1
|
McCormack MJ, Scott S, Logan N, Raveendran S, Newman J, Santos IA, Bailey D, Murcia PR, Thomson EC, Hosie MJ, Willett BJ. Estimating population immunity to SARS-CoV-2 by random sampling from primary and secondary healthcare in Scotland, May 2024. EBioMedicine 2025; 116:105760. [PMID: 40381379 DOI: 10.1016/j.ebiom.2025.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND As the COVID-19 pandemic has ended, the global focus has shifted from "pandemic response" to "long-term management". With no ongoing nationwide serosurveillance studies, our understanding of the level of immunity in the general population has diminished. In this study, we screened random samples from a biorepository serving the largest health board in Scotland for antibodies against SARS-CoV-2 to define the current immunological landscape, informing vaccine strategies going forward. METHODS 997 pseudonymized serum samples were obtained from NHS Greater Glasgow and Clyde (NHS GGC) biorepository in May 2024, along with associated data for age, sex, and COVID-19 vaccine history. Samples spanned ages from 19 to 98 years, with 59.0% female and 41.0% male, and 39.1% from primary healthcare (GP practices) and 61.0% from secondary healthcare (hospitals). Anti-SARS-CoV-2 receptor binding domain (RBD)-specific antibodies were measured by enzyme-linked immunosorbent assay (ELISA), while neutralising antibodies were quantified using HIV(SARS-CoV-2) pseudotype-based virus neutralisation assay (PVNA). ELISAs measured both total IgG and IgG4-mediated responses. Pseudotypes were prepared bearing spike proteins from vaccine antigens B.1 and XBB.1.5, contemporaneous circulating variants KP.3.1.1 and LB.1, and the emerging variant XEC. Samples were grouped by number of COVID-19 vaccine doses received (from no vaccination to ≥8 doses) and 12 samples from each group were screened by ELISA and PVNA. FINDINGS The random selection of 1000 samples provided a broad cross-section of the population derived from patients with a range of individual vaccine histories, from those having received no COVID-19 vaccines to those having received 8 or more doses. The number of doses received increased with age, from a mean age of ∼40 for those having received one dose to a mean age of 77-78 for those having received 7 or 8 doses. While total IgG responses were similar across each of the groups, irrespective of vaccine history, repeated exposure to mRNA-based vaccines elicited an increase in SARS-CoV-2-specific IgG4. Neutralising antibody titres against the vaccine antigens B.1 and XBB.1.5 increased with age, reaching maximum geometric mean titres of 5610 (95% CI, 2773-11,349) for B.1 and 4577 (1832-11,440) for XBB.1.5 in those receiving 8 doses. In all groups, titres measured against the KP.3.1.1, LB.1 and XEC were significantly lower, consistent with the emergence of immune evasive variants over time. Cross-neutralisation of KP.3.1.1 was limited to maxima of 145 (62.2-336) and 187 (83.8-418) in the 7 and 8 dose groups, while titres against XEC were 105 (47-233) and 90.9 (48.1-172) respectively. INTERPRETATION In the absence of systematic COVID-19 serosurveillance, random sampling of sera from biorepositories associated with major health boards can generate valuable data about the level of immunity in the general population, informing estimates of vaccine effectiveness and antigen selection. FUNDING United Kingdom Medical Research Council and Genotype-to-Phenotype National Virology Consortium.
Collapse
Affiliation(s)
- Mhairi J McCormack
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Sam Scott
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Nicola Logan
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Savitha Raveendran
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Joseph Newman
- The Pirbright Institute, Guildford, Surrey, United Kingdom.
| | - Igor A Santos
- The Pirbright Institute, Guildford, Surrey, United Kingdom.
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom.
| | - Pablo R Murcia
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Emma C Thomson
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Vijayanand S, Patil S, Bagwe P, Singh R, Adediran E, D’Souza MJ. Evaluating the Immunogenicity of an Intranasal Microparticle Combination Vaccine for COVID-19 and Influenza. Vaccines (Basel) 2025; 13:282. [PMID: 40266139 PMCID: PMC11946802 DOI: 10.3390/vaccines13030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Infectious respiratory pathogens like SARS-CoV-2 and influenza frequently mutate, leading to the emergence of variants. This necessitates continuous updates to FDA-approved vaccines with booster shots targeting the circulating variants. Vaccine hesitancy and needle injections create inconvenience and contribute to reduced global vaccination rates. To address the burden of frequent painful injections, this manuscript explores the potential of non-invasive intranasal (IN) vaccine administration as an effective alternative to intramuscular (IM) shots. Further, as a proof-of-concept, an inactivated combination vaccine for COVID-19 and influenza was tested to eliminate the need for separate vaccinations. METHODS The methods involved encapsulating antigens and adjuvants in poly(lactic-co-glycolic acid) (PLGA) polymer matrices, achieving over 85% entrapment. The vaccine was evaluated in vitro for cytotoxicity and immunogenicity before being administered to 6-8-week-old Swiss Webster mice at weeks 0, 3, and 6. The mice were then assessed for antibody levels and cellular responses. RESULTS The intranasal microparticle (IN-MP) vaccine induced an innate immune response, autophagy, and were non-cytotoxic in vitro. In vivo, the vaccine led to high levels of virus-specific serum IgM, IgG, and IgA binding antibodies, as well as elevated IgG and IgA levels in the lung wash samples. The antibodies generated demonstrated neutralizing activity against the SARS-CoV-2 pseudovirus. Furthermore, the IN-MP vaccine prompted increased antigen-specific CD4+ and CD8+ T-cell responses in the vaccinated mice. CONCLUSIONS The IN-MP combination vaccine produced immune responses comparable to or higher than the IM route, indicating its potential as an alternative to IM injections.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin J. D’Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (S.V.); (S.P.); (P.B.); (R.S.); (E.A.)
| |
Collapse
|
3
|
Alhamlan FS, Al-Qahtani AA. SARS-CoV-2 Variants: Genetic Insights, Epidemiological Tracking, and Implications for Vaccine Strategies. Int J Mol Sci 2025; 26:1263. [PMID: 39941026 PMCID: PMC11818319 DOI: 10.3390/ijms26031263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The emergence of SARS-CoV-2 variants has significantly impacted the global response to the COVID-19 pandemic. This review examines the genetic diversity of SARS-CoV-2 variants, their roles in epidemiological tracking, and their influence on viral fitness. Variants of concern (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron have demonstrated increased transmissibility, altered pathogenicity, and potential resistance to neutralizing antibodies. Epidemiological tracking of these variants is crucial for understanding their spread, informing public health interventions, and guiding vaccine development. The review also explores how specific mutations in the spike protein and other genomic regions contribute to viral fitness, affecting replication efficiency, immune escape, and transmission dynamics. By integrating genomic surveillance data with epidemiological and clinical findings, this review provides a comprehensive overview of the ongoing evolution of SARS-CoV-2 and its implications for public health strategies and new vaccine development.
Collapse
Affiliation(s)
- Fatimah S. Alhamlan
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, 11211 Riyadh, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, 11211 Riyadh, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, 11211 Riyadh, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, 11211 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Kim TH, Bae S, Myoung J. Differential Impact of Spike Protein Mutations on SARS-CoV-2 Infectivity and Immune Evasion: Insights from Delta and Kappa Variants. J Microbiol Biotechnol 2024; 34:2506-2515. [PMID: 39631784 PMCID: PMC11733546 DOI: 10.4014/jmb.2411.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
SARS-CoV-2 continues to pose a global health challenge due to its high transmissibility and mutability, with new variants emerging that potentially undermine vaccination and therapeutic efforts. Mutations in the spike protein, particularly in the receptor-binding domain (RBD), significantly influence viral transmissibility and immune escape. However, the complex interplay of these mutations and their combined effects on viral fitness remain to be analyzed. In this study, we investigated the functional impact of key mutations found in the Delta and Kappa variants of SARS-CoV-2. Using pseudovirus assays, we demonstrated that the T478K and L452R mutations characteristic of the Delta variant primarily enhance viral infectivity, with minimal effect on antibody-mediated neutralization. Conversely, the E484Q mutation of the Kappa variant, alone or in combination with L452R, significantly improved evasion of antibody-mediated neutralization but appeared to compromise viral fitness and infectivity. Notably, contrary to previous reports, we found that the P681R mutation contributed neither to increased infectivity nor immune evasion at least in the assay system employed in this study. Our findings suggest that the Delta variant's global dominance over the Kappa variant may be attributed to its superior infectivity and transmissibility rather than enhanced immune evasion capabilities. These results provide valuable insights into the functional consequences of spike protein mutations and may aid in predicting the emergence and spread of future SARS-CoV-2 variants. Such understanding is crucial for enhancing public health preparedness and informing the development of next-generation vaccines and therapeutics.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
5
|
Jarvie MM, Nguyen TNT, Southwell B, Wright D. Integration of Whole-Genome Sequencing with ddPCR Kit for Detection of Omicron Subvariants in Wastewater in the Upper Peninsula of Michigan. Appl Microbiol 2024; 4:1453-1463. [DOI: 10.3390/applmicrobiol4040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study explores the integration of genome sequencing and digital droplet polymerase chain reaction (ddPCR)-based methods for tracking the diversity of COVID-19 variants in wastewater. The research focuses on monitoring various Omicron subvariants during a period of significant viral evolution. Genome sequencing, particularly using Oxford Nanopore Technology (ONT), provides a detailed view of emerging variants, surpassing the limitations of PCR-based detection kits that rely on known sequences. Of the 43 samples analyzed, 39.5% showed matching results between the GT Molecular ddPCR kits and sequencing, though only 4% were exact matches. Some mismatches occurred due to newer subvariants like XBB and BQ.1, which the ddPCR kits could not detect. This emphasized the limitations of ddPCR kits, which rely on known variant sequences, while sequencing provides real-time data on emerging variants, offering a more comprehensive view of circulating strains. This study highlights the effectiveness of combining these methodologies to enhance early detection and inform public health strategies, especially in regions with limited clinical sequencing capabilities.
Collapse
Affiliation(s)
- Michelle M. Jarvie
- School of Chemistry, Environmental, and Geosciences, Lake Superior State University, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| | - Thu N. T. Nguyen
- School of Chemistry, Environmental, and Geosciences, Lake Superior State University, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| | - Benjamin Southwell
- School of Chemistry, Environmental, and Geosciences, Lake Superior State University, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| | - Derek Wright
- School of Chemistry, Environmental, and Geosciences, Lake Superior State University, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| |
Collapse
|
6
|
Byrne J, Gu L, Garcia-Leon A, Gaillard CM, Saini G, Alalwan D, Tomás-Cortázar J, Kenny G, Donohue S, Reynolds B, O'Gorman T, Landay A, Doran P, Stemler J, Koehler P, Cox RJ, Olesen OF, Lelievre JD, O'Broin C, Savinelli S, Feeney ER, O'Halloran JA, Cotter A, Horgan M, Kelly C, Sadlier C, de Barra E, Cornely OA, Gautier V, Mallon PW. Robust and persistent B-cell responses following SARS-CoV-2 vaccine determine protection from SARS-CoV-2 infection. Front Immunol 2024; 15:1445653. [PMID: 39355249 PMCID: PMC11442242 DOI: 10.3389/fimmu.2024.1445653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction A clear immune correlate of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been defined. We explored antibody, B-cell, and T-cell responses to the third-dose vaccine and relationship to incident SARS-CoV-2 infection. Methods Adults in a prospective cohort provided blood samples at day 0, day 14, and 10 months after the third-dose SARS-CoV-2 vaccine. Participants self-reported incident SARS-CoV-2 infection. Plasma anti-SARS-CoV-2 receptor-binding domain (RBD) and spike-subunit-1 and spike-subunit-2 antibodies were measured. A sub-study assessed SARS-CoV-2-specific plasma and memory B-cell and memory T-cell responses in peripheral blood mononuclear cells by enzyme-linked immunospot. Comparative analysis between participants who developed incident infection and uninfected participants utilised non-parametric t-tests, Kaplan-Meier survival analysis, and Cox proportional hazard ratios. Results Of the 132 participants, 47 (36%) reported incident SARS-CoV-2 infection at a median 16.5 (16.25-21) weeks after the third-dose vaccination. RBD titres and B-cell responses, but not T-cell responses, increased after the third-dose vaccine. Whereas no significant difference in day 14 antibody titres or T-cell responses was observed between participants with and without incident SARS-CoV-2 infection, RBD memory B-cell frequencies were significantly higher in those who did not develop infection [10.0% (4.5%-16.0%) versus 4.9% (1.6%-9.3%), p = 0.01]. RBD titres and memory B-cell frequencies remained significantly higher at 10 months than day 0 levels (p < 0.01). Discussion Robust antibody and B-cell responses persisted at 10 months following the third-dose vaccination. Higher memory B-cell frequencies, rather than antibody titres or T-cell responses, predicted protection from subsequent infection, identifying memory B cells as a correlate of protection.
Collapse
Affiliation(s)
- Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Alejandro Garcia-Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Colette Marie Gaillard
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Sean Donohue
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Bearach Reynolds
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Tessa O'Gorman
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter Doran
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jannik Stemler
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Philipp Koehler
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany
| | | | - Cathal O'Broin
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Stefano Savinelli
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Eoin R Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Jane A O'Halloran
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Christine Kelly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Corrina Sadlier
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner Site Bonn-Cologne Department Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patrick Wg Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Kuhn J, Marti I, Ryser-Degiorgis MP, Wernike K, Jones S, Tyson G, Delalay G, Scherrer P, Borel S, Hosie MJ, Kipar A, Kuhlmeier E, Chan T, Hofmann-Lehmann R, Meli ML. Investigations on the Potential Role of Free-Ranging Wildlife as a Reservoir of SARS-CoV-2 in Switzerland. Viruses 2024; 16:1407. [PMID: 39339883 PMCID: PMC11437421 DOI: 10.3390/v16091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From 2020 to 2023, opportunistically collected samples from 712 shot or found dead wild mustelids (64 European stone and pine martens, 13 European badgers, 10 European polecats), canids (449 red foxes, 41 gray wolves, one golden jackal) and felids (56 Eurasian lynx, 18 European wildcats), as well as from 45 captured animals (39 Eurasian lynx, 6 European wildcats) were tested. A multi-step serological approach detecting antibodies to the spike protein receptor binding domain (RBD) and N-terminal S1 subunit followed by surrogate virus neutralization (sVNT) and pseudotype-based virus neutralization assays against different SARS-CoV-2 variants was performed. Additionally, viral RNA loads were quantified in lung tissues and in oronasal, oropharyngeal, and rectal swabs by reverse transcription polymerase chain reactions (RT-qPCRs). Serologically, SARS-CoV-2 exposure was confirmed in 14 free-ranging Swiss red foxes (prevalence 3.1%, 95% CI: 1.9-5.2%), two Eurasian lynx (2.2%, 95% CI: 0.6-7.7%), and one European wildcat (4.2%, 95% CI: 0.2-20.2%). Two positive foxes exhibited neutralization activity against the BA.2 and BA.1 Omicron variants. No active infection (viral RNA) was detected in any animal tested. This is the first report of SARS-CoV-2 antibodies in free-ranging red foxes, Eurasian lynx, and European wildcats worldwide. It confirms the spread of SARS-CoV-2 to free-ranging wildlife in Switzerland but does not provide evidence of reservoir formation. Our results underscore the susceptibility of wildlife populations to SARS-CoV-2 and the importance of understanding diseases in a One Health Concept.
Collapse
Affiliation(s)
- Juliette Kuhn
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Iris Marti
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Marie-Pierre Ryser-Degiorgis
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sarah Jones
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Gary Delalay
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Patrick Scherrer
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Stéphanie Borel
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Banho CA, de Carvalho Marques B, Sacchetto L, Lima AKS, Parra MCP, Lima ARJ, Ribeiro G, Martins AJ, Barros CRDS, Elias MC, Sampaio SC, Slavov SN, Rodrigues ES, Santos EV, Covas DT, Kashima S, Brassaloti RA, Petry B, Clemente LG, Coutinho LL, Assato PA, da Silva da Costa FA, Grotto RMT, Poleti MD, Lesbon JCC, Mattos EC, Fukumasu H, Giovanetti M, Alcantara LCJ, Souza-Neto JA, Rahal P, Araújo JP, Spilki FR, Althouse BM, Vasilakis N, Nogueira ML. Dynamic clade transitions and the influence of vaccination on the spatiotemporal circulation of SARS-CoV-2 variants. NPJ Vaccines 2024; 9:145. [PMID: 39127725 DOI: 10.1038/s41541-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Botucatu, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Selcetta, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
| | - Jayme A Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas StateUniversity, Manhattan, KS, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Information School, University of Washington, Seattle, WA, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
9
|
Tan MW, Anelone AJN, Tay AT, Tan RY, Zeng K, Tan KB, Clapham HE. Differences in virus and immune dynamics for SARS-CoV-2 Delta and Omicron infections by age and vaccination histories. BMC Infect Dis 2024; 24:654. [PMID: 38951848 PMCID: PMC11218222 DOI: 10.1186/s12879-024-09572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
Vaccination against COVID-19 was integral to controlling the pandemic that persisted with the continuous emergence of SARS-CoV-2 variants. Using a mathematical model describing SARS-CoV-2 within-host infection dynamics, we estimate differences in virus and immunity due to factors of infecting variant, age, and vaccination history (vaccination brand, number of doses and time since vaccination). We fit our model in a Bayesian framework to upper respiratory tract viral load measurements obtained from cases of Delta and Omicron infections in Singapore, of whom the majority only had one nasopharyngeal swab measurement. With this dataset, we are able to recreate similar trends in URT virus dynamics observed in past within-host modelling studies fitted to longitudinal patient data.We found that Omicron had higher R0,within values than Delta, indicating greater initial cell-to-cell spread of infection within the host. Moreover, heterogeneities in infection dynamics across patient subgroups could be recreated by fitting immunity-related parameters as vaccination history-specific, with or without age modification. Our model results are consistent with the notion of immunosenescence in SARS-CoV-2 infection in elderly individuals, and the issue of waning immunity with increased time since last vaccination. Lastly, vaccination was not found to subdue virus dynamics in Omicron infections as well as it had for Delta infections.This study provides insight into the influence of vaccine-elicited immunity on SARS-CoV-2 within-host dynamics, and the interplay between age and vaccination history. Furthermore, it demonstrates the need to disentangle host factors and changes in pathogen to discern factors influencing virus dynamics. Finally, this work demonstrates a way forward in the study of within-host virus dynamics, by use of viral load datasets including a large number of patients without repeated measurements.
Collapse
Affiliation(s)
- Maxine W Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
| | - Anet J N Anelone
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | | | - Kangwei Zeng
- Ministry of Health, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Kelvin Bryan Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Hannah Eleanor Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Salehi M, Alavi Darazam I, Nematollahi A, Alimohammadi M, Pouya S, Alimohammadi R, Khajavirad N, Porgoo M, Sedghi M, Mahdi Sepahi M, Azimi M, Hosseini H, Mahmoud Hashemi S, Dehghanizadeh S, Khoddami V. Safety and immunogenicity of COReNAPCIN, a SARS-CoV-2 mRNA vaccine, as a fourth heterologous booster in healthy Iranian adults: A double-blind, randomized, placebo-controlled, phase 1 clinical trial with a six-month follow-up. Int Immunopharmacol 2024; 134:112192. [PMID: 38761778 DOI: 10.1016/j.intimp.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The recurrent COVID-19 infection, despite global vaccination, highlights the need for booster doses. A heterologous booster has been suggested to enhance immunity and protection against emerging variants of concern of the SARS-CoV-2 virus. In this report, we aimed to assess the safety, and immunogenicity of COReNAPCIN, as a fourth booster dose after three doses of inactivated vaccines. METHODS The study was conducted as a double-blind, randomized, placebo-controlled phase 1 clinical trial of the mRNA-based vaccine candidate, COReNAPCIN. The vaccine was injected as a heterologous booster in healthy Iranian adults aged 18-50 who had previously received three doses of inactivated SARS-CoV-2 vaccines. In the study, 30 participants were randomly assigned to receive either COReNAPCIN in two different doses (25 µg and 50 µg) or placebo. The vaccine candidate contained mRNA encoding the complete sequence of the pre-fusion stabilized Spike protein of SARS-CoV-2, formulated within lipid nanoparticles. The primary endpoint was safety and the secondary objective was humoral immunogenicity until 6 months post-vaccination. The cellular immunogenicity was pursued as an exploratory outcome. RESULTS COReNAPCIN was well tolerated in vaccinated individuals in both doses with no life-threatening or other serious adverse events. The most noticeable solicited adverse events were pain at the site of injection, fatigue and myalgia. Regarding the immunogenicity, despite the seroprevalence of SARS-CoV-2 antibodies due to the vaccination history for all and previous SARS-CoV-2 infection for some participants, the recipients of 25 and 50 µg COReNAPCIN, two weeks post-vaccination, showed 6·6 and 8·1 fold increase in the level of anti-RBD, and 11·5 and 21·7 fold increase in the level of anti-spike antibody, respectively. The geometric mean virus neutralizing titers reached 10.2 fold in the 25 µg group and 8.4 fold in 50 µg group of pre-boost levels. After 6 months, the measured anti-spike antibody concentration still maintains a geometric mean fold rise of 2.8 and 6.3, comparing the baseline levels in 25 and 50 µg groups, respectively. Additionally, the significant increase in the spike-specific IFN-ϒ T-cell response upon vaccination underscores the activation of cellular immunity. CONCLUSION COReNAPCIN booster showed favorable safety, tolerability, and immunogenicity profile, supporting its further clinical development (Trial registration: IRCT20230131057293N1).
Collapse
Affiliation(s)
- Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ilad Alavi Darazam
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | - Nasim Khajavirad
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Maryam Azimi
- Department of Medical Affairs, Pharmed Pajoohan Viera, Tehran, Iran
| | - Hamed Hosseini
- Clinical Trial Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
11
|
Yi B, Patrasová E, Šimůnková L, Rost F, Winkler S, Laubner A, Reinhardt S, Dahl A, Dalpke AH. Investigating the cause of a 2021 winter wave of COVID-19 in a border region in eastern Germany: a mixed-methods study, August to November 2021. Epidemiol Infect 2024; 152:e87. [PMID: 38751220 PMCID: PMC11149030 DOI: 10.1017/s0950268824000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
It is so far unclear how the COVID-19 winter waves started and what should be done to prevent possible future waves. In this study, we deciphered the dynamic course of a winter wave in 2021 in Saxony, a state in Eastern Germany neighbouring the Czech Republic and Poland. The study was carried out through the integration of multiple virus genomic epidemiology approaches to track transmission chains, identify emerging variants and investigate dynamic changes in transmission clusters. For identified local variants of interest, functional evaluations were performed. Multiple long-lasting community transmission clusters have been identified acting as driving force for the winter wave 2021. Analysis of the dynamic courses of two representative clusters indicated a similar transmission pattern. However, the transmission cluster caused by a locally occurring new Delta variant AY.36.1 showed a distinct transmission pattern, and functional analyses revealed a replication advantage of it. This study indicated that long-lasting community transmission clusters starting since early autumn caused by imported or locally occurring variants all contributed to the development of the 2021 winter wave. The information we achieved might help future pandemic prevention.
Collapse
Affiliation(s)
- Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Patrasová
- Department of Epidemiology, Regional Public Health Authority for Ustecky Kraj, Ústí nad Labem, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lenka Šimůnková
- Department of Epidemiology, Regional Public Health Authority for Ustecky Kraj, Ústí nad Labem, Czech Republic
| | - Fabian Rost
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-Concept Genome Center, Technische Universität Dresden, Dresden, Germany
| | - Alexa Laubner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Suwanpakdee S, Ketchim N, Thongdee M, Chaiwattanarungruengpaisan S, Tangsudjai S, Wiriyarat W, Julapanthong P, Trakoolchaisri W, Buamas S, Sakcamduang W, Okada PA, Puthavathana P, Paungpin W. Sero-epidemiological investigation and cross-neutralization activity against SARS-CoV-2 variants in cats and dogs, Thailand. Front Vet Sci 2024; 11:1329656. [PMID: 38770189 PMCID: PMC11103004 DOI: 10.3389/fvets.2024.1329656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Epidemiological data on SARS-CoV-2 infection in companion animals have been thoroughly investigated in many countries. However, information on the neutralizing cross-reactivity against SARS-CoV-2 variants in companion animals is still limited. Here, we explored the neutralizing antibodies against SARS-CoV-2 in cats and dogs between May 2020 and December 2021 during the first wave (a Wuhan-Hu-1-dominant period) and the fourth wave (a Delta-dominant period) of the Thailand COVID-19 outbreak. Archival plasma samples of 1,304 cats and 1,795 dogs (total = 3,099) submitted for diagnosis and health checks were collected at the Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom. A microneutralization test was used to detect neutralizing antibodies against the ancestral Wuhan-Hu-1 and the Delta variants. A plasma sample with neutralizing titers ≥10 was considered positive. Our results showed relatively low seroprevalence with seropositive samples detected in 8 out of 3,099 individuals (0.26, 95% CI 0.11-0.51%). Among these cases, SARS-CoV-2 neutralizing antibodies from both the ancestral Wuhan-Hu-1 and the Delta variants were found in three out of eight cases in two cats (n = 2) and one dog (n = 1). Furthermore, neutralizing antibodies specific to only the ancestral Wuhan-Hu-1 variant were exclusively found in one cat (n = 1), while antibodies against only the Delta variant were detected in four dogs (n = 4). Additionally, the neutralizing cross-activities against SARS-CoV-2 variants (Alpha, Beta, and Omicron BA.2) were observed in the seropositive cats with limited capacity to neutralize the Omicron BA.2 variant. In summary, the seropositivity among cats and dogs in households with an unknown COVID-19 status was relatively low in Thailand. Moreover, the neutralizing antibodies against SARS-CoV-2 found in the seropositive cats and dogs had limited or no ability to neutralize the Omicron BA.2 variant. Thus, monitoring SARS-CoV-2 infection and sero-surveillance, particularly in cats, is imperative for tracking virus susceptibility to the emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sarin Suwanpakdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Natthaphat Ketchim
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Siriporn Tangsudjai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pruksa Julapanthong
- Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wachira Trakoolchaisri
- Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Supakit Buamas
- Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Messina NL, Germano S, McElroy R, Bonnici R, Grubor-Bauk B, Lynn DJ, McDonald E, Nicholson S, Perrett KP, Pittet LF, Rudraraju R, Stevens NE, Subbarao K, Curtis N. Specific and off-target immune responses following COVID-19 vaccination with ChAdOx1-S and BNT162b2 vaccines-an exploratory sub-study of the BRACE trial. EBioMedicine 2024; 103:105100. [PMID: 38663355 PMCID: PMC11058726 DOI: 10.1016/j.ebiom.2024.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic led to the rapid development and deployment of several highly effective vaccines against SARS-CoV-2. Recent studies suggest that these vaccines may also have off-target effects on the immune system. We sought to determine and compare the off-target effects of the adenovirus vector ChAdOx1-S (Oxford-AstraZeneca) and modified mRNA BNT162b2 (Pfizer-BioNTech) vaccines on immune responses to unrelated pathogens. METHODS Prospective sub-study within the BRACE trial. Blood samples were collected from 284 healthcare workers before and 28 days after ChAdOx1-S or BNT162b2 vaccination. SARS-CoV-2-specific antibodies were measured using ELISA, and whole blood cytokine responses to specific (SARS-CoV-2) and unrelated pathogen stimulation were measured by multiplex bead array. FINDINGS Both vaccines induced robust SARS-CoV-2 specific antibody and cytokine responses. ChAdOx1-S vaccination increased cytokine responses to heat-killed (HK) Candida albicans and HK Staphylococcus aureus and decreased cytokine responses to HK Escherichia coli and BCG. BNT162b2 vaccination decreased cytokine response to HK E. coli and had variable effects on cytokine responses to BCG and resiquimod (R848). After the second vaccine dose, BNT162b2 recipients had greater specific and off-target cytokine responses than ChAdOx1-S recipients. INTERPRETATION ChAdOx1-S and BNT162b2 vaccines alter cytokine responses to unrelated pathogens, indicative of potential off-target effects. The specific and off-target effects of these vaccines differ in their magnitude and breadth. The clinical relevance of these findings is uncertain and needs further study. FUNDING Bill & Melinda Gates Foundation, National Health and Medical Research Council, Swiss National Science Foundation and the Melbourne Children's. BRACE trial funding is detailed in acknowledgements.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Susie Germano
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Ellie McDonald
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirsten P Perrett
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Population Allergy Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Paediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Gardner BJ, Kilpatrick AM. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. Viruses 2024; 16:479. [PMID: 38543844 PMCID: PMC10975673 DOI: 10.3390/v16030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The emergence of new virus variants, including the Omicron variant (B.1.1.529) of SARS-CoV-2, can lead to reduced vaccine effectiveness (VE) and the need for new vaccines or vaccine doses if the extent of immune evasion is severe. Neutralizing antibody titers have been shown to be a correlate of protection for SARS-CoV-2 and other pathogens, and could be used to quickly estimate vaccine effectiveness for new variants. However, no model currently exists to provide precise VE estimates for a new variant against severe disease for SARS-CoV-2 using robust datasets from several populations. We developed predictive models for VE against COVID-19 symptomatic disease and hospitalization across a 54-fold range of mean neutralizing antibody titers. For two mRNA vaccines (mRNA-1273, BNT162b2), models fit without Omicron data predicted that infection with the BA.1 Omicron variant increased the risk of hospitalization 2.8-4.4-fold and increased the risk of symptomatic disease 1.7-4.2-fold compared to the Delta variant. Out-of-sample validation showed that model predictions were accurate; all predictions were within 10% of observed VE estimates and fell within the model prediction intervals. Predictive models using neutralizing antibody titers can provide rapid VE estimates, which can inform vaccine booster timing, vaccine design, and vaccine selection for new virus variants.
Collapse
Affiliation(s)
- Billy J. Gardner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
15
|
Banho CA, de Carvalho Marques B, Sacchetto L, Sepedro Lima AK, Pereira Parra MC, Jeronimo Lima AR, Ribeiro G, Jorge Martins A, dos Santos Barros CR, Carolina Elias M, Coccuzzo Sampaio S, Nanev Slavov S, Strazza Rodrigues E, Vieira Santos E, Tadeu Covas D, Kashima S, Augusto Brassaloti R, Petry B, Gaspar Clemente L, Lehmann Coutinho L, Akemi Assato P, da Silva da Costa FA, Souza-Neto JA, Maria Tommasini Grotto R, Daiana Poleti M, Cristina Chagas Lesbon J, Chicaroni Mattos E, Fukumasu H, Giovanetti M, Carlos Junior Alcantara L, Rahal P, Pessoa Araújo JF, Althouse BM, Vasilakis N, Lacerda Nogueira M. Dynamic clade transitions and the influence of vaccine rollout on the spatiotemporal circulation of SARS-CoV-2 variants in São Paulo, Brazil. RESEARCH SQUARE 2024:rs.3.rs-3788142. [PMID: 38343798 PMCID: PMC10854302 DOI: 10.21203/rs.3.rs-3788142/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Jayme A. Souza-Neto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Brazil, Americas
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Brazil, Americas
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Fernando Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM
- Information School, University of Washington, Seattle, WA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
16
|
Sánchez-de Prada L, Martínez-García AM, González-Fernández B, Gutiérrez-Ballesteros J, Rojo-Rello S, Garcinuño-Pérez S, Álvaro-Meca A, Ortiz De Lejarazu R, Sanz-Muñoz I, Eiros JM. Impact on the time elapsed since SARS-CoV-2 infection, vaccination history, and number of doses, on protection against reinfection. Sci Rep 2024; 14:353. [PMID: 38172152 PMCID: PMC10764833 DOI: 10.1038/s41598-023-50335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
SARS-CoV-2 reinfections have been frequent, even among those vaccinated. The aim of this study is to know if hybrid immunity (infection + vaccination) is affected by the moment of vaccination and number of doses received. We conducted a retrospective study in 746 patients with a history of COVID-19 reinfection and recovered the dates of infection and reinfection and vaccination status (date and number of doses). To assess differences in the time to reinfection(tRI) between unvaccinated, vaccinated before 6 months, and later; and comparing one, two or three doses (incomplete, complete and booster regime) we performed the log-rank test of the cumulative incidence calculated as 1 minus the Kaplan-Meier estimator. Also, an adjusted Cox-regression was performed to evaluate the risk of reinfection in all groups. The tRI was significantly higher in those vaccinated vs. non-vaccinated (p < 0.001). However, an early incomplete regime protects similar time than not receiving a vaccine. Vaccination before 6 months after infection showed a lower tRI compared to those vaccinated later with the same regime (adj-p < 0.001). Actually, early vaccination with complete and booster regimes provided lower length of protection compared to vaccinating later with incomplete and complete regime, respectively. Vaccination with complete and booster regimes significantly increases the tRI (adj-p < 0.001). Vaccination increases the time it takes for a person to become reinfected with SARS-CoV-2. Increasing the time from infection to vaccination increases the time in which a person could be reinfected and reduces the risk of reinfection, especially in complete and booster regimes. Those results emphasize the role of vaccines and boosters during the pandemic and can guide strategies on future vaccination policy.
Collapse
Affiliation(s)
- Laura Sánchez-de Prada
- Faculty of Medicine, University of Valladolid, Valladolid, Spain.
- National Influenza Center of Valladolid, Valladolid, Spain.
| | - Ana María Martínez-García
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Belén González-Fernández
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - Silvia Rojo-Rello
- Faculty of Medicine, University of Valladolid, Valladolid, Spain
- National Influenza Center of Valladolid, Valladolid, Spain
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Sonsoles Garcinuño-Pérez
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Alejandro Álvaro-Meca
- Department of Preventive Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - José M Eiros
- Faculty of Medicine, University of Valladolid, Valladolid, Spain
- National Influenza Center of Valladolid, Valladolid, Spain
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Canevari JT, Cheng AC, Wu L, Rowe SL, Wollersheim DE, West D, Majumdar SS, Sullivan SG. The relative effectiveness of three and four doses of COVID-19 vaccine in Victoria, Australia: A data linkage study. Vaccine 2024; 42:53-58. [PMID: 38057205 DOI: 10.1016/j.vaccine.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) pandemic led to extensive vaccination campaigns worldwide, including in Australia. Immunity waning and the emergence of new viral variants pose challenges to the effectiveness of vaccines. Our study aimed to assess the relative effectiveness (rVE) of 3 and 4 compared with 2 doses of COVID-19 vaccine. The study focuses on the Victorian population, a majority of whom had no prior exposure to the virus before vaccination. METHODS We used routinely collected data for the state of Victoria, Australia, to assess rVE during an Omicron-dominant period, 1 June 2022 to 1 March 2023. Immunisation, notifications, hospitalisations and mortality data for residents aged 65 years and older were linked for analysis. Cox proportional hazard regression was used to estimate the rVE against COVID-19 hospitalisation or death, accounting for key confounders with vaccination as a time-varying covariate. RESULTS In 1,070,113 people 65 years or older who had received their second dose, a third and fourth dose of a COVID-19 vaccine significantly reduced the hazard of hospitalisation or death compared to two doses. rVE was highest within two weeks from administration at 40 % (95 % CI: 0 % to 64 %) and 66 % (95 % CI: 60 % to 71 %) for a third and fourth dose, respectively. Additional protection conferred by third and fourth doses waned over time from administration. CONCLUSIONS Our findings underscore the need for additional vaccine doses and updated vaccine strategies. These findings have implications for public health advice and COVID-19 vaccine strategies. Further research and monitoring of vaccine effectiveness in real-world settings are warranted to inform ongoing pandemic response efforts.
Collapse
Affiliation(s)
- Jose T Canevari
- Department of Health, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - Allen C Cheng
- Monash University, Melbourne, Australia; Monash Health, Melbourne Australia
| | - Logan Wu
- Department of Health, Melbourne, Australia; Walter and Eliza Hall Institute, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - Stacey L Rowe
- Department of Health, Melbourne, Australia; Monash University, Melbourne, Australia; University of San Francisco, USA
| | - Dennis E Wollersheim
- Department of Health, Melbourne, Australia; La Trobe University, Melbourne, Australia
| | | | - Suman S Majumdar
- Department of Health, Melbourne, Australia; Monash University, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | - Sheena G Sullivan
- Department of Health, Melbourne, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia; University of California, Los Angeles, USA; The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
18
|
Liang Z, Tong J, Sun Z, Liu S, Wu J, Wu X, Li T, Yu Y, Zhang L, Zhao C, Lu Q, Nie J, Huang W, Wang Y. Rational prediction of immunogenicity clustering through cross-reactivity analysis of thirteen SARS-CoV-2 variants. J Med Virol 2024; 96:e29314. [PMID: 38163276 DOI: 10.1002/jmv.29314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
SARS-CoV-2 breakthrough infections in vaccinated individuals underscore the threat posed by continuous mutating variants, such as Omicron, to vaccine-induced immunity. This necessitates the search for broad-spectrum immunogens capable of countering infections from such variants. This study evaluates the immunogenicity relationship among SARS-CoV-2 variants, from D614G to XBB, through Guinea pig vaccination, covering D614G, Alpha, Beta, Gamma, Delta, BA.1, BA.2, BA.2.75, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB, employing three immunization strategies: three-dose monovalent immunogens, three-dose bivalent immunogens, and a two-dose vaccination with D614G followed by a booster immunization with a variant strain immunogen. Three distinct immunogenicity clusters were identified: D614G, Alpha, Beta, Gamma, and Delta as cluster 1, BA.1, BA.2, and BA.2.75 as cluster 2, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB as cluster 3. Broad-spectrum protection could be achieved through a combined immunization strategy using bivalent immunogens or D614G and XBB, or two initial D614G vaccinations followed by two XBB boosters. A comparison of neutralizing antibody levels induced by XBB boosting and equivalent dosing of D614G and XBB revealed that the XBB booster produced higher antibody levels. The study suggests that vaccine antigen selection should focus on the antigenic alterations among variants, eliminating the need for updating vaccine components for each variant.
Collapse
Affiliation(s)
- Ziteng Liang
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Ziqi Sun
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Shuo Liu
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiajing Wu
- Department of R&D Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | | | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Youchun Wang
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
- Changping Laboratory, Beijing, China
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
19
|
Malewana RD, Stalls V, May A, Lu X, Martinez DR, Schäfer A, Li D, Barr M, Sutherland LL, Lee E, Parks R, Beck WE, Newman A, Bock KW, Minai M, Nagata BM, DeMarco CT, Denny TN, Oguin TH, Rountree W, Wang Y, Mansouri K, Edwards RJ, Sempowski GD, Eaton A, Muramatsu H, Henderson R, Tam Y, Barbosa C, Tang J, Cain DW, Santra S, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Montefiori DC, Pardi N, Weissman D, Baric RS, Acharya P, Haynes BF, Saunders KO. Broadly neutralizing antibody induction by non-stabilized SARS-CoV-2 Spike mRNA vaccination in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572191. [PMID: 38187726 PMCID: PMC10769253 DOI: 10.1101/2023.12.18.572191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.
Collapse
Affiliation(s)
- R Dilshan Malewana
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Immunobiology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Whitney Edwards Beck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ying Tam
- Acuitas Therapeutics, LLC, Vancouver, BC, V6T 1Z3, Canada
| | | | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
20
|
Willett BJ, Logan N, Scott S, Davis C, McSorley T, Asamaphan P, Hosie MJ, Olmo P, Grove J, Orton R, Ho A, Haughney J, Robertson DL, Thomson EC. Omicron BA.2.86 cross-neutralising activity in community sera from the UK. Lancet 2023; 402:2075-2076. [PMID: 37952549 DOI: 10.1016/s0140-6736(23)02397-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Brian J Willett
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Nicola Logan
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Sam Scott
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Chris Davis
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Therese McSorley
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Patawee Asamaphan
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Paula Olmo
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Joe Grove
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Richard Orton
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Antonia Ho
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - John Haughney
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - David L Robertson
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Emma C Thomson
- MRC University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK.
| |
Collapse
|
21
|
Zhu L, Mao N, Yi C, Simayi A, Feng J, Feng Y, He M, Ding S, Wang Y, Wang Y, Wei M, Hong J, Li C, Tian H, Zhou L, Peng J, Zhang S, Song C, Jin H, Zhu F, Xu W, Zhao J, Bao C. Impact of vaccination on kinetics of neutralizing antibodies against SARS-CoV-2 by serum live neutralization test based on a prospective cohort. Emerg Microbes Infect 2023; 12:2146535. [PMID: 36373485 PMCID: PMC9858416 DOI: 10.1080/22221751.2022.2146535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How much the vaccine contributes to the induction and development of neutralizing antibodies (NAbs) of breakthrough cases relative to those unvaccinated-infected cases is not fully understood. We conducted a prospective cohort study and collected serum samples from 576 individuals who were diagnosed with SARS-CoV-2 Delta strain infection, including 245 breakthrough cases and 331 unvaccinated-infected cases. NAbs were analysed by live virus microneutralization test and transformation of NAb titre. NAbs titres against SARS-CoV-2 ancestral and Delta variant in breakthrough cases were 7.8-fold and 4.0-fold higher than in unvaccinated-infected cases, respectively. NAbs titres in breakthrough cases peaked at the second week after onset/infection. However, the NAbs titres in the unvaccinated-infected cases reached their highest levels during the third week. Compared to those with higher levels of NAbs, those with lower levels of NAbs had no difference in viral clearance duration time (P>0.05), did exhibit higher viral load at the beginning of infection/maximum viral load of infection. NAb levels were statistically higher in the moderate cases than in the mild cases (P<0.0001). Notably, in breakthrough cases, NAb levels were highest longer than 4 months after vaccination (Delta strain: 53,118.2 U/mL), and lowest in breakthrough cases shorter than 1 month (Delta strain: 7551.2 U/mL). Cross-neutralization against the ancestral strain and the current circulating isolate (Omicron BA.5) was significantly lower than against the Delta variant in both breakthrough cases and unvaccinated-infected cases. Our study demonstrated that vaccination could induce immune responses more rapidly and greater which could be effective in controlling SARS-CoV-2.
Collapse
Affiliation(s)
- Liguo Zhu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Naiying Mao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changhua Yi
- Nanjing Infectious Diseases Clinical Medical Center (The Second Hospital of Nanjing, Nanjing University of Chinese Medicine), Nanjing, P.R China
| | - Aidibai Simayi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Jialu Feng
- School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Feng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Songning Ding
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Yin Wang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Pople's Republic of China
| | - Yan Wang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Pople's Republic of China
| | - Mingwei Wei
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jie Hong
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chuchu Li
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hua Tian
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lu Zhou
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jiefu Peng
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Shihan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Ci Song
- School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fengcai Zhu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, Wenbo Xu NHC Key Laboratory of Medical Virology and Viral Diseases, WHO WPRO Regional Reference Laboratory of Measles and Rubella, Measles Laboratory in National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155# Changbai Road, Changping District, Beijing, People’s Republic of China
| | - Jun Zhao
- The Third People's Hospital of Yangzhou, Yangzhou, People’s Republic of China,Jun Zhao The Third People's Hospital of Yangzhou, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Changjun Bao
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China,Changjun Bao NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| |
Collapse
|
22
|
Zaman N, Parvaiz N, Gul F, Yousaf R, Gul K, Azam SS. Dynamics of water-mediated interaction effects on the stability and transmission of Omicron. Sci Rep 2023; 13:20894. [PMID: 38017052 PMCID: PMC10684572 DOI: 10.1038/s41598-023-48186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rimsha Yousaf
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kainat Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
23
|
Atti A, Insalata F, Carr EJ, Otter AD, Foulkes S, Wu MY, Cole MJ, Linley E, Semper A, Brooks T, Hopkins S, Charlett A, Beale R, Hall V. Antibody correlates of protection against Delta infection after vaccination: A nested case-control within the UK-based SIREN study. J Infect 2023; 87:420-427. [PMID: 37689394 DOI: 10.1016/j.jinf.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES To investigate serological correlates of protection against SARS-CoV-2 B.1.617.2 (Delta) infection after two vaccinations. METHODS We performed a case-control study, where cases were Delta infections after the second vaccine dose and controls were vaccinated, never infected participants, matched by age, gender and region. Sera were tested for anti-SARS-CoV-2 Spike antibody levels (anti-S) and neutralising antibody titres (nAbT), using live virus microneutralisation against Ancestral, Delta and Omicron (BA.1, B.1.1.529). We modelled the decay of anti-S and nAbT for both groups, inferring levels at matched calendar times since the second vaccination. We assessed differences in inferred antibody titres between groups and used conditional logistic regression to explore the relationship between titres and odds of infection. RESULTS In total, 130 sequence-confirmed Delta cases and 318 controls were included. Anti-S and Ancestral nAbT decayed similarly between groups, but faster in cases for Delta nAbT (p = 0.02) and Omicron nAbT (p = 0.002). At seven days before infection, controls had higher anti-S levels (p < 0.0001) and nAbT (p < 0.0001; all variants) at matched calendar time. A two-fold increase in anti-S levels was associated with a 29% ([95% CI 14-42%]; p = 0.001) reduction in odds of Delta infection. Delta nAbT>40 were associated with reduced odds of Delta infection (89%, [69-96%]; p < 0.0001), with additional benefits for titres >100 (p = 0.009) and >400 (p = 0.007). CONCLUSIONS We have identified correlates of protection against SARS-CoV-2 Delta, with potential implications for vaccine deployment, development, and public health response.
Collapse
Affiliation(s)
- Ana Atti
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK.
| | - Ferdinando Insalata
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Edward J Carr
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK; The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; UCL Dept of Renal Medicine, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ashley D Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sarah Foulkes
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Mary Y Wu
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Covid Surveillance Unit, The Francis Crick Institute, London, UK
| | - Michelle J Cole
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Ezra Linley
- UK Health Security Agency, Manchester Royal Infirmary, Oxford Road, Manchester M139WL, UK
| | - Amanda Semper
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Susan Hopkins
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Andre Charlett
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Rupert Beale
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; UCL Dept of Renal Medicine, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Genotype-to-Phenotype UK National Virology Consortium (G2P-UK), UK
| | - Victoria Hall
- UK Health Security Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| |
Collapse
|
24
|
Abstract
The massive scale of the global SARS-CoV-2 sequencing effort created new opportunities and challenges for understanding SARS-CoV-2 evolution. Rapid detection and assessment of new variants has become one of the principal objectives of genomic surveillance of SARS-CoV-2. Because of the pace and scale of sequencing, new strategies have been developed for characterizing fitness and transmissibility of emerging variants. In this Review, I discuss a wide range of approaches that have been rapidly developed in response to the public health threat posed by emerging variants, ranging from new applications of classic population genetics models to contemporary synthesis of epidemiological models and phylodynamic analysis. Many of these approaches can be adapted to other pathogens and will have increasing relevance as large-scale pathogen sequencing becomes a regular feature of many public health systems.
Collapse
Affiliation(s)
- Erik Volz
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| |
Collapse
|
25
|
Fundora MP, Kamidani S, Oster ME. COVID Vaccination as a Strategy for Cardiovascular Disease Prevention. Curr Cardiol Rep 2023; 25:1327-1335. [PMID: 37688764 DOI: 10.1007/s11886-023-01950-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular (CV) disease is a known complication of SARS-CoV-2 infection. A clear benefit of COVID-19 vaccination is a reduction mortality; however, COVID-19 vaccination may also prevent cardiovascular disease (CVD). We aim to describe CV pathology associated with SARS-CoV-2 infection and describe how COVID-19 vaccination is a strategy for CVD prevention. RECENT FINDINGS The risks and benefits of COVID-19 vaccination have been widely studied. Analysis of individuals with and without pre-existing CVD has shown that COVID-19 vaccination can prevent morbidity associated with SARS-CoV-2 infection and reduce mortality. COVID-19 vaccination is effective in preventing myocardial infarction, cerebrovascular events, myopericarditis, and long COVID, all associated with CVD risk factors. Vaccination reduces mortality in patients with pre-existing CVD. Further study investigating ideal vaccination schedules for individuals with CVD should be undertaken to protect this vulnerable group and address new risks from variants of concern.
Collapse
Affiliation(s)
- Michael P Fundora
- Children's Healthcare of Atlanta Cardiology, Department of Pediatrics, Emory University, 1405 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Satoshi Kamidani
- The Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and the Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew E Oster
- Children's Healthcare of Atlanta Cardiology, Department of Pediatrics, Emory University, 1405 Clifton Rd NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Jones S, Tyson GB, Orton RJ, Smollett K, Manna F, Kwok K, Suárez NM, Logan N, McDonald M, Bowie A, Filipe ADS, Willett BJ, Weir W, Hosie MJ. SARS-CoV-2 in Domestic UK Cats from Alpha to Omicron: Swab Surveillance and Case Reports. Viruses 2023; 15:1769. [PMID: 37632111 PMCID: PMC10459977 DOI: 10.3390/v15081769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.
Collapse
Affiliation(s)
- Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Federica Manna
- Bath Vet Referrals, Rosemary Lodge Veterinary Hospital, Wellsway, Bath BA2 5RL, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Andrea Bowie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| |
Collapse
|
27
|
Azarias Da Silva M, Nioche P, Soudaramourty C, Bull-Maurer A, Tiouajni M, Kong D, Zghidi-Abouzid O, Picard M, Mendes-Frias A, Santa-Cruz A, Carvalho A, Capela C, Pedrosa J, Castro AG, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Tran TA, Tokunaga K, Silvestre R, Corbeau P, Mammano F, Estaquier J. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. SCIENCE ADVANCES 2023; 9:eadg2122. [PMID: 37540749 PMCID: PMC10403221 DOI: 10.1126/sciadv.adg2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.
Collapse
Affiliation(s)
| | - Pierre Nioche
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | | | | | - Mounira Tiouajni
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Dechuan Kong
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Santa-Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Loubet
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Albert Sotto
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Laurent Muller
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Claire Roger
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Sandra Duvnjak
- Service de Gérontologie et Prévention du Vieillissement, CHU de Nîmes, Nîmes, France
| | - Tu-Anh Tran
- Service de Pédiatrie, CHU de Nîmes, Nîmes, France
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pierre Corbeau
- Institut de Génétique Humaine, UMR9002 CNRS-Université de Montpellier, Montpellier, France
- Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | - Fabrizio Mammano
- INSERM-U1124, Université Paris Cité, Paris, France
- Université de Tours, INSERM, UMR1259 MAVIVH, Tours, France
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France
- CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
| |
Collapse
|
28
|
Tyson GB, Jones S, Montreuil-Spencer C, Logan N, Scott S, Sasvari H, McDonald M, Marshall L, Murcia PR, Willett BJ, Weir W, Hosie MJ. Increase in SARS-CoV-2 Seroprevalence in UK Domestic Felids Despite Weak Immunogenicity of Post-Omicron Variants. Viruses 2023; 15:1661. [PMID: 37632004 PMCID: PMC10458763 DOI: 10.3390/v15081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Throughout the COVID-19 pandemic, SARS-CoV-2 infections in domestic cats have caused concern for both animal health and the potential for inter-species transmission. Cats are known to be susceptible to the Omicron variant and its descendants, however, the feline immune response to these variants is not well defined. We aimed to estimate the current seroprevalence of SARS-CoV-2 in UK pet cats, as well as characterise the neutralising antibody response to the Omicron (BA.1) variant. A neutralising seroprevalence of 4.4% and an overall seroprevalence of 13.9% was observed. Both purebred and male cats were found to have the highest levels of seroprevalence, as well as cats aged between two and five years. The Omicron variant was found to have a lower immunogenicity in cats than the B.1, Alpha and Delta variants, which reflects previous reports of immune and vaccine evasion in humans. These results further underline the importance of surveillance of SARS-CoV-2 infections in UK cats as the virus continues to evolve.
Collapse
Affiliation(s)
- Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Chloe Montreuil-Spencer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Hagar Sasvari
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Leigh Marshall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Emanuel J, Papies J, Galander C, Adler JM, Heinemann N, Eschke K, Merz S, Pischon H, Rose R, Krumbholz A, Kulić Ž, Lehner MD, Trimpert J, Müller MA. In vitro and in vivo effects of Pelargonium sidoides DC. root extract EPs ® 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2. Front Pharmacol 2023; 14:1214351. [PMID: 37564181 PMCID: PMC10410074 DOI: 10.3389/fphar.2023.1214351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Jackson Emanuel
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jan Papies
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Celine Galander
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Kathrin Eschke
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Žarko Kulić
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| |
Collapse
|
30
|
Haycroft ER, Davis SK, Ramanathan P, Lopez E, Purcell RA, Tan LL, Pymm P, Wines BD, Hogarth PM, Wheatley AK, Juno JA, Redmond SJ, Gherardin NA, Godfrey DI, Tham WH, Selva KJ, Kent SJ, Chung AW. Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants. Med Microbiol Immunol 2023:10.1007/s00430-023-00773-w. [PMID: 37477828 PMCID: PMC10372118 DOI: 10.1007/s00430-023-00773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
Collapse
Affiliation(s)
- Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
31
|
Hu X, Mu Y, Deng R, Yi G, Yao L, Zhang J. Genome characterization based on the Spike-614 and NS8-84 loci of SARS-CoV-2 reveals two major possible onsets of the COVID-19 pandemic. PLoS One 2023; 18:e0279221. [PMID: 37319292 PMCID: PMC10270620 DOI: 10.1371/journal.pone.0279221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
The global COVID-19 pandemic has lasted for 3 years since its outbreak, however its origin is still unknown. Here, we analyzed the genotypes of 3.14 million SARS-CoV-2 genomes based on the amino acid 614 of the Spike (S) and the amino acid 84 of NS8 (nonstructural protein 8), and identified 16 linkage haplotypes. The GL haplotype (S_614G and NS8_84L) was the major haplotype driving the global pandemic and accounted for 99.2% of the sequenced genomes, while the DL haplotype (S_614D and NS8_84L) caused the pandemic in China in the spring of 2020 and accounted for approximately 60% of the genomes in China and 0.45% of the global genomes. The GS (S_614G and NS8_84S), DS (S_614D and NS8_84S), and NS (S_614N and NS8_84S) haplotypes accounted for 0.26%, 0.06%, and 0.0067% of the genomes, respectively. The main evolutionary trajectory of SARS-CoV-2 is DS→DL→GL, whereas the other haplotypes are minor byproducts in the evolution. Surprisingly, the newest haplotype GL had the oldest time of most recent common ancestor (tMRCA), which was May 1 2019 by mean, while the oldest haplotype DS had the newest tMRCA with a mean of October 17, indicating that the ancestral strains that gave birth to GL had been extinct and replaced by the more adapted newcomer at the place of its origin, just like the sequential rise and fall of the delta and omicron variants. However, the haplotype DL arrived and evolved into toxic strains and ignited a pandemic in China where the GL strains had not arrived in by the end of 2019. The GL strains had spread all over the world before they were discovered, and ignited the global pandemic, which had not been noticed until the virus was declared in China. However, the GL haplotype had little influence in China during the early phase of the pandemic due to its late arrival as well as the strict transmission controls in China. Therefore, we propose two major onsets of the COVID-19 pandemic, one was mainly driven by the haplotype DL in China, the other was driven by the haplotype GL globally.
Collapse
Affiliation(s)
- Xiaowen Hu
- Key Laboratory of Microbiology of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Institute of South Subtropical Crops, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Yaojia Mu
- Key Laboratory of Microbiology of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ruru Deng
- Key Laboratory of Microbiology of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Guohui Yi
- Public Research Laboratory, Hainan Medical University, Haikou, Hainan, China
| | - Lei Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Jiaming Zhang
- Key Laboratory of Microbiology of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
32
|
Yahalom-Ronen Y, Tamir H, Melamed S, Politi B, Achdout H, Erez N, Israeli O, Cohen-Gihon I, Chery Mimran L, Barlev-Gross M, Mandelboim M, Orr I, Feldmesser E, Weiss S, Beth-Din A, Paran N, Israely T. VSV-ΔG-Spike Candidate Vaccine Induces Protective Immunity and Protects K18-hACE2 Mice against SARS-CoV-2 Variants. Viruses 2023; 15:1364. [PMID: 37376662 DOI: 10.3390/v15061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Since the emergence of the original SARS-CoV-2, several variants were described, raising questions as to the ability of recently developed vaccine platforms to induce immunity and provide protection against these variants. Here, we utilized the K18-hACE2 mouse model to show that VSV-ΔG-spike vaccination provides protection against several SARS-CoV-2 variants: alpha, beta, gamma, and delta. We show an overall robust immune response, regardless of variant identity, leading to reduction in viral load in target organs, prevention of morbidity and mortality, as well as prevention of severe brain immune response, which follows infection with various variants. Additionally, we provide a comprehensive comparison of the brain transcriptomic profile in response to infection with different variants of SARS-CoV-2 and show how vaccination prevents these disease manifestations. Taken together, these results highlight the robust VSV-ΔG-spike protective response against diverse SARS-CoV-2 variants, as well as its promising potential against newly arising variants.
Collapse
Affiliation(s)
- Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Inbar Cohen-Gihon
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Lilach Chery Mimran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Tel Hashomer, Ramat Gan 76100, Israel
| | - Irit Orr
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 52621, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 52621, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
33
|
Pearson J, Wessler T, Chen A, Boucher RC, Freeman R, Lai SK, Pickles R, Forest MG. Modeling identifies variability in SARS-CoV-2 uptake and eclipse phase by infected cells as principal drivers of extreme variability in nasal viral load in the 48 h post infection. J Theor Biol 2023; 565:111470. [PMID: 36965846 PMCID: PMC10033495 DOI: 10.1016/j.jtbi.2023.111470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.
Collapse
Affiliation(s)
- Jason Pearson
- Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy Wessler
- Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alex Chen
- Department of Mathematics, California State University-Dominguez Hills, Carson, CA 90747, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27606, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Marsico Lung Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Gregory Forest
- Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
34
|
Havranek B, Lindsey GW, Higuchi Y, Itoh Y, Suzuki T, Okamoto T, Hoshino A, Procko E, Islam SM. A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo. Commun Biol 2023; 6:513. [PMID: 37173421 PMCID: PMC10177734 DOI: 10.1038/s42003-023-04860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- ComputePharma, LLC., Chicago, IL, USA
| | | | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
- Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- ComputePharma, LLC., Chicago, IL, USA.
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
35
|
Kuhlmeier E, Chan T, Meli ML, Willi B, Wolfensberger A, Reitt K, Hüttl J, Jones S, Tyson G, Hosie MJ, Zablotski Y, Hofmann-Lehmann R. A Risk Factor Analysis of SARS-CoV-2 Infection in Animals in COVID-19-Affected Households. Viruses 2023; 15:731. [PMID: 36992440 PMCID: PMC10051903 DOI: 10.3390/v15030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
A higher prevalence of SARS-CoV-2 infections in animals that have close contact with SARS-CoV-2-positive humans ("COVID-19 households") has been demonstrated in several countries. This prospective study aimed to determine the SARS-CoV-2 prevalence in animals from Swiss COVID-19 households and to assess the potential risk factors for infection. The study included 226 companion animals (172 cats, 76.1%; 49 dogs, 21.7%; and 5 other animals, 2.2%) from 122 COVID-19 households with 336 human household members (including 230 SARS-CoV-2-positive people). The animals were tested for viral RNA using an RT-qPCR and/or serologically for antibodies and neutralizing activity. Additionally, surface samples from animal fur and beds underwent an RT-qPCR. A questionnaire about hygiene, animal hygiene, and contact intensity was completed by the household members. A total of 49 of the 226 animals (21.7%) from 31 of the 122 households (25.4%) tested positive/questionably positive for SARS-CoV-2, including 37 of the 172 cats (21.5%) and 12 of the 49 dogs (24.5%). The surface samples tested positive significantly more often in households with SARS-CoV-2-positive animals than in households with SARS-CoV-2-negative animals (p = 0.011). Significantly more animals tested positive in the multivariable analysis for households with minors. For cats, a shorter length of outdoor access and a higher frequency of removing droppings from litterboxes were factors that were significantly associated with higher infection rates. The study emphasizes that the behavior of owners and the living conditions of animals can influence the likelihood of a SARS-CoV-2 infection in companion animals. Therefore, it is crucial to monitor the infection transmission and dynamics in animals, as well as to identify the possible risk factors for animals in infected households.
Collapse
Affiliation(s)
- Evelyn Kuhlmeier
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (M.L.M.); (R.H.-L.)
| | - Tatjana Chan
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (M.L.M.); (R.H.-L.)
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (M.L.M.); (R.H.-L.)
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland;
| | - Aline Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland; (K.R.); (J.H.)
| | - Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland; (K.R.); (J.H.)
| | - Sarah Jones
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.); (G.T.)
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.); (G.T.)
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (M.L.M.); (R.H.-L.)
| |
Collapse
|
36
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 404] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
37
|
Newby ML, Fogarty CA, Allen JD, Butler J, Fadda E, Crispin M. Variations within the Glycan Shield of SARS-CoV-2 Impact Viral Spike Dynamics. J Mol Biol 2023; 435:167928. [PMID: 36565991 PMCID: PMC9769069 DOI: 10.1016/j.jmb.2022.167928] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity, whether arisen naturally or through vaccination. Understanding the structure of the viral spike assists in determining the impact of mutations on the antigenic surface. One class of mutation impacts glycosylation attachment sites, which have the capacity to influence the antigenic structure beyond the immediate site of attachment. Here, we compare the site-specific glycosylation of recombinant viral spike mimetics of B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), B.1.1.529 (Omicron). The P.1 strain exhibits two additional N-linked glycan sites compared to the other variants analyzed and we investigate the impact of these glycans by molecular dynamics. The acquired N188 site is shown to exhibit very limited glycan maturation, consistent with limited enzyme accessibility. Structural modeling and molecular dynamics reveal that N188 is located within a cavity by the receptor binding domain, which influences the dynamics of these attachment domains. These observations suggest a mechanism whereby mutations affecting viral glycosylation sites have a structural impact across the protein surface.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, UK. https://twitter.com/Maddy_Newby
| | - Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland. https://twitter.com/2016Carl
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK. https://twitter.com/JoelDalllen
| | - John Butler
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
38
|
Chanprapaph K, Seree-Aphinan C, Rattanakaemakorn P, Pomsoong C, Ratanapokasatit Y, Setthaudom C, Thitithanyanont A, Suriyo A, Suangtamai T, Suchonwanit P. A real-world prospective cohort study of immunogenicity and reactogenicity of ChAdOx1-S[recombinant] among patients with immune-mediated dermatological diseases. Br J Dermatol 2023; 188:268-277. [PMID: 36637102 DOI: 10.1093/bjd/ljac045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Immunogenicity and reactogenicity of COVID-19 vaccines have been established in various groups of immunosuppressed patients; however, studies involving patients with immune-mediated dermatological diseases (IMDDs) are scarce. OBJECTIVES To investigate the influence of IMDDs on the development of SARS-CoV-2-specific immunity and side-effects following ChAdOx1-S[recombinant] vaccination. METHODS This prospective cohort study included 127 patients with IMDDs and 97 participants without immune-mediated diseases who received ChAdOx1-S[recombinant]. SARS-CoV-2-specific immunity and side-effect profiles were assessed at 1 month postvaccination and compared between groups. Immunological (primary) outcomes were the percentages of participants who tested positive for neutralizing antibodies [seroconversion rate (SR)] and those who developed T-cell-mediated immunity demonstrated by an interferon-γ-releasing assay (IGRA) [positive IGRA rate (+IGRA)]. Reactogenicity-related (secondary) outcomes were the unsolicited adverse reactions and worsening of IMDD activity reflected by the uptitration of immunosuppressants during and within 1 month of vaccination. RESULTS Overall, the SR for the IMDD group was similar to that of participants without immune-mediated conditions (75·6 vs. 84·5, P = 0·101), whereas + IGRA was lower (72·4 vs. 88·7, P = 0·003). Reactogenicity was similar between groups. No severe adverse reaction was reported. By stratifying the participants in the IMDD group according to individual disease, the immunogenicity of the vaccine was lowest in patients with autoimmune bullous diseases (AIBD) (SR 64·5%, +IGRA 62·9%) and highest in patients with psoriasis (SR 87·7%, +IGRA 80·7%). The reverse trend was found for vaccine-related reactions. Immunosuppressants were uptitrated in 15·8% of cases; 75% of these were patients with AIBD. CONCLUSIONS Among participants with IMDDs, ChAdOx1-S[recombinant] showed good immunogenicity among patients with psoriasis, but demonstrated lower levels of immunogenicity for patients with AIBD. Some patients, especially patients with AIBD, should be closely monitored as they may require treatment escalation within 1 month postvaccination.
Collapse
Affiliation(s)
| | | | | | - Cherrin Pomsoong
- Division of Dermatology, Department of Medicine, Faculty of Medicine
| | | | | | | | | | - Thanitta Suangtamai
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - P Suchonwanit
- Division of Dermatology, Department of Medicine, Faculty of Medicine
| | | |
Collapse
|
39
|
Khatri R, Siddqui G, Sadhu S, Maithil V, Vishwakarma P, Lohiya B, Goswami A, Ahmed S, Awasthi A, Samal S. Intrinsic D614G and P681R/H mutations in SARS-CoV-2 VoCs Alpha, Delta, Omicron and viruses with D614G plus key signature mutations in spike protein alters fusogenicity and infectivity. Med Microbiol Immunol 2023; 212:103-122. [PMID: 36583790 PMCID: PMC9801140 DOI: 10.1007/s00430-022-00760-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 virus has been rapidly evolving over the time and the genetic variation has led to the generation of Variants of Concerns (VoC), which have shown increased fitness. These VoC viruses contain the key mutations in the spike protein which have allowed better survival and evasion of host defense mechanisms. The D614G mutation in the spike domain is found in the majority of VoC; additionally, the P681R/H mutation at the S1/S2 furin cleavage site junction is also found to be highly conserved in major VoCs; Alpha, Delta, Omicron, and its' current variants. The impact of these genetic alterations of the SARS-CoV-2 VoCs on the host cell entry, transmissibility, and infectivity has not been clearly identified. In our study, Delta and D614G + P681R synthetic double mutant pseudoviruses showed a significant increase in the cell entry, cell-to-cell fusion and infectivity. In contrast, the Omicron and P681H synthetic single mutant pseudoviruses showed TMPRSS2 independent cell entry, less fusion and infectivity as compared to Delta and D614G + P681R double mutants. Addition of exogenous trypsin further enhanced fusion in Delta viruses as compared to Omicron. Furthermore, Delta viruses showed susceptibility to both E64d and Camostat mesylate inhibitors suggesting, that the Delta virus could exploit both endosomal and TMPRSS2 dependent entry pathways as compared to the Omicron virus. Taken together, these results indicate that the D614G and P681R/H mutations in the spike protein are pivotal which might be favoring the VoC replication in different host compartments, and thus allowing a balance of mutation vs selection for better long-term adaptation.
Collapse
Affiliation(s)
- Ritika Khatri
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Gazala Siddqui
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Srikanth Sadhu
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
- Immunobiology and Immunology Core Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Vikas Maithil
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Preeti Vishwakarma
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Bharat Lohiya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Abhishek Goswami
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Science (AIIMS), Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
- Immunobiology and Immunology Core Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| |
Collapse
|
40
|
Kuhlmeier E, Chan T, Agüí CV, Willi B, Wolfensberger A, Beisel C, Topolsky I, Beerenwinkel N, Stadler T, Jones S, Tyson G, Hosie MJ, Reitt K, Hüttl J, Meli ML, Hofmann-Lehmann R. Detection and Molecular Characterization of the SARS-CoV-2 Delta Variant and the Specific Immune Response in Companion Animals in Switzerland. Viruses 2023; 15:245. [PMID: 36680285 PMCID: PMC9864232 DOI: 10.3390/v15010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.
Collapse
Affiliation(s)
- Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Aline Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | | | - Sarah Jones
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Majed SO, Mustafa SA, Jalal PJ, Fatah MH, Miasko M, Jawhar Z, Karim AY. SARS-CoV-2 Omicron Variant Genomic and Phylogenetic Analysis in Iraqi Kurdistan Region. Genes (Basel) 2023; 14:173. [PMID: 36672914 PMCID: PMC9859166 DOI: 10.3390/genes14010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Omicron variants have been classified as Variants of Concern (VOC) by the World Health Organization (WHO) ever since they first emerged as a result of a significant mutation in this variant, which showed to have an impact on transmissibility and virulence of the virus, as evidenced by the ongoing modifications in the SARS-CoV-2 virus. As a global pandemic, the Omicron variant also spread among the Kurdish population. This study aimed to analyze different strains from different cities of the Kurdistan region of Iraq to show the risk of infection and the impact of the various mutations on immune responses and vaccination. A total of 175 nasopharyngeal/oropharyngeal specimens were collected at West Erbil Emergency Hospital and confirmed for SARS-CoV-2 infection by RT-PCR. The genomes of the samples were sequenced using the Illumina COVID-Seq Method. The genome analysis was established based on previously published data in the GISAID database and compared to previously detected mutations in the Omicron variants, and that they belong to the BA.1 lineage and include most variations determined in other studies related to transmissibility, high infectivity and immune escape. Most of the mutations were found in the RBD (receptor binding domain), the region related to the escape from humoral immunity. Remarkably, these point mutations (G339D, S371L, S373P, S375F, T547K, D614G, H655Y, N679K and N969K) were also determined in this study, which were unique, and their impact should be addressed more. Overall, the Omicron variants were more contagious than other variants. However, the mortality rate was low, and most infectious cases were asymptomatic. The next step should address the potential of Omicron variants to develop the next-generation COVID-19 vaccine.
Collapse
Affiliation(s)
- Sevan Omer Majed
- Biology Department, College of Education, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region, Iraq
| | - Suhad Asad Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Mohammed Hassan Fatah
- Medical Lab., Technology Department, Kalar Technical College, Sulaimani Polytechnic University, Kalar 46021, Kurdistan Region, Iraq
| | - Monika Miasko
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Zanko Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil 44001, Kurdistan Region, Iraq
| | - Abdulkarim Yasin Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region, Iraq
- Department of Medical Microbiology, College of Science, Cihan University, Erbil 44001,Kurdistan Region, Iraq
| |
Collapse
|
42
|
Haddad-Boubaker S, Arbi M, Souiai O, Chouikha A, Fares W, Edington K, Sims S, Camma C, Lorusso A, Diagne MM, Diallo A, Boubaker IBB, Ferjani S, Mastouri M, Mhalla S, Karray H, Gargouri S, Bahri O, Trabelsi A, Kallala O, Hannachi N, Chaabouni Y, Smaoui H, Meftah K, Bouhalila SB, Foughali S, Zribi M, Lamari A, Touzi H, Safer M, Alaya NB, Kahla AB, Gdoura M, Triki H. The Delta variant wave in Tunisia: Genetic diversity, spatio-temporal distribution and evidence of the spread of a divergent AY.122 sub-lineage. Front Public Health 2023; 10:990832. [PMID: 36684874 PMCID: PMC9846204 DOI: 10.3389/fpubh.2022.990832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction The Delta variant posed an increased risk to global public health and rapidly replaced the pre-existent variants worldwide. In this study, the genetic diversity and the spatio-temporal dynamics of 662 SARS-CoV2 genomes obtained during the Delta wave across Tunisia were investigated. Methods Viral whole genome and partial S-segment sequencing was performed using Illumina and Sanger platforms, respectively and lineage assignemnt was assessed using Pangolin version 1.2.4 and scorpio version 3.4.X. Phylogenetic and phylogeographic analyses were achieved using IQ-Tree and Beast programs. Results The age distribution of the infected cases showed a large peak between 25 to 50 years. Twelve Delta sub-lineages were detected nation-wide with AY.122 being the predominant variant representing 94.6% of sequences. AY.122 sequences were highly related and shared the amino-acid change ORF1a:A498V, the synonymous mutations 2746T>C, 3037C>T, 8986C>T, 11332A>G in ORF1a and 23683C>T in the S gene with respect to the Wuhan reference genome (NC_045512.2). Spatio-temporal analysis indicates that the larger cities of Nabeul, Tunis and Kairouan constituted epicenters for the AY.122 sub-lineage and subsequent dispersion to the rest of the country. Discussion This study adds more knowledge about the Delta variant and sub-variants distribution worldwide by documenting genomic and epidemiological data from Tunisia, a North African region. Such results may be helpful to the understanding of future COVID-19 waves and variants.
Collapse
Affiliation(s)
- Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Marwa Arbi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wasfi Fares
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kate Edington
- New Variant Assessment Platform (NVAP), UK Health Security Agency, London, United Kingdom
| | - Sam Sims
- New Variant Assessment Platform (NVAP), UK Health Security Agency, London, United Kingdom
| | - Cesare Camma
- Department of Virology, Instituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale (IZSAM), Teramo, Italy
| | - Alessio Lorusso
- Department of Virology, Instituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale (IZSAM), Teramo, Italy
| | | | - Amadou Diallo
- Department of Virology, Pasteur Institute of Dakar, Dakar, Senegal
| | - Ilhem Boutiba Ben Boubaker
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
- Laboratory Research Antimicrobial Resistance, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Sana Ferjani
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
- Laboratory Research Antimicrobial Resistance, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Maha Mastouri
- Laboratory of Microbiology, Fattouma Bourguiba Hospital, Monastir, Tunisia
- Laboratory Research Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Salma Mhalla
- Laboratory of Microbiology, Fattouma Bourguiba Hospital, Monastir, Tunisia
- Laboratory Research Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hela Karray
- Laboratory of Microbiology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Saba Gargouri
- Laboratory of Microbiology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Olfa Bahri
- Laboratory of Microbiology and Biochemistry, Aziza Othmana Hospital, Tunis, Tunisia
| | | | - Ouafa Kallala
- Laboratory of Virology, Sahloul Hospital of Sousse, Sousse, Tunisia
| | - Naila Hannachi
- Laboratory of Microbiology, Farhat Hached Hospital of Sousse, Sousse, Tunisia
| | - Yassine Chaabouni
- Laboratory of Medical Biology, Ibn El Jazzar Hospital, Kairouan, Tunisia
- Department of Microbiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Smaoui
- Department of Microbiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Microbiology of Children and Immunocompromised, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Khaoula Meftah
- Department of Microbiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Microbiology of Children and Immunocompromised, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Sophia Besbes Bouhalila
- Laboratory of Medical Biology and Blood Bank, Institute Mohamed Kassab d'orthopédie, Manouba, Tunisia
| | - Soumaya Foughali
- Laboratory of Medical Biology, Menzel Bourguiba Hospital, Bizerte, Tunisia
| | - Mariem Zribi
- Laboratory of Microbiology, La Rabta Hospital, Tunis, Tunisia
| | - Asma Lamari
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Safer
- National Observatory of New and Emergent Diseases, Tunis, Tunisia
| | - Nissaf Ben Alaya
- Department of Microbiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- National Observatory of New and Emergent Diseases, Tunis, Tunisia
| | - Alia Ben Kahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Virology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Viruses, Hosts and Vectors, Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Institute Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Microbiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
43
|
Jiang C, Jiang K, Li X, Zhang N, Zhu W, Meng L, Zhang Y, Lu S. Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications. J Pharm Anal 2023; 13:1-10. [PMID: 36317070 PMCID: PMC9605787 DOI: 10.1016/j.jpha.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
The strikingly rapidly mutating nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome has been a constant challenge during the coronavirus disease 2019 (COVID-19) pandemic. In this study, various techniques, including reverse transcription-quantitative polymerase chain reaction, antigen-detection rapid diagnostic tests, and high-throughput sequencing were analyzed under different scenarios and spectra for the etiological diagnosis of COVID-19 at the population scale. This study aimed to summarize the latest research progress and provide up-to-date understanding of the methodology used for the evaluation of the immunoprotection conditions against future variants of SARS-CoV-2. Our novel work reviewed the current methods for the evaluation of the immunoprotection status of a specific population (endogenous antibodies) before and after vaccine inoculation (administered with biopharmaceutical antibody products). The present knowledge of the immunoprotection status regarding the COVID-19 complications was also discussed. Knowledge on the immunoprotection status of specific populations can help guide the design of pharmaceutical antibody products, inform practice guidelines, and develop national regulations with respect to the timing of and need for extra rounds of vaccine boosters.
Collapse
Affiliation(s)
- Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Kaichong Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Zhang
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenhua Zhu
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Liesu Meng
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
44
|
Liew F, Talwar S, Cross A, Willett BJ, Scott S, Logan N, Siggins MK, Swieboda D, Sidhu JK, Efstathiou C, Moore SC, Davis C, Mohamed N, Nunag J, King C, Thompson AAR, Rowland-Jones SL, Docherty AB, Chalmers JD, Ho LP, Horsley A, Raman B, Poinasamy K, Marks M, Kon OM, Howard L, Wootton DG, Dunachie S, Quint JK, Evans RA, Wain LV, Fontanella S, de Silva TI, Ho A, Harrison E, Baillie JK, Semple MG, Brightling C, Thwaites RS, Turtle L, Openshaw PJM. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. EBioMedicine 2023; 87:104402. [PMID: 36543718 PMCID: PMC9762734 DOI: 10.1016/j.ebiom.2022.104402] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.
Collapse
Affiliation(s)
- Felicity Liew
- National Heart and Lung Institute, Imperial College London, UK.
| | - Shubha Talwar
- National Heart and Lung Institute, Imperial College London, UK
| | - Andy Cross
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | | | - Dawid Swieboda
- National Heart and Lung Institute, Imperial College London, UK
| | - Jasmin K Sidhu
- National Heart and Lung Institute, Imperial College London, UK
| | | | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Noura Mohamed
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - Jose Nunag
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - Clara King
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sarah L Rowland-Jones
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Annemarie B Docherty
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - Alexander Horsley
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, UK
| | - Luke Howard
- National Heart and Lung Institute, Imperial College London, UK
| | - Daniel G Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Susanna Dunachie
- Oxford Centre for Global Health Research, University of Oxford, Oxford, UK
| | | | - Rachael A Evans
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Antonia Ho
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Ewen Harrison
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK; The Pandemic Institute, University of Liverpool, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, UK.
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK; The Pandemic Institute, University of Liverpool, UK.
| | | |
Collapse
|
45
|
Manali M, Bissett LA, Amat JAR, Logan N, Scott S, Hughes EC, Harvey WT, Orton R, Thomson EC, Gunson RN, Viana M, Willett B, Murcia PR. SARS-CoV-2 Evolution and Patient Immunological History Shape the Breadth and Potency of Antibody-Mediated Immunity. J Infect Dis 2022; 227:40-49. [PMID: 35920058 PMCID: PMC9384671 DOI: 10.1093/infdis/jiac332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralization responses against SARS-CoV-2Wuhan, SARS-CoV-2α, SARS-CoV-2δ, and SARS-CoV-2ο pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2α, or SARS-CoV-2δ, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design.
Collapse
Affiliation(s)
- Maria Manali
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Laura A Bissett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Julien A R Amat
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicola Logan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sam Scott
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ellen C Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - William T Harvey
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard Orton
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Emma C Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rory N Gunson
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Brian Willett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Pablo R Murcia
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
46
|
Lee DW, Kim JM, Park AK, Kim DW, Kim JY, Lim N, Lee H, Kim IH, Kim JA, Lee CY, Kwon JH, Kim EJ. Genomic epidemiology of SARS- CoV-2 Omicron variants in the Republic of Korea. Sci Rep 2022; 12:22414. [PMID: 36575217 PMCID: PMC9793390 DOI: 10.1038/s41598-022-26803-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since 2019. Variants of concern (VOCs) declared by the World Health Organization require continuous monitoring because of their possible changes in transmissibility, virulence, and antigenicity. The Omicron variant, a VOC, has become the dominant variant worldwide since November 2021. In the Republic of Korea (South Korea), the number of confirmed cases increased rapidly after the detection of Omicron VOC on November 24, 2021. In this study, we estimated the underlying epidemiological processes of Omicron VOC in South Korea using time-scaled phylodynamic analysis. Three distinct phylogenetic subgroups (Kor-O1, Kor-O2, and Kor-O3) were detected in South Korea. The Kor-O1 subgroup circulated in the Daegu region, whereas Kor-O2 and Kor-O3 circulated in Incheon and Jeollanam-do, respectively. The viral population size and case number of the Kor-O1 subgroup increased more rapidly than those of the other subgroups, indicating the rapid spread of the virus. The results indicated the multiple introductions of Omicron sub-lineages into South Korea and their subsequent co-circulation. The evolution and transmission of SARS-CoV-2 should be continuously monitored, and control strategies need to be improved to control the multiple variants.
Collapse
Affiliation(s)
- Dong-Wook Lee
- grid.258803.40000 0001 0661 1556College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jeong-Min Kim
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| | - Ae Kyung Park
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| | - Da-Won Kim
- grid.258803.40000 0001 0661 1556College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Yun Kim
- grid.258803.40000 0001 0661 1556College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Noori Lim
- grid.258803.40000 0001 0661 1556College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hyeokjin Lee
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| | - Il-Hwan Kim
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| | - Jeong-Ah Kim
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| | - Chae young Lee
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| | - Jung-Hoon Kwon
- grid.258803.40000 0001 0661 1556College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Eun-Jin Kim
- grid.418967.50000 0004 1763 8617Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-Si, 28159 Republic of Korea
| |
Collapse
|
47
|
Li J, Li X, Wang E, Yang J, Li J, Huang C, Zhang Y, Chen K. Neutralizing Antibodies against the SARS-CoV-2 Delta and Omicron BA.1 following Homologous CoronaVac Booster Vaccination. Vaccines (Basel) 2022; 10:2111. [PMID: 36560521 PMCID: PMC9788055 DOI: 10.3390/vaccines10122111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have reduced susceptibility to neutralization by vaccines. In response to the constantly updated variants, a global vaccine booster vaccination program has been launched. In this study, we detected neutralizing antibody levels against wild-type (WT), Delta (B1.617.2), and Omicron BA.1 viruses in serum after each dose of CoronaVac vaccination. We found that booster vaccination significantly increased the levels of neutralizing antibodies against WT, Delta, and Omicron BA.1. Compared with only one vaccination, neutralizing antibody levels increased by 19.2-21.6-fold after a booster vaccination, whilst two vaccinations only produced a 1.5-3.4-fold increase. Our results support the conclusion that the CoronaVac vaccine booster can increase neutralizing antibody levels and cross-reactivity and enhance the body's ability to effectively resist the infection of new coronavirus variants, emphasizing the need for booster vaccination.
Collapse
Affiliation(s)
- Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Xiaoyan Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | | | - Jinye Yang
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Chen Huang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| |
Collapse
|
48
|
Hayashi H, Sun J, Yanagida Y, Otera T, Sasai M, Chang CY, Tai JA, Nishikawa T, Yamashita K, Sakaguchi N, Yoshida S, Baba S, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Rakugi H, Morishita R, Yamamoto M, Nakagami H. Modified DNA vaccine confers improved humoral immune response and effective virus protection against SARS-CoV-2 delta variant. Sci Rep 2022; 12:20923. [PMID: 36463322 PMCID: PMC9719526 DOI: 10.1038/s41598-022-24519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine. However, emerging SARS-CoV-2 variants of concern (VOCs), such as the delta variant, have escaped mutations against vaccine-induced neutralizing antibodies. This suggests that modified vaccines accommodating VOCs need to be developed promptly. Here, we first modified the current DNA vaccine to enhance antigenicity. Compared with the parental DNA vaccine, the modified version (GP∆-DNA vaccine) induced rapid antibody production. Next, we updated the GP∆-DNA vaccine to spike glycoprotein of the delta variant (GP∆-delta DNA vaccine) and compared the efficacy of different injection routes, namely intramuscular injection using a needle and syringe and intradermal injection using a pyro-drive jet injector (PJI). We found that the levels of neutralizing antibodies induced by the intradermal PJI injection were higher than intramuscular injection. Furthermore, the PJI-injected GP∆-delta DNA vaccine effectively protected human angiotensin-converting enzyme 2 (hACE2) knock-in mice from delta-variant infection. These results indicate that the improved DNA vaccine was effective against emerging VOCs and was a potential DNA vaccine platform for future VOCs or global pandemics.
Collapse
Affiliation(s)
- Hiroki Hayashi
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Jiao Sun
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Yuka Yanagida
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Takako Otera
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.508925.3Anges Inc., Tokyo, Japan
| | - Miwa Sasai
- grid.136593.b0000 0004 0373 3971Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Chin Yang Chang
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jiayu A. Tai
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Nishikawa
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kunihiko Yamashita
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan ,grid.480124.b0000 0001 0425 4575Daicel Co., Osaka, Japan
| | | | - Shota Yoshida
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Baba
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Munehisa Shimamura
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | - Hiromi Rakugi
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Morishita
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Hironori Nakagami
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
49
|
Higashimoto Y, Kozawa K, Miura H, Kawamura Y, Ihira M, Hiramatsu H, Suzuki R, Haga K, Takai-Todaka R, Sawada A, Katayama K, Yoshikawa T. Correlation between anti-S IgG and neutralizing antibody titers against three live SARS-CoV-2 variants in BNT162b2 vaccine recipients. Hum Vaccin Immunother 2022; 18:2105611. [PMID: 36094467 DOI: 10.1080/21645515.2022.2105611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We analyzed serially collected serum samples from healthy adults who underwent BNT162b2 vaccination to elucidate the association between spike (S)-IgG antibody titers determined by ELISA using the WHO international standard (NIBSC code 20/136) and neutralizing antibody titers against three live SARS-CoV-2 variants. This study included 53 health care workers who received two doses of the BNT162b2 vaccine. S-IgG and nucleocapsid (N)-IgG antibody titers were measured by ELISA. Neutralizing (NT) antibody responses against three variants (Wuhan D614 G: KUH003, Alpha, and Delta) were evaluated before and after the first and second vaccination. N-IgG were not detected in any serum samples. S-IgG antibody titers remarkably increased after two BNT162b2 vaccine doses in all participants. S-IgG antibody titers were strongly correlated with NT titers against three variants of live viruses: KUH003 (r = 0.86), Alpha (r = 0.72), and Delta (r = 0.84). Serum samples from participants after one dose of BNT162b2 neutralized Alpha efficiently (median titer, 113.0), but median NT titers against KUH003 and Delta variants were lower, 57.0 and 28.0, respectively (p < .01). Two doses of the BNT162b2 vaccine elicited a strong immune response in this study. The second dose was required for induction of a strong booster effect. Serum collected from BNT162b2 vaccine recipients contained significantly lower neutralizing activity against Delta than that of against KUH003 (p < .0001) and Alpha (p < .0001). If a new variant emerges, live virus-based NT titers should be examined in serum obtained from vaccine recipients to evaluate vaccine efficacy for protection against infection.
Collapse
Affiliation(s)
- Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Kei Kozawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroyuki Hiramatsu
- Department of Clinical Pharmacy, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Ryota Suzuki
- Department of Clinical Pharmacy, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Kei Haga
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akihito Sawada
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
50
|
Bian L, Liu J, Gao F, Gao Q, He Q, Mao Q, Wu X, Xu M, Liang Z. Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Hum Vaccin Immunother 2022; 18:2057161. [PMID: 35438600 PMCID: PMC9115786 DOI: 10.1080/21645515.2022.2057161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate worldwide and a variety of variants have emerged. Variants of concern (VOC) designated by the World Health Organization (WHO) have triggered epidemic waves due to their strong infectivity or pathogenicity and potential immune escape, among other reasons. Although large-scale vaccination campaigns undertaken globally have contributed to the improved control of SARS-CoV-2, the efficacies of current vaccines against VOCs have declined to various degrees. In particular, the highly infectious Delta and Omicron variants have caused recent epidemics and prompted concerns about control measures. This review summarizes current VOCs, the protective efficacy of vaccines against VOCs, and the shortcomings in methods for evaluating vaccine efficacy. In addition, strategies for responding to variants are proposed for future epidemic prevention and control as well as for vaccine research and development.
Collapse
Affiliation(s)
- Lianlian Bian
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qiushuang Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qian He
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|