1
|
Wu D, Ma W, Wang L, Long C, Chen S, Liu J, Qian Y, Zhao J, Zhou C, Jia R. Physically engineered extracellular vesicles targeted delivering miR-21-5p to promote renoprotection after renal ischemia-reperfusion injury. Mater Today Bio 2025; 31:101528. [PMID: 39980630 PMCID: PMC11840549 DOI: 10.1016/j.mtbio.2025.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
Acute kidney injury (AKI) resulting from ischemia-reperfusion injury (IRI) is a common challenge in various clinical practices, yet effective therapies remain elusive. Endothelial injury plays a crucial role in the pathogenesis of renal IRI. Endothelial progenitor cells (EPCs) derived extracellular vesicles (EVs) hold promise as cell-free therapies for treating renal IRI; however, their efficacy is limited by low delivery efficiency. In this study, we developed neutrophils (NEs) membrane-modified EVs (N-EVs) by exploiting the natural properties of NEs to target damaged endothelium. N-EVs inherited the characteristic membrane proteins of NEs along with the biological functions of EPCs-EVs. Results from in vitro and in vivo experiments demonstrated that N-EVs significantly enhanced the targeting efficiency of EVs towards IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, N-EVs effectively promoted the proliferation, migration, and tube-formation abilities of injured endothelial cells (ECs) and contributed to overall renal function improvement in IRI kidneys through targeted delivery of miR-21-5p. Additionally, N-EVs could restore damaged endothelial integrity, reduce cytokine release, and inhibit leukocyte infiltration, hence alleviating renal inflammation. In conclusion, our accessible engineering approach represents a promising strategy for treating renal IRI. Furthermore, this membrane hybrid modification can be tailored and optimized for broader applications in treating other diseases.
Collapse
Affiliation(s)
- Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Liucheng Wang
- Department of Urology, Lianshui People's Hospital, Kangda College Affiliated to Nanjing Medical University, Jiang Su, 223400, China
| | - Chengcheng Long
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Silin Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
2
|
Blackmon TJ, MacMahon JA, Bernardino PN, Hogans RE, Cheng MY, Vu J, Lee RD, Saito NH, Grodzki AC, Bruun DA, Wulff H, Woolard KD, Brooks-Kayal A, Harvey DJ, Gorin FA, Lein PJ. Spatiotemporal perturbations of the plasminogen activation system in a rat model of acute organophosphate intoxication. Acta Neuropathol Commun 2025; 13:62. [PMID: 40102979 PMCID: PMC11917081 DOI: 10.1186/s40478-025-01979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Neuroinflammation is widely posited to be a key pathogenic mechanism linking acute organophosphate (OP)-induced status epilepticus (SE) to persistent brain injury and abnormal electrical activity that contribute to epilepsy and cognitive impairment. The plasminogen activation system (PAS) promotes neuroinflammation in diverse neurological diseases but whether it is activated following acute OP intoxication has yet to be evaluated. To address this data gap, we characterized the spatiotemporal expression patterns of multiple components of the PAS in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) went into SE that persisted for hours. One day after acute DFP-induced SE, plasmin activity and protein concentrations of plasminogen activator inhibitor-1 (PAI-1) in the plasma were increased, though not significantly. In contrast, acute DFP intoxication significantly increased brain levels of PAI-1, tissue-type plasminogen activator (tPA), urokinase plasminogen activator (uPA), and transcripts of TGF-β in a time- and region-dependent manner. In the cortex and hippocampus, quantification of PAI-1, tPA, and uPA by ELISA indicated significantly increased levels at 1 day post-exposure (DPE). PAI-1 and uPA returned to control values by 7 DPE while tPA protein remained elevated at 28 DPE. Immunohistochemistry detected elevated PAI-1 expression in the DFP brain up to 28 DPE. Co-localization of PAI-1 with biomarkers of neurons, microglia, and astrocytes demonstrated that PAI-1 localized predominantly to a subpopulation of astrocytes. Cytologically, PAI-1 localized to astrocytic end feet, but not adjacent neurovascular endothelium. Electron microscopy revealed neuronal metabolic stress and neurodegeneration with disruption of adjacent neurovascular units in the hippocampus post-DFP exposure. These data indicate that acute DFP intoxication altered PAS expression in the brain, with aberrant PAI-1 expression in a subset of reactive astrocyte populations.
Collapse
Affiliation(s)
- Thomas J Blackmon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan E Hogans
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mei-Yun Cheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ruth Diana Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
- Molecular Biosciences, UC Davis School of Veterinary Medicine, 1089 Veterinary Research Drive, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Frey ZD, Price DA, Connors KA, Rush RE, Brown G, Sterling CE, Fatma F, Schwarz MM, Ganaie S, Cui X, Wills ZP, Leung DW, Amarasinghe GK, Hartman AL. Lrp1 facilitates infection of neurons by Jamestown Canyon virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622176. [PMID: 39574651 PMCID: PMC11580904 DOI: 10.1101/2024.11.06.622176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Jamestown Canyon virus (JCV) is a bunyavirus and arbovirus responsible for neuroinvasive disease in the United States. Little is known about JCV pathogenesis, and no host factors required for cellular infection have been identified. Recently, we identified low-density lipoprotein receptor related protein 1 (Lrp1) as a host entry factor for two other bunyaviruses Rift Valley fever virus (RVFV) and Oropouche virus (OROV). Here, we assessed the role of Lrp1 in mediating JCV cellular infection of neurons. Both neuronal and non-neuronal immortalized cell lines deficient for Lrp1 displayed reduction in infection with JCV, and early stages of infection such as binding and internalization were impacted by lack of Lrp1. In primary rat neurons, Lrp1 was highly expressed, and the neurons were highly permissive for JCV infection. Treatment of primary neurons with recombinant receptor-associated protein (RAP), a high affinity ligand for Lrp1, resulted in reduced infectivity with JCV. In addition, pretreatment of cells with RVFV Gn inhibited JCV infection, suggesting that the two viruses may share overlapping binding sites. These results provide compelling evidence that Lrp1 is an important cellular factor for efficient infection by JCV, and thus multiple bunyaviruses with varying clinical manifestations and tissue tropism are facilitated by the host cell Lrp1. Reliance of multiple bunyaviruses on Lrp1 makes it a promising target for pan-bunyaviral antivirals and therapeutics.
Collapse
Affiliation(s)
- Zachary D Frey
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A Price
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaleigh A Connors
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachael E Rush
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Griffin Brown
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cade E Sterling
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Farheen Fatma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Madeline M Schwarz
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Safder Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiaoxia Cui
- Genome Engineering and Stem Cell Center (GEiC), Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachary P Wills
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Quellec J, Piro-Megy C, Cannac M, Nisole S, Marty FH, Gosselet F, Shimizu F, Kanda T, Cêtre-Sossah C, Salinas S. Rift Valley fever virus is able to cross the human blood-brain barrier in vitro by direct infection with no deleterious effects. J Virol 2024; 98:e0126724. [PMID: 39345143 PMCID: PMC11494904 DOI: 10.1128/jvi.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arboviral disease that causes recurrent epidemics in Africa that may trigger fatal neurological disorders. However, the mechanisms of neuroinvasion by which the RVF virus (RVFV) reaches the human central nervous system (CNS) remain poorly characterized. In particular, it is not clear how RVFV is able to cross the human blood-brain barrier (hBBB), which is a neurovascular endothelium that protects the brain by regulating brain and blood exchanges. To explore these mechanisms, we used an in vitro hBBB model to mimic in vivo hBBB selectiveness and apicobasal polarity. Our results highlight the ability of RVFV to cross the hBBB by direct infection in a non-structural protein S (NSs)-independent but strain-dependent manner, leading to astrocyte and pericyte infections. Interestingly, RVFV infection did not induce hBBB disruption and was associated with progressive elimination of infected cells with no impairment of the tight junction protein scaffold and barrier function. Our work also shows that NSs, a well described RVFV virulence factor, limited the establishment of the hBBB-induced innate immune response and subsequent lymphocyte recruitment. These results provide in vitro confirmation of the ability of RVFV to reach human CNS by direct infection of the hBBB without altering its barrier function, and provide new directions to explore human RVFV neurovirulence and neuroinvasion mechanisms.IMPORTANCEThe RVF virus (RVFV) is capable of infecting humans and inducing severe and fatal neurological disorders. Neuropathogenesis and human central nervous system (CNS) invasion mechanisms of RVFV are still unknown, with only historical studies of autopsy data from fatal human cases in the 1980s and exploration studies in rodent models. One of the gaps in understanding RVFV human pathogenesis is how RVFV is able to cross the blood-brain barrier (BBB) in order to reach the human CNS. For the first time, we show that RVFV is able to directly infect cells of the human BBB in vitro to release viral particles into the human CNS, a well-characterized neuroinvasion mechanism of pathogens. Furthermore, we demonstrate strain-dependent variability of this neuroinvasion mechanism, identifying possible viral properties that could be explored to prevent neurological disorders during RVFV outbreaks.
Collapse
Affiliation(s)
- Jordan Quellec
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | | | - Marion Cannac
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Florent H. Marty
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Sara Salinas
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
5
|
Wilson LR, McElroy AK. Rift Valley Fever Virus Encephalitis: Viral and Host Determinants of Pathogenesis. Annu Rev Virol 2024; 11:309-325. [PMID: 38635867 PMCID: PMC11427164 DOI: 10.1146/annurev-virology-093022-011544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.
Collapse
Affiliation(s)
- Lindsay R Wilson
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Anita K McElroy
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
6
|
Guan Z, Li H, Zhang C, Huang Z, Ye M, Zhang Y, Li S, Peng K. RVFV virulence factor NSs triggers the mitochondrial MCL-1-BAK axis to activate pathogenic NLRP3 pyroptosis. PLoS Pathog 2024; 20:e1012387. [PMID: 39213434 PMCID: PMC11364418 DOI: 10.1371/journal.ppat.1012387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Infection of Rift Valley fever virus (RVFV), a highly pathogenic mosquito-borne zoonotic virus, triggers severe inflammatory pathogenesis but the underlying mechanism of inflammation activation is currently unclear. Here, we report that the non-structural protein NSs of RVFV triggers mitochondrial damage to activate the NLRP3 inflammasome leading to viral pathogenesis in vivo. It is found that the host transcription inhibition effect of NSs causes rapid down-regulation of myeloid cell leukemia-1(MCL-1), a pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) protein family. MCL-1 down-regulation led to BAK activation in the mitochondria, which triggered mtROS production and release of oxidized mitochondrial DNA (ox-mtDNA) into the cytosol. Cytosolic ox-mtDNA binds and activates the NLRP3 inflammasome triggering NLRP3-GSDMD pyroptosis in RVFV infected cells. A NSs mutant virus (RVFV-NSsRM) that is compromised in inducing transcription inhibition did not trigger MCL-1 down-regulation nor NLRP3-GSDMD pyroptosis. RVFV infection of the Nlrp3-/- mouse model demonstrated that the RVFV-triggered NLRP3 pyroptosis contributed to RVFV inflammatory pathogenesis and fatal infection in vivo. Infection with the RVFV-NSsRM mutant virus similarly showed alleviated inflammatory pathogenesis and reduced fatality rate. Taken together, these results revealed a mechanism by which a virulence factor activates the mitochondrial MCL-1-BAK axis through inducing host transcription inhibition to trigger NLRP3-dependent inflammatory pathogenesis.
Collapse
Affiliation(s)
- Zhenqiong Guan
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiling Li
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ziyan Huang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meidi Ye
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shufen Li
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Connors KA, Chapman NS, McMillen CM, Hoehl RM, McGaughey JJ, Frey ZD, Midgett M, Williams C, Reed DS, Crowe JE, Hartman AL. Potent neutralizing human monoclonal antibodies protect from Rift Valley fever encephalitis. JCI Insight 2024; 9:e180151. [PMID: 39088277 PMCID: PMC11457859 DOI: 10.1172/jci.insight.180151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel S. Chapman
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cynthia M. McMillen
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Griesman T, McMillen CM, Negatu SG, Hulahan JJ, Whig K, Dohnalová L, Dittmar M, Thaiss CA, Jurado KA, Schultz DC, Hartman AL, Cherry S. The lipopeptide Pam3CSK4 inhibits Rift Valley fever virus infection and protects from encephalitis. PLoS Pathog 2024; 20:e1012343. [PMID: 38935789 PMCID: PMC11236204 DOI: 10.1371/journal.ppat.1012343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/10/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.
Collapse
Affiliation(s)
- Trevor Griesman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Seble Getenet Negatu
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Jesse J. Hulahan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Kanupriya Whig
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lenka Dohnalová
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Christoph A. Thaiss
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - David C. Schultz
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Ma W, Wu D, Long C, Liu J, Xu L, Zhou L, Dou Q, Ge Y, Zhou C, Jia R. Neutrophil-derived nanovesicles deliver IL-37 to mitigate renal ischemia-reperfusion injury via endothelial cell targeting. J Control Release 2024; 370:66-81. [PMID: 38631490 DOI: 10.1016/j.jconrel.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most important causes of acute kidney injury (AKI). Interleukin (IL)-37 has been suggested as a novel anti-inflammatory factor for the treatment of IRI, but its application is still limited by its low stability and delivery efficiency. In this study, we reported a novel engineered method to efficiently and easily prepare neutrophil membrane-derived vesicles (N-MVs), which could be utilized as a promising vehicle to deliver IL-37 and avoid the potential side effects of neutrophil-derived natural extracellular vesicles. N-MVs could enhance the stability of IL-37 and targetedly deliver IL-37 to damaged endothelial cells of IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). In vitro and in vivo evidence revealed that N-MVs encapsulated with IL-37 (N-MV@IL-37) could inhibit endothelial cell apoptosis, promote endothelial cell proliferation and angiogenesis, and decrease inflammatory factor production and leukocyte infiltration, thereby ameliorating renal IRI. Our study establishes a promising delivery vehicle for the treatment of renal IRI and other endothelial damage-related diseases.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Chengcheng Long
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
10
|
Connors KA, Frey ZD, Demers MJ, Wills ZP, Hartman AL. Acute Rift Valley fever virus infection induces inflammatory cytokines and cell death in ex vivo rat brain slice culture. J Gen Virol 2024; 105:001970. [PMID: 38546100 PMCID: PMC10995633 DOI: 10.1099/jgv.0.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J. Demers
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Hartman AL, Myler PJ. Bunyavirales: Scientific Gaps and Prototype Pathogens for a Large and Diverse Group of Zoonotic Viruses. J Infect Dis 2023; 228:S376-S389. [PMID: 37849397 PMCID: PMC10582323 DOI: 10.1093/infdis/jiac338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.
Collapse
Affiliation(s)
- Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Peter J Myler
- Department of Pediatrics and the Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
12
|
Schwarz MM, Ganaie SS, Feng A, Brown G, Yangdon T, White JM, Hoehl RM, McMillen CM, Rush RE, Connors KA, Cui X, Leung DW, Egawa T, Amarasinghe GK, Hartman AL. Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice. SCIENCE ADVANCES 2023; 9:eadh2264. [PMID: 37450601 PMCID: PMC10348670 DOI: 10.1126/sciadv.adh2264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.
Collapse
Affiliation(s)
- Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Safder S. Ganaie
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Griffin Brown
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tenzin Yangdon
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - J. Michael White
- Transgenic, Knockout and Micro-Injection Core, Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael E. Rush
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaleigh A. Connors
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W. Leung
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Takeshi Egawa
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Gitau JK, Macharia RW, Mwangi KW, Ongeso N, Murungi E. Gene co-expression network identifies critical genes, pathways and regulatory motifs mediating the progression of rift valley fever in Bostaurus. Heliyon 2023; 9:e18175. [PMID: 37519716 PMCID: PMC10375796 DOI: 10.1016/j.heliyon.2023.e18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne viral disease caused by the Rift Valley Fever Virus. The disease is a zoonosis that largely affects domestic animals, including sheep, goats, and cattle, resulting in severe morbidity and mortality marked by massive storm abortions. To halt human and livestock deaths due to RVF, the development of efficacious vaccines and therapeutics is a compelling and urgent priority. We sought to identify potential key modules (gene clusters), hub genes, and regulatory motifs involved in the pathogenesis of RVF in Bos taurus that are amenable to inhibition. We analyzed 39 Bos taurus RNA-Seq samples using the weighted gene co-expression network analysis (WGCNA) R package and uncovered significantly enriched modules containing genes with potential pivotal roles in RVF progression. Moreover, regulatory motif analysis conducted using the Multiple Expectation Maximization for Motif Elicitation (MEME) suite identified motifs that probably modulate vital biological processes. Gene ontology terms associated with identified motifs were inferred using the GoMo human database. The gene co-expression network constructed in WGCNA using 5000 genes contained seven (7) modules, out of which four were significantly enriched for terms associated with response to viruses, response to interferon-alpha, innate immune response, and viral defense. Additionally, several biological pathways implicated in developmental processes, anatomical structure development, and multicellular organism development were identified. Regulatory motifs analysis identified short, repeated motifs whose function(s) may be amenable to disruption by novel therapeutics. Predicted functions of identified motifs include tissue development, embryonic organ development, and organ morphogenesis. We have identified several hub genes in enriched co-expressed gene modules and regulatory motifs potentially involved in the pathogenesis of RVF in B. taurus that are likely viable targets for disruption by novel therapeutics.
Collapse
Affiliation(s)
- John K. Gitau
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Rosaline W. Macharia
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Kennedy W. Mwangi
- Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000, 00200, Nairobi, Kenya
| | - Nehemiah Ongeso
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Edwin Murungi
- Kisii University, Department of Medical Biochemistry, P.O Box 408, 40200, Kisii, Kenya
| |
Collapse
|
14
|
Bermúdez-Méndez E, Angelino P, van Keulen L, van de Water S, Rockx B, Pijlman GP, Ciuffi A, Kortekaas J, Wichgers Schreur PJ. Transcriptomic Profiling Reveals Intense Host-Pathogen Dispute Compromising Homeostasis during Acute Rift Valley Fever Virus Infection. J Virol 2023; 97:e0041523. [PMID: 37306574 PMCID: PMC10308945 DOI: 10.1128/jvi.00415-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023] Open
Abstract
Rift Valley fever virus (RVFV) (family Phenuiviridae) can cause severe disease, and outbreaks of this mosquito-borne pathogen pose a significant threat to public and animal health. Yet many molecular aspects of RVFV pathogenesis remain incompletely understood. Natural RVFV infections are acute, characterized by a rapid onset of peak viremia during the first days post-infection, followed by a rapid decline. Although in vitro studies identified a major role of interferon (IFN) responses in counteracting the infection, a comprehensive overview of the specific host factors that play a role in RVFV pathogenesis in vivo is still lacking. Here, the host in vivo transcriptional profiles in the liver and spleen tissues of lambs exposed to RVFV are studied using RNA sequencing (RNA-seq) technology. We validate that IFN-mediated pathways are robustly activated in response to infection. We also link the observed hepatocellular necrosis with severely compromised organ function, which is reflected as a marked downregulation of multiple metabolic enzymes essential for homeostasis. Furthermore, we associate the elevated basal expression of LRP1 in the liver with RVFV tissue tropism. Collectively, the results of this study deepen the knowledge of the in vivo host response during RVFV infection and reveal new insights into the gene regulation networks underlying pathogenesis in a natural host. IMPORTANCE Rift Valley fever virus (RVFV) is a mosquito-transmitted pathogen capable of causing severe disease in animals and humans. Outbreaks of RVFV pose a significant threat to public health and can result in substantial economic losses. Little is known about the molecular basis of RVFV pathogenesis in vivo, particularly in its natural hosts. We employed RNA-seq technology to investigate genome-wide host responses in the liver and spleen of lambs during acute RVFV infection. We show that RVFV infection drastically decreases the expression of metabolic enzymes, which impairs normal liver function. Moreover, we highlight that basal expression levels of the host factor LRP1 may be a determinant of RVFV tissue tropism. This study links the typical pathological phenotype induced by RVFV infection with tissue-specific gene expression profiles, thereby improving our understanding of RVFV pathogenesis.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Paolo Angelino
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lucien van Keulen
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barry Rockx
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
15
|
He J, Pham TL, Kakazu AH, Ponnath A, Do KV, Bazan HEP. Lipoxin A4 (LXA4) Reduces Alkali-Induced Corneal Inflammation and Neovascularization and Upregulates a Repair Transcriptome. Biomolecules 2023; 13:831. [PMID: 37238701 PMCID: PMC10216426 DOI: 10.3390/biom13050831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. METHODS To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with a Φ 4 mm filter paper disc soaked in 1 N NaOH placed on the center of the cornea. After injury, the rats were treated topically with LXA4 (65 ng/20 μL) or vehicle three times a day for 14 days. Corneal opacity, neovascularization (NV), and hyphema were recorded and evaluated in a blind manner. Pro-inflammatory cytokine expression and genes involved in cornel repair were assayed by RNA sequencing and capillary Western blot. Cornea cell infiltration and monocytes isolated from the blood were analyzed by immunofluorescence and by flow cytometry. RESULTS Topical treatment with LXA4 for two weeks significantly reduced corneal opacity, NV, and hyphema compared to the vehicle treatment. RNA-seq and Western blot results showed that LXA4 decreased the gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and pro-angiogenic mediators matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGFA). It also induces genes involved in keratinization and ErbB signaling and downregulates immune pathways to stimulate wound healing. Flow cytometry and immunohistochemistry showed significantly less infiltration of neutrophils in the corneas treated with LXA4 compared to vehicle treatment. It also revealed that LXA4 treatment increases the proportion of type 2 macrophages (M2) compared to M1 in blood-isolated monocytes. CONCLUSIONS LXA4 decreases corneal inflammation and NV induced by a strong alkali burn. Its mechanism of action includes inhibition of inflammatory leukocyte infiltration, reduction in cytokine release, suppression of angiogenic factors, and promotion of corneal repair gene expression and macrophage polarization in blood from alkali burn corneas. LXA4 has potential as a therapeutic candidate for severe corneal chemical injuries.
Collapse
Affiliation(s)
- Jiucheng He
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Thang L. Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
- HENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi 11313, Vietnam
| | - Azucena H. Kakazu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
| | - Abhilash Ponnath
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
| | - Khanh V. Do
- Faculty of Medicine, PHENIKAA University, Hanoi 12116, Vietnam
| | - Haydee E. P. Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Intranasal Exposure to Rift Valley Fever Virus Live-Attenuated Strains Leads to High Mortality Rate in Immunocompetent Mice. Viruses 2022; 14:v14112470. [PMID: 36366567 PMCID: PMC9694885 DOI: 10.3390/v14112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.
Collapse
|
17
|
Schwarz MM, Connors KA, Davoli KA, McMillen CM, Albe JR, Hoehl RM, Demers MJ, Ganaie SS, Price DA, Leung DW, Amarasinghe GK, McElroy AK, Reed DS, Hartman AL. Rift Valley Fever Virus Infects the Posterior Segment of the Eye and Induces Inflammation in a Rat Model of Ocular Disease. J Virol 2022; 96:e0111222. [PMID: 36194021 PMCID: PMC9599513 DOI: 10.1128/jvi.01112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 01/24/2023] Open
Abstract
People infected with the mosquito-borne Rift Valley fever virus (RVFV) can suffer from eye-related problems resulting in ongoing vision issues or even permanent blindness. Despite ocular disease being the most frequently reported severe outcome, it is vastly understudied compared to other disease outcomes caused by RVFV. Ocular manifestations of RVFV include blurred vision, uveitis, and retinitis. When an infected individual develops macular or paramacular lesions, there is a 50% chance of permanent vision loss in one or both eyes. The cause of blinding ocular pathology remains unknown in part due to the lack of a tractable animal model. Using 3 relevant exposure routes, both subcutaneous (SC) and aerosol inoculation of Sprague Dawley rats led to RVFV infection of the eye. Surprisingly, direct inoculation of the conjunctiva did not result in successful ocular infection. The posterior segment of the eye, including the optic nerve, choroid, ciliary body, and retina, were all positive for RVFV antigen in SC-infected rats, and live virus was isolated from the eyes. Proinflammatory cytokines and increased leukocyte counts were also found in the eyes of infected rats. Additionally, human ocular cell lines were permissive for Lrp1-dependent RVFV infection. This study experimentally defines viral tropism of RVFV in the posterior segment of the rat eye and characterizes virally-mediated ocular inflammation, providing a foundation for evaluation of vaccines and therapeutics to protect against adverse ocular outcomes. IMPORTANCE Rift Valley fever virus (RVFV) infection leads to eye damage in humans in up to 10% of reported cases. Permanent blindness occurs in 50% of individuals with significant retinal scarring. Despite the prevalence and severity of this outcome, very little is known about the mechanisms of pathogenesis. We addressed this gap by developing a rodent model of ocular disease. Subcutaneous infection of Sprague Dawley rats resulted in infection of the uvea, retina, and optic nerve along with the induction of inflammation within the posterior eye. Infection of human ocular cells induced inflammatory responses and required host entry factors for RVFV infection similar to rodents. This work provides evidence of how RVFV infects the eye, and this information can be applied to help mitigate the devastating outcomes of RVF ocular disease through vaccines or treatments.
Collapse
Affiliation(s)
- Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kaleigh A. Connors
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine A. Davoli
- Ophthalmic and Visual Sciences Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew J. Demers
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Safder S. Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David A. Price
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Daisy W. Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Anita K. McElroy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Intact Type I Interferon Receptor Signaling Prevents Hepatocellular Necrosis but Not Encephalitis in a Dose-Dependent Manner in Rift Valley Fever Virus Infected Mice. Int J Mol Sci 2022; 23:ijms232012492. [DOI: 10.3390/ijms232012492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to “abortion storms” and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR−/−) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7–11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR−/− mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2–5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route.
Collapse
|
19
|
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.
Collapse
Affiliation(s)
- Kaleigh A Connors
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
20
|
Cartwright HN, Barbeau DJ, Doyle JD, Klein E, Heise MT, Ferris MT, McElroy AK. Genetic diversity of collaborative cross mice enables identification of novel rift valley fever virus encephalitis model. PLoS Pathog 2022; 18:e1010649. [PMID: 35834486 PMCID: PMC9282606 DOI: 10.1371/journal.ppat.1010649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral disease of humans and livestock responsible for severe economic and human health impacts. In humans, RVF spans a variety of clinical manifestations, ranging from an acute flu-like illness to severe forms of disease, including late-onset encephalitis. The large variations in human RVF disease are inadequately represented by current murine models, which overwhelmingly die of early-onset hepatitis. Existing mouse models of RVF encephalitis are either immunosuppressed, display an inconsistent phenotype, or develop encephalitis only when challenged via intranasal or aerosol exposure. In this study, the genetically defined recombinant inbred mouse resource known as the Collaborative Cross (CC) was used to identify mice with additional RVF disease phenotypes when challenged via a peripheral foot-pad route to mimic mosquito-bite exposure. Wild-type Rift Valley fever virus (RVFV) challenge of 20 CC strains revealed three distinct disease phenotypes: early-onset hepatitis, mixed phenotype, and late-onset encephalitis. Strain CC057/Unc, with the most divergent phenotype, which died of late-onset encephalitis at a median of 11 days post-infection, is the first mouse strain to develop consistent encephalitis following peripheral challenge. CC057/Unc mice were directly compared to C57BL/6 mice, which uniformly succumb to hepatitis within 2–4 days of infection. Encephalitic disease in CC057/Unc mice was characterized by high viral RNA loads in brain tissue, accompanied by clearance of viral RNA from the periphery, low ALT levels, lymphopenia, and neutrophilia. In contrast, C57BL/6 mice succumbed from hepatitis at 3 days post-infection with high viral RNA loads in the liver, viremia, high ALT levels, lymphopenia, and thrombocytopenia. The identification of a strain of CC mice as an RVFV encephalitis model will allow for future investigation into the pathogenesis and treatment of RVF encephalitic disease and indicates that genetic background makes a major contribution to RVF disease variation.
Collapse
Affiliation(s)
- Haley N. Cartwright
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Dominique J. Barbeau
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Joshua D. Doyle
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Ed Klein
- University of Pittsburgh, Division of Laboratory Animal Resources, Pittsburgh, Pennsylvania, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anita K. McElroy
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ma H, Albe JR, Gilliland T, McMillen CM, Gardner CL, Boyles DA, Cottle EL, Dunn MD, Lundy JD, Salama N, O’Malley KJ, Pandrea I, Teichert T, Barrick S, Klimstra WB, Hartman AL, Reed DS. Long-term persistence of viral RNA and inflammation in the CNS of macaques exposed to aerosolized Venezuelan equine encephalitis virus. PLoS Pathog 2022; 18:e1009946. [PMID: 35696423 PMCID: PMC9232170 DOI: 10.1371/journal.ppat.1009946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/24/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease. Although naturally transmitted by mosquito, Venezuelan equine encephalitis viruses (VEEV) can be highly infectious when aerosolized. In humans, VEEV are only rarely fatal but cause a severe, biphasic fever with neurological symptoms including severe headache, a stiff neck, and photophobia. We report here our efforts to further characterize the disease caused by VEEV in the cynomolgus macaque, using an infectious clone of a human VEEV isolate, to explore the long-term effects of VEEV infection, and the utility of radiotelemetry in continuous monitoring of electroencephalography and intracranial pressure to explore the relationship between fever, virus penetration of the brain, and neurological disease.
Collapse
Affiliation(s)
- Henry Ma
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Noah Salama
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacey Barrick
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hum NR, Bourguet FA, Sebastian A, Lam D, Phillips AM, Sanchez KR, Rasley A, Loots GG, Weilhammer DR. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. PLoS Pathog 2022; 18:e1010231. [PMID: 35584192 PMCID: PMC9154093 DOI: 10.1371/journal.ppat.1010231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice. In response to infection, microglia initiated robust transcriptional upregulation of antiviral immune genes, as well as increased levels of activation markers and cytokine secretion that is dependent on mitochondrial antiviral-signaling protein (MAVS) and independent of toll-like receptors 3 and 7. In vivo, Mavs-/- mice displayed enhanced susceptibility to RVFV as determined by increased brain viral burden and higher mortality. Single-cell RNA sequence analysis identified defects in type I interferon and interferon responsive gene expression within microglia in Mavs-/- mice, as well as dysregulated lymphocyte infiltration. The results of this study provide a crucial step towards understanding the precise molecular mechanisms by which RVFV infection is controlled in the brain and will help inform the development of vaccines and antiviral therapies that are effective in preventing encephalitis. Rift Valley fever virus causes severe disease in humans and livestock and in some cases can be fatal. There is concern about the use of Rift Valley fever virus as a bioweapon since it can be transmitted through the air, and there are no vaccines or antiviral treatments. Airborne transmission of the virus causes severe inflammation of the brain, yet little is known about the immune response against the virus in this organ. Here, we investigated the immune response in the brain to Rift Valley fever virus following intranasal infection. We determined that microglia, the resident immune cells of the brain, initiate a robust response to Rift Valley fever virus infection and identified a key immune pathway that is critical for the ability of microglia to respond to infection. When this immune pathway is rendered non-functional, mice have a dysregulated response to infection in the brain. This study provides insight into how the immune response can control Rift Valley fever virus infection of the brain.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Feliza A. Bourguet
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Doris Lam
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kristina R. Sanchez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ganaie SS, Schwarz MM, McMillen CM, Price DA, Feng AX, Albe JR, Wang W, Miersch S, Orvedahl A, Cole AR, Sentmanat MF, Mishra N, Boyles DA, Koenig ZT, Kujawa MR, Demers MA, Hoehl RM, Moyle AB, Wagner ND, Stubbs SH, Cardarelli L, Teyra J, McElroy A, Gross ML, Whelan SPJ, Doench J, Cui X, Brett TJ, Sidhu SS, Virgin HW, Egawa T, Leung DW, Amarasinghe GK, Hartman AL. Lrp1 is a host entry factor for Rift Valley fever virus. Cell 2021; 184:5163-5178.e24. [PMID: 34559985 DOI: 10.1016/j.cell.2021.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/29/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Madeline M Schwarz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Price
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie X Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joseph R Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shane Miersch
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Aidan R Cole
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Monica F Sentmanat
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Devin A Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary T Koenig
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Kujawa
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Demers
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan M Hoehl
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Lia Cardarelli
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Anita McElroy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoxia Cui
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tom J Brett
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Current address: Vir Biotechnology, San Francisco, CA, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Barbosa-Silva MC, Lima MN, Battaglini D, Robba C, Pelosi P, Rocco PRM, Maron-Gutierrez T. Infectious disease-associated encephalopathies. Crit Care 2021; 25:236. [PMID: 34229735 PMCID: PMC8259088 DOI: 10.1186/s13054-021-03659-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood-brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation.
Collapse
Affiliation(s)
- Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Albe JR, Ma H, Gilliland TH, McMillen CM, Gardner CL, Boyles DA, Cottle EL, Dunn MD, Lundy JD, O’Malley KJ, Salama N, Walters AW, Pandrea I, Teichert T, Klimstra WB, Reed DS, Hartman AL. Physiological and immunological changes in the brain associated with lethal eastern equine encephalitis virus in macaques. PLoS Pathog 2021; 17:e1009308. [PMID: 33534855 PMCID: PMC7886169 DOI: 10.1371/journal.ppat.1009308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.
Collapse
Affiliation(s)
- Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Henry Ma
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron H. Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Noah Salama
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron W. Walters
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| |
Collapse
|
26
|
Boyles DA, Schwarz MM, Albe JR, McMillen CM, O'Malley KJ, Reed DS, Hartman AL. Development of Rift valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. J Gen Virol 2021; 102:001522. [PMID: 33231535 PMCID: PMC8116942 DOI: 10.1099/jgv.0.001522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
The zoonotic emerging Rift Valley fever virus (RVFV) causes sporadic disease in livestock and humans throughout Africa and the Saudi Arabian peninsula. Infection of people with RVFV can occur through mosquito bite or mucosal exposure during butchering or milking of infected livestock. Disease typically presents as a self-limiting fever; however, in rare cases, hepatitis, encephalitis and ocular disease may occur. Recent studies have illuminated the neuropathogenic mechanisms of RVFV in a rat aerosol infection model. Neurological disease in rats is characterized by breakdown of the blood-brain barrier late in infection, infiltration of leukocytes to the central nervous system (CNS) and massive viral replication in the brain. However, the route of RVFV entry into the CNS after inhalational exposure remains unknown. Here, we visualized the entire nasal olfactory route from snout to brain after RVFV infection using RNA in situ hybridization and immunofluorescence microscopy. We found widespread RVFV-infected cells within the olfactory epithelium, across the cribriform plate, and in the glomerular region of the olfactory bulb within 2 days of infection. These results indicate that the olfactory tract is a major route of infection of the brain after inhalational exposure. A better understanding of potential neuroinvasion pathways can support the design of more effective therapeutic regiments for the treatment of neurological disease caused by RVFV.
Collapse
Affiliation(s)
- Devin A. Boyles
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
The NSs Protein Encoded by the Virulent Strain of Rift Valley Fever Virus Targets the Expression of Abl2 and the Actin Cytoskeleton of the Host, Affecting Cell Mobility, Cell Shape, and Cell-Cell Adhesion. J Virol 2020; 95:JVI.01768-20. [PMID: 33087469 DOI: 10.1128/jvi.01768-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic zoonotic arbovirus endemic in many African countries and the Arabian Peninsula. Animal infections cause high rates of mortality and abortion among sheep, goats, and cattle. In humans, an estimated 1 to 2% of RVFV infections result in severe disease (encephalitis, hepatitis, or retinitis) with a high rate of lethality when associated with hemorrhagic fever. The RVFV NSs protein, which is the main virulence factor, counteracts the host innate antiviral response to favor viral replication and spread. However, the mechanisms underlying RVFV-induced cytopathic effects and the role of NSs in these alterations remain for the most part unknown. In this work, we have analyzed the effects of NSs expression on the actin cytoskeleton while conducting infections with the NSs-expressing virulent (ZH548) and attenuated (MP12) strains of RVFV and the non-NSs-expressing avirulent (ZH548ΔNSs) strain, as well as after the ectopic expression of NSs. In macrophages, fibroblasts, and hepatocytes, NSs expression prevented the upregulation of Abl2 (a major regulator of the actin cytoskeleton) expression otherwise induced by avirulent infections and identified here as part of the antiviral response. The presence of NSs was also linked to an increased mobility of ZH548-infected cells compared to ZH548ΔNSs-infected fibroblasts and to strong changes in cell morphology in nonmigrating hepatocytes, with reduction of lamellipodia, cell spreading, and dissolution of adherens junctions reminiscent of the ZH548-induced cytopathic effects observed in vivo Finally, we show evidence of the presence of NSs within long actin-rich structures associated with NSs dissemination from NSs-expressing toward non-NSs-expressing cells.IMPORTANCE Rift Valley fever virus (RVFV) is a dangerous human and animal pathogen that was ranked by the World Health Organization in 2018 as among the eight pathogens of most concern for being likely to cause wide epidemics in the near future and for which there are no, or insufficient, countermeasures. The focus of this work is to address the question of the mechanisms underlying RVFV-induced cytopathic effects that participate in RVFV pathogenicity. We demonstrate here that RVFV targets cell adhesion and the actin cytoskeleton at the transcriptional and cellular level, affecting cell mobility and inducing cell shape collapse, along with distortion of cell-cell adhesion. All these effects may participate in RVFV-induced pathogenicity, facilitate virulent RVFV dissemination, and thus constitute interesting potential targets for future development of antiviral therapeutic strategies that, in the case of RVFV, as with several other emerging arboviruses, are presently lacking.
Collapse
|
28
|
Abstract
Rift Valley fever virus (RVFV) is a pathogen of both humans and livestock in Africa and the Middle East. Severe human disease is associated with hepatitis and/or encephalitis. Current pathogenesis studies rely on rodents and nonhuman primates, which have advantages and disadvantages. We evaluated disease progression in Mustela putorius furo (the ferret) following intradermal (i.d.) or intranasal (i.n.) infection. Infected ferrets developed hyperpyrexia, weight loss, lymphopenia, and hypoalbuminemia. Three of four ferrets inoculated intranasally with RVFV developed central nervous system (CNS) disease that manifested as seizure, ataxia, and/or hind limb weakness at 8 to 11 days postinfection (dpi). Animals with clinical CNS disease had transient viral RNAemia, high viral RNA loads in the brain, and histopathological evidence of encephalitis. The ferret model will facilitate our understanding of how RVFV accesses the CNS and has utility for the evaluation of vaccines and/or therapeutics in preventing RVFV CNS disease.IMPORTANCE Animal models of viral disease are very important for understanding how viruses make people sick and for testing out drugs and vaccines to see if they can prevent disease. In this study, we identify the ferret as a model of encephalitis caused by Rift Valley fever virus (RVFV). This novel model will allow researchers to evaluate ways to prevent RVFV encephalitis.
Collapse
|
29
|
Javelle E, Lesueur A, Pommier de Santi V, de Laval F, Lefebvre T, Holweck G, Durand GA, Leparc-Goffart I, Texier G, Simon F. The challenging management of Rift Valley Fever in humans: literature review of the clinical disease and algorithm proposal. Ann Clin Microbiol Antimicrob 2020; 19:4. [PMID: 31969141 PMCID: PMC6977312 DOI: 10.1186/s12941-020-0346-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/12/2020] [Indexed: 01/01/2023] Open
Abstract
Rift Valley Fever (RVF) is an emerging zoonotic arbovirus with a complex cycle of transmission that makes difficult the prediction of its expansion. Recent outbreaks outside Africa have led to rediscover the human disease but it remains poorly known. The wide spectrum of acute and delayed manifestations with potential unfavorable outcome much complicate the management of suspected cases and prediction of morbidity and mortality during an outbreak. We reviewed literature data on bio-clinical characteristics and treatments of RVF human illness. We identified gaps in the field and provided a practical algorithm to assist clinicians in the cases assessment, determination of setting of care and prolonged follow-up.
Collapse
Affiliation(s)
- Emilie Javelle
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France. .,IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.
| | - Alexandre Lesueur
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Vincent Pommier de Santi
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Franck de Laval
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France.,INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Aix Marseille Univ, Marseille, France
| | - Thibault Lefebvre
- French Military Health Service, RSMA Medical Unit, Paris, Mayotte, France
| | - Guillaume Holweck
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Guillaume André Durand
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Isabelle Leparc-Goffart
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Gaëtan Texier
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Fabrice Simon
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| |
Collapse
|