1
|
Joushomme A, Désilets A, Champagne W, Hassanzadeh M, Lemieux G, Gravel-Trudeau A, Lepage M, Lafrenière S, Froehlich U, List K, Boudreault PL, Leduc R. Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency. J Enzyme Inhib Med Chem 2025; 40:2466841. [PMID: 39976239 PMCID: PMC11843629 DOI: 10.1080/14756366.2025.2466841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in respiratory virus cell entry. To date, no inhibitors have been specifically developed for this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling revealed important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further demonstrated the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights into their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - William Champagne
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Alice Gravel-Trudeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Sabrina Lafrenière
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
2
|
Ohno M, Sekiya T, Obeng-Kyeremeh R, Handabile C, Haruta M, Nomura N, Kawakita T, Shingai M, Kida H. Optimization of the preparation method of inactivated intact virus particle vaccine for COVID-19. Vaccine 2025; 56:127173. [PMID: 40279928 DOI: 10.1016/j.vaccine.2025.127173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
It has been recognized that it is difficult to maintain the virus particle structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may be associated with lower immunogenicity of inactivated vaccines against coronavirus disease 2019 (COVID-19). We have previously demonstrated that an intact structure of the virus particles is critical for influenza inactivated whole virus particle vaccine (WPV) to be immunogenically potent. Here, we tested 37, 35, 33, and 31 °C for the virus propagation temperatures and the timing of formaldehyde treatment of the virus before and after centrifugation-based purification to obtain virus particles with an intact structure. Virus particles cultured at 33 °C retained spike proteins on the surface the most abundantly. The pretreatment of the virus with formaldehyde prevented the dissociation of the spike proteins from the viral surface during the centrifugation-based purification. The immunogenicity of the prepared vaccines, intact WPV and non-intact WPV that had lost the spike proteins, was evaluated in a mouse model. A single dose of intact WPV effectively induced humoral immunity compared to non-intact WPV, as indicated by higher titers of neutralizing antibodies. After a virus challenge, the mice vaccinated with a single dose of inactivated intact WPV showed less severe weight loss and lower virus titers in the lungs compared to those vaccinated with non-intact WPV. These results demonstrate the importance of the structural integrity of WPV in inducing effective and protective immunity, and provide significant insight into the development of COVID-19 WPV for practical use.
Collapse
Affiliation(s)
- Marumi Ohno
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard Obeng-Kyeremeh
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chimuka Handabile
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Minori Haruta
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomomi Kawakita
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Masashi Shingai
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Hiroshi Kida
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
3
|
Pantoja C, Acosta FM, Granatir S, Anderson M, Wyr M, Tailor J, Fuori A, Dower W, Marr HB, Ramirez PW. Electromagnetic waves destabilize the SARS-CoV-2 Spike protein and reduce SARS-CoV-2 Virus-Like particle (SC2-VLP) infectivity. Sci Rep 2025; 15:16836. [PMID: 40374718 PMCID: PMC12081674 DOI: 10.1038/s41598-025-01896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/09/2025] [Indexed: 05/17/2025] Open
Abstract
Infection and transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to pose a global public health concern. Using electromagnetic waves represents an alternative strategy to inactivate pathogenic viruses such as SARS-CoV-2. However, whether electromagnetic waves reduce SARS-CoV-2 infectivity is unclear. Here, we adapted a coplanar waveguide (CPW) to identify frequencies that could potentially neutralize SARS-CoV-2 virus-like particles (SC2-VLPs). Treatment of SC2-VLPs at frequencies between 2.5 and 3.5 GHz and an electric field of 413 V/m reduced infectivity. Exposure of SC2-VLPs to a frequency of 3.1 GHz -and to a lesser extent, 5.9 GHz- reduced their binding to antibodies targeting the SARS-CoV-2 Spike S1 receptor-binding domain (RBD) but did not alter the total levels of Spike, Nucleocapsid, Envelope, or Membrane proteins in virus particles. These results suggest that electromagnetic waves alter the conformation of Spike, thereby reducing viral attachment and entry. Overall, this data provides proof-of-concept in using electromagnetic waves for sanitation and prevention efforts to curb the transmission of SARS-CoV-2 and potentially other pathogenic enveloped viruses.
Collapse
Affiliation(s)
- Christina Pantoja
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Francisco M Acosta
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | | | - Michael Anderson
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Maya Wyr
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Johann Tailor
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Angus Fuori
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | | | | | - Peter W Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
4
|
Lawrenz J, Wettstein L, Rodríguez Alfonso A, Nchioua R, von Maltitz P, Albers DPJ, Zech F, Vandeput J, Naesens L, Fois G, Neubauer V, Preising N, Schmierer E, Almeida-Hernandez Y, Petersen M, Ständker L, Wiese S, Braubach P, Frick M, Barth E, Sauter D, Kirchhoff F, Sanchez-Garcia E, Stevaert A, Münch J. Trypstatin as a Novel TMPRSS2 Inhibitor with Broad-Spectrum Efficacy against Corona and Influenza Viruses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2506430. [PMID: 40365759 DOI: 10.1002/advs.202506430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Indexed: 05/15/2025]
Abstract
Respiratory viruses, such as SARS-CoV-2 and influenza, exploit host proteases like TMPRSS2 for entry, making TMPRSS2 a prime antiviral target. Here, the identification and characterization of Trypstatin, a 61-amino acid Kunitz-type protease inhibitor derived from human hemofiltrate are reported. Trypstatin inhibits TMPRSS2 and related proteases with high potency, exhibiting half-maximal inhibitory concentration values in the nanomolar range, comparable to the small molecule inhibitor camostat mesylate. In vitro assays demonstrate that Trypstatin effectively blocks spike-driven entry of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and hCoV-NL63, as well as hemagglutinin-mediated entry of influenza A and B viruses. In primary human airway epithelial cultures, Trypstatin significantly reduces SARS-CoV-2 replication and retained activity in the presence of airway mucus. In vivo, intranasal administration of Trypstatin to SARS-CoV-2-infected Syrian hamsters reduces viral titers and alleviates clinical symptoms. These findings highlight Trypstatin's potential as a broad-spectrum antiviral agent against TMPRSS2-dependent respiratory viruses.
Collapse
Affiliation(s)
- Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Armando Rodríguez Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Julie Vandeput
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, 89081, Ulm, Germany
| | - Veronika Neubauer
- Institute of General Physiology, Ulm University, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Emilia Schmierer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Yasser Almeida-Hernandez
- Chair of Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081, Ulm, Germany
| | - Eberhard Barth
- Anesthesiology and Intensive Medicine Clinic, Ulm University Medical Center, 89081, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Elsa Sanchez-Garcia
- Chair of Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Annelies Stevaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
5
|
Mahdi M, Kiarie IW, Mótyán JA, Hoffka G, Al-Muffti AS, Tóth A, Tőzsér J. Receptor Binding for the Entry Mechanisms of SARS-CoV-2: Insights from the Original Strain and Emerging Variants. Viruses 2025; 17:691. [PMID: 40431702 PMCID: PMC12115909 DOI: 10.3390/v17050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, giving rise to multiple variants that have significantly altered the trajectory of the COVID-19 pandemic. These variants have resulted in multiple waves of the pandemic, exhibiting characteristic mutations in the spike (S) protein that may have affected receptor interaction, tissue tropism, and cell entry mechanisms. While the virus was shown to primarily utilize the angiotensin-converting enzyme 2 (ACE2) receptor and host proteases such as transmembrane serine protease 2 (TMPRSS2) for entry into host cells, alterations in the S protein have resulted in changes to receptor binding affinity and use of alternative receptors, potentially expanding the virus's ability to infect different cell types or tissues, contributing to shifts in clinical presentation. These changes have been linked to variations in disease severity, the emergence of new clinical manifestations, and altered transmission dynamics. In this paper, we overview the evolving receptor utilization strategies of SARS-CoV-2, focusing on how mutations in the S protein may have influenced viral entry mechanisms and clinical outcomes across the ongoing pandemic waves.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Department of Infectology, Faculty of Medicine, University of Debrecen, 4031 Debrecen, Hungary
| | - Irene Wanjiru Kiarie
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Aya Shamal Al-Muffti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (J.A.M.); (G.H.); (A.S.A.-M.)
| |
Collapse
|
6
|
Lemieux G, Pérez-Vargas J, Désilets A, Hassanzadeh M, Thompson CAH, Gravel-Trudeau A, Joushomme A, Ennis S, Villanueva I, Marouseau É, Fraser BJ, Champagne W, Lepage M, Niikura M, Arrowsmith CH, Jean F, Leduc R, Boudreault PL. From N-0385 to N-0920: Unveiling a Host-Directed Protease Inhibitor with Picomolar Antiviral Efficacy against Prevalent SARS-CoV-2 Variants. J Med Chem 2025; 68:7119-7136. [PMID: 40163818 PMCID: PMC11998928 DOI: 10.1021/acs.jmedchem.4c02468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
The worldwide spread of new SARS-CoV-2 variants emphasizes the need to diversify existing therapeutic strategies. TMPRSS2, a host protease crucial for SARS-CoV-2 entry, has garnered significant research attention as a potential target for therapeutic intervention. Here, we optimized N-0385, a previously reported TMPRSS2 ketobenzothiazole-based peptidomimetic inhibitor, by screening 135 derivatives for target affinity and antiviral potency. Among the top candidates, N-0695 exhibited low nanomolar Ki values against three TTSPs associated with respiratory virus entry: TMPRSS2, matriptase, and TMPRSS13. Notably, N-0920 demonstrated exceptional potency in reducing SARS-CoV-2 variants EG.5.1 and JN.1 entry in Calu-3 cells, representing the first in cellulo picomolar inhibitor with EC50 values of 300 and 90 pM, respectively. Additionally, molecular modeling provided insights into the binding interactions between the compounds and their targets. This study underscores the effectiveness of our screening approach in refining an existing peptidomimetic scaffold to enhance selectivity and antiviral activity.
Collapse
Affiliation(s)
- Gabriel Lemieux
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Jimena Pérez-Vargas
- Department
of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Antoine Désilets
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Malihe Hassanzadeh
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Connor A. H. Thompson
- Department
of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Alice Gravel-Trudeau
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Alexandre Joushomme
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Siobhan Ennis
- Faculty
of Health Sciences, Simon Fraser University, Burnaby J1H5N4, British Columbia, Canada
| | - Ivan Villanueva
- Department
of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Étienne Marouseau
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Bryan J. Fraser
- Department
of Medical Biophysics, University of Toronto, Toronto M5S 1A1, Ontario, Canada
- Structural
Genomics Consortium, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - William Champagne
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Matthieu Lepage
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Masahiro Niikura
- Faculty
of Health Sciences, Simon Fraser University, Burnaby J1H5N4, British Columbia, Canada
| | - Cheryl H. Arrowsmith
- Department
of Medical Biophysics, University of Toronto, Toronto M5S 1A1, Ontario, Canada
- Structural
Genomics Consortium, University of Toronto, Toronto M5S 1A1, Ontario, Canada
- Princess
Margaret Cancer Centre, Toronto M5S 1A1, Ontario, Canada
| | - François Jean
- Department
of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Richard Leduc
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| | - Pierre-Luc Boudreault
- Department
of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke J1H5N4, Quebec, Canada
| |
Collapse
|
7
|
Van Loy B, Pujol E, Kamata K, Lee XY, Bakirtzoglou N, Van Berwaer R, Vandeput J, Mestdagh C, Persoons L, De Wijngaert B, Goovaerts Q, Noppen S, Jacquemyn M, Ahmadzadeh K, Bernaerts E, Martín-López J, Escriche C, Vanmechelen B, Krasniqi B, Singh AK, Daelemans D, Maes P, Matthys P, Dehaen W, Rozenski J, Das K, Voet A, Vázquez S, Naesens L, Stevaert A. A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses. PLoS Pathog 2025; 21:e1012571. [PMID: 39932973 PMCID: PMC11856660 DOI: 10.1371/journal.ppat.1012571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15). This compound, designated EPB-113, exhibits strong and selective cell culture activity against human coronavirus 229E (HCoV-229E) and also suppresses the replication of SARS-CoV-2. Viruses, selected under EPB-113 pressure, carried resistance sites at or near the catalytic His250 residue of the nsp15-EndoU domain. Although the best-known function of EndoU is to avoid induction of type I interferon (IFN-I) by lowering the levels of viral dsRNA, EPB-113 was found to mainly act via an IFN-independent mechanism, situated during viral RNA synthesis. Using a combination of biophysical and enzymatic assays with the recombinant nsp15 proteins from HCoV-229E and SARS-CoV-2, we discovered that EPB-113 enhances the EndoU cleavage activity of hexameric nsp15, while reducing its thermal stability. This mechanism explains why the virus escapes EPB-113 by acquiring catalytic site mutations which impair compound binding to nsp15 and abolish the EndoU activity. Since the EPB-113-resistant mutant viruses induce high levels of IFN-I and its effectors, they proved unable to replicate in human macrophages and were readily outcompeted by the wild-type virus upon co-infection of human fibroblast cells. Our findings suggest that antiviral targeting of nsp15 can be achieved with a molecule that induces a conformational change in this protein, resulting in higher EndoU activity and impairment of viral RNA synthesis. Based on the appealing mechanism and resistance profile of EPB-113, we conclude that nsp15 is a challenging but highly relevant drug target.
Collapse
Affiliation(s)
- Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Kenichi Kamata
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Xiao Yin Lee
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Nikolai Bakirtzoglou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ria Van Berwaer
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Julie Vandeput
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Cato Mestdagh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Brent De Wijngaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Quinten Goovaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maarten Jacquemyn
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eline Bernaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Juan Martín-López
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Celia Escriche
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Abhimanyu K. Singh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jef Rozenski
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Kakizaki M, Hashimoto R, Nagata N, Yamamoto T, Okura T, Katoh H, Kitai Y, Akahori Y, Shirato K, Ryo A, Takayama K, Takeda M. The respective roles of TMPRSS2 and cathepsins for SARS-CoV-2 infection in human respiratory organoids. J Virol 2025; 99:e0185324. [PMID: 39601592 PMCID: PMC11784140 DOI: 10.1128/jvi.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
A critical aspect of the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the protease-mediated activation of the viral spike (S) protein. The type II transmembrane serine protease TMPRSS2 is crucial for SARS-CoV-2 infection in lung epithelial Calu-3 cells and murine airways. However, the importance of TMPRSS2 needs to be re-examined because the ability to utilize TMPRSS2 is significantly reduced in the Omicron variants that spread globally. For this purpose, replication profiles of SARS-CoV-2 were analyzed in human respiratory organoids. All tested viruses, including Omicron variants, replicated efficiently in these organoids. Notably, all SARS-CoV-2 strains retained replication ability in TMPRSS2-gene knockout (KO) respiratory organoids, suggesting that TMPRSS2 is not essential for SARS-CoV-2 infection in human respiratory tissues. However, TMPRSS2-gene knockout significantly reduces the inhibitory effect of nafamostat, indicating the advantage of TMPRSS2-utilizing ability for the SARS-CoV-2 infection in these organoids. Interestingly, Omicron variants regained the TMPRSS2-utilizing ability in recent subvariants. The basal infectivity would be supported mainly by cathepsins because the cathepsin inhibitor, EST, showed a significant inhibitory effect on infection with any SARS-CoV-2 strains, mainly when used with nafamostat. A supplementary contribution of other serine proteases was also suggested because the infection of the Delta variant was still inhibited partially by nafamostat in TMPRSS2 KO organoids. Thus, various proteases, including TMPRSS2, other serine proteases, and cathepsins, co-operatively contribute to SARS-CoV-2 infection significantly in the respiratory organoids. Thus, SARS-CoV-2 infection in the human respiratory tissues would be more complex than observed in cell lines or mice. IMPORTANCE We explored how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects human respiratory organoids, which are a cultured cell model made to mimic the physiological conditions of the human airways. We focused on understanding the role of different proteases of host cells in activating the virus spike proteins. Specifically, we looked at TMPRSS2, a transmembrane serine protease, and cathepsin L, a lysosomal enzyme, which helps the virus enter cells by cutting the viral spike protein. We discovered that while TMPRSS2 is crucial for the virus in certain cells and animal models, other proteases, including cathepsins and various serine proteases, also play significant roles in the SARS-CoV-2 infection of human respiratory organoids. We suggest that SARS-CoV-2 uses a more complex mechanism involving multiple proteases to infect human airways, differing from what we see in conventional cell lines or animal models. This complexity might help explain how different variants can spread and infect people effectively.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takashi Okura
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Akahori
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Schwerdtner M, Schmacke LC, Nave J, Limburg H, Steinmetzer T, Stein DA, Moulton HM, Böttcher-Friebertshäuser E. Unveiling the Role of TMPRSS2 in the Proteolytic Activation of Pandemic and Zoonotic Influenza Viruses and Coronaviruses in Human Airway Cells. Viruses 2024; 16:1798. [PMID: 39599912 PMCID: PMC11599139 DOI: 10.3390/v16111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The zoonotic transmission of influenza A viruses (IAVs) and coronaviruses (CoVs) may result in severe disease. Cleavage of the surface glycoproteins hemagglutinin (HA) and spike protein (S), respectively, is essential for viral infectivity. The transmembrane serine protease 2 (TMPRSS2) is crucial for cleaving IAV HAs containing monobasic cleavage sites and severe acute respiratory syndrome (SARS)-CoV-2 S in human airway cells. Here, we analysed and compared the TMPRSS2-dependency of SARS-CoV, Middle East respiratory syndrome (MERS)-CoV, the 1918 pandemic H1N1 IAV and IAV H12, H13 and H17 subtypes in human airway cells. We used the peptide-conjugated morpholino oligomer (PPMO) T-ex5 to knockdown the expression of active TMPRSS2 and determine the impact on virus activation and replication in Calu-3 cells. The activation of H1N1/1918 and H13 relied on TMPRSS2, whereas recombinant IAVs carrying H12 or H17 were not affected by TMPRSS2 knockdown. MERS-CoV replication was strongly suppressed in T-ex5 treated cells, while SARS-CoV was less dependent on TMPRSS2. Our data underline the importance of TMPRSS2 for certain (potentially) pandemic respiratory viruses, including H1N1/1918 and MERS-CoV, in human airways, further suggesting a promising drug target. However, our findings also highlight that IAVs and CoVs differ in TMPRSS2 dependency and that other proteases are involved in virus activation.
Collapse
Affiliation(s)
- Marie Schwerdtner
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany; (M.S.)
| | - Luna C. Schmacke
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Julia Nave
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany; (M.S.)
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany; (M.S.)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
10
|
Chwa JS, Shin Y, Lee Y, Fabrizio T, Congrave-Wilson Z, Cheng WA, Jumarang J, Kim M, Webby R, Bender JM, Pannaraj PS. SARS-CoV-2 Variants May Affect Saliva RT-PCR Assay Sensitivity. J Appl Lab Med 2024; 9:927-937. [PMID: 39246012 PMCID: PMC12001863 DOI: 10.1093/jalm/jfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants demonstrate predilection for different regions of the respiratory tract. While saliva-based reverse transcription-polymerase chain reaction (RT-PCR) testing is a convenient, cost-effective alternative to nasopharyngeal swabs (NPS), few studies to date have investigated whether saliva sensitivity differs across variants of concern. METHODS SARS-CoV-2 RT-PCR was performed on paired NPS and saliva specimens collected from individuals with acute coronavirus disease 2019 (COVID-19) symptoms or exposure to a COVID-19 household contact. Viral genome sequencing of NPS specimens and Los Angeles County surveillance data were used to determine the variant of infection. Saliva sensitivity was calculated using NPS-positive RT-PCR as the reference standard. Factors contributing to the likelihood of saliva SARS-CoV-2 RT-PCR positivity were evaluated with univariate and multivariable analyses. RESULTS Between June 2020 and December 2022, 548 saliva samples paired with SARS-CoV-2 positive NPS samples were tested by RT-PCR. Overall, saliva sensitivity for SARS-CoV-2 detection was 61.7% (95% CI, 57.6%-65.7%). Sensitivity was highest with Delta infection (79.6%) compared to pre-Delta (58.5%) and Omicron (61.5%) (P = 0.003 and 0.01, respectively). Saliva sensitivity was higher in symptomatic individuals across all variants compared to asymptomatic cases [pre-Delta 80.6% vs 48.3% (P < 0.001), Delta 100% vs 72.5% (P = 0.03), Omicron 78.7% vs 51.2% (P < 0.001)]. Infection with Delta, symptoms, and high NPS viral load were independently associated with 2.99-, 3.45-, and 4.0-fold higher odds of SARS-CoV-2 detection by saliva-based RT-PCR (P = 0.004, <0.001, and <0.001), respectively. CONCLUSIONS As new variants emerge, evaluating saliva-based testing approaches may be crucial to ensure effective virus detection.
Collapse
Affiliation(s)
- Jason S. Chwa
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Yunho Shin
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Yesun Lee
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Diego, California, USA
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Zion Congrave-Wilson
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Wesley A. Cheng
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Diego, California, USA
| | - Jaycee Jumarang
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Diego, California, USA
| | - Minjun Kim
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Diego, California, USA
| | - Richard Webby
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeffrey M. Bender
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Diego, California, USA
| |
Collapse
|
11
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathways for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. PLoS Pathog 2024; 20:e1012704. [PMID: 39546542 PMCID: PMC11602109 DOI: 10.1371/journal.ppat.1012704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
Affiliation(s)
- Alexandra L. Tse
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Jacob Berrigan
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gorka Lasso
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Toheeb Balogun
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fiona L. Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Georgia L. McClain
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Amartya Mudry Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Charlotte Lemeunier
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Rommie E. Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Present address: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Emily Happy Miller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|
12
|
Liu Y, Zhao X, Shi J, Wang Y, Liu H, Hu YF, Hu B, Shuai H, Yuen TTT, Chai Y, Liu F, Gong HR, Li J, Wang X, Jiang S, Zhang X, Zhang Y, Li X, Wang L, Hartnoll M, Zhu T, Hou Y, Huang X, Yoon C, Wang Y, He Y, Zhou M, Du L, Zhang X, Chan WM, Chen LL, Cai JP, Yuan S, Zhou J, Huang JD, Yuen KY, To KKW, Chan JFW, Zhang BZ, Sun L, Wang P, Chu H. Lineage-specific pathogenicity, immune evasion, and virological features of SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3. Nat Commun 2024; 15:8728. [PMID: 39379369 PMCID: PMC11461813 DOI: 10.1038/s41467-024-53033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
SARS-CoV-2 JN.1 with an additional L455S mutation on spike when compared with its parental variant BA.2.86 has outcompeted all earlier variants to become the dominant circulating variant. Recent studies investigated the immune resistance of SARS-CoV-2 JN.1 but additional factors are speculated to contribute to its global dominance, which remain elusive until today. Here, we find that SARS-CoV-2 JN.1 has a higher infectivity than BA.2.86 in differentiated primary human nasal epithelial cells (hNECs). Mechanistically, we demonstrate that the gained infectivity of SARS-CoV-2 JN.1 over BA.2.86 associates with increased entry efficiency conferred by L455S and better spike cleavage in hNECs. Structurally, S455 altered the mode of binding of JN.1 spike protein to ACE2 when compared to BA.2.86 spike at ACE2H34, and modified the internal structure of JN.1 spike protein by increasing the number of hydrogen bonds with neighboring residues. These findings indicate that a single mutation (L455S) enhances virus entry in hNECs and increases immune evasiveness, which contribute to the robust transmissibility of SARS-CoV-2 JN.1. We further evaluate the in vitro and in vivo virological characteristics between SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3, and identify key lineage-specific features of the two Omicron sublineages that contribute to our understanding on Omicron antigenicity, transmissibility, and pathogenicity.
Collapse
Affiliation(s)
- Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaoyu Zhao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, National Medical Center for Infectious Diseases, Huashan Hospital, Institute of Infection and Health, Fudan University, Shanghai, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yajie Wang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ye-Fan Hu
- BayVax Biotech Limited, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hua-Rui Gong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiang Zhang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiangnan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Madeline Hartnoll
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Minmin Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lianzhao Du
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaojuan Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lin-Lei Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou, Hainan Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou, Hainan Province, China.
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China.
| | - Bao-Zhong Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| |
Collapse
|
13
|
Shaw Stewart PD. Will COVID-19 become mild, like a cold? Epidemiol Infect 2024; 152:e120. [PMID: 39370682 PMCID: PMC11488471 DOI: 10.1017/s0950268824001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/15/2024] [Indexed: 10/08/2024] Open
Abstract
Several recent studies conclude that an increase in the pathogenicity of SARS-CoV-2 cannot be ruled out. However, it should be noted that SARS-CoV-2 is a 'direct' respiratory virus - meaning it is usually spread by the respiratory route but does not routinely pass through the lymphatics like measles and smallpox. Providing its tropism does not change, it will be unique if its pathogenicity does not decrease until it becomes similar to common cold viruses. Ewald noted in the 1980s that respiratory viruses may evolve mildness because their spread benefits from the mobility of their hosts. This review examines factors that usually lower respiratory viruses' severity, including heat sensitivity (which limits replication in the warmer lungs) and changes to the virus's surface proteins. Other factors may, however, increase pathogenicity, such as replication in the lymphatic system and spreading via solid surfaces or faecal matter. Furthermore, human activities and political events could increase the harmfulness of SARS-CoV-2, including the following: large-scale testing, especially when the results are delayed; transmission in settings where people are close together and not free to move around; poor hygiene facilities; and social, political, or cultural influences that encourage sick individuals to remain active, including crises such as wars. If we can avoid these eventualities, SARS-CoV-2 is likely to evolve to be milder, although the timescale is uncertain. Observations of influenza-like pandemics suggest it may take around two decades for COVID-19 to become as mild as seasonal colds.
Collapse
|
14
|
Granatir S, Acosta FM, Pantoja C, Tailor J, Fuori A, Dower B, Marr H, Ramirez PW. Electromagnetic waves destabilize the SARS-CoV-2 Spike protein and reduce SARS-CoV-2 Virus-Like Particle (SC2-VLP) infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612487. [PMID: 39314332 PMCID: PMC11418983 DOI: 10.1101/2024.09.11.612487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Infection and transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to pose a global public health concern. Using electromagnetic waves represents an alternative strategy to inactivate pathogenic viruses such as SARS-CoV-2 and reduce overall transmission. However, whether electromagnetic waves reduce SARS-CoV-2 infectivity is unclear. Here, we adapted a coplanar waveguide (CPW) to identify electromagnetic waves that could neutralize SARS-CoV-2 virus-like particles (SC2-VLPs). Treatment of SC2-VLPs, particularly at frequencies between 2.5-3.5 GHz at an electric field of 400 V/m for 2 minutes, reduced infectivity. Exposure to a frequency of 3.1 GHz decreased the binding of SC2-VLPs to antibodies directed against the Spike S1 subunit receptor binding domain (RBD). These results suggest that electromagnetic waves alter the conformation of Spike, thereby reducing viral attachment to host cell receptors. Overall, this data provides proof-of-concept in using electromagnetic waves for sanitation and prevention efforts to curb the transmission of SARS-CoV-2 and potentially other pathogenic enveloped viruses.
Collapse
Affiliation(s)
| | - Francisco M. Acosta
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA
| | - Christina Pantoja
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA
| | - Johann Tailor
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA
| | - Angus Fuori
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA
| | | | | | - Peter W. Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA
| |
Collapse
|
15
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
16
|
Joushomme A, Désilets A, Champagne W, Hassanzadeh M, Lemieux G, Gravel-Trudeau A, Lepage M, Lafrenière S, Froehlich U, List K, Boudreault PL, Leduc R. Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609965. [PMID: 39257753 PMCID: PMC11383682 DOI: 10.1101/2024.08.28.609965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in cell entry of respiratory viruses. To date, no inhibitors have been specifically developed toward this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling, uncovered important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further show the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights of their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - William Champagne
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alice Gravel-Trudeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sabrina Lafrenière
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
17
|
Zhang Y, Gao Y, Li C, Zhang YA, Lu Y, Ye J, Liu X. Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures. MICROBIOME 2024; 12:128. [PMID: 39020382 PMCID: PMC11253412 DOI: 10.1186/s40168-024-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/24/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.
Collapse
Affiliation(s)
- Yujun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yan Gao
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei, China
| | - Chen Li
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, Thompson School of Social Work & Public Health, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xueqin Liu
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathway for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600393. [PMID: 38979151 PMCID: PMC11230278 DOI: 10.1101/2024.06.24.600393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the spike N-terminal domain, uncovered through forward-genetic selection, interacted epistatically with the FPPR substitution to synergistically enhance spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
|
19
|
Lei R, Qing E, Odle A, Yuan M, Gunawardene CD, Tan TJC, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. Nat Commun 2024; 15:4056. [PMID: 38744813 PMCID: PMC11094058 DOI: 10.1038/s41467-024-48104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chaminda D Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
20
|
Duan H, Zhang E, Ren G, Cheng Y, Yang B, Liu L, Jolicoeur N, Hu H, Xu Y, Liu B. Exploring immune evasion of SARS-CoV-2 variants using a pseudotyped system. Heliyon 2024; 10:e29939. [PMID: 38699727 PMCID: PMC11063423 DOI: 10.1016/j.heliyon.2024.e29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.
Collapse
Affiliation(s)
- Haixiao Duan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ershuai Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ge Ren
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yining Cheng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Lirong Liu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | | | - Han Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
21
|
Shi G, Li T, Lai KK, Johnson RF, Yewdell JW, Compton AA. Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue. Nat Commun 2024; 15:889. [PMID: 38291024 PMCID: PMC10828397 DOI: 10.1038/s41467-024-45075-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, we show that mutations unique to Omicron Spike enable enhanced entry into nasal tissue. Unlike earlier variants of SARS-CoV-2, our findings suggest that Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon metalloproteinases to catalyze membrane fusion. Furthermore, we demonstrate that this entry pathway unlocked by Omicron Spike enables evasion from constitutive and interferon-induced antiviral factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Reed F Johnson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alex A Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
22
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
23
|
Hakmi M, Bouricha EM, Soussi A, Bzioui IA, Belyamani L, Ibrahimi A. Computational Drug Design Strategies for Fighting the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:199-214. [PMID: 39283428 DOI: 10.1007/978-3-031-61939-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The advent of COVID-19 has brought the use of computer tools to the fore in health research. In recent years, computational methods have proven to be highly effective in a variety of areas, including genomic surveillance, host range prediction, drug target identification, and vaccine development. They were also instrumental in identifying new antiviral compounds and repurposing existing therapeutics to treat COVID-19. Using computational approaches, researchers have made significant advances in understanding the molecular mechanisms of COVID-19 and have developed several promising drug candidates and vaccines. This chapter highlights the critical importance of computational drug design strategies in elucidating various aspects of COVID-19 and their contribution to advancing global drug design efforts during the pandemic. Ultimately, the use of computing tools will continue to play an essential role in health research, enabling researchers to develop innovative solutions to combat new and emerging diseases.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco.
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco.
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| | - Abdellatif Soussi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145, Genova, Italy
| | - Ilias Abdeslam Bzioui
- Department of Gynecology and Obstetrics, Faculty of Medicine, Abdelmalek Essaâdi University Hospital, Tangier, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Medical and Pharmacy School, Military Hospital Mohammed V, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
24
|
Elfayres G, Paswan RR, Sika L, Girard MP, Khalfi S, Letanneur C, Milette K, Singh A, Kobinger G, Berthoux L. Mammalian cells-based platforms for the generation of SARS-CoV-2 virus-like particles. J Virol Methods 2023; 322:114835. [PMID: 37871706 DOI: 10.1016/j.jviromet.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Though many COVID-19 vaccines have been developed, most of them are delivered via intramuscular injection and thus confer relatively weak mucosal immunity against the natural infection. Virus-Like Particles (VLPs) are self-assembled nanostructures composed of key viral structural proteins, that mimic the wild-type virus structure but are non-infectious and non-replicating due to the lack of viral genetic material. In this study, we efficiently generated SARS-CoV-2 VLPs by co-expressing the four SARS-CoV-2 structural proteins, specifically the membrane (M), small envelope (E), spike (S) and nucleocapsid (N) proteins. We show that these proteins are essential and sufficient for the efficient formation and release of SARS-CoV-2 VLPs. Moreover, we used lentiviral vectors to generate human cell lines that stably produce VLPs. Because VLPs can bind to the virus natural receptors, hence leading to entry into cells and viral antigen presentation, this platform could be used to develop novel vaccine candidates that are delivered intranasally.
Collapse
Affiliation(s)
- Ghada Elfayres
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Ricky Raj Paswan
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Laura Sika
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Marie-Pierre Girard
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Soumia Khalfi
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Claire Letanneur
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada; Department of Biochemistry, Chemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Kéziah Milette
- Institute of Innovations in Eco-materials, Eco-products and Eco-energies, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amita Singh
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Gary Kobinger
- University Hospital Research Center and Department of Microbiology and Infectiology, Université Laval, Québec, Canada
| | - Lionel Berthoux
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
| |
Collapse
|
25
|
de Vries M, Ciabattoni GO, Rodriguez-Rodriguez BA, Crosse KM, Papandrea D, Samanovic MI, Dimartino D, Marier C, Mulligan MJ, Heguy A, Desvignes L, Duerr R, Dittmann M. Generation of quality-controlled SARS-CoV-2 variant stocks. Nat Protoc 2023; 18:3821-3855. [PMID: 37833423 DOI: 10.1038/s41596-023-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023]
Abstract
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
Collapse
Affiliation(s)
- Maren de Vries
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Keaton M Crosse
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Dominick Papandrea
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ludovic Desvignes
- High Containment Laboratories-Office of Science and Research, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Lei R, Qing E, Odle A, Yuan M, Tan TJ, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569051. [PMID: 38076875 PMCID: PMC10705381 DOI: 10.1101/2023.11.28.569051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we performed a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identified mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we showed that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
27
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
28
|
Shi G, Li T, Lai KK, Johnson RF, Yewdell JW, Compton AA. Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539698. [PMID: 37425811 PMCID: PMC10327209 DOI: 10.1101/2023.05.06.539698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, enhanced infectivity maps to the step of cellular entry and evolved recently through mutations unique to Omicron Spike. Unlike earlier variants of SARS-CoV-2, Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon metalloproteinases to catalyze membrane fusion. This entry pathway unlocked by Omicron Spike enables evasion of constitutive and interferon-induced antiviral factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Reed F. Johnson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Alex A Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
29
|
Vanderlinden E, Boonen A, Noppen S, Schoofs G, Imbrechts M, Geukens N, Snoeck R, Stevaert A, Naesens L, Andrei G, Schols D. PRO-2000 exhibits SARS-CoV-2 antiviral activity by interfering with spike-heparin binding. Antiviral Res 2023; 217:105700. [PMID: 37562608 DOI: 10.1016/j.antiviral.2023.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 μM, 2.4 μM, 1.3 μM, 2.1 μM and 0.11 μM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 μM and 1.6 μM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.
Collapse
Affiliation(s)
- Evelien Vanderlinden
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| | - Arnaud Boonen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Geert Schoofs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Maya Imbrechts
- PharmAbs, The KU Leuven Antibody Center, Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Robert Snoeck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Graciela Andrei
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
30
|
Cervantes M, Hess T, Morbioli GG, Sengar A, Kasson PM. The ACE2 receptor accelerates but is not biochemically required for SARS-CoV-2 membrane fusion. Chem Sci 2023; 14:6997-7004. [PMID: 37389252 PMCID: PMC10306070 DOI: 10.1039/d2sc06967a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The SARS-CoV-2 coronavirus infects human cells via the ACE2 receptor. Structural evidence suggests that ACE2 may not just serve as an attachment factor but also conformationally activate the SARS-CoV-2 spike protein for membrane fusion. Here, we test that hypothesis directly, using DNA-lipid tethering as a synthetic attachment factor in place of ACE2. We find that SARS-CoV-2 pseudovirus and virus-like particles are capable of membrane fusion without ACE2 if activated with an appropriate protease. Thus, ACE2 is not biochemically required for SARS-CoV-2 membrane fusion. However, addition of soluble ACE2 speeds up the fusion reaction. On a per-spike level, ACE2 appears to promote activation for fusion and then subsequent inactivation if an appropriate protease is not present. Kinetic analysis suggests at least two rate-limiting steps for SARS-CoV-2 membrane fusion, one of which is ACE2 dependent and one of which is not. Since ACE2 serves as a high-affinity attachment factor on human cells, the possibility to replace it with other factors implies a flatter fitness landscape for host adaptation by SARS-CoV-2 and future related coronaviruses.
Collapse
Affiliation(s)
- Marcos Cervantes
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Tobin Hess
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Giorgio G Morbioli
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Anjali Sengar
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Peter M Kasson
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
- Science for Life Laboratory and Department of Molecular and Cellular Biology, Uppsala University Uppsala SE 75123 USA
| |
Collapse
|
31
|
Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22:449-475. [PMID: 37076602 PMCID: PMC10113999 DOI: 10.1038/s41573-023-00672-y] [Citation(s) in RCA: 322] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic strategies that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or human proteins to control viral infection, encompassing hundreds of potential drugs and thousands of patients in clinical trials. So far, a few small-molecule antiviral drugs (nirmatrelvir-ritonavir, remdesivir and molnupiravir) and 11 monoclonal antibodies have been marketed for the treatment of COVID-19, mostly requiring administration within 10 days of symptom onset. In addition, hospitalized patients with severe or critical COVID-19 may benefit from treatment with previously approved immunomodulatory drugs, including glucocorticoids such as dexamethasone, cytokine antagonists such as tocilizumab and Janus kinase inhibitors such as baricitinib. Here, we summarize progress with COVID-19 drug discovery, based on accumulated findings since the pandemic began and a comprehensive list of clinical and preclinical inhibitors with anti-coronavirus activities. We also discuss the lessons learned from COVID-19 and other infectious diseases with regard to drug repurposing strategies, pan-coronavirus drug targets, in vitro assays and animal models, and platform trial design for the development of therapeutics to tackle COVID-19, long COVID and pathogenic coronaviruses in future outbreaks.
Collapse
Affiliation(s)
- Guangdi Li
- Xiangya School of Public Health, Central South University; Hunan Children's Hospital, Changsha, China.
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine & German Center for Infection Research (DZIF), University of Lübeck, Lübeck, Germany.
| | - Richard Whitley
- Department of Paediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Strine MS, Cai WL, Wei J, Alfajaro MM, Filler RB, Biering SB, Sarnik S, Chow RD, Patil A, Cervantes KS, Collings CK, DeWeirdt PC, Hanna RE, Schofield K, Hulme C, Konermann S, Doench JG, Hsu PD, Kadoch C, Yan Q, Wilen CB. DYRK1A promotes viral entry of highly pathogenic human coronaviruses in a kinase-independent manner. PLoS Biol 2023; 21:e3002097. [PMID: 37310920 PMCID: PMC10263356 DOI: 10.1371/journal.pbio.3002097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/29/2023] [Indexed: 06/15/2023] Open
Abstract
Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jin Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Renata B. Filler
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sylvia Sarnik
- University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ajinkya Patil
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kasey S. Cervantes
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Clayton K. Collings
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Peter C. DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ruth E. Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kevin Schofield
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona, United States of America
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona, United States of America
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
| | - Silvana Konermann
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Patrick D. Hsu
- Arc Institute, Palo Alto, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
- Center for Computational Biology, University of California, Berkeley, California, United States of America
| | - Cigall Kadoch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
33
|
Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. J Virol 2023; 97:e0199222. [PMID: 37133381 PMCID: PMC10231210 DOI: 10.1128/jvi.01992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.
Collapse
Affiliation(s)
- Anjali Sengar
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos Cervantes
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Sai T. Bondalapati
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Tobin Hess
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M. Kasson
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Furusawa Y, Kiso M, Iida S, Uraki R, Hirata Y, Imai M, Suzuki T, Yamayoshi S, Kawaoka Y. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 2023; 91:104561. [PMID: 37043872 PMCID: PMC10083686 DOI: 10.1016/j.ebiom.2023.104561] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING A full list of funding bodies that contributed to this study can be found under Acknowledgments.
Collapse
Affiliation(s)
- Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Pandemic Preparedness, Infection, and Advanced Research Center, The University of Tokyo, Tokyo, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Cellular electrical impedance to profile SARS-CoV-2 fusion inhibitors and to assess the fusogenic potential of spike mutants. Antiviral Res 2023; 213:105587. [PMID: 36977434 PMCID: PMC10040089 DOI: 10.1016/j.antiviral.2023.105587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of coronaviruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 μM). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 μM), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner.
Collapse
|
36
|
Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nat Commun 2023; 14:694. [PMID: 36755036 PMCID: PMC9907212 DOI: 10.1038/s41467-023-36140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.
Collapse
|
37
|
Khatri R, Siddqui G, Sadhu S, Maithil V, Vishwakarma P, Lohiya B, Goswami A, Ahmed S, Awasthi A, Samal S. Intrinsic D614G and P681R/H mutations in SARS-CoV-2 VoCs Alpha, Delta, Omicron and viruses with D614G plus key signature mutations in spike protein alters fusogenicity and infectivity. Med Microbiol Immunol 2023; 212:103-122. [PMID: 36583790 PMCID: PMC9801140 DOI: 10.1007/s00430-022-00760-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 virus has been rapidly evolving over the time and the genetic variation has led to the generation of Variants of Concerns (VoC), which have shown increased fitness. These VoC viruses contain the key mutations in the spike protein which have allowed better survival and evasion of host defense mechanisms. The D614G mutation in the spike domain is found in the majority of VoC; additionally, the P681R/H mutation at the S1/S2 furin cleavage site junction is also found to be highly conserved in major VoCs; Alpha, Delta, Omicron, and its' current variants. The impact of these genetic alterations of the SARS-CoV-2 VoCs on the host cell entry, transmissibility, and infectivity has not been clearly identified. In our study, Delta and D614G + P681R synthetic double mutant pseudoviruses showed a significant increase in the cell entry, cell-to-cell fusion and infectivity. In contrast, the Omicron and P681H synthetic single mutant pseudoviruses showed TMPRSS2 independent cell entry, less fusion and infectivity as compared to Delta and D614G + P681R double mutants. Addition of exogenous trypsin further enhanced fusion in Delta viruses as compared to Omicron. Furthermore, Delta viruses showed susceptibility to both E64d and Camostat mesylate inhibitors suggesting, that the Delta virus could exploit both endosomal and TMPRSS2 dependent entry pathways as compared to the Omicron virus. Taken together, these results indicate that the D614G and P681R/H mutations in the spike protein are pivotal which might be favoring the VoC replication in different host compartments, and thus allowing a balance of mutation vs selection for better long-term adaptation.
Collapse
Affiliation(s)
- Ritika Khatri
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Gazala Siddqui
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Srikanth Sadhu
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
- Immunobiology and Immunology Core Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Vikas Maithil
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Preeti Vishwakarma
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Bharat Lohiya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Abhishek Goswami
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Science (AIIMS), Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
- Immunobiology and Immunology Core Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| |
Collapse
|
38
|
Chan JFW, Huang X, Hu B, Chai Y, Shi H, Zhu T, Yuen TTT, Liu Y, Liu H, Shi J, Wen L, Shuai H, Hou Y, Yoon C, Cai JP, Zhang AJ, Zhou J, Yin F, Yuan S, Zhang BZ, Brindley MA, Shi ZL, Yuen KY, Chu H. Altered host protease determinants for SARS-CoV-2 Omicron. SCIENCE ADVANCES 2023; 9:eadd3867. [PMID: 36662861 PMCID: PMC9858505 DOI: 10.1126/sciadv.add3867] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 05/02/2023]
Abstract
Successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires proteolytic cleavage of the viral spike protein. While the role of the host transmembrane protease serine 2 in SARS-CoV-2 infection is widely recognized, the involvement of other proteases capable of facilitating SARS-CoV-2 entry remains incompletely explored. Here, we show that multiple members from the membrane-type matrix metalloproteinase (MT-MMP) and a disintegrin and metalloproteinase families can mediate SARS-CoV-2 entry. Inhibition of MT-MMPs significantly reduces SARS-CoV-2 replication in vitro and in vivo. Mechanistically, we show that MT-MMPs can cleave SARS-CoV-2 spike and angiotensin-converting enzyme 2 and facilitate spike-mediated fusion. We further demonstrate that Omicron BA.1 has an increased efficiency on MT-MMP usage, while an altered efficiency on transmembrane serine protease usage for virus entry compared with that of ancestral SARS-CoV-2. These results reveal additional protease determinants for SARS-CoV-2 infection and enhance our understanding on the biology of coronavirus entry.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Guangzhou Laboratory, Guangdong Province, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hongyu Shi
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan Province, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Melinda A. Brindley
- Department of Infectious Diseases and Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan, Hubei, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Guangzhou Laboratory, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
39
|
Hu B, Chan JFW, Liu H, Liu Y, Chai Y, Shi J, Shuai H, Hou Y, Huang X, Yuen TTT, Yoon C, Zhu T, Zhang J, Li W, Zhang AJ, Zhou J, Yuan S, Zhang BZ, Yuen KY, Chu H. Spike mutations contributing to the altered entry preference of SARS-CoV-2 omicron BA.1 and BA.2. Emerg Microbes Infect 2022; 11:2275-2287. [PMID: 36039901 PMCID: PMC9542985 DOI: 10.1080/22221751.2022.2117098] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/21/2022] [Indexed: 01/02/2023]
Abstract
SARS-CoV-2 B.1.1.529.1 (Omicron BA.1) emerged in November 2021 and quickly became the predominant circulating SARS-CoV-2 variant globally. Omicron BA.1 contains more than 30 mutations in the spike protein, which contribute to its altered virological features when compared to the ancestral SARS-CoV-2 or previous SARS-CoV-2 variants. Recent studies by us and others demonstrated that Omicron BA.1 is less dependent on transmembrane serine protease 2 (TMPRSS2), less efficient in spike cleavage, less fusogenic, and adopts an altered propensity to utilize the plasma membrane and endosomal pathways for virus entry. Ongoing studies suggest that these virological features of Omicron BA.1 are in part retained by the subsequent Omicron sublineages. However, the exact spike determinants that contribute to these altered features of Omicron remain incompletely understood. In this study, we investigated the spike determinants for the observed virological characteristics of Omicron. By screening for the individual changes on Omicron BA.1 and BA.2 spike, we identify that 69-70 deletion, E484A, and H655Y contribute to the reduced TMPRSS2 usage while 25-27 deletion, S375F, and T376A result in less efficient spike cleavage. Among the shared spike mutations of BA.1 and BA.2, S375F and H655Y reduce spike-mediated fusogenicity. Interestingly, the H655Y change consistently reduces serine protease usage while increases the use of endosomal proteases. In keeping with these findings, the H655Y substitution alone reduces plasma membrane entry and facilitates endosomal entry when compared to SARS-CoV-2 WT. Overall, our study identifies key changes in Omicron spike that contributes to our understanding on the virological determinant and pathogenicity of Omicron.
Collapse
Affiliation(s)
- Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People’s Republic of China
- Guangzhou Laboratory, Guangzhou, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jinjin Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wenjun Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, People’s Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People’s Republic of China
- Guangzhou Laboratory, Guangzhou, People’s Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
40
|
Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, Ariana A, Stewart CM, Prévost J, Beaudoin-Bussières G, Daniel R, Bo Y, El Ferri O, Yockell-Lelièvre J, Stanford WL, Giguère PM, Mubareka S, Finzi A, Dekaban GA, Dikeakos JD, Côté M. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. iScience 2022; 25:105316. [PMID: 36254158 PMCID: PMC9549715 DOI: 10.1016/j.isci.2022.105316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corby Fink
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rory P. Mulloy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julien Yockell-Lelièvre
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William L. Stanford
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory A. Dekaban
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
41
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
42
|
Iwata-Yoshikawa N, Kakizaki M, Shiwa-Sudo N, Okura T, Tahara M, Fukushi S, Maeda K, Kawase M, Asanuma H, Tomita Y, Takayama I, Matsuyama S, Shirato K, Suzuki T, Nagata N, Takeda M. Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nat Commun 2022; 13:6100. [PMID: 36243815 PMCID: PMC9568946 DOI: 10.1038/s41467-022-33911-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
In cultured cells, SARS-CoV-2 infects cells via multiple pathways using different host proteases. Recent studies have shown that the furin and TMPRSS2 (furin/TMPRSS2)-dependent pathway plays a minor role in infection of the Omicron variant. Here, we confirm that Omicron uses the furin/TMPRSS2-dependent pathway inefficiently and enters cells mainly using the cathepsin-dependent endocytosis pathway in TMPRSS2-expressing VeroE6/TMPRSS2 and Calu-3 cells. This is the case despite efficient cleavage of the spike protein of Omicron. However, in the airways of TMPRSS2-knockout mice, Omicron infection is significantly reduced. We furthermore show that propagation of the mouse-adapted SARS-CoV-2 QHmusX strain and human clinical isolates of Beta and Gamma is reduced in TMPRSS2-knockout mice. Therefore, the Omicron variant isn't an exception in using TMPRSS2 in vivo, and analysis with TMPRSS2-knockout mice is important when evaluating SARS-CoV-2 variants. In conclusion, this study shows that TMPRSS2 is critically important for SARS-CoV-2 infection of murine airways, including the Omicron variant.
Collapse
Affiliation(s)
- Naoko Iwata-Yoshikawa
- grid.410795.e0000 0001 2220 1880Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatoshi Kakizaki
- grid.410795.e0000 0001 2220 1880Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nozomi Shiwa-Sudo
- grid.410795.e0000 0001 2220 1880Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Okura
- grid.410795.e0000 0001 2220 1880Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Maino Tahara
- grid.410795.e0000 0001 2220 1880Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- grid.410795.e0000 0001 2220 1880Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- grid.410795.e0000 0001 2220 1880Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Miyuki Kawase
- grid.410795.e0000 0001 2220 1880Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Asanuma
- grid.410795.e0000 0001 2220 1880Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Tomita
- grid.410795.e0000 0001 2220 1880Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ikuyo Takayama
- grid.410795.e0000 0001 2220 1880Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shutoku Matsuyama
- grid.410795.e0000 0001 2220 1880Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Shirato
- grid.410795.e0000 0001 2220 1880Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- grid.410795.e0000 0001 2220 1880Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- grid.410795.e0000 0001 2220 1880Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- grid.410795.e0000 0001 2220 1880Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Martin CE, Murray AS, Mackinder JR, Sala-Hamrick KE, Flynn MG, Lundgren JG, Varela FA, List K. TMPRSS13 zymogen activation, surface localization, and shedding is regulated by proteolytic cleavage within the non-catalytic stem region. Biol Chem 2022; 403:969-982. [PMID: 35796294 PMCID: PMC10642292 DOI: 10.1515/hsz-2022-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022]
Abstract
TMPRSS13 is a member of the type II transmembrane serine protease (TTSP) family. Here we characterize a novel post-translational mechanism important for TMPRSS13 function: proteolytic cleavage within the extracellular TMPRSS13 stem region located between the transmembrane domain and the first site of N-linked glycosylation at asparagine (N)-250 in the scavenger receptor cysteine rich (SRCR) domain. Importantly, the catalytic competence of TMPRSS13 is essential for stem region cleavage, suggesting an autonomous mechanism of action. Site-directed mutagenesis of the 10 basic amino acids (four arginine and six lysine residues) in this region abrogated zymogen activation and catalytic activity of TMPRSS13, as well as phosphorylation, cell surface expression, and shedding. Mutation analysis of individual arginine residues identified R223, a residue located between the low-density lipoprotein receptor class A domain and the SRCR domain, as important for stem region cleavage. Mutation of R223 causes a reduction in the aforementioned functional processing steps of TMPRSS13. These data provide further insight into the roles of different post-translational modifications as regulators of the function and localization of TMPRSS13. Additionally, the data suggest the presence of complex interconnected regulatory mechanisms that may serve to ensure the proper levels of cell-surface and pericellular TMPRSS13-mediated proteolysis under homeostatic conditions.
Collapse
Affiliation(s)
- Carly E. Martin
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Andrew S. Murray
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
- Division of Hematological Malignancies and Cellular Therapy, Duke University, Durham, NC, 27708, USA
| | - Jacob R. Mackinder
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Kimberley E. Sala-Hamrick
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Environmental Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Michael G. Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
| | - Joseph G. Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Fausto A. Varela
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
44
|
Bereczki I, Vimberg V, Lőrincz E, Papp H, Nagy L, Kéki S, Batta G, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Petri L, Hodek J, Jakab F, Keserű GM, Weber J, Naesens L, Herczegh P, Borbás A. Semisynthetic teicoplanin derivatives with dual antimicrobial activity against SARS-CoV-2 and multiresistant bacteria. Sci Rep 2022; 12:16001. [PMID: 36163239 PMCID: PMC9511441 DOI: 10.1038/s41598-022-20182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.
Collapse
Affiliation(s)
- Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary
| | - Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Eszter Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,Institute of Healthcare Industry, University of Debrecen, Debrecen, Nagyerdei körút 98, 4032, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Áron Zsigmond
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - István Hajdú
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Zsolt Lőrincz
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary.
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary. .,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.
| |
Collapse
|
45
|
The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants. J Virol 2022; 96:e0130122. [PMID: 36121299 PMCID: PMC9555207 DOI: 10.1128/jvi.01301-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained genetically stable during the first 3 months of the pandemic, before acquiring a D614G spike mutation that rapidly spread worldwide and then generating successive waves of viral variants with increasingly high transmissibility. We set out to evaluate possible epistatic interactions between the early-occurring D614G mutation and the more recently emerged cleavage site mutations present in spike of the Alpha, Delta, and Omicron variants of concern. The P681H/R mutations at the S1/S2 cleavage site increased spike processing and fusogenicity but limited its incorporation into pseudoviruses. In addition, the higher cleavage rate led to higher shedding of the spike S1 subunit, resulting in a lower infectivity of the P681H/R-carrying pseudoviruses compared to those expressing the Wuhan wild-type spike. The D614G mutation increased spike expression at the cell surface and limited S1 shedding from pseudovirions. As a consequence, the D614G mutation preferentially increased the infectivity of P681H/R-carrying pseudoviruses. This enhancement was more marked in cells where the endosomal route predominated, suggesting that more stable spikes could better withstand the endosomal environment. Taken together, these findings suggest that the D614G mutation stabilized S1/S2 association and enabled the selection of mutations that increased S1/S2 cleavage, leading to the emergence of SARS-CoV-2 variants expressing highly fusogenic spikes. IMPORTANCE The first SARS-CoV-2 variant that spread worldwide in early 2020 carried a D614G mutation in the viral spike, making this protein more stable in its cleaved form at the surface of virions. The Alpha and Delta variants, which spread in late 2020 and early 2021, respectively, proved increasingly transmissible and pathogenic compared to the original strain. Interestingly, Alpha and Delta both carried the mutations P681H/R in a cleavage site that made the spike more cleaved and more efficient at mediating viral fusion. We show here that variants with increased spike cleavage due to P681H/R were even more dependent on the stabilizing effect of the D614G mutation, which limited the shedding of cleaved S1 subunits from viral particles. These findings suggest that the worldwide spread of the D614G mutation was a prerequisite for the emergence of more pathogenic SARS-CoV-2 variants with highly fusogenic spikes.
Collapse
|
46
|
Gatineau J, Nidercorne C, Dupont A, Puiffe ML, Cohen JL, Molinier-Frenkel V, Niedergang F, Castellano F. IL4I1 binds to TMPRSS13 and competes with SARS-CoV-2 spike. Front Immunol 2022; 13:982839. [PMID: 36131918 PMCID: PMC9483092 DOI: 10.3389/fimmu.2022.982839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The secreted enzyme interleukin four-induced gene 1 (IL4I1) is involved in the negative control of the adaptive immune response. IL4I1 expression in human cancer is frequent and correlates with poor survival and resistance to immunotherapy. Nevertheless, its mechanism of action remains partially unknown. Here, we identified transmembrane serine protease 13 (TMPRSS13) as an immune cell-expressed surface protein that binds IL4I1. TMPRSS13 is a paralog of TMPRSS2, of which the protease activity participates in the cleavage of SARS-CoV-2 spike protein and facilitates virus induced-membrane fusion. We show that TMPRSS13 is expressed by human lymphocytes, monocytes and monocyte-derived macrophages, can cleave the spike protein and allow SARS-CoV-2 spike pseudotyped virus entry into cells. We identify regions of homology between IL4I1 and spike and demonstrate competition between the two proteins for TMPRSS13 binding. These findings may be relevant for both interfering with SARS-CoV-2 infection and limiting IL4I1-dependent immunosuppressive activity in cancer.
Collapse
Affiliation(s)
| | | | | | | | - José L. Cohen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital H Mondor, CIC Biotherapies, Créteil, France
| | - Valérie Molinier-Frenkel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri Mondor, Departement d’Hematologie-Immunologie, Créteil, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| | - Florence Niedergang
- Université Paris Cité, CNRS, INSERM, Institut Cochin, CNRS, Paris, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| | - Flavia Castellano
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri Mondor, Plateforme des Ressources Biologiques, Créteil, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| |
Collapse
|
47
|
Stewart PDS, Bach JL. The natural thermal sensitivity of SARS-CoV-2. INFECTIOUS MEDICINE 2022; 1:227-228. [PMID: 38014365 PMCID: PMC9419432 DOI: 10.1016/j.imj.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
|
48
|
Lipid Raft Integrity and Cellular Cholesterol Homeostasis Are Critical for SARS-CoV-2 Entry into Cells. Nutrients 2022; 14:nu14163417. [PMID: 36014919 PMCID: PMC9415163 DOI: 10.3390/nu14163417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts in cell plasma membranes play a critical role in the life cycle of many viruses. However, the involvement of membrane cholesterol-rich lipid rafts in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into target cells is not well known. In this study, we investigated whether the presence of cholesterol-rich microdomains is required for the entry of SARS-CoV-2 into host cells. Our results show that depletion of cholesterol in the rafts by methyl-beta-cyclodextrin (MβCD) treatment impaired the expression of the cell surface receptor angiotensin-converting enzyme 2 (ACE2), resulting in a significant increase in SARS-CoV-2 entry into cells. The effects exerted by MβCD could be substantially reversed by exogenous cholesterol replenishment. In contrast, disturbance of intracellular cholesterol homeostasis by statins or siRNA knockdown of key genes involved in the cholesterol biosynthesis and transport pathways reduced SARS-CoV-2 entry into cells. Our study also reveals that SREBP2-mediated cholesterol biosynthesis is involved in the process of SARS-CoV-2 entry in target cells. These results suggest that the host membrane cholesterol-enriched lipid rafts and cellular cholesterol homeostasis are essential for SARS-CoV-2 entry into cells. Pharmacological manipulation of intracellular cholesterol might provide new therapeutic strategies to alleviate SARS-CoV-2 entry into cells.
Collapse
|
49
|
De Castro S, Stevaert A, Maldonado M, Delpal A, Vandeput J, Van Loy B, Eydoux C, Guillemot JC, Decroly E, Gago F, Canard B, Camarasa MJ, Velázquez S, Naesens L. A Versatile Class of 1,4,4-Trisubstituted Piperidines Block Coronavirus Replication In Vitro. Pharmaceuticals (Basel) 2022; 15:1021. [PMID: 36015168 PMCID: PMC9416004 DOI: 10.3390/ph15081021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
There is a clear need for novel antiviral concepts to control SARS-CoV-2 infection. Based on the promising anti-coronavirus activity observed for a class of 1,4,4-trisubstituted piperidines, we here conducted a detailed analysis of the structure-activity relationship of these structurally unique inhibitors. Despite the presence of five points of diversity, the synthesis of an extensive series of analogues was readily achieved by Ugi four-component reaction from commercially available reagents. After evaluating 63 analogues against human coronavirus 229E, four of the best molecules were selected and shown to have micromolar activity against SARS-CoV-2. Since the action point was situated post virus entry and lying at the stage of viral polyprotein processing and the start of RNA synthesis, enzymatic assays were performed with CoV proteins involved in these processes. While no inhibition was observed for SARS-CoV-2 nsp12-nsp7-nsp8 polymerase, nsp14 N7-methyltransferase and nsp16/nsp10 2'-O-methyltransferase, nor the nsp3 papain-like protease, the compounds clearly inhibited the nsp5 main protease (Mpro). Although the inhibitory activity was quite modest, the plausibility of binding to the catalytic site of Mpro was established by in silico studies. Therefore, the 1,4,4-trisubstituted piperidines appear to represent a novel class of non-covalent CoV Mpro inhibitors that warrants further optimization and development.
Collapse
Affiliation(s)
- Sonia De Castro
- Instituto de Química Médica (IQM, CSIC), E-28006 Madrid, Spain
| | - Annelies Stevaert
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | | | - Adrien Delpal
- AFMB, UMR 7257, CNRS, Aix Marseille Université, 13288 Marseille, France
| | - Julie Vandeput
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Benjamin Van Loy
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Cecilia Eydoux
- AFMB, UMR 7257, CNRS, Aix Marseille Université, 13288 Marseille, France
| | | | - Etienne Decroly
- AFMB, UMR 7257, CNRS, Aix Marseille Université, 13288 Marseille, France
| | - Federico Gago
- Unidad Asociada al IQM-CSIC, Área de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, E-28805 Alcalá de Henares, Spain
| | - Bruno Canard
- AFMB, UMR 7257, CNRS, Aix Marseille Université, 13288 Marseille, France
| | | | | | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
50
|
Vu MN, Lokugamage KG, Plante JA, Scharton D, Bailey AO, Sotcheff S, Swetnam DM, Johnson BA, Schindewolf C, Alvarado RE, Crocquet-Valdes PA, Debbink K, Weaver SC, Walker DH, Russell WK, Routh AL, Plante KS, Menachery VD. QTQTN motif upstream of the furin-cleavage site plays a key role in SARS-CoV-2 infection and pathogenesis. Proc Natl Acad Sci U S A 2022; 119:e2205690119. [PMID: 35881779 PMCID: PMC9371735 DOI: 10.1073/pnas.2205690119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Kumari G. Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
| | - Aaron O. Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Daniele M. Swetnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - R. Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX
| | | | - Kari Debbink
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21211
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew L. Routh
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|