1
|
Zabiegala A, Kim Y, Chang KO. Host susceptibilities and entry processes of SARS-CoV-2 Omicron variants using pseudotyped viruses carrying spike protein. BMC Vet Res 2025; 21:377. [PMID: 40426227 PMCID: PMC12108000 DOI: 10.1186/s12917-025-04822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
The zoonotic potential has been well studied for SARS-CoV-2 and its earlier variants, but the information for Omicron variants and SARS-CoV is lacking. In this study, we generated lentivirus-based pseudoviruses carrying spike protein (S) of SARS-CoV-2, parental and Omicron variants including BA.1.1, BA.4/5, XBB.1 and JN.1 to assess the entry into cells expressing human or animal ACE2 including dogs, cats and white-tailed deer. Using these pseudoviruses, along with pseudoviruses carrying S of MERS-CoV and SARS-CoV, we assessed the protease processing of these various S through western blotting, entry/inhibition assays, and fusion assays. The results showed that overall, pseudotyped viruses carrying each S of SARS-CoV-2 Omicron strains efficiently entered cells expressing human or animal ACE2 comparably (BA.1.1 and JN.1) or better (BA.4/5 and XBB.1) than those with parental strain. In addition, the entries of pseudotyped viruses carrying S of SARS-CoV were also efficient the cells expressing human or animal ACE2. The presence of TMPRSS2 significantly increased the entry of all tested pseudoviruses including those with S of MERS-CoV, SARS-CoV and SARS-CoV-2, with BA.1.1, JN1, and XBB.1 Omicron having the largest fold increase. When cathepsin inhibitors were examined to assess their inhibitory effects on entry of parental and Omicron variants, they were significantly less effective in the entry of Omicron variants compared to parent strain, suggesting Omicron strains do not depend on the endosomal route compared to parental strain.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. Nat Commun 2025; 16:4393. [PMID: 40355429 PMCID: PMC12069715 DOI: 10.1038/s41467-025-59475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
SARS-CoV-2 hijacks multiple organelles for virion assembly, of which the mechanisms have not been fully understood. Here, we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs are unusual electron-dense and dynamic structures driven by the accessory protein ORF3a via remodeling a specific subset of the trans-Golgi network (TGN) and early endosomal membrane. 3DB formation is conserved in related bat and pangolin coronaviruses but was lost during the evolution to SARS-CoV. During SARS-CoV-2 infection, 3DB recruits the viral structural proteins spike (S) and membrane (M) and undergoes dynamic fusion/fission to maintain the optimal unprocessed-to-processed ratio of S on assembled virions. Disruption of 3DB formation resulted in virions assembled with an abnormal S processing rate, leading to a dramatic reduction in viral entry efficiency. Our study uncovers the crucial role of 3DB in maintaining maximal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA.
| |
Collapse
|
3
|
Anthi AK, Kolderup A, Vaage EB, Bern M, Benjakul S, Tjärnhage E, Ruso-Julve F, Jensen KR, Lode HE, Vaysburd M, Nilsen J, Herigstad ML, Sakya SA, Tietze L, Pilati D, Nyquist-Andersen M, Dürkoop M, Gjølberg TT, Peng L, Foss S, Moe MC, Low BE, Wiles MV, Nemazee D, Jahnsen FL, Vaage JT, Howard KA, Sandlie I, James LC, Grødeland G, Lund-Johansen F, Andersen JT. An intranasal subunit vaccine induces protective systemic and mucosal antibody immunity against respiratory viruses in mouse models. Nat Commun 2025; 16:3999. [PMID: 40312392 PMCID: PMC12045997 DOI: 10.1038/s41467-025-59353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Although vaccines are usually given intramuscularly, the intranasal delivery route may lead to better mucosal protection and limit the spread of respiratory virus while easing administration and improving vaccine acceptance. The challenge, however, is to achieve delivery across the selective epithelial cell barrier. Here we report on a subunit vaccine platform, in which the antigen is genetically fused to albumin to facilitate FcRn-mediated transport across the mucosal barrier in the presence of adjuvant. Intranasal delivery in conventional and transgenic mouse models induces both systemic and mucosal antigen-specific antibody responses that protect against challenge with SARS-CoV-2 or influenza A. When benchmarked against an intramuscularly administered mRNA vaccine or an intranasally administered antigen fused to an alternative carrier of similar size, only the albumin-based intranasal vaccine yields robust mucosal IgA antibody responses. Our results thus suggest that this needle-free, albumin-based vaccine platform may be suited for vaccination against respiratory pathogens.
Collapse
MESH Headings
- Animals
- Administration, Intranasal
- Mice
- Immunity, Mucosal/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- SARS-CoV-2/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Humans
- Influenza A virus/immunology
- Disease Models, Animal
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Immunoglobulin A/immunology
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Mice, Transgenic
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Mice, Inbred C57BL
- Albumins/immunology
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Histocompatibility Antigens Class I
Collapse
Affiliation(s)
- Aina Karen Anthi
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Anette Kolderup
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Eline Benno Vaage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Malin Bern
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Sopisa Benjakul
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Elias Tjärnhage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Fulgencio Ruso-Julve
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Kjell-Rune Jensen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Heidrun Elisabeth Lode
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jeannette Nilsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Marie Leangen Herigstad
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Siri Aastedatter Sakya
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mari Nyquist-Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Mirjam Dürkoop
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stian Foss
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Morten C Moe
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | | | | | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Frode L Jahnsen
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - John Torgils Vaage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Gunnveig Grødeland
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway.
| |
Collapse
|
4
|
Lusvarghi S, Vassell R, Williams B, Baha H, Neerukonda SN, Weiss CD. Capture of fusion-intermediate conformations of SARS-CoV-2 spike requires receptor binding and cleavage at either the S1/S2 or S2' site. PLoS Pathog 2025; 21:e1012808. [PMID: 40198676 PMCID: PMC12011290 DOI: 10.1371/journal.ppat.1012808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/21/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Although structures of pre- and post-fusion conformations of SARS-CoV-2 spikes have been solved by cryo-electron microscopy, the transient spike conformations that mediate virus fusion with host cell membranes remain poorly understood. In this study, we used a peptide fusion inhibitor corresponding to the heptad repeat 2 (HR2) in the S2 transmembrane subunit of the spike to investigate fusion-intermediate conformations that involve exposure of the highly conserved heptad repeat 1 (HR1). The HR2 peptide disrupts the assembly of the HR1 and HR2 regions of the spike, which form a six-helix bundle during the transition to the post-fusion conformation. We show that binding of the spike S1 subunit to ACE2 is sufficient to induce conformational changes that allow S1 shedding and enable the HR2 peptide to bind to fusion-intermediate conformations of S2 and inhibit membrane fusion. When TMPRSS2 is also present, the peptide captures an S2' fusion intermediate though the proportion of the S2' intermediate relative to the S2 intermediate is lower in Omicron variants than pre-Omicron variants. In spikes lacking the natural S1/S2 furin cleavage site, ACE2 binding alone is not sufficient for trapping fusion intermediates, but the presence of ACE2 and TMPRSS2 allows peptide trapping of an S2' intermediate. These results indicate that, in addition to ACE2 engagement, at least one spike cleavage is needed for unwinding S2 into an HR2 peptide-sensitive, fusion-intermediate conformation. Our findings elucidate fusion-intermediate conformations of SARS-CoV-2 spike variants that expose conserved sites on spike that could be targeted by inhibitors or antibodies.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Russell Vassell
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Brittany Williams
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Haseebullah Baha
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sabari Nath Neerukonda
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
5
|
Vaiasicca S, James DW, Melone G, Saeed O, Francis LW, Corradetti B. Amniotic fluid-derived mesenchymal stem cells as a therapeutic tool against cytokine storm: a comparison with umbilical cord counterparts. Stem Cell Res Ther 2025; 16:151. [PMID: 40156072 PMCID: PMC11951844 DOI: 10.1186/s13287-025-04262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Several immunosuppressive therapies have been proposed as key treatment options for critically ill patients since the first appearance of severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) from different sources have been considered for their potential to attenuate the cytokine storm associated to COVID-19 and the consequent multi-organ failure, providing evidence for safe and efficacious treatments. Among them, administration of umbilical cord-derived MSCs (UC-MSCs) has demonstrated a significant increase in survival rates, largely due to their potent immunosuppressive properties. METHODS We applied next-generation sequencing (NGS) analysis to compare the transcriptomic profiles of MSCs isolated from two gestational sources: amniotic fluid (AF) obtained during prenatal diagnosis and their clinically relevant umbilical cord counterparts, for which datasets were publicly available. A full meta-analysis was performed to identify suitable GEO and NGS datasets for comparison between AF- and UC-MSC samples. RESULTS Transcriptome analysis revelaed significant differences between groups, despite both cell lines being strongly involved in the tissue development, crucial to achieve the complex task of wound healing. Significantly enriched hallmark genes suggest AF-MSC superior immunomodulatory features against signaling pathways actively involved in the cytokine storm (i.e., IL-2/STAT, TNF-a/NFkB, IL-2/STAT5, PI3K/AKT/mTOR). CONCLUSIONS The data presented here suggest that AF-MSCs hold significant promise for treating not only COVID-19-associated cytokine storms but also a variety of other inflammatory syndromes (i.e., those induced by bacterial infections, autoimmune disorders, and therapeutic interventions). Realizing the full potential of AF-MSCs as a comprehensive therapeutic approach in inflammatory disease management will require more extensive clinical trials and in-depth mechanistic studies.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
- Department of Life and Environmental Life, Polytechnic University of Marche, Ancona, Italy
| | - David W James
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Gianmarco Melone
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Omar Saeed
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Lewis W Francis
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Bruna Corradetti
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Section Oncology/Hematology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Dobrovolny HM. How do viruses get around? A review of mathematical modeling of in-host viral transmission. Virology 2025; 604:110444. [PMID: 39908773 DOI: 10.1016/j.virol.2025.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Mathematical models of within host viral infections have provided important insights into the dynamics of viral infections. There has been much progress in adding more detailed biological processes to these models, such as incorporating the immune response, drug resistance, and viral coinfections. Unfortunately, the default assumption for the majority of these models is that virus is released from infected cells, travels through extracellular space, and deposits on another cell. This mode of transmission is known as cell-free infection. However, virus can also tunnel directly from one cell to another or cause neighboring cells to fuse, processes that also pass the infection to new cells. Additionally, most models do not explicitly include the transport of virus from one cell to another when describing cell-free transmission. In this review, we examine the current state of mathematical modeling that explicitly examines transmission beyond the cell-free assumption. While mathematical models have been developed to examine these processes, there are further improvements that can be made to better capture known viral dynamics.
Collapse
Affiliation(s)
- Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, United States.
| |
Collapse
|
7
|
Burkova EE, Bakhno IA. Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein. Biomolecules 2025; 15:280. [PMID: 40001583 PMCID: PMC11853650 DOI: 10.3390/biom15020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Spike protein is a surface glycoprotein of the SARS-CoV-2 coronavirus, providing interaction of the coronavirus with angiotensin-converting enzyme 2 (ACE2) on the host cell. The cytoplasmic tail of the S protein plays an important role in an intracellular transport and translocation of the glycoprotein to the plasma membrane. The cytoplasmic domain of the S protein contains binding sites for COPI, COPII, and SNX27, which are required for the intracellular trafficking of this glycoprotein. In addition, the cytoplasmic domain of the S protein contains S-palmitoylation sites. S-palmitoylation increases the hydrophobicity of the S protein by regulating its transport to the plasma membrane. The cytoplasmic tail of the S protein has a signaling sequence that provides interaction with the ERM family proteins, which may mediate communication between the cell membrane and the actin cytoskeleton. This review examines the role of the cytoplasmic tail of the SARS-CoV-2 S protein in its intracellular transport and translocation to the plasma membrane. Understanding these processes is necessary not only for the development of vaccines based on mRNA or adenovirus vectors encoding the full-length spike (S) protein, but also for the therapy of the new coronavirus infection (COVID-19).
Collapse
Affiliation(s)
- Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
8
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Shoemaker SR, Luo M, Dam KMA, Pak JE, Hoffmann MAG, Marqusee S. The Interplay of Furin Cleavage and D614G in Modulating SARS-CoV-2 Spike Protein Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635166. [PMID: 39975226 PMCID: PMC11838386 DOI: 10.1101/2025.01.27.635166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We report a detailed analysis of the full-length SARS-CoV-2 spike dynamics within a native-like membrane environment and variants inaccessible to studies on soluble constructs by conducting hydrogen-deuterium exchange mass spectrometry (HDX-MS) on enveloped virus-like particles (eVLPs) displaying various spike constructs. We find that the previously identified open-interface trimer conformation is sampled in all eVLP-displayed spike variants studied including sequences from engineered vaccine constructs and native viral sequences. The D614G mutation, which arose early in the pandemic, favors the canonical 'closed-interface' prefusion conformation, potentially mitigating premature S1 shedding in the presence of a cleaved furin site and providing an evolutionary advantage to the virus. Remarkably, furin cleavage at the S1/S2 boundary allosterically increases the flexibility of the S2' site, which may facilitate increased TMPRSS2 processing, enhancing viral infectivity. The use of eVLPs in HDX-MS studies provides a powerful platform for studying viral and membrane proteins in near-native environments.
Collapse
|
10
|
Saih A, Baammi S, Charoute H, Ettaki I, Bouqdayr M, Baba H, El Allali A, Saile R, Wakrim L, Kettani A. Repositioning of Furin inhibitors as potential drugs against SARS-CoV-2 through computational approaches. J Biomol Struct Dyn 2025:1-15. [PMID: 39849987 DOI: 10.1080/07391102.2024.2335282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/19/2024] [Indexed: 01/25/2025]
Abstract
The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion. Following the entry process, the spike protein is further activated by cellular proteases such as TMPRSS2 and Furin to promote viral entry into human cells. A crucial factor in preventing SARS-CoV-2 from entering target cells using HIV-1 fusion inhibitors is the similarity between the fusion mechanisms of SARS-CoV-2 and HIV-1. In this investigation, the HIV-1 fusion inhibitors CMK, Luteolin, and Naphthofluorescein were selected to understand the molecular mode of interactions and binding energy of Furin with these experimental inhibitors. The binding affinity of the three inhibitors with Furin was verified by molecular docking studies. The docking scores of CMK, Luteolin and Naphthofluorescein are -7.4 kcal/mol, -9.3 kcal/mol, and -10.7 kcal/mol, respectively. Therefore, these compounds were subjected to MD, drug-likeness, ADMET, and MM-PBSA analysis. According to the results of a 200 ns MD simulation, all tested compounds show stability with the complex and can be employed as promising inhibitors targeting SARS-CoV-2 Furin protease. In addition, pharmacokinetic analysis revealed that these compounds possess favorable drug-likeness properties. Thus, this study of Furin inhibitors helps in the evaluation of these compounds for use as novel drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Asmae Saih
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Soukayna Baammi
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Ettaki
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Cellular and Molecular Pathology, Research team on Immunopathology of Infectious and Systemic Diseases, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| | - Meryem Bouqdayr
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Hana Baba
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Rachid Saile
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
11
|
Shi YH, Shen JX, Tao Y, Xia YL, Zhang ZB, Fu YX, Zhang KQ, Liu SQ. Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study. Int J Mol Sci 2025; 26:587. [PMID: 39859303 PMCID: PMC11766390 DOI: 10.3390/ijms26020587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition. Of the remaining compounds, five charged ones exhibited reduced binding stability due to competing electrostatic interactions and increased solvent exposure, while seven neutral compounds showed stronger binding affinity driven by van der Waals (vdW) interactions compensating for unfavorable electrostatic effects (including electrostatic interactions and desolvation penalties). Positive and negative hotspot residues were identified as uncharged and charged, respectively, both lining the SBC. Despite forming diverse interactions with compounds, the burial of positive hotspots led to strong vdW interactions that overcompensated for unfavorable electrostatic effects, whereas negative hotspots incurred high desolvation penalties, negating any favorable contributions. Charged residues at the SBC's outer rim can reduce binding affinity significantly when forming hydrogen bonds or salt bridges. These findings underscore the importance of enhancing vdW interactions with uncharged residues and minimizing the unfavorable electrostatic effects of charged residues, providing valuable insights for designing effective TMPRSS2 inhibitors.
Collapse
Affiliation(s)
- Yue-Hui Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Jian-Xin Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yan Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Zhi-Bi Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China;
| | - Yun-Xin Fu
- Human Genetics Center and Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| |
Collapse
|
12
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
13
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
14
|
Megha KB, Reshma S, Amir S, Krishnan MJA, Shimona A, Alka R, Mohanan PV. Comprehensive Risk Assessment of Infection Induced by SARS-CoV-2. Mol Neurobiol 2024; 61:9851-9872. [PMID: 37817031 DOI: 10.1007/s12035-023-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
The pandemic COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which devastated the global economy and healthcare system. The infection caused an unforeseen rise in COVID-19 patients and increased the mortality rate globally. This study gives an overall idea about host-pathogen interaction, immune responses to COVID-19, recovery status of infection, targeted organs and complications associated, and comparison of post-infection immunity in convalescent subjects and non-infected individuals. The emergence of the variants and episodes of COVID-19 infections made the situation worsen. The timely introduction of vaccines and precautionary measures helped control the infection's severity. Later, the population that recovered from COVID-19 grew significantly. However, understanding the impact of healthcare issues resulting after infection is paramount for improving an individual's health status. It is now recognised that COVID-19 infection affects multiple organs and exhibits a broad range of clinical manifestations. So, post COVID-19 infection creates a high risk in individuals with already prevailing health complications. The identification of post-COVID-19-related health issues and their appropriate management is of greater importance to improving patient's quality of life. The persistence, sequelae and other medical complications that normally last from weeks to months after the recovery of the initial infection are involved with COVID-19. A multi-disciplinary approach is necessary for the development of preventive measures, techniques for rehabilitation and strategies for clinical management when it comes to long-term care.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - M J Ajai Krishnan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - A Shimona
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India.
| |
Collapse
|
15
|
Hasan M, He Z, Jia M, Leung ACF, Natarajan K, Xu W, Yap S, Zhou F, Chen S, Su H, Zhu K, Su H. Dynamic expedition of leading mutations in SARS-CoV-2 spike glycoproteins. Comput Struct Biotechnol J 2024; 23:2407-2417. [PMID: 38882678 PMCID: PMC11176665 DOI: 10.1016/j.csbj.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the recent pandemic, has generated countless new variants with varying fitness. Mutations of the spike glycoprotein play a particularly vital role in shaping its evolutionary trajectory, as they have the capability to alter its infectivity and antigenicity. We present a time-resolved statistical method, Dynamic Expedition of Leading Mutations (deLemus), to analyze the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein. The proposed L -index of the deLemus method is effective in quantifying the mutation strength of each amino acid site and outlining evolutionarily significant sites, allowing the comprehensive characterization of the evolutionary mutation pattern of the spike glycoprotein.
Collapse
Affiliation(s)
- Muhammad Hasan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhouyi He
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Mengqi Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alvin C F Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Wentao Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shanqi Yap
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shihong Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hailei Su
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-shang Road, Anhui 233080, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
16
|
Mao B, Le-Trilling VTK, Tang H, Hu J, Schmitz MS, Barbet K, Xu D, Wei Z, Guo B, Mennerich D, Yao C, Liu J, Li Z, Wan Y, Zhang X, Wang K, Tang N, Yu Z, Trilling M, Lin Y. Diphyllin elicits a doubled-pronged attack on the entry of SARS-CoV-2 by inhibiting cathepsin L and furin. Virus Res 2024; 350:199485. [PMID: 39424146 PMCID: PMC11532987 DOI: 10.1016/j.virusres.2024.199485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic, posing serious threats to global health. Effective broad-spectrum antiviral drugs for the treatment of COVID-19 are not sufficiently available. In the present study, we investigated the antiviral activity of the natural lignan diphyllin (PubChem CID 100492) against different SARS-CoV-2 variants and explored the underlying molecular mechanisms. We found that diphyllin dose-dependently inhibits the SARS-CoV-2 spike (S)-mediated entry into different types of cells. The potent inhibition was evident against spike proteins derived from the original SARS-CoV-2 and from variants of concern such as Alpha, Beta, Delta or Omicron. Accordingly, diphyllin also significantly inhibited the in vitro infection of a clinical SARS-CoV-2 virus isolate. Mechanistically, diphyllin simultaneously inhibited the endosomal entry of SARS-CoV-2 by neutralizing the endosomal acidification and reducing the activity of the cysteine protease cathepsin L (CTSL) as well as S-meditated cell surface entry by impairing furin activity. Collectively, our findings establish diphyllin as novel inhibitor of CTSL and furin proteases, resulting in a double-pronged attack on SARS-CoV-2 entry along endosomal as well as cell surface routes. Therefore, diphyllin has the potential to be advanced as an inhibitor of SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Vu Thuy Khanh Le-Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Haihuan Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Hu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Mona S Schmitz
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Kimberly Barbet
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Dan Xu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Beinu Guo
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Denise Mennerich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Chun Yao
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Jinxin Liu
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Zhenghan Li
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Yushun Wan
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Zhang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zebo Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Mirko Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Evers P, Uguccioni SM, Ahmed N, Francis ME, Kelvin AA, Pezacki JP. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses 2024; 16:1844. [PMID: 39772154 PMCID: PMC11680362 DOI: 10.3390/v16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option. In the present work, miR-24-3p was identified to inhibit SARS-CoV-2 entry, replication, and production; furthermore, this inhibition was retained against common mutations improving SARS-CoV-2 fitness. To determine the mechanism of action, bioinformatic tools were employed, identifying numerous potential effectors promoting infection targeted by miR-24-3p. Of these targets, several key host proteins for priming and facilitating SARS-CoV-2 entry were identified: furin, NRP1, NRP2, and SREBP2. With further experimental analysis, we show that miR-24-3p directly downregulates these viral entry factors to impede infection when producing virions and when infecting the target cell. Furthermore, we compare the findings with coronavirus, HCoV-229E, which relies on different factors strengthening the miR-24-3p mechanism. Taken together, the following work suggests that miR-24-3p could be an avenue to treat current coronaviruses and those likely to emerge.
Collapse
Affiliation(s)
- Parrish Evers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Spencer M. Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - John P. Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| |
Collapse
|
18
|
Chulanetra M, Punnakitikashem P, Mahasongkram K, Chaicumpa W, Glab-Ampai K. Immunogenicity of intraperitoneal and intranasal liposome adjuvanted VLP vaccines against SARS-CoV-2 infection. Sci Rep 2024; 14:27311. [PMID: 39516286 PMCID: PMC11549293 DOI: 10.1038/s41598-024-79122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Humans get SARS-CoV-2 infection mainly through inhalation; thus, vaccine that induces protective immunity at the virus entry site is important for early control of the infection. In this study, two anionic liposome (L)-adjuvanted VLP vaccines against SARS-CoV-2 were formulated. Baculovirus-Sf21 insect cell system was used for production of VLPs made of full-length S, M and E proteins. S protein of one vaccine (L-SME-VLPs) contained furin cleavage site at the S1/S2 junction, while that of another vaccine (L-S'ME-VLPs) did not. Both vaccines were innocuous and immunogenic when administered IP and IN to mice. Mice immunized IP with L-SME-VLPs/L-S'ME-VLPs (three doses, two-weeks intervals) had serum virus neutralizing (VN) antibodies (in falling order of isotype frequency): IgG3, IgA and IgG2a/IgG3, IgA and IgM, respectively. The L-S'ME VLPs vaccine induced significantly higher serum VN antibody titers than the L-SME-VLPs vaccine. All mice immunized IN with both vaccines had significant rise of VN antibodies in their bronchoalveolar lavage fluids (BALF). The VN antibodies in 67% of immunized mice were Th1- isotypes (IgG2a and/or IgG2b); the immunized mice had also other antibody isotypes in BALF. The intranasal L-S'ME-VLPs should be tested further step-by-step towards the clinical use as effective and safe vaccine against SARS-CoV-2.
Collapse
MESH Headings
- Animals
- Liposomes
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- Administration, Intranasal
- Mice
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Mice, Inbred BALB C
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Immunogenicity, Vaccine
- Injections, Intraperitoneal
- Humans
- Adjuvants, Immunologic/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Vaccine/administration & dosage
Collapse
Affiliation(s)
- Monrat Chulanetra
- Department of Parasitology, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kodchakorn Mahasongkram
- Department of Parasitology, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kantaphon Glab-Ampai
- Department of Parasitology, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
19
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
20
|
Maluck S, Bobrovsky R, Poór M, Lange RW, Steinmetzer T, Jerzsele Á, Adorján A, Bajusz D, Rácz A, Pászti-Gere E. In Vitro Evaluation of Antipseudomonal Activity and Safety Profile of Peptidomimetic Furin Inhibitors. Biomedicines 2024; 12:2075. [PMID: 39335588 PMCID: PMC11444200 DOI: 10.3390/biomedicines12092075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Inhibitors of the serine protease furin have been widely studied as antimicrobial agents due to their ability to block the cleavage and activation of certain viral surface proteins and bacterial toxins. In this study, the antipseudomonal effects and safety profiles of the furin inhibitors MI-1851 and MI-2415 were assessed. Fluorescence quenching studies suggested no relevant binding of the compounds to human serum albumin and α1-acid glycoprotein. Both inhibitors demonstrated significant antipseudomonal activity in Madin-Darby canine kidney cells, especially compound MI-1851 at very low concentrations (0.5 µM). Using non-tumorigenic porcine IPEC-J2 cells, neither of the two furin inhibitors induced cytotoxicity (CCK-8 assay) or altered significantly the intracellular (Amplex Red assay) or extracellular (DCFH-DA assay) redox status even at a concentration of 100 µM. The same assays with MI-2415 conducted on primary human hepatocytes also resulted in no changes in cell viability and oxidative stress at up to 100 µM. Microsomal and hepatocyte-based CYP3A4 activity assays showed that both inhibitors exhibited a concentration-dependent inhibition of the isoenzyme at high concentrations. In conclusion, this study indicates a good safety profile of the furin inhibitors MI-1851 and MI-2415, suggesting their applicability as antimicrobials for further in vivo investigations, despite some inhibitory effects on CYP3A4.
Collapse
Affiliation(s)
- Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Rivka Bobrovsky
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Roman W Lange
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Anita Rácz
- Plasma Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
21
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
22
|
Pauciullo S, Riccio A, Santopolo S, Albecka A, Papa G, James LC, Piacentini S, Lanzilli G, Rossi A, Santoro MG. Human coronaviruses activate and hijack the host transcription factor HSF1 to enhance viral replication. Cell Mol Life Sci 2024; 81:386. [PMID: 39243335 PMCID: PMC11380654 DOI: 10.1007/s00018-024-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Organisms respond to proteotoxic-stress by activating the heat-shock response, a cellular defense mechanism regulated by a family of heat-shock factors (HSFs); among six human HSFs, HSF1 acts as a proteostasis guardian regulating severe stress-driven transcriptional responses. Herein we show that human coronaviruses (HCoV), both low-pathogenic seasonal-HCoVs and highly-pathogenic SARS-CoV-2 variants, are potent inducers of HSF1, promoting HSF1 serine-326 phosphorylation and triggering a powerful and distinct HSF1-driven transcriptional-translational response in infected cells. Despite the coronavirus-mediated shut-down of the host translational machinery, selected HSF1-target gene products, including HSP70, HSPA6 and AIRAP, are highly expressed in HCoV-infected cells. Using silencing experiments and a direct HSF1 small-molecule inhibitor we show that, intriguingly, HCoV-mediated activation of the HSF1-pathway, rather than representing a host defense response to infection, is hijacked by the pathogen and is essential for efficient progeny particles production. The results open new scenarios for the search of innovative antiviral strategies against coronavirus infections.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
23
|
Bolsinger MM, Drobny A, Wilfling S, Reischl S, Krach F, Moritz R, Balta D, Hehr U, Sock E, Bleibaum F, Hanses F, Winner B, Huarcaya SP, Arnold P, Zunke F. SARS-CoV-2 Spike Protein Induces Time-Dependent CTSL Upregulation in HeLa Cells and Alveolarspheres. J Cell Biochem 2024; 125:e30627. [PMID: 38971996 DOI: 10.1002/jcb.30627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Autophagy and lysosomal pathways are involved in the cell entry of SARS-CoV-2 virus. To infect the host cell, the spike protein of SARS-CoV-2 binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). To allow the fusion of the viral envelope with the host cell membrane, the spike protein has to be cleaved. One possible mechanism is the endocytosis of the SARS-CoV-2-ACE2 complex and subsequent cleavage of the spike protein, mainly by the lysosomal protease cathepsin L. However, detailed molecular and dynamic insights into the role of cathepsin L in viral cell entry remain elusive. To address this, HeLa cells and iPSC-derived alveolarspheres were treated with recombinant SARS-CoV-2 spike protein, and the changes in mRNA and protein levels of cathepsins L, B, and D were monitored. Additionally, we studied the effect of cathepsin L deficiency on spike protein internalization and investigated the influence of the spike protein on cathepsin L promoters in vitro. Furthermore, we analyzed variants in the genes coding for cathepsin L, B, D, and ACE2 possibly associated with disease progression using data from Regeneron's COVID Results Browser and our own cohort of 173 patients with COVID-19, exhibiting a variant of ACE2 showing significant association with COVID-19 disease progression. Our in vitro studies revealed a significant increase in cathepsin L mRNA and protein levels following exposure to the SARS-CoV-2 spike protein in HeLa cells, accompanied by elevated mRNA levels of cathepsin B and D in alveolarspheres. Moreover, an increase in cathepsin L promoter activity was detected in vitro upon spike protein treatment. Notably, the knockout of cathepsin L resulted in reduced internalization of the spike protein. The study highlights the importance of cathepsin L and lysosomal proteases in the SARS-CoV-2 spike protein internalization and suggests the potential of lysosomal proteases as possible therapeutic targets against COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Magdalena M Bolsinger
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Stephanie Reischl
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raul Moritz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Frank Hanses
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susy Prieto Huarcaya
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
24
|
Kim H, Kang Y, Kim S, Park D, Heo SY, Yoo JS, Choi I, N MPA, Ahn JW, Yang JS, Bak N, Kim KK, Lee JY, Choi YK. The host protease KLK5 primes and activates spike proteins to promote human betacoronavirus replication and lung inflammation. Sci Signal 2024; 17:eadn3785. [PMID: 39163389 DOI: 10.1126/scisignal.adn3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Coronaviruses rely on host proteases to activate the viral spike protein, which facilitates fusion with the host cell membrane and the release of viral genomic RNAs into the host cell cytoplasm. The distribution of specific host proteases in the host determines the host, tissue, and cellular tropism of these viruses. Here, we identified the kallikrein (KLK) family member KLK5 as a major host protease secreted by human airway cells and exploited by multiple human betacoronaviruses. KLK5 cleaved both the priming (S1/S2) and activation (S2') sites of spike proteins from various human betacoronaviruses in vitro. In contrast, KLK12 and KLK13 displayed preferences for either the S2' or S1/S2 site, respectively. Whereas KLK12 and KLK13 worked in concert to activate SARS-CoV-2 and MERS-CoV spike proteins, KLK5 by itself efficiently activated spike proteins from several human betacoronaviruses, including SARS-CoV-2. Infection of differentiated human bronchial epithelial cells (HBECs) with human betacoronaviruses induced an increase in KLK5 that promoted virus replication. Furthermore, ursolic acid and other related plant-derived triterpenoids that inhibit KLK5 effectively suppressed the replication of SARS-CoV, MERS-CoV, and SARS-CoV-2 in HBECs and mitigated lung inflammation in mice infected with MERS-CoV or SARS-CoV-2. We propose that KLK5 is a pancoronavirus host factor and a promising therapeutic target for current and future coronavirus-induced diseases.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yeonglim Kang
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Semi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dongbin Park
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seo-Young Heo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Isaac Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Monford Paul Abishek N
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae-Woo Ahn
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Nayeon Bak
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
26
|
Yi X, Liu S, Wu Y, McCloskey D, Meng Z. BPP: a platform for automatic biochemical pathway prediction. Brief Bioinform 2024; 25:bbae355. [PMID: 39082653 PMCID: PMC11289738 DOI: 10.1093/bib/bbae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024] Open
Abstract
A biochemical pathway consists of a series of interconnected biochemical reactions to accomplish specific life activities. The participating reactants and resultant products of a pathway, including gene fragments, proteins, and small molecules, coalesce to form a complex reaction network. Biochemical pathways play a critical role in the biochemical domain as they can reveal the flow of biochemical reactions in living organisms, making them essential for understanding life processes. Existing studies of biochemical pathway networks are mainly based on experimentation and pathway database analysis methods, which are plagued by substantial cost constraints. Inspired by the success of representation learning approaches in biomedicine, we develop the biochemical pathway prediction (BPP) platform, which is an automatic BPP platform to identify potential links or attributes within biochemical pathway networks. Our BPP platform incorporates a variety of representation learning models, including the latest hypergraph neural networks technology to model biochemical reactions in pathways. In particular, BPP contains the latest biochemical pathway-based datasets and enables the prediction of potential participants or products of biochemical reactions in biochemical pathways. Additionally, BPP is equipped with an SHAP explainer to explain the predicted results and to calculate the contributions of each participating element. We conduct extensive experiments on our collected biochemical pathway dataset to benchmark the effectiveness of all models available on BPP. Furthermore, our detailed case studies based on the chronological pattern of our dataset demonstrate the effectiveness of our platform. Our BPP web portal, source code and datasets are freely accessible at https://github.com/Glasgow-AI4BioMed/BPP.
Collapse
Affiliation(s)
- Xinhao Yi
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom
| | - Siwei Liu
- Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Building 1B, Masdar City, Abu Dhabi 000000, United Arab Emirates
| | - Yu Wu
- School of Mathematical Sciences, Fudan University, 220 Handan Rd, Yangpu District, Shanghai 200438, China
| | - Douglas McCloskey
- Artificial Intelligence, BioMed X Institute, Im Neuenheimer Feld 515, Heidelberg 69120, Germany
| | - Zaiqiao Meng
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom
| |
Collapse
|
27
|
Jiang Y, Cheng X, Gao M, Yu Y, Dou X, Shen H, Tang M, Zhou S, Peng D. Two mutations on S2 subunit were critical for Vero cell tropism expansion of infectious bronchitis virus HV80. Vet Microbiol 2024; 294:110134. [PMID: 38820725 DOI: 10.1016/j.vetmic.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.
Collapse
Affiliation(s)
- Yi Jiang
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xu Cheng
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Yan Yu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Haiyu Shen
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Sheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
28
|
Xiang Q, Wu J, Zhou Y, Li L, Tian M, Li G, Zhang Z, Fu Y. SARS-CoV-2 Membrane protein regulates the function of Spike by inhibiting its plasma membrane localization and enzymatic activity of Furin. Microbiol Res 2024; 282:127659. [PMID: 38430890 DOI: 10.1016/j.micres.2024.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
The presence of a multibasic cleavage site in the Spike protein of SARS-CoV-2 makes it prone to be cleaved by Furin at the S1/S2 junction (aa. 685-686), which enhances the usage of TMPRSS2 to promote cell-cell fusion to form syncytia. Syncytia may contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammation. However, the role of other SARS-CoV-2 encoding viral proteins in syncytia formation remains largely unknown. Here, we report that SARS-CoV-2 M protein effectively inhibits syncytia formation triggered by Spike or its variants (Alpha, Delta, Omicron, etc.) and prevents Spike cleavage into S1 and S2 based on a screen assay of 20 viral proteins. Mechanistically, M protein interacts with Furin and inhibits its enzymatic activity, preventing the cleavage of Spike. In addition, M interacts with Spike independent of its cytoplasmic tail, retaining it within the cytoplasm and reducing cell membrane localization. Our findings offer new insights into M protein's role in regulating Spike's function and underscore the importance of functional interplay among viral proteins, highlighting potential avenues for SARS-CoV-2 therapy development.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Guobao Li
- Department of Tuberculosis, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
29
|
Yang YL, Wang B, Li W, Cai HL, Qian QY, Qin Y, Shi FS, Bosch BJ, Huang YW. Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofactors for regulation of swine acute diarrhea syndrome coronavirus entry. J Virol 2024; 98:e0013924. [PMID: 38501663 PMCID: PMC11019839 DOI: 10.1128/jvi.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.
Collapse
Affiliation(s)
- Yong-Le Yang
- Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wentao Li
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Qian-Yu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qin
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Shu Shi
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Yao-Wei Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Dufloo J, Sanjuán R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024; 15:e0336023. [PMID: 38411986 PMCID: PMC11005339 DOI: 10.1128/mbio.03360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
31
|
Leborgne NG, Devisme C, Kozarac N, Berenguer Veiga I, Ebert N, Godel A, Grau-Roma L, Scherer M, Plattet P, Thiel V, Zimmer G, Taddeo A, Benarafa C. Neutrophil proteases are protective against SARS-CoV-2 by degrading the spike protein and dampening virus-mediated inflammation. JCI Insight 2024; 9:e174133. [PMID: 38470488 PMCID: PMC11128203 DOI: 10.1172/jci.insight.174133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Studies on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) have highlighted the crucial role of host proteases for viral replication and the immune response. The serine proteases furin and TMPRSS2 and lysosomal cysteine proteases facilitate viral entry by limited proteolytic processing of the spike (S) protein. While neutrophils are recruited to the lungs during COVID-19 pneumonia, little is known about the role of the neutrophil serine proteases (NSPs) cathepsin G (CatG), elastase (NE), and proteinase 3 (PR3) on SARS-CoV-2 entry and replication. Furthermore, the current paradigm is that NSPs may contribute to the pathogenesis of severe COVID-19. Here, we show that these proteases cleaved the S protein at multiple sites and abrogated viral entry and replication in vitro. In mouse models, CatG significantly inhibited viral replication in the lung. Importantly, lung inflammation and pathology were increased in mice deficient in NE and/or CatG. These results reveal that NSPs contribute to innate defenses against SARS-CoV-2 infection via proteolytic inactivation of the S protein and that NE and CatG limit lung inflammation in vivo. We conclude that therapeutic interventions aiming to reduce the activity of NSPs may interfere with viral clearance and inflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Nathan G.F. Leborgne
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Christelle Devisme
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Nedim Kozarac
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
- Graduate School for Cellular and Biomedical Sciences
| | - Inês Berenguer Veiga
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Nadine Ebert
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Aurélie Godel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | | | - Melanie Scherer
- Graduate School for Cellular and Biomedical Sciences
- Division of Neurological Sciences, Vetsuisse Faculty, and
| | - Philippe Plattet
- Division of Neurological Sciences, Vetsuisse Faculty, and
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Adriano Taddeo
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Minami S, Kotaki T, Sakai Y, Okamura S, Torii S, Ono C, Motooka D, Hamajima R, Nouda R, Nurdin JA, Yamasaki M, Kanai Y, Ebina H, Maeda Y, Okamoto T, Tachibana T, Matsuura Y, Kobayashi T. Vero cell-adapted SARS-CoV-2 strain shows increased viral growth through furin-mediated efficient spike cleavage. Microbiol Spectr 2024; 12:e0285923. [PMID: 38415690 PMCID: PMC10986611 DOI: 10.1128/spectrum.02859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains in vitro and in vivo. The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission. IMPORTANCE The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment in vivo. The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.
Collapse
Affiliation(s)
- Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Rina Hamajima
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeffery A. Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yusuke Maeda
- Laboratory of Viral Dynamism Research, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-creation Studies, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
| | - Taro Tachibana
- Cell Engineering Corporation, Osaka, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
33
|
Amidei A, Dobrovolny HM. Virus-mediated cell fusion of SARS-CoV-2 variants. Math Biosci 2024; 369:109144. [PMID: 38224908 DOI: 10.1016/j.mbs.2024.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
SARS-CoV-2 has the ability to form large multi-nucleated cells known as syncytia. Little is known about how syncytia affect the dynamics of the infection or severity of the disease. In this manuscript, we extend a mathematical model of cell-cell fusion assays to estimate both the syncytia formation rate and the average duration of the fusion phase for five strains of SARS-CoV-2. We find that the original Wuhan strain has the slowest rate of syncytia formation (6.4×10-4/h), but takes only 4.0 h to complete the fusion process, while the Alpha strain has the fastest rate of syncytia formation (0.36 /h), but takes 7.6 h to complete the fusion process. The Beta strain also has a fairly fast syncytia formation rate (9.7×10-2/h), and takes the longest to complete fusion (8.4 h). The D614G strain has a fairly slow syncytia formation rate (2.8×10-3/h), but completes fusion in 4.0 h. Finally, the Delta strain is in the middle with a syncytia formation rate of 3.2×10-2/h and a fusing time of 6.1 h. We note that for these SARS-CoV-2 strains, there appears to be a tradeoff between the ease of forming syncytia and the speed at which they complete the fusion process.
Collapse
Affiliation(s)
- Ava Amidei
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
34
|
Shaik KM, Patibandla V, Nandi S. Impact of anabolic androgenic steroids on COVID-19. Steroids 2024; 203:109361. [PMID: 38176451 DOI: 10.1016/j.steroids.2023.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
In the wake of the Novel Coronavirus arrival, the world witnessed the fragility of healthcare systems and the resilience of healthcare workers who stood on the front lines. SARS-CoV-2, also known as COVID-19 or severe acute respiratory syndrome, first appeared in China in December 2019. The infection quickly spread across the nation and the world. All countries severely restricted social interaction to stop the virus's transmission, impacting all sporting, social, and recreational activities. Anabolic androgenic steroids (AASs) are frequently used illegally to enhance strength and physical attractiveness. However, they could hurt immune system health. Much research hasn't been done yet on the connection between Covid-19 and AASs. Synthetic testosterone analogs known as anabolic androgenic steroids (AASs) can have an immune-system-altering effect. Sportspeople and bodybuilders are vulnerable to AAS abuse. Governmental reactions to the coronavirus infection issue over the last year have drawn much attention and discussion regarding public services, the experience and lessons learned from different limitations, and strategies for dealing with potential future pandemics. Using AAS has the potential to cause a variety of adverse reactions, including cardiovascular issues (including high blood pressure, heart disease, and blood clots), liver damage, renal failure, mood swings, aggressiveness, and psychiatric disorders. Individuals already suffering from severe respiratory conditions like COVID-19 may have these risks increased. This review mainly highlights the anabolic androgen steroids use and its unseen effects on coronavirus patients and gymnastics.
Collapse
Affiliation(s)
- Khaja Moinuddin Shaik
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Vijay Patibandla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Sukhendu Nandi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062, Punjab, India.
| |
Collapse
|
35
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Liu HY, Hu Y, Yu C, Wang ZG, Liu SL, Pang DW. Quantitative single-virus tracking for revealing the dynamics of SARS-CoV-2 fusion with plasma membrane. Sci Bull (Beijing) 2024; 69:502-511. [PMID: 37993331 DOI: 10.1016/j.scib.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Viral envelope fusion with the host plasma membrane (PM) for genome release is a hallmark step in the life cycle of many enveloped viruses. This process is regulated by a complex network of biomolecules on the PM, but robust tools to precisely elucidate the dynamic mechanisms of virus-PM fusion events are still lacking. Here, we developed a quantitative single-virus tracking approach based on highly efficient dual-color labelling of viruses and batch trajectory analysis to achieve the spatiotemporal quantification of fusion events. This approach allows us to comprehensively analyze the membrane fusion mechanism utilized by pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the single-virus level and precisely elucidate how the relevant biomolecules synergistically regulate the fusion process. Our results revealed that SARS-CoV-2 may promote the formation of supersaturated clusters of cholesterol to facilitate the initiation of the membrane fusion process and accelerate the viral genome release.
Collapse
Affiliation(s)
- Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Cong Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
37
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Zan F, Zhou Y, Chen T, Chen Y, Mu Z, Qian Z, Ou X. Stabilization of the Metastable Pre-Fusion Conformation of the SARS-CoV-2 Spike Glycoprotein through N-Linked Glycosylation of the S2 Subunit. Viruses 2024; 16:223. [PMID: 38399999 PMCID: PMC10891965 DOI: 10.3390/v16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic, represents a serious threat to public health. The spike (S) glycoprotein of SARS-CoV-2 mediates viral entry into host cells and is heavily glycosylated. In this study, we systemically analyzed the roles of 22 putative N-linked glycans in SARS-CoV-2 S protein expression, membrane fusion, viral entry, and stability. Using the α-glycosidase inhibitors castanospermine and NB-DNJ, we confirmed that disruption of N-linked glycosylation blocked the maturation of the S protein, leading to the impairment of S protein-mediated membrane fusion. Single-amino-acid substitution of each of the 22 N-linked glycosylation sites with glutamine revealed that 9 out of the 22 N-linked glycosylation sites were critical for S protein folding and maturation. Thus, substitution at these sites resulted in reduced S protein-mediated cell-cell fusion and viral entry. Notably, the N1074Q mutation markedly affected S protein stability and induced significant receptor-independent syncytium (RIS) formation in HEK293T/hACE2-KO cells. Additionally, the removal of the furin cleavage site partially compensated for the instability induced by the N1074Q mutation. Although the corresponding mutation in the SARS-CoV S protein (N1056Q) did not induce RIS in HEK293T cells, the N669Q and N1080Q mutants exhibited increased fusogenic activity and did induce syncytium formation in HEK293T cells. Therefore, N-glycans on the SARS-CoV and SARS-CoV-2 S2 subunits are highly important for maintaining the pre-fusion state of the S protein. This study revealed the critical roles of N-glycans in S protein maturation and stability, information that has implications for the design of vaccines and antiviral strategies.
Collapse
Affiliation(s)
- Fuwen Zan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Yao Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Ting Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Yahan Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Xiuyuan Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China (Y.Z.)
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
39
|
Dobrovolny HM. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Results Probl Cell Differ 2024; 71:345-370. [PMID: 37996686 DOI: 10.1007/978-3-031-37936-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Many viruses have the ability to cause cells to fuse into large multi-nucleated cells, known as syncytia. While the existence of syncytia has long been known and its importance in helping spread viral infection within a host has been understood, few mathematical models have incorporated syncytia formation or examined its role in viral dynamics. This review examines mathematical models that have incorporated virus-mediated cell fusion and the insights they have provided on how syncytia can change the time course of an infection. While the modeling efforts are limited, they show promise in helping us understand the consequences of syncytia formation if future modeling efforts can be coupled with appropriate experimental efforts to help validate the models.
Collapse
Affiliation(s)
- Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
40
|
Kiba Y, Tanikawa T, Hayashi T, Kamauchi H, Seki T, Suzuki R, Kitamura M. Inhibition of furin-like enzymatic activities and SARS-CoV-2 infection by osthole and phenolic compounds with aryl side chains. Biomed Pharmacother 2023; 169:115940. [PMID: 38007936 DOI: 10.1016/j.biopha.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread as a pandemic and caused damage to people's lives and countries' economies. The spike (S) protein of SARS-CoV-2 contains a cleavage motif, Arg-X-X-Arg, for furin and furin-like enzymes at the boundary of the S1/S2 subunits. Given that cleavage plays a crucial role in S protein activation and viral entry, the cleavage motif was selected as the target. Our previous fluorogenic substrate study showed that osthole, a coumarin compound, inhibits furin-like enzyme activity. In this study, we examined the potential activities of 15 compounds with a structure-activity relationship with osthole, and evaluated their protective ability against SARS-CoV-2 infection. Of the 15 compounds tested, compounds C1 and C2 exhibited the inhibitory effects of osthole against furin-like enzymatic activity; however, little or no inhibitory effects against furin activity were observed. We further examined the inhibition of SARS-CoV-2 activity by compounds C1 and C2 using a Vero E6 cell line that expresses the transmembrane protease serine 2 (TMPRSS2). Compounds C1, C2, and osthole effectively inhibited SARS-CoV-2 infection. Therefore, osthole and its derivatives can potentially be used as therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuka Kiba
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Takashi Tanikawa
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Kamauchi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado City, Saitama 350-0295, Japan
| | - Taishi Seki
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ryuichiro Suzuki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado City, Saitama 350-0295, Japan
| | - Masashi Kitamura
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
41
|
Wang Q, Yeh AY, Guo Y, Mohri H, Yu J, Ho DD, Liu L. Impaired potency of neutralizing antibodies against cell-cell fusion mediated by SARS-CoV-2. Emerg Microbes Infect 2023; 12:2210237. [PMID: 37132357 PMCID: PMC10215017 DOI: 10.1080/22221751.2023.2210237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/30/2023] [Indexed: 05/04/2023]
Abstract
The SARS-CoV-2 Omicron subvariants have dominated the pandemic due to their high transmissibility and immune evasion conferred by the spike mutations. The Omicron subvariants can spread by cell-free virus infection and cell-cell fusion, the latter of which is more effective but has not been extensively investigated. In this study, we developed a simple and high-throughput assay that provides a rapid readout to quantify cell-cell fusion mediated by the SARS-CoV-2 spike proteins without using live or pseudotyped virus. This assay can be used to identify variants of concern and to screen for prophylactic and therapeutic agents. We further evaluated a panel of monoclonal antibodies (mAbs) and vaccinee sera against D614G and Omicron subvariants, finding that cell-cell fusion is substantially more resistant to mAb and serum inhibition than cell-free virus infection. Such results have important implications for the development of vaccines and antiviral antibody drugs against cell-cell fusion induced by SARS-CoV-2 spikes.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Andre Yanchen Yeh
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
42
|
Benjakul S, Anthi AK, Kolderup A, Vaysburd M, Lode HE, Mallery D, Fossum E, Vikse EL, Albecka A, Ianevski A, Kainov D, Karlsen KF, Sakya SA, Nyquist-Andersen M, Gjølberg TT, Moe MC, Bjørås M, Sandlie I, James LC, Andersen JT. A pan-SARS-CoV-2-specific soluble angiotensin-converting enzyme 2-albumin fusion engineered for enhanced plasma half-life and needle-free mucosal delivery. PNAS NEXUS 2023; 2:pgad403. [PMID: 38077689 PMCID: PMC10703496 DOI: 10.1093/pnasnexus/pgad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 02/29/2024]
Abstract
Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.
Collapse
Affiliation(s)
- Sopisa Benjakul
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Aina Karen Anthi
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Anette Kolderup
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Heidrun Elisabeth Lode
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Donna Mallery
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Even Fossum
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Elisabeth Lea Vikse
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Anna Albecka
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Karine Flem Karlsen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Siri Aastedatter Sakya
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Mari Nyquist-Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Magnar Bjørås
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| |
Collapse
|
43
|
Yu C, Wang G, Liu Q, Zhai J, Xue M, Li Q, Xian Y, Zheng C. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect 2023; 12:2164742. [PMID: 36591809 PMCID: PMC9897805 DOI: 10.1080/22221751.2022.2164742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.
Collapse
Affiliation(s)
- Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China,Mengzhou Xue
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Qiang Li
| | - Yuanhua Xian
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China,Yuanhua Xian
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China,Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada, Chunfu Zheng
| |
Collapse
|
44
|
Desai PJ. Expression and fusogenic activity of SARS CoV-2 Spike protein displayed in the HSV-1 Virion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568860. [PMID: 38076893 PMCID: PMC10705244 DOI: 10.1101/2023.11.28.568860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a zoonotic pathogen that can cause severe respiratory disease in humans. The new SARS-CoV-2 is the cause of the current global pandemic termed coronavirus disease 2019 (COVID-19) that has resulted in many millions of deaths world-wide. The virus is a member of the Betacoronavirus family, its genome is a positive strand RNA molecule that encodes for many genes which are required for virus genome replication as well as for structural proteins that are required for virion assembly and maturation. A key determinant of this virus is the Spike (S) protein embedded in the virion membrane and mediates attachment of the virus to the receptor (ACE2). This protein also is required for cell-cell fusion (syncytia) that is an important pathogenic determinant. We have developed a pseudotyped herpes simplex virus type 1 (HSV-1) recombinant virus expressing S protein in the virion envelop. This virus has also been modified to express a Venus fluorescent protein fusion to VP16, a virion protein of HSV-1. The virus expressing Spike can enter cells and generates large multi-nucleated syncytia which are evident by the Venus fluorescence. The HSV-1 recombinant virus is genetically stable and virus amplification can be easily done by infecting cells. This recombinant virus provides a reproducible platform for Spike function analysis and thus adds to the repertoire of pseudotyped viruses expressing Spike.
Collapse
Affiliation(s)
- Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Sheng X, Yang Y, Zhu F, Yang F, Wang H, Hu R. A pseudovirus-based method to dynamically mimic SARS-CoV-2-associated cell-to-cell fusion and transmission. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1840-1843. [PMID: 37415419 PMCID: PMC10679870 DOI: 10.3724/abbs.2023129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- State Key Laboratory of Animal Disease ControlHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150069China
| | - Yi Yang
- Department of Thoracic SurgeryRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Fang Zhu
- School of MedicineGuizhou UniversityGuiyang550025China
| | - Fan Yang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Honghua Wang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
46
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
47
|
Mahé D, Bourgeau S, da Silva J, Schlederer J, Satie AP, Kuassivi N, Mathieu R, Guillou YM, Le Tortorec A, Guivel-Benhassine F, Schwartz O, Plotton I, Dejucq-Rainsford N. SARS-CoV-2 replicates in the human testis with slow kinetics and has no major deleterious effects ex vivo. J Virol 2023; 97:e0110423. [PMID: 37830818 PMCID: PMC10653996 DOI: 10.1128/jvi.01104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE SARS-CoV-2 is a new virus responsible for the Covid-19 pandemic. Although SARS-CoV-2 primarily affects the lungs, other organs are infected. Alterations of testosteronemia and spermatozoa motility in infected men have raised questions about testicular infection, along with high level in the testis of ACE2, the main receptor used by SARS-CoV-2 to enter host cells. Using an organotypic culture of human testis, we found that SARS-CoV-2 replicated with slow kinetics in the testis. The virus first targeted testosterone-producing Leydig cells and then germ-cell nursing Sertoli cells. After a peak followed by the upregulation of antiviral effectors, viral replication in the testis decreased and did not induce any major damage to the tissue. Altogether, our data show that SARS-CoV-2 replicates in the human testis to a limited extent and suggest that testicular damages in infected patients are more likely to result from systemic infection and inflammation than from viral replication in the testis.
Collapse
Affiliation(s)
- Dominique Mahé
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Salomé Bourgeau
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Janaina da Silva
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Julie Schlederer
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Anne-Pascale Satie
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Nadège Kuassivi
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Romain Mathieu
- Service d‘Urologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Yves-Marie Guillou
- Service de Coordination des prélèvements, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Anna Le Tortorec
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | | | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Ingrid Plotton
- Institut National de la Santé et de la Recherche Médicale, Institut Cellules Souche et Cerveau (SBRI), UMR_S1208, Bron, France
| | - Nathalie Dejucq-Rainsford
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| |
Collapse
|
48
|
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun 2023; 679:37-46. [PMID: 37666046 DOI: 10.1016/j.bbrc.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The virulence of SARS-CoV-2 decreases with increasing infectivity, the primary approaches for antiviral treatments will be preventing or minimizing the complications resulting from virus infection. ADAM metallopeptidase domain 17 (ADAM17) activation by SARS-CoV-2 infection has a dual effect on the development of the disease: increased release of inflammatory cytokines and dysregulation of Angiotensin converting enzyme II (ACE2) on cell surfaces, inflammatory cytokine infiltration and loss of ACE2 protective function lead to a significant increase in the incidence of related complications. Importantly, pathologically activated ADAM17 showed superior features than S protein in regulating ACE2 expression and participating in the intra cellular replication of SARS-CoV-2. In short, SARS-CoV-2 elicits only a limited immune response when it promotes its own replication and pathogenicity through ADAM17. Therefore, the pathological activation of ADAM17 may also represent a diminished innate antiviral defense and an altered strategy of SARS-CoV-2 infection. In this review, we summarized recent advances in our understanding of the pathophysiology of ADAM17, with a focus on the new findings that SARS-CoV-2 affects ADAM17 expression through Furin protein converting enzyme and Mitogen-activated protein kinase (MAPK) pathway, and raises the hypothesis that SARS-CoV-2 may mediates the pathological activation of ADAM17 by hijacking the actin regulatory pathway, and discussed the underlying biological principles.
Collapse
Affiliation(s)
| | - Hao Yang
- Zunyi Medical University Guizhou, China
| | | | - Yi Zhang
- Zunyi Medical University Guizhou, China
| | - Yan Li
- Zunyi Medical University Guizhou, China
| | - Jida Li
- Zunyi Medical University Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
| |
Collapse
|
49
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
50
|
Roessler J, Pich D, Krähling V, Becker S, Keppler OT, Zeidler R, Hammerschmidt W. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023; 11:2892. [PMID: 38001893 PMCID: PMC10669694 DOI: 10.3390/biomedicines11112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Johannes Roessler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Verena Krähling
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Oliver T. Keppler
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, 81377 Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| |
Collapse
|