1
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024; 98:e0172024. [PMID: 39508605 PMCID: PMC11650979 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Hahn WO, Parks KR, Shen M, Ozorowski G, Janes H, Ballweber-Fleming L, Woodward Davis AS, Duplessis C, Tomai M, Dey AK, Sagawa ZK, De Rosa SC, Seese A, Kallur Siddaramaiah L, Stamatatos L, Lee WH, Sewall LM, Karlinsey D, Turner HL, Rubin V, Furth S, MacPhee K, Duff M, Corey L, Keefer MC, Edupuganti S, Frank I, Maenza J, Baden LR, Hyrien O, Sanders RW, Moore JP, Ward AB, Tomaras GD, Montefiori DC, Rouphael N, McElrath MJ. Use of 3M-052-AF with Alum adjuvant in HIV trimer vaccine induces human autologous neutralizing antibodies. J Exp Med 2024; 221:e20240604. [PMID: 39235529 PMCID: PMC11380150 DOI: 10.1084/jem.20240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140 formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding, and immunogenicity in a first-in-healthy adult (n = 17), randomized, and placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, and B cell and CD4+ T cell responses emerged after vaccination. Five vaccinees developed serum autologous tier 2 nAbs (ID50 titer, 1:28-1:8647) after two to three doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/Alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes.
Collapse
Affiliation(s)
- William O. Hahn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mingchao Shen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Chris Duplessis
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, NY, USA
| | | | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dalton Karlinsey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vanessa Rubin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah Furth
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kellie MacPhee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Duff
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ian Frank
- School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology and Departments of Surgery and Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | | | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Brouwer PJM, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Bontjer I, Lee WH, Ferguson JA, Schauflinger M, Müller-Kräuter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. Cell Rep 2024; 43:114708. [PMID: 39243373 PMCID: PMC11422484 DOI: 10.1016/j.celrep.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Lassa fever continues to be a major public health burden in West Africa, yet effective therapies or vaccines are lacking. The isolation of protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccine candidates have generally been unsuccessful at doing so, and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron microscopy-based epitope mapping workflow that enables high-resolution structural characterization of polyclonal antibodies to the GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization that involve epitopes of the GPC-A competition cluster. Furthermore, by identifying undescribed immunogenic off-target epitopes, we expose the challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Anbuhl SM, Dervillez X, Neubacher S, Schriek AI, Bobkov V, de Taeye SW, Szpakowska M, Siderius M, Grossmann TN, Chevigné A, Smit MJ, Heukers R. Multivalent CXCR4-targeting nanobody formats differently affect affinity, receptor clustering, and antagonism. Biochem Pharmacol 2024; 227:116457. [PMID: 39098732 DOI: 10.1016/j.bcp.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or β-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.
Collapse
Affiliation(s)
- Stephanie M Anbuhl
- QVQ Holding BV, 3584 CL Utrecht, The Netherlands; Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands
| | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Saskia Neubacher
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands; Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, The Netherlands; Incircular BV, 1081 HZ Amsterdam, The Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Vladimir Bobkov
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands; Argenx, 9052 Ghent, Belgium
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Marco Siderius
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands; Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, The Netherlands; Incircular BV, 1081 HZ Amsterdam, The Netherlands
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Martine J Smit
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands
| | - Raimond Heukers
- QVQ Holding BV, 3584 CL Utrecht, The Netherlands; Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, The Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Gai Y, Gao N, Mou Z, Yang C, Wang L, Ji W, Gu T, Yu B, Wang C, Yu X, Gao F. Recapitulation of HIV-1 Neutralization Breadth in Plasma by the Combination of Two Broadly Neutralizing Antibodies from Different Lineages in the Same SHIV-Infected Rhesus Macaque. Int J Mol Sci 2024; 25:7200. [PMID: 39000308 PMCID: PMC11240982 DOI: 10.3390/ijms25137200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Viral infection generally induces polyclonal neutralizing antibody responses. However, how many lineages of antibody responses can fully represent the neutralization activities in sera has not been well studied. Using the newly designed stable HIV-1 Env trimer as hook, we isolated two distinct broadly neutralizing antibodies (bnAbs) from Chinese rhesus macaques infected with SHIV1157ipd3N4 for 5 years. One lineage of neutralizing antibodies (JT15 and JT16) targeted the V2-apex in the Env trimers, similar to the J038 lineage bnAbs identified in our previous study. The other lineage neutralizing antibody (JT18) targeted the V3 crown region in the Env, which strongly competed with human 447-52D. Each lineage antibody neutralized a different set of viruses. Interestingly, when the two neutralizing antibodies from different lineages isolated from the same macaque were combined, the mixture had a neutralization breath very similar to that from the cognate sera. Our study demonstrated that a minimum of two different neutralizing antibodies can fully recapitulate the serum neutralization breadth. This observation can have important implications in AIDS vaccine design.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaoyang Mou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Libian Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wanshan Ji
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
6
|
Hahn WO, Parks KR, Shen M, Ozorowski G, Janes H, Ballweber-Fleming L, Woodward Davis AS, Duplessis C, Tomai M, Dey AK, Sagawa ZK, De Rosa SC, Seese A, Siddaramaiah LK, Stamatatos L, Lee WH, Sewall LM, Karlinsey D, Turner HL, Rubin V, Furth S, MacPhee K, Duff M, Corey L, Keefer MC, Edupuganti S, Frank I, Maenza J, Baden LR, Hyrien O, Sanders RW, Moore JP, Ward AB, Tomaras GD, Montefiori DC, Rouphael N, McElrath MJ. HIV BG505 SOSIP.664 trimer with 3M-052-AF/alum induces human autologous tier-2 neutralizing antibodies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.08.24306957. [PMID: 38766048 PMCID: PMC11100857 DOI: 10.1101/2024.05.08.24306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.
Collapse
|
7
|
Weinfurter JT, Bennett SN, Reynolds MR. A SMART method for isolating monoclonal antibodies from individual rhesus macaque memory B cells. J Immunol Methods 2024; 525:113602. [PMID: 38103783 PMCID: PMC10842827 DOI: 10.1016/j.jim.2023.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells to capture Ig heavy and light chain pairs. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, the nested PCR primer mixes are simplified by employing universal 5' primers, eliminating the need for complex 5' MTPX primer sets. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.
Collapse
Affiliation(s)
- Jason T Weinfurter
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Sarah N Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Matthew R Reynolds
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States of America; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States of America.
| |
Collapse
|
8
|
Verdejo-Torres O, Vargas-Pavia T, Fatima S, Clapham PR, Duenas-Decamp MJ. Implications of the 375W mutation for HIV-1 tropism and vaccine development. J Virol 2024; 98:e0152223. [PMID: 38169306 PMCID: PMC10804988 DOI: 10.1128/jvi.01522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding how different amino acids affect the HIV-1 envelope (Env) trimer will greatly help the design and development of vaccines that induce broadly neutralizing antibodies (bnAbs). A tryptophan residue at position 375 that opens the CD4 binding site without modifying the trimer apex was identified using our saturation mutagenesis strategy. 375W was introduced into a large panel of 27 transmitted/founder, acute stage, chronic infection, and AIDS macrophage-tropic and non-macrophage-tropic primary envelopes from different clades (A, B, C, D, and G) as well as complex and circulating recombinants. We evaluated soluble CD4 and monoclonal antibody neutralization of WT and mutant Envs together with macrophage infection. The 375W substitution increased sensitivity to soluble CD4 in all 27 Envs and macrophage infection in many Envs including an X4 variant. Importantly, 375W did not impair or abrogate neutralization by potent bnAbs. Variants that were already highly macrophage tropic were compromised for macrophage tropism, indicating that other structural factors are involved. Of note, we observed a macrophage-tropic (clade G) and intermediate macrophage-tropic (clades C and D) primary Envs from the blood and not from the central nervous system (CNS), indicating that such variants could be released from the brain or evolve outside the CNS. Our data also indicate that "intermediate" macrophage-tropic variants should belong to a new class of HIV-1 tropism. These Envs infected macrophages more efficiently than non-macrophage-tropic variants without reaching the high levels of macrophage-tropic brain variants. In summary, we show that 375W is ideal for inclusion into HIV-1 vaccines, increasing Env binding to CD4 for widely diverse Envs from different clades and disease stages.IMPORTANCESubstitutions exposing the CD4 binding site (CD4bs) on HIV-1 trimers but still occluding non-neutralizing, immunogenic epitopes are desirable to develop HIV-1 vaccines. If such substitutions induce similar structural changes in trimers across diverse clades, they could be exploited for the development of multi-clade envelope (Env) vaccines. We show that the 375W substitution increases CD4 affinity for envelopes of all clades, circulating recombinant forms, and complex Envs tested, independent of disease stage. Clade B and C Envs with an exposed CD4bs were described for macrophage-tropic strains from the central nervous system (CNS). Here, we show that intermediate (clades C and D) and macrophage-tropic (clade G) envelopes can be detected outside the CNS. Vaccines targeting the CD4bs will be particularly effective against such strains and CNS disease.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Tania Vargas-Pavia
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Syeda Fatima
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Paul R. Clapham
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maria J. Duenas-Decamp
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Brouwer PJ, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Lee WH, Müller-Kraüter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572918. [PMID: 38187682 PMCID: PMC10769344 DOI: 10.1101/2023.12.21.572918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Lassa fever continues to be a major public health burden in endemic countries in West Africa, yet effective therapies or vaccines are lacking. The isolation of potent and protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccines candidates have generally been unsuccessful in doing so and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron-microscopy based epitope mapping pipeline that enables high-resolution structural characterization of polyclonal antibodies to GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization which involve epitopes of the GPC-C, GPC-A, and GP1-A competition clusters. Furthermore, by identifying previously undescribed immunogenic off-target epitopes, we expose challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J.M. Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
10
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Tong T, D’Addabbo A, Xu J, Chawla H, Nguyen A, Ochoa P, Crispin M, Binley JM. Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein. PLoS Pathog 2023; 19:e1011452. [PMID: 37549185 PMCID: PMC10434953 DOI: 10.1371/journal.ppat.1011452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.
Collapse
Affiliation(s)
- Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jiamin Xu
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert Nguyen
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Paola Ochoa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
12
|
Torrents de la Peña A, Sewall LM, de Paiva Froes Rocha R, Jackson AM, Pratap PP, Bangaru S, Cottrell CA, Mohanty S, Shaw AC, Ward AB. Increasing sensitivity of antibody-antigen interactions using photo-cross-linking. CELL REPORTS METHODS 2023; 3:100509. [PMID: 37426749 PMCID: PMC10326447 DOI: 10.1016/j.crmeth.2023.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebeca de Paiva Froes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Payal P. Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Subhasis Mohanty
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Albert C. Shaw
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Weinfurter JT, Bennett SN, Reynolds M. A SMART method for efficiently isolating monoclonal antibodies from individual rhesus macaque memory B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543510. [PMID: 37333083 PMCID: PMC10274751 DOI: 10.1101/2023.06.02.543510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates the use of large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells, providing unbiased capture of Ig heavy and light chain pairs for cloning antibodies. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for PCR cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, universal 5' primers are employed to amplify the IgV genes from cDNA, simplifying the primer mixes in the nested PCR reactions and improving the recovery of matched heavy and light chain pairs. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.
Collapse
Affiliation(s)
- Jason T. Weinfurter
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison WI
| | - Sarah N. Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison WI
| | - Matthew Reynolds
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison WI
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison WI
| |
Collapse
|
14
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Reiss EIMM, van Haaren MM, van Schooten J, Claireaux MAF, Maisonnasse P, Antanasijevic A, Allen JD, Bontjer I, Torres JL, Lee WH, Ozorowski G, Vázquez Bernat N, Kaduk M, Aldon Y, Burger JA, Chawla H, Aartse A, Tolazzi M, Gao H, Mundsperger P, Crispin M, Montefiori DC, Karlsson Hedestam GB, Scarlatti G, Ward AB, Le Grand R, Shattock R, Dereuddre-Bosquet N, Sanders RW, van Gils MJ. Fine-mapping the immunodominant antibody epitopes on consensus sequence-based HIV-1 envelope trimer vaccine candidates. NPJ Vaccines 2022; 7:152. [PMID: 36433972 PMCID: PMC9700725 DOI: 10.1038/s41541-022-00576-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is the key target for vaccines aimed at inducing neutralizing antibodies (NAbs) against HIV-1. The clinical candidate immunogen ConM SOSIP.v7 is a stabilized native-like HIV-1 Env trimer based on an artificial consensus sequence of all HIV-1 isolates in group M. In preclinical studies ConM SOSIP.v7 trimers induced strong autologous NAb responses in non-human primates (NHPs). To fine-map these responses, we isolated monoclonal antibodies (mAbs) from six cynomolgus macaques that were immunized three times with ConM SOSIP.v7 protein and boosted twice with the closely related ConSOSL.UFO.664 immunogen. A total of 40 ConM and/or ConS-specific mAbs were isolated, of which 18 were retrieved after the three ConM SOSIP.v7 immunizations and 22 after the two immunizations with ConSOSL.UFO.664. 22 mAbs (55%) neutralized the ConM and/or ConS virus. Cross-neutralization of ConS virus by approximately one-third of the mAbs was seen prior to ConSOSL.UFO.664 immunization, albeit with modest potency. Neutralizing antibodies predominantly targeted the V1 and V2 regions of the immunogens, with an apparent extension towards the V3 region. Thus, the V1V2V3 region is immunodominant in the potent NAb response elicited by two consensus sequence native-like HIV-1 Env immunogens. Immunization with these soluble consensus Env proteins also elicited non-neutralizing mAbs targeting the trimer base. These results inform the use and improvement of consensus-based trimer immunogens in combinatorial vaccine strategies.
Collapse
Affiliation(s)
- E I M M Reiss
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M M van Haaren
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J van Schooten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A F Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Maisonnasse
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - A Antanasijevic
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - J D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - I Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J L Torres
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - W-H Lee
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - G Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - N Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y Aldon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J A Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - H Chawla
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - A Aartse
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - M Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - H Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - P Mundsperger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - M Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - D C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - G B Karlsson Hedestam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - G Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - A B Ward
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - R Le Grand
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R Shattock
- Division of Mucosal Infection and Immunity, Department of Medicine, Imperial College of Science, Technology and Medicine, London, UK
| | - N Dereuddre-Bosquet
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - M J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Aartse A, Mortier D, Mooij P, Hofman S, van Haaren MM, Corcoran M, Karlsson Hedestam GB, Eggink D, Claireaux M, Bogers WMJM, van Gils MJ, Koopman G. Primary antibody response after influenza virus infection is first dominated by low-mutated HA-stem antibodies followed by higher-mutated HA-head antibodies. Front Immunol 2022; 13:1026951. [PMID: 36405682 PMCID: PMC9670313 DOI: 10.3389/fimmu.2022.1026951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Several studies have shown that the first encounter with influenza virus shapes the immune response to future infections or vaccinations. However, a detailed analysis of the primary antibody response is lacking as this is difficult to study in humans. It is therefore not known what the frequency and dynamics of the strain-specific hemagglutinin (HA) head- and stem-directed antibody responses are directly after primary influenza virus infection. Here, sera of twelve H1N1pdm2009 influenza virus-infected cynomolgus macaques were evaluated for HA-head and HA-stem domain antibody responses. We observed an early induction of HA-stem antibody responses, which was already decreased by day 56. In contrast, responses against the HA-head domain were low early after infection and increased at later timepoint. The HA-specific B cell repertoires in each animal showed diverse VH-gene usage with preferred VH-gene and JH-gene family usage for HA-head or HA-stem B cells but a highly diverse allelic variation within the VH-usage. HA-head B cells had shorter CDRH3s and higher VH-gene somatic hyper mutation levels relative to HA-stem B cells. In conclusion, our data suggest that HA-stem antibodies are the first to react to the infection while HA-head antibodies show a delayed response, but a greater propensity to enter the germinal center and undergo affinity maturation.
Collapse
Affiliation(s)
- Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marlies M. van Haaren
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet (KI), Stockholm, Sweden
| | | | - Dirk Eggink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
17
|
Schriek AI, van Haaren MM, Poniman M, Dekkers G, Bentlage AEH, Grobben M, Vidarsson G, Sanders RW, Verrips T, Geijtenbeek TBH, Heukers R, Kootstra NA, de Taeye SW, van Gils MJ. Anti-HIV-1 Nanobody-IgG1 Constructs With Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Front Immunol 2022; 13:893648. [PMID: 35651621 PMCID: PMC9150821 DOI: 10.3389/fimmu.2022.893648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The most effective treatment for HIV-1, antiretroviral therapy, suppresses viral replication and averts the disease from progression. Nonetheless, there is a need for alternative treatments as it requires daily administration with the possibility of side effects and occurrence of drug resistance. Broadly neutralizing antibodies or nanobodies targeting the HIV-1 envelope glycoprotein are explored as alternative treatment, since they mediate viral suppression and contribute to the elimination of virus-infected cells. Besides neutralization potency and breadth, Fc-mediated effector functions of bNAbs also contribute to the in vivo efficacy. In this study multivalent J3, 2E7 and 1F10 anti-HIV-1 broadly neutralizing nanobodies were generated to improve neutralization potency and IgG1 Fc fusion was utilized to gain Fc-mediated effector functions. Bivalent and trivalent nanobodies, coupled using long glycine-serine linkers, showed increased binding to the HIV-1 Env and enhanced neutralization potency compared to the monovalent variant. Fusion of an IgG1 Fc domain to J3 improved neutralization potency compared to the J3-bihead and restored Fc-mediated effector functions such as antibody-dependent cellular phagocytosis and trogocytosis, and natural killer cell activation. Due to their neutralization breadth and potency and their ability to induce effector functions these nanobody-IgG1 constructs may prove to be valuable towards alternative HIV-1 therapies.
Collapse
Affiliation(s)
- Angela I Schriek
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, United States
| | - Theo Verrips
- Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands.,VerLin BV, Utrecht, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Welbourn S, Chakraborty S, Yang JE, Gleinich AS, Gangadhara S, Khan S, Ferrebee C, Yagnik B, Burton S, Charles T, Smith SA, Williams D, Mopuri R, Upadhyay AA, Thompson J, Price MA, Wang S, Qin Z, Shen X, Williams LD, Eisel N, Peters T, Zhang L, Kilembe W, Karita E, Tomaras GD, Bosinger SE, Amara RR, Azadi P, Wright ER, Gnanakaran S, Derdeyn CA. A neutralizing antibody target in early HIV-1 infection was recapitulated in rhesus macaques immunized with the transmitted/founder envelope sequence. PLoS Pathog 2022; 18:e1010488. [PMID: 35503780 PMCID: PMC9106183 DOI: 10.1371/journal.ppat.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.
Collapse
Affiliation(s)
- Sarah Welbourn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne S. Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Salar Khan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Courtney Ferrebee
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Bhrugu Yagnik
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - S. Abigail Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Danielle Williams
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Rohini Mopuri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Justin Thompson
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matt A. Price
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- International AIDS Vaccine Initiative, New York city, New York, United States of America
| | - Shiyu Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - LaTonya D. Williams
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Nathan Eisel
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Tiffany Peters
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Lu Zhang
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - William Kilembe
- Center for Family Health Research in Zambia (CFHRZ), Lusaka, Zambia
| | | | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, Hu Z, Follmann D, Lin Y, Miao H, Schmeisser H, Rogers D, Falcone S, Elbashir SM, Presnyak V, Bahl K, Prabhakaran M, Chen X, Sarfo EK, Ambrozak DR, Gautam R, Martin MA, Swerczek J, Herbert R, Weiss D, Misamore J, Ciaramella G, Himansu S, Stewart-Jones G, McDermott A, Koup RA, Mascola JR, Finzi A, Carfi A, Fauci AS, Lusso P. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med 2021; 27:2234-2245. [PMID: 34887575 DOI: 10.1038/s41591-021-01574-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | - Qingbo Liu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Shilei Ding
- Université de Montreal, Montreal, Quebec, Canada
| | - Zonghui Hu
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yin Lin
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Hana Schmeisser
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Denise Rogers
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Xuejun Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Malcom A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Université de Montreal, Montreal, Quebec, Canada
| | | | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|