem cells. Intriguingly, the compound significantly reduced viremia in a Zika virus (ZIKV) animal model. In summary, a niclosamide derivative, JMX0207, was identified, which shows improved pharmacokinetics and efficacy against Zika virus both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yuekun Lang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Lianna D'Brant
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Saiyang Hu
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Nicole Trudeau
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Anil M Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Natasha Rugenstein
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201, United States
| | - David Butler
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201, United States
| |
Collapse
|