1
|
Eissa MM, Allam SRA, Ismail CA, Ghazala RA, El Skhawy N, Zaki IIA, Ibrahim EIES. Unveiling the anti-neoplastic potential of Schistosoma mansoni-derived antigen against breast cancer: a pre-clinical study. Eur J Med Res 2025; 30:304. [PMID: 40247360 PMCID: PMC12007238 DOI: 10.1186/s40001-025-02531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Cancer is a global health concern, with millions of new cases and deaths annually. Recently, immunotherapy has strengthened cancer treatment by harnessing the body's immune system to fight cancer. The search for advanced cancer immunotherapies has expanded to explore pathogens like parasites for their potential anti-neoplastic effects. While some parasites have shown promising results, the role of Schistosoma mansoni in breast cancer remains unexplored. METHODS This pre-clinical study investigated the anti-neoplastic potential of autoclaved Schistosoma mansoni antigen against breast cancer. In vitro, autoclaved Schistosoma mansoni antigen was evaluated on the MCF-7 human breast cancer cell line, while in vivo experiments used a chemically induced breast cancer rat model to evaluate tumour growth, liver enzyme levels, and immune response. Histopathological and immunohistochemical analyses assessed changes in tumour tissue, cell proliferation (Ki-67), angiogenesis (CD31), immune cell infiltration (CD8+ T cells), regulatory T cells (FoxP3+), and programmed death ligand 1 (PD-L1) expression. RESULTS In vitro, autoclaved Schistosoma mansoni antigen significantly reduced MCF-7 cell viability in a dose- and time-dependent manner. In vivo, autoclaved Schistosoma mansoni antigen treatment significantly reduced tumour weight and volume, improved liver enzyme levels, increased tumour necrosis, and decreased fibrosis. Immunohistochemical analysis revealed decreased Ki-67 and CD31 expression, indicating reduced cell proliferation and angiogenesis, respectively. Autoclaved Schistosoma mansoni antigen also enhanced immune responses by increasing CD8+ T cells infiltration and decreasing FoxP3+ expression, resulting in a higher CD8+ T cells/FoxP3+ ratio within the tumour microenvironment. Notably, PD-L1 expression was also downregulated, suggesting potential immune checkpoint inhibition. CONCLUSIONS Autoclaved Schistosoma mansoni antigen demonstrated potent anti-neoplastic activity, significantly reducing tumour growth and modulating the immune response within the tumour microenvironment. These results highlight autoclaved Schistosoma mansoni antigen's potential as a novel immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Maha Mohamed Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt.
| | - Sonia Rifaat Ahmed Allam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| | - Cherine Adel Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Abdelmawla Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| | | | - Eman Ibrahim El-Said Ibrahim
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| |
Collapse
|
2
|
He T, Zhang D, Wen Y, Liu Q, Zhou J, Zhi W, OuYang L, Qi Y, Zhou Z, Gao X, Li F, Su Z, Shen J, Zhou Z. Metabolomic analysis of the intrinsic resistance mechanisms of Microtus fortis against Schistosoma japonicum infection. Sci Rep 2025; 15:7147. [PMID: 40021829 PMCID: PMC11871335 DOI: 10.1038/s41598-025-91164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Microtus fortis (M. fortis) is the only mammal known in China that is intrinsically resistant to Schistosoma japonicum (S. japonicum) infection. Nevertheless, the underlying resistance mechanism of M. fortis against schistosomes are still unclear. In this study, we detected and compared colon aqueous extracts and serum metabolic profiles between M. fortis and ICR mice before and after S. japonicum infection using liquid chromatography-mass spectrometry (LC-MS). We identified 232 specific colon aqueous extract metabolites and 79 specific serum metabolites of M. fortis infected with or without S. japonicum at two weeks compared with those of ICR mice, which might be closely correlated with the time-course of schistosomiasis progression and could also be used as indicators for the M. fortis against S. japonicum, for example, nonadecanoic acid, hesperetin, glycocholic acid, 2-Aminobenzoic acid, 6-hydroxydaidzein and spermidine. And the enriched pathways were further identified, our findings revealed that S. japonicum infection induced the metabolic changes involved in a variety of metabolic pathways including amino acid metabolism, lipid metabolism, ABC transporters, central carbon metabolism in cancer and bile secretion. These results indicated that the colon aqueous extracts and serum metabolic profiles were significantly different between M. fortis and ICR mice before and after S. japonicum infection and will provide new insights into the underlying resistance mechanism of M. fortis against S. japonicum infection and identify promising candidates for the use of drugs against schistosomes.
Collapse
Affiliation(s)
- Tianqiong He
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Du Zhang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Province Clinical Medical Research Center for Genetic Birth Defects and Rare Diseases, Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yixin Wen
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Qian Liu
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Junkang Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Wenling Zhi
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Lingxuan OuYang
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yushan Qi
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Zikang Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xin Gao
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Fan Li
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Zhijie Su
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhijun Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Xue Q, Zhou X, Wang Y, Liu Y, Li X, Xiong C, Liu X, Huang Y. Mass spectrometry imaging reveals spatial metabolic variation and the crucial role of uridine metabolism in liver injury caused by Schistosoma japonicum. PLoS Negl Trop Dis 2025; 19:e0012854. [PMID: 39933005 PMCID: PMC11813095 DOI: 10.1371/journal.pntd.0012854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Schistosomiasis is the second most important parasitic disease worldwide. Schistosomiasis japonica is a unique species endemic to southern China, and schistosomiasis is characterized by severe liver injury, inflammation, liver granuloma, and subsequent liver fibrosis. However, the pathological mechanism of this disease remains unclear. Mass spectrometry imaging (MSI) is a versatile technique that integrates the molecular specificity of mass spectrometry (MS) with spatial imaging information, which could provide an accurate method for observing disease progression. In this study, we used an air flow-assisted desorption electrospray ionization (AFADESI-MSI) platform to detect a wide range of metabolites and visualize their distribution in the liver tissue of mice infected with Schistosoma japonicum. In the negative ion mode analysis, 21 and 25 different metabolites were detected in the early and chronic stages of infection, respectively. Thirteen characteristic metabolites and 3 metabolic pathways related to disease development may be involved in the chronicity of schistosomiasis. There were more than 32 and 40 region-specific changes in the abundance of a wide range of metabolites (including carbohydrates, amino acids, nucleotides, and fatty acids) in the livers of mice at two different infection times, which also revealed the heterogeneous metabolic characteristics of the liver egg granulomas of S. japonicum. In a chronic infection model with S. japonicum, oral treatment with praziquantel significantly alleviated most metabolic disorders, including fatty acid and pyrimidine metabolism. Surprisingly, Upase1, a key enzyme in uridine metabolism, was significantly upregulated 6 weeks after infection, and liver uridine levels were negatively correlated with the abundance of multiple lipid-associated metabolites. Further studies revealed that in vitro uridine supplementation inhibited the activation of LX-2 cells, restored the homeostasis of fatty acid metabolism through the peroxisome proliferator-activated receptor γ (PPARγ) pathway, and played an antifibrotic role. Our findings provide new insights into the molecular mechanisms of S. japonicum-induced liver fibrosis and the potential of targeting uridine metabolism in disease therapy.
Collapse
Affiliation(s)
- Qingkai Xue
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiangyu Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuyan Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiyun Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojing Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Ouji Y, Hamasaki M, Misu M, Yoshikawa M, Hamano S. Labeling of miracidium using fluorescent agents to visualize infection of schistosome in intermediate host snails. Parasitol Int 2025; 104:102994. [PMID: 39561957 DOI: 10.1016/j.parint.2024.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. Schistosomes infect humans by cercariae penetrating the skin in a freshwater environment. Findings obtained more than 100 years prior showed that miracidium develops into cercaria in freshwater snails, though detailed development dynamics have not been elucidated. Although results of histological analyses of development of schistosomes in snails were presented in our previous studies, findings obtained with dynamic imaging have yet to be reported. In the present study, imaging of schistosome infection and dynamics in snails occuring within a short period was performed using fluorescent labeling agents. Labeling of S. mansoni cercariae with carboxyfluorescein succinimidyl ester (CFSE) caused no toxicity, and allowed for monitoring of schistosome dynamics in snails for up to 10 days and release of infective cercariae without fluorescence in 40 days following infection.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | - Megumi Hamasaki
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
6
|
Thorstenberg ML, Martins MDA, Oliveira NF, Monteiro MMLV, Santos GRC, Pereira HMG, Savio LEB, Coutinho-Silva R, Silva CLM. Altered purinergic P2X7 and A 2B receptors signaling limits macrophage-mediated host defense in schistosomiasis. Biomed J 2024; 47:100713. [PMID: 38442854 PMCID: PMC11550761 DOI: 10.1016/j.bj.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The occurrence of co-infections during schistosomiasis, a neglected tropical disease, with other parasites have been reported suggesting an impaired host immune defense. Macrophage purinergic P2X7 receptor (P2X7R) plays an important role against intracellular pathogens. Therefore, we investigated the P2X7R-mediated phagocytosis and killing capacity of Leishmania amazonensis by macrophages during schistosomiasis in vitro and in vivo. METHODS Swiss and C57BL/6 (Wild type) and P2X7R-/- were randomized in two groups: control (uninfected) and Schistosoma mansoni-infected. Alternatively, control Swiss and S. mansoni-infected mice were also infected with L. amazonensis. RESULTS The pre-treatment of control macrophages with the P2X7R antagonist (A74003) or TGF-β reduced the phagocytosis index, mimicking the phenotype of cells from S. mansoni-infected mice and P2X7R-/- mice. Apyrase also reduced the phagocytosis index in the control group corroborating the role of ATP to macrophage activation. Moreover, l-arginine-nitric oxide pathway was compromised during schistosomiasis, which could explain the reduced killing capacity in response to ATP in vitro and in vivo. We found an increased extracellular nucleotide (ATP, ADP and AMP) hydrolysis along with an increased frequency of F4/80+ CD39+ macrophages from the S. mansoni-infected group. Moreover, the content of adenosine in the cell supernatant was higher in the S. mansoni-infected group in relation to controls. Schistosomiasis also increased the expression of macrophage adenosine A2BR. In good accordance, both ADA and the selective A2BR antagonist restored the phagocytosis index of macrophages from S. mansoni-infected group. CONCLUSIONS Altogether, the altered P2X7R and A2BR signaling limits the role of macrophages to host defense against L. amazonensis during schistosomiasis, potentially contributing to the pathophysiology and clinically relevant co-infections.
Collapse
Affiliation(s)
- Maria Luiza Thorstenberg
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Monique Daiane Andrade Martins
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Nathália Ferreira Oliveira
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus Macedo L V Monteiro
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Gustavo R C Santos
- Brazilian Doping Control Laboratory (LBCD - LADETEC / IQ), Universidade Federal do Rio de Janeiro, Brazil
| | | | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Biochemical and Molecular Pharmacology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Li J, Cai X, Yang Y, Mao Y, Ding L, Xue Q, Hu X, Huang Y, Sui C, Zhang Y. Macrophage MST1 protects against schistosomiasis-induced liver fibrosis by promoting the PPARγ-CD36 pathway and suppressing NF-κB signaling. PLoS Pathog 2024; 20:e1012790. [PMID: 39700261 PMCID: PMC11785294 DOI: 10.1371/journal.ppat.1012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/31/2025] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Schistosomiasis is characterized by egg-induced hepatic granulomas and subsequent fibrosis. Monocyte-derived macrophages play critical and plastic roles in the progression and regression of liver fibrosis, adopting different polarization phenotypes. Mammalian STE20-like protein kinase 1 (MST1), a serine/threonine kinase, has been established to act as a negative regulator of macrophage-associated inflammation. However, the specific role of MST1 in Schistosoma-induced liver fibrosis has not been fully understood. In this study, we demonstrate that macrophage MST1 functions as an inhibitor of inflammation and fibrosis following infection with Schistosoma japonicum (S. japonicum). Mice with macrophages-specific Mst1 knockout (termed Mst1△M/△M) mice developed exacerbated liver pathology, characterized by larger egg-induced granulomas, and increased fibrosis post infection. This was accompanied by enhanced production of proinflammatory cytokines (IL1B, IL6, IL23, TNFA and TGFB) and a shift in macrophage phenotype towards Ly6Chigh. Mechanistically, MST1 activation by soluble egg antigen (SEA) promoted PPARγ-mediated CD36 expression, enhancing phagocytosis and consequently upregulation of fibrolytic genes such as Arg1 and Mmps. Conversely, MST1 deletion leads to up-regulation of pro-inflammatory genes instead of fibrolytic genes in macrophages, accompanied by decreased expression of CD36 and impaired phagocytosis. Furthermore, the ablation of MST1 enhances NF-κB activation in S. japonicum-infected and SEA-stimulated macrophages, resulting in increased production of proinflammatory cytokines. Overall, our data identified MST1 as a novel regulator for egg-induced liver fibrosis via modulation of macrophage function and phenotype by CD36-mediated phagocytosis and suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Jianyang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
- The First Affiliated Hospital of Anhui medical University, Hefei, Anhui, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyuan Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Yan Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Yulin Mao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Lin Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Qian Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Xunhao Hu
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Cong Sui
- The First Affiliated Hospital of Anhui medical University, Hefei, Anhui, China
| | - Yuxia Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
8
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
9
|
Afful P, Abotsi GK, Adu-Gyamfi CO, Benyem G, Katawa G, Kyei S, Arndts K, Ritter M, Asare KK. Schistosomiasis-Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:906. [PMID: 39452777 PMCID: PMC11510367 DOI: 10.3390/pathogens13100906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Schistosomiasis, a tropical disease affecting humans and animals, affected 251.4 million people in 2021. Schistosoma mansoni, S. haematobium, S. intercalatum, and S. japonicum are primary human schistosomes, causing tissue damage, granulomas, ulceration, hemorrhage, and opportunistic pathogen entry. The gut and urinary tract microbiota significantly impact a host's susceptibility to schistosomiasis, disrupting microbial balance; however, this relationship is not well understood. This systematic review and meta-analysis explores the intricate relationship between schistosomiasis and the host's microbiota, providing crucial insights into disease pathogenesis and management. METHODS This systematic review used PRISMA guidelines to identify peer-reviewed articles on schistosomiasis and its interactions with the host microbiome, using multiple databases and Google Scholar, providing a robust dataset for analysis. The study utilized Meta-Mar v3.5.1; descriptive tests, random-effects models, and subgroups were analyzed for the interaction between Schistosomiasis and the microbiome. Forest plots, Cochran's Q test, and Higgins' inconsistency statistic (I2) were used to assess heterogeneity. RESULTS The human Schistosoma species were observed to be associated with various bacterial species isolated from blood, stool, urine, sputum, skin, and vaginal or cervical samples. A meta-analysis of the interaction between schistosomiasis and the host microbiome, based on 31 studies, showed 29,784 observations and 5871 events. The pooled estimates indicated a significant association between schistosomiasis and changes in the microbiome of infected individuals. There was considerable heterogeneity with variance effect sizes (p < 0.0001). Subgroup analysis of Schistosoma species demonstrated that S. haematobium was the most significant contributor to the overall heterogeneity, accounting for 62.1% (p < 0.01). S. mansoni contributed 13.0% (p = 0.02), and the coinfection of S. haematobium and S. mansoni accounted for 16.8% of the heterogeneity (p < 0.01), contributing to the variability seen in the pooled analysis. Similarly, praziquantel treatment (RR = 1.68, 95% CI: 1.07-2.64) showed high heterogeneity (Chi2 = 71.42, df = 11, p < 0.01) and also indicated that Schistosoma infections in males (RR = 1.46, 95% CI: 0.00 to 551.30) and females (RR = 2.09, 95% CI: 0.24 to 18.31) have a higher risk of altering the host microbiome. CONCLUSIONS Schistosomiasis significantly disrupts the host microbiota across various bodily sites, leading to increased susceptibility to different bacterial taxa such as E. coli, Klebsiella, Proteus, Pseudomonas, Salmonella, Staphylococcus, Streptococcus, and Mycobacterium species (M. tuberculosis and M. leprae). This disruption enables these bacteria to produce toxic metabolites, which in turn cause inflammation and facilitate the progression of disease. The impact of schistosomiasis on the vaginal microbiome underscores the necessity for gender-specific approaches to treatment and prevention. Effective management of female genital schistosomiasis (FGS) requires addressing both the parasitic infection and the resulting microbiome imbalances. Additionally, praziquantel-treated individuals have different microbiome compositions compared to individuals with no praziquantel treatment. This suggests that combining praziquantel treatment with probiotics could potentially decrease the disease severity caused by an altered microbiome.
Collapse
Affiliation(s)
- Philip Afful
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Godwin Kwami Abotsi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Czarina Owusua Adu-Gyamfi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - George Benyem
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo;
| | - Samuel Kyei
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Kwame Kumi Asare
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Ruiz AE, Pond-Tor S, Stuart R, Acosta LP, Coutinho HM, Leenstra T, Fisher S, Fahey O, McDonald EA, Jiz MA, Olveda RM, McGarvey ST, Friedman JF, Wu HW, Kurtis JD. Association of Antibodies to Helminth Defense Molecule 1 With Inflammation, Organomegaly, and Decreased Nutritional Status in Schistosomiasis Japonica. J Infect Dis 2024; 230:1023-1032. [PMID: 38942608 PMCID: PMC11481327 DOI: 10.1093/infdis/jiae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Immunomodulation enhances parasite fitness by reducing inflammation-induced morbidity in the mammalian host, as well as by attenuating parasite-targeting immune responses. Using a whole-proteome differential screening method, we identified Schistosoma japonicum helminth defense molecule 1 (SjHDM-1) as a target of antibodies expressed by S. japonicum-resistant but not S. japonicum-susceptible individuals. In a longitudinal cohort study (n = 644) conducted in a S. japonicum-endemic region of the Philippines, antibody levels to SjHDM-1 did not predict resistance to reinfection but were associated with increased measures of inflammation. Individuals with high levels of anti-SjHDM-1 immunoglobulin G had higher levels of C-reactive protein than those with low anti-SjHDM-1. High anti-SjHDM-1 immunoglobulin G responses were also associated with reduced biomarkers of nutritional status (albumin), as well as decreased anthropometric measures of nutritional status (weight-for-age and height-for-age z scores) and increased measures of hepatomegaly. Our results suggest that anti-SjHDM-1 responses inhibit the immunomodulatory function of SjHDM-1, resulting in increased morbidity rates.
Collapse
Affiliation(s)
- Amanda E Ruiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Ronald Stuart
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Luz P Acosta
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Hannah M Coutinho
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Tjalling Leenstra
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Sydney Fisher
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Owen Fahey
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Emily A McDonald
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Mario A Jiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Remigio M Olveda
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Jennifer F Friedman
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Hannah Wei Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Russ L, von Bülow V, Wrobel S, Stettler F, Schramm G, Falcone FH, Grevelding CG, Roderfeld M, Roeb E. Inverse Correlation of Th2-Specific Cytokines with Hepatic Egg Burden in S. mansoni-Infected Hamsters. Cells 2024; 13:1579. [PMID: 39329761 PMCID: PMC11430739 DOI: 10.3390/cells13181579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Schistosomiasis, a parasitic disease caused by Schistosoma spp., affects more than 250 million people worldwide. S. mansoni in particular affects the gastrointestinal tract and, through its eggs, induces a Th2 immune response leading to granuloma formation. The relationship between egg load and immune response is poorly understood. We investigated whether the quantity of parasitic eggs influences the immune response in S. mansoni-infected hamsters. The hepatic and intestinal egg load was assessed, and cytokine expression as well as the expression of three major egg-derived proteins were analyzed in monosex- and bisex-infected animals by qRT-PCR. Statistical correlations between egg load or egg-derived factors Ipse/alpha-1, kappa-5, and omega-1, and the immune response were analyzed in liver and colon tissue. Surprisingly, no correlation of the Th1 cytokines with the hepatic egg load was observed, while the Th2 cytokines Il4, Il5, and Il13 showed an inverse correlation in the liver but not in the colon. A longer embryogenesis of the parasitic eggs in the liver could explain this correlation. This conclusion is supported by the lack of any correlation with immune response in the colon, as the intestinal passage of the eggs is limited to a few days.
Collapse
Affiliation(s)
- Lena Russ
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Sarah Wrobel
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Frederik Stettler
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Gabriele Schramm
- Early Life Origins of Chronic Lung Diseases, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Franco H. Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (F.H.F.); (C.G.G.)
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (F.H.F.); (C.G.G.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| |
Collapse
|
12
|
Zhong H, Dong B, Zhu D, Fu Z, Liu J, Guan G, Jin Y. Schistosoma japonicumsja-let-7 Inhibits the Growth of Hepatocellular Carcinoma Cells via Cross-Species Regulation of Col1α2. Genes (Basel) 2024; 15:1165. [PMID: 39336756 PMCID: PMC11431810 DOI: 10.3390/genes15091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from our laboratory have demonstrated that Schistosoma japonicum extracellular vesicles (EVs) deliver sja-let-7 to hepatic stellate cells, leading to the inhibition of Col1α2 expression and alleviation of liver fibrosis. Given the well-documented antifibrotic and antiproliferative properties of the let-7 miRNA family, this study aims to preliminarily investigate the effects of the sja-let-7/Col1α2 axis on BALB/c mice and HCC cell line SNU387, providing a basis for the potential application of parasite-derived molecules in HCC therapy. In the present study, schistosome-induced fibrosis datasets were analyzed to identify the role of Col1α2 in extracellular matrix organization. Pan-cancer analysis revealed that Col1α2 is upregulated in various cancers, including HCC, with significant associations with immune cell infiltration and clinical parameters, highlighting its diagnostic importance. Functional assays demonstrated that transfection with sja-let-7 mimics significantly reduced Col1α2 expression, inhibited HCC cell proliferation, migration, and colony formation. These findings suggest that sja-let-7, by targeting Col1α2, has the potential to serve as a therapeutic agent in HCC treatment. This study indicates the pivotal role of Col1α2 in liver fibrosis and HCC, and the promising therapeutic application of helminth-derived miRNAs.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China;
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| |
Collapse
|
13
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
14
|
Patente TA, Gasan TA, Scheenstra M, Ozir-Fazalalikhan A, Obieglo K, Schetters S, Verwaerde S, Vergote K, Otto F, Wilbers RHP, van Bloois E, Wijck YV, Taube C, Hammad H, Schots A, Everts B, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. S. mansoni -derived omega-1 prevents OVA-specific allergic airway inflammation via hampering of cDC2 migration. PLoS Pathog 2024; 20:e1012457. [PMID: 39186814 PMCID: PMC11379383 DOI: 10.1371/journal.ppat.1012457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic infection with Schistosoma mansoni parasites is associated with reduced allergic sensitization in humans, while schistosome eggs protects against allergic airway inflammation (AAI) in mice. One of the main secretory/excretory molecules from schistosome eggs is the glycosylated T2-RNAse Omega-1 (ω1). We hypothesized that ω1 induces protection against AAI during infection. Peritoneal administration of ω1 prior to sensitization with Ovalbumin (OVA) reduced airway eosinophilia and pathology, and OVA-specific Th2 responses upon challenge, independent from changes in regulatory T cells. ω1 was taken up by monocyte-derived dendritic cells, mannose receptor (CD206)-positive conventional type 2 dendritic cells (CD206+ cDC2), and by recruited peritoneal macrophages. Additionally, ω1 impaired CCR7, F-actin, and costimulatory molecule expression on myeloid cells and cDC2 migration in and ex vivo, as evidenced by reduced OVA+ CD206+ cDC2 in the draining mediastinal lymph nodes (medLn) and retainment in the peritoneal cavity, while antigen processing and presentation in cDC2 were not affected by ω1 treatment. Importantly, RNAse mutant ω1 was unable to reduce AAI or affect DC migration, indicating that ω1 effects are dependent on its RNAse activity. Altogether, ω1 hampers migration of OVA+ cDC2 to the draining medLn in mice, elucidating how ω1 prevents allergic airway inflammation in the OVA/alum mouse model.
Collapse
Affiliation(s)
- Thiago A Patente
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maaike Scheenstra
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frank Otto
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Eline van Bloois
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Christian Taube
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Arjen Schots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart Everts
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
15
|
Pezzella-Ferreira GN, Pão CRR, Bellas I, Luna-Gomes T, Muniz VS, Paiva LA, Amorim NRT, Canetti C, Bozza PT, Diaz BL, Bandeira-Melo C. Endogenous PGD2 acting on DP2 receptor counter regulates Schistosoma mansoni infection-driven hepatic granulomatous fibrosis. PLoS Pathog 2024; 20:e1011812. [PMID: 39173086 PMCID: PMC11386465 DOI: 10.1371/journal.ppat.1011812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/10/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Identifying new molecular therapies targeted at the severe hepatic fibrosis associated with the granulomatous immune response to Schistosoma mansoni infection is essential to reduce fibrosis-related morbidity/mortality in schistosomiasis. In vitro cell activation studies suggested the lipid molecule prostaglandin D2 (PGD2) as a potential pro-fibrotic candidate in schistosomal context, although corroboratory in vivo evidence is still lacking. Here, to investigate the role of PGD2 and its cognate receptor DP2 in vivo, impairment of PGD2 synthesis by HQL-79 (an inhibitor of the H-PGD synthase) or DP2 receptor inhibition by CAY10471 (a selective DP2 antagonist) were used against the fibrotic response of hepatic eosinophilic granulomas of S. mansoni infection in mice. Although studies have postulated PGD2 as a fibrogenic molecule, HQL-79 and CAY10471 amplified, rather than attenuated, the fibrotic response within schistosome hepatic granulomas. Both pharmacological strategies increased hepatic deposition of collagen fibers - an unexpected outcome accompanied by further elevation of hepatic levels of the pro-fibrotic cytokines TGF-β and IL-13 in infected animals. In contrast, infection-induced enhanced LTC4 synthesis in the schistosomal liver was reduced after HQL-79 and CAY10471 treatments, and therefore, inversely correlated with collagen production in granulomatous livers. Like PGD2-directed maneuvers, antagonism of cysteinyl leukotriene receptors CysLT1 by MK571 also promoted enhancement of TGF-β and IL-13, indicating a key down-regulatory role for endogenous LTC4 in schistosomiasis-induced liver fibrosis. An ample body of data supports the role of S. mansoni-driven DP2-mediated activation of eosinophils as the source of LTC4 during infection, including: (i) HQL-79 and CAY10471 impaired systemic eosinophilia, drastically decreasing eosinophils within peritoneum and hepatic granulomas of infected animals in parallel to a reduction in cysteinyl leukotrienes levels; (ii) peritoneal eosinophils were identified as the only cells producing LTC4 in PGD2-mediated S. mansoni-induced infection; (iii) the magnitude of hepatic granulomatous eosinophilia positively correlates with S. mansoni-elicited hepatic content of cysteinyl leukotrienes, and (iv) isolated eosinophils from S. mansoni-induced hepatic granuloma synthesize LTC4 in vitro in a PGD2/DP2 dependent manner. So, our findings uncover that granulomatous stellate cells-derived PGD2 by activating DP2 receptors on eosinophils does stimulate production of anti-fibrogenic cysLTs, which endogenously down-regulates the hepatic fibrogenic process of S. mansoni granulomatous reaction - an in vivo protective function which demands caution in the future therapeutic attempts in targeting PGD2/DP2 in schistosomiasis.
Collapse
Affiliation(s)
- Giovanna N. Pezzella-Ferreira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila R. R. Pão
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isaac Bellas
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Luna-Gomes
- Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdirene S. Muniz
- Laboratório de Imunofarmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia A. Paiva
- Laboratório de Imunofarmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia R. T. Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Diaz BL, Bandeira-Melo C. Parasitic infections: A new frontier for PGD 2 functions. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100078. [PMID: 38826690 PMCID: PMC11140190 DOI: 10.1016/j.crimmu.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024] Open
Abstract
Prostaglandin (PG)D2 is produced and/or triggered by different parasites to modulate the course of the infection. These findings position PGD2 as a therapeutic target and suggest potential beneficial effects of repositioned drugs that target its synthesis or receptor engagement. However, recent in vivo data may suggest a more nuanced role and warrants further investigation of the role of PGD2 during the full course and complexity of parasitic infections.
Collapse
Affiliation(s)
- Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
17
|
Golenser J, Birman I, Gold D. Considering ivermectin for treatment of schistosomiasis. Parasitol Res 2024; 123:180. [PMID: 38592544 PMCID: PMC11003930 DOI: 10.1007/s00436-024-08178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Because of recent reports of praziquantel resistance in schistosome infections, there have been suggestions to employ ivermectin as a possible alternative, especially as its chemical composition is different from that of praziquantel, so cross-resistance is not expected. In order to ascertain possible damage and elimination of worms, we used ivermectin by oral gavage in infected mice, at a high dose (30.1 mg/kg, bordering toxicity). We also tested the efficacy of the drug at various times postinfection (PI), to check on possible effect on young and mature stages of the parasites. Thus, we treated mice on days 21 and 22 or on days 41 and 42 and even on days 21, 22, 41, and 42 PI. None of the treatment regimens resulted in cure rates or signs of lessened pathology in the mice. We also compared the effect of ivermectin to that of artemisone, an artemisinin derivative which had served us in the past as an effective anti-schistosome drug, and there was a stark difference in the artemisone's efficacy compared to that of ivermectin; while ivermectin was not effective, artemisone eliminated most of the worms, prevented egg production and granulomatous inflammatory response. We assume that the reported lack of activity of ivermectin, in comparison with praziquantel and artemisinins, originates from the difference in their mode of action. In wake of our results, we suggest that ivermectin is not a suitable drug for treatment of schistosomiasis.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| | - Ida Birman
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Daniel Gold
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Ghezellou P, von Bülow V, Luh D, Badin E, Albuquerque W, Roderfeld M, Roeb E, Grevelding CG, Spengler B. Schistosoma mansoni infection induces hepatic metallothionein and S100 protein expression alongside metabolic dysfunction in hamsters. PNAS NEXUS 2024; 3:pgae104. [PMID: 38562583 PMCID: PMC10983833 DOI: 10.1093/pnasnexus/pgae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Schistosomiasis, a widespread neglected tropical disease, presents a complex and multifaceted clinical-pathological profile. Using hamsters as final hosts, we dissected molecular events following Schistosoma mansoni infection in the liver-the organ most severely affected in schistosomiasis patients. Employing tandem mass tag-based proteomics, we studied alterations in the liver proteins in response to various infection modes and genders. We examined livers from female and male hamsters that were: noninfected (control), infected with either unisexual S. mansoni cercariae (single-sex) or both sexes (bisex). The infection induced up-regulation of proteins associated with immune response, cytoskeletal reorganization, and apoptotic signaling. Notably, S. mansoni egg deposition led to the down-regulation of liver factors linked to energy supply and metabolic processes. Gender-specific responses were observed, with male hamsters showing higher susceptibility, supported by more differentially expressed proteins than found in females. Of note, metallothionein-2 and S100a6 proteins exhibited substantial up-regulation in livers of both genders, suggesting their pivotal roles in the liver's injury response. Immunohistochemistry and real-time-qPCR confirmed strong up-regulation of metallothionein-2 expression in the cytoplasm and nucleus upon the infection. Similar findings were seen for S100a6, which localized around granulomas and portal tracts. We also observed perturbations in metabolic pathways, including down-regulation of enzymes involved in xenobiotic biotransformation, cellular energy metabolism, and lipid modulation. Furthermore, lipidomic analyses through liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging identified extensive alterations, notably in cardiolipin and triacylglycerols, suggesting specific roles of lipids during pathogenesis. These findings provide unprecedented insights into the hepatic response to S. mansoni infection, shedding light on the complexity of liver pathology in this disease.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - David Luh
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Elisa Badin
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
19
|
Wang X, Gong Q, Nie H, Tu J, Fan W, Tan X. High level of C3 is associated with Th2 immune response and liver fibrosis in patients with schistosomiasis. Parasite Immunol 2024; 46:e13029. [PMID: 38465509 DOI: 10.1111/pim.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Long-term infection of schistosomiasis will seriously affect the liver health of patients. The serum of 334 chronic Schistosoma japonicum patients and 149 healthy volunteers was collected. Compared with heathy people, the level of C4 (complement 4) was increased, and the level of C3 (complement 3) was in an obvious skewed distribution. ELISA was performed to detect the serum cytokines, the results showed that the levels of IFN-γ (interferon-γ), IL (interleukin)-2 and TNF-α (tumour necrosis factor-α) were reduced, while the levels of Th2 cytokines (IL-4, IL-6 and IL-10) were increased. In the serum of patients with high C3, the secretion of HA (hyaluronic acid), LN (laminin), IV-C (type IV collagen) and PCIII (type III procollagen) were increased, the activation of hepatic stellate cells was promoted. Exogenous human recombinant C3 made mice liver structure of the mice damaged and collagen deposition. IFN-γ and IFN-γ/IL-4 were decreased, while HA, LN, PCIII and IV-C were increased, and the expressions of α-SMA and TGF-β1 in liver tissues were up-regulated. However, the addition of IFN-γ partially reversed the effect of C3 on promoting fibrosis. High level of C3 is associated with Th2 immune response and liver fibrosis in patients with schistosomiasis.
Collapse
Affiliation(s)
- Xianmo Wang
- Clinical Laboratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Quan Gong
- Yangtze University, Jingzhou, Hubei Province, China
| | - Hao Nie
- Yangtze University, Jingzhou, Hubei Province, China
| | - Jiancheng Tu
- Clinical Laboratory, The Second Clinical College of Wuhan University, Wuhan, Hubei province, China
| | - Wen Fan
- Clinical Laboratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Xiaoping Tan
- Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
20
|
Qi YX, Huang MR, Sun HY, Wu XY, Liu ZT, Lu DB. Prevalence of depressive symptoms in patients with advanced schistosomiasis in China: A systematic review and meta-analysis. PLoS Negl Trop Dis 2024; 18:e0012003. [PMID: 38452104 PMCID: PMC10950241 DOI: 10.1371/journal.pntd.0012003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/19/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Advanced schistosomiasis is the most serious outcome of infection and has a negative impact on both physical fitness and mental health of patients, the latter of which has long been overlooked. Therefore, we performed this systematic review and meta-analysis to estimate the overall prevalence of depressive symptoms, one of the most common mental problems, in patients with advanced schistosomiasis in China. METHODS Six electronic databases were searched for studies reporting the prevalence of depressive symptoms in the targeted patients. Assessments were pooled using a fixed- or random-effects model based on heterogeneity test. Subgroup analyses were further performed and differences between/among groups were examined using the chi-squared test. The protocol had previously been registered in PROSPERO (CRD42023406708). RESULTS A total of 11 studies with 1,673 participants were included. The pooled prevalence of depressive symptoms in advanced schistosomiasis in China was 62.01% (95% CI: 51.30% - 72.72%), with a significant heterogeneity among studies. Depressive symptoms were more prevalent in patients with complications and more than half of the patients suffered a mild- or moderate-level of depression. No publication bias was found, and sensitivity analysis showed a stable result. CONCLUSIONS The overall prevalence of depressive symptoms in advanced schistosomiasis in China was high enough to warrant psychotherapeutic interventions, especially for patients with complications. This would greatly prevent or/and reduce depression and improve their quality of life.
Collapse
Affiliation(s)
- Yu-Xin Qi
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Meng-Rui Huang
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Hui-Ying Sun
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiao-Yan Wu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ze-Ting Liu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Da-Bing Lu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
21
|
Tang CL, Lian Z, Ding FR, Liang J, Li XY. Schistosoma-related molecules as a new strategy to combat type 1 diabetes through immune regulation. Parasitol Int 2024; 98:102818. [PMID: 37848126 DOI: 10.1016/j.parint.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
The study of immune regulation mechanisms induced by parasites may help develop new treatment methods for inflammatory diseases including type 1 diabetes, which is related to type 1 immune responses. The negative correlation between schistosomiasis infection and type 1 diabetes has been confirmed, and the mechanism of Schistosoma-mediated prevention of type 1 diabetes may be related to the adaptive and innate immune systems. Schistosoma-related molecules affect immune cell composition and macrophage polarization and stimulate an increase in natural killer T cells. Furthermore, Schistosoma-related molecules can regulate the adaptive immune responses related to the prevention of type 1 diabetes and change the Th1/Th2 and Th17/Treg axis. Our previous review showed the role of regulatory T cells in the protective of type 1 diabetes mediated by Schistosoma. Here, we aim to review the other mechanisms of schistosomiasis infection and Schistosoma-related products in regulating the immune response associated with the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhan Lian
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Fan-Rong Ding
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China.
| | - Xiang-You Li
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
22
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Bischofsberger M, Reinholdt C, Dannenhaus TA, Aleith J, Bergmann-Ewert W, Müller-Hilke B, Löbermann M, Reisinger EC, Sombetzki M. Individually or as a Team-The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens 2023; 12:1432. [PMID: 38133315 PMCID: PMC10746046 DOI: 10.3390/pathogens12121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the lung is considered an efficient site for stopping the larvae of the acute Schistosoma spp. infection phase from migrating through extensive inflammatory responses in the surrounding tissues, little is known about these processes. To date, the highest resistance to infection has been achieved in experimental studies with radiation-attenuated cercariae immunization, which elicits a strong Th1/Th2 response in the lung and results in up to 80% protection. Based on our own studies demonstrating a systemic, unpolarized Th1/Th2 response resulting from infection with male or female Schistosoma mansoni, we hypothesize that this atypical immune response is already detectable during the pulmonary passage of parasite larvae. Therefore, we examined the immune milieu in the lungs of mice caused by migrating schistosome larvae, either male or female (single-sex groups) or male + female (bisexual control), 4 and 16 days after infection in bronchoalveolar lavage and lung tissue by flow cytometry, qPCR, and multiplex analyzes. Our results show only minor differences in the inflammatory profile between the single-sex groups but significant differences compared with the bisexual control group. Both single-sex infected groups have increased expression of inflammatory markers in lung tissue, higher numbers of cytotoxic T cells (day 4 post-infection) and more T helper cells (day 16 post-infection), compared with the bisexual control group. A single-sex infection, regardless of whether it is an infection with male or female cercariae, causes an immune milieu in the lung that is clearly different from an infection with both sexes. In terms of identifying therapeutic targets to achieve resistance to re-infection, it is of great scientific interest to identify the differences in the inflammatory potential of male or female and male + female parasites.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Tim Alexander Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany; (J.A.); (B.M.-H.)
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany; (M.B.); (C.R.); (T.A.D.); (M.L.); (E.C.R.)
| |
Collapse
|
24
|
Aspatwar A, Bonardi A, Aisala H, Zueva K, Primmer CR, Lumme J, Parkkila S, Supuran CT. Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite Gyrodactylus salaris. J Enzyme Inhib Med Chem 2023; 38:2167988. [PMID: 36647786 PMCID: PMC9848252 DOI: 10.1080/14756366.2023.2167988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Monogenean platyhelminth Gyrodactylus salaris, a fish parasite, GsaCAβ, has been investigated for its inhibitory effects with a panel of sulphonamides and sulfamates, some of which in clinical use. Several effective GsaCAβ inhibitors were identified, belonging to simple heterocyclic sulphonamides, the deacetylated precursors of acetazolamide and methazolamide (KIsof 81.9-139.7 nM). Many other simple benezene sulphonamides and clinically used agents, such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, benzolamide, sulthiame and hydrochlorothiazide showed inhibition constants <1 µM. The least effective GsaCAβ inhibitors were 4,6-disubstituted-1,3-benzene disulfonamides, with KIs in the range of 16.9-24.8 µM. Although no potent GsaCAβ-selective inhibitors were detected so far, this preliminary investigation may be helpful for better understanding the inhibition profile of this parasite enzyme and for the potential development of more effective and eventually parasite-selective inhibitors.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Ashok Aspatwar Faculty of Medicine and Health Technology, Tampere University, Via Ugo Schiff 6, Tampere, 50019, Finland
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Heidi Aisala
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ksenia Zueva
- Department of Biology, University of Turku, Turku, Finland
| | - Craig R Primmer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy,Claudiu T. Supuran Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Zhong H, Dong B, Zhu D, Li H, Lu K, Fu Z, Liu J, Jin Y. Sja-Let-7 Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in a Mouse Model via Col1α2. BIOLOGY 2023; 12:1465. [PMID: 38132291 PMCID: PMC10740823 DOI: 10.3390/biology12121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis (LF) is a chronic progressive disease with no definitive treatment. The aim of this study was to assess helminth-derived molecules as potential therapeutic targets to prevent or reverse LF. A mouse model of carbon tetrachloride (CCL4)-induced LF was established and sja-let-7 was overexpressed by treatment with a miRNA agomir once per week. After four weeks, serum biochemistry, hepatic hydroxyproline content measurements, liver histology, mRNA expression profiling of fibrotic markers, the dual-luciferase reporter assay, and fluorescence in situ hybridization (FISH) were performed. Administration of the sja-let-7 agomir markedly ameliorated hepatosplenomegaly and reduced the liver hydroxyproline content. Liver histological analysis showed significant reductions in collagen deposition in the sja-let-7 agomir-treated mice. Additionally, the mRNA levels of both pro-fibrotic markers and pro-inflammatory cytokines were diminished after treatment. Furthermore, the dual-luciferase reporter assay and FISH identified the α2 chain of collagen type 1 (Col1α2) as the direct target of sja-let-7. Accordingly, the progression of LF was attenuated by targeting Col1α2 and the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
26
|
Li C, Hou Y, He M, Lv L, Zhang Y, Sun S, Zhao Y, Liu X, Ma P, Wang X, Zhou Q, Zhan L. Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for An Effective Antiviral CD8 + T-Cell Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303006. [PMID: 37638719 PMCID: PMC10602536 DOI: 10.1002/advs.202303006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.
Collapse
Affiliation(s)
- Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
27
|
Liu M, Cho WC, Flynn RJ, Jin X, Song H, Zheng Y. microRNAs in parasite-induced liver fibrosis: from mechanisms to diagnostics and therapeutics. Trends Parasitol 2023; 39:859-872. [PMID: 37516634 DOI: 10.1016/j.pt.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Chronic parasite infections in the liver pose a global threat to human and animal health, often occurring with liver fibrosis that leads to cirrhosis, liver failure, and even cancer. Hepatic fibrogenesis is a complex yet reversible process of tissue repair and is associated with various factors, including immune cells, microenvironment, gut microbiome, and interactions of the different liver cells. As a profibrogenic or antifibrogenic driver, microRNAs (miRNAs) are closely involved in parasite-induced hepatic fibrosis. This article updates the current understanding of the roles of miRNAs in hepatic fibrogenesis by parasite infections and discusses the strategies using miRNAs as candidates for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Robin J Flynn
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Graduate Studies Office, Department of Research, Innovation and Graduate Studies, Waterford Institute of Technology, X91 K0EK, Ireland
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
28
|
Cummings RD. Glycosphingolipids in human parasites. FEBS Open Bio 2023; 13:1625-1635. [PMID: 37335950 PMCID: PMC10476572 DOI: 10.1002/2211-5463.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Glycosphingolipids (GSLs) are comprised of glycans (oligosaccharides) linked to a lipid containing a sphingosine moiety. They are major membrane components in cells of most animals, and importantly, they also occur in parasitic protozoans and worms that infect people. While the endogenous functions of the GSLs in most parasites are elusive, many of these GSLs are recognized by antibodies in infected human and animal hosts, and thus, their structures, biosynthesis, and functions are of great interest. Such knowledge of GSLs could lead to new drugs and diagnostics for treating infections, as well as novel vaccine strategies. The diversity of GSLs recently identified in such infectious organisms and aspects of their immune recognition are major topics of this review. It is not intended to be exhaustive but to highlight aspects of GSL glycans in human parasites.
Collapse
Affiliation(s)
- Richard D. Cummings
- Division of Surgical Sciences, Department of Surgery, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
29
|
Williams DA, Flood MH. Hematoloechus sp. attachment shifts endothelium in vivo from pro- to anti-inflammatory profile in Rana pipiens: evidence from systemic and capillary physiology. Am J Physiol Regul Integr Comp Physiol 2023; 325:R133-R153. [PMID: 37272786 PMCID: PMC10393331 DOI: 10.1152/ajpregu.00041.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
This prospective, descriptive study focused on lung flukes (Hematoloechus sp., H) and their impact on systemic and individual capillary variables measured in pithed Rana pipiens, a long-standing model for studies of capillary physiology. Three groups were identified based on Hematoloechus attachment: no Hematoloechus (No H), Hematoloechus not attached (H Not Att), and Hematoloechus attached (H Att). Among 38 descriptive, cardiovascular, and immunological variables, 18 changed significantly with H. Symptoms of H included weight loss, elevated immune cells, heart rate variability, faster coagulation, lower hematocrit, and fluid accumulation. Important capillary function discoveries included median baselines for hydraulic conductivity (Lp) of 7.0 (No H), 12.4 (H Not Att), and 4.2 (H Att) × 10-7 cm·s-1·cmH2O-1 (P < 0.0001) plus seasonal adaptation of sigma delta pi [σ(πc-πi), P = 0.03]. Pro- and anti-inflammatory phases were revealed for Lp and plasma nitrite/nitrate concentration ([NOx]) in both H Not Att and H Att, whereas capillary wall tensile strength increased in the H Att. H attachment was advantageous for the host due to lower edema and for the parasite via a sustained food source illustrating an excellent example of natural symbiosis. However, H attachment also resulted in host weight loss: in time, a conundrum for the highly dependent parasite. The study increases overall knowledge of Rana pipiens by revealing intriguing effects of H and previously unknown, naturally occurring seasonal changes in many variables. The data improve Rana pipiens as a general scientific and capillary physiology model. Diseases of inflammation and stroke are among the clinical applications.
Collapse
Affiliation(s)
- Donna A Williams
- College of Nursing, Montana State University, Bozeman, Montana, United States
| | - Mary H Flood
- College of Nursing, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
30
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
31
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
32
|
Prasanphanich NS, Leon K, Secor WE, Shoemaker CB, Heimburg-Molinaro J, Cummings RD. Anti-schistosomal immunity to core xylose/fucose in N-glycans. Front Mol Biosci 2023; 10:1142620. [PMID: 37081851 PMCID: PMC10110957 DOI: 10.3389/fmolb.2023.1142620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Schistosomiasis is a globally prevalent, debilitating disease that is poorly controlled by chemotherapy and for which no vaccine exists. While partial resistance in people may develop over time with repeated infections and treatments, some animals, including the brown rat (Rattus norvegicus), are only semi-permissive and have natural protection. To understand the basis of this protection, we explored the nature of the immune response in the brown rat to infection by Schistosoma mansoni. Infection leads to production of IgG to Infection leads to production of IgG to parasite glycoproteins parasite glycoproteins with complex-type N-glycans that contain a non-mammalian-type modification by core α2-Xylose and core α3-Fucose (core Xyl/Fuc). These epitopes are expressed on the surfaces of schistosomula and adult worms. Importantly, IgG to these epitopes can kill schistosomula by a complement-dependent process in vitro. Additionally, sera from both infected rhesus monkey and infected brown rat were capable of killing schistosomula in a manner inhibited by glycopeptides containing core Xyl/Fuc. These results demonstrate that protective antibodies to schistosome infections in brown rats and rhesus monkeys include IgG responses to the core Xyl/Fuc epitopes in surface-expressed N-glycans, and raise the potential of novel glyco-based vaccines that might be developed to combat this disease.
Collapse
Affiliation(s)
| | - Kristoffer Leon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, United States
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- *Correspondence: Richard D. Cummings,
| |
Collapse
|
33
|
Poteaux P, Gourbal B, Duval D. Time series analysis of tegument ultrastructure of in vitro transformed miracidium to mother sporocyst of the human parasite Schistosoma mansoni. Acta Trop 2023; 240:106840. [PMID: 36681315 DOI: 10.1016/j.actatropica.2023.106840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The transformation of Schistosoma mansoni miracidia into mother sporocysts is induced, either in vivo by the penetration of the free-living larval stage, the miracidium, in the snail Biomphalaria glabrata or in vitro following the incubation of the miracidium in Chernin's Balanced Salt Solution (CBSS) or Bge (B. glabrata embryonic cell line) culture medium. The in vitro development of S. mansoni miracidium into mother sporocyst was monitored by Scanning Electron Microscopy (SEM) from 2.5 h to 120 h in CBSS. The transformation starts when the miracidium ciliate plates detach due to the proliferation of the intercellular ridge associated with the degeneration of mid-body papillae of the miracidium. The loss of ciliated plates causes the appearing of scars, filled across time by the proliferation of a new tegument originating from the interplate ridge. This new tegument covers the entire body of the metamorphosing parasite and differentiates over time, allowing some exchanges (uptakes or secretion/excretion) between the parasite and its host. In contrast to the well-described development of adult and free-living larval stages of S. mansoni using SEM, the developmental transformation of intramolluscan stages, especially tegumental changes in the mother sporocyst, has been sparcely documented at the ultrastructural level. In addition, taking into account the latest literature on miracidium electron microscopy and the advances in SEM technologies over the last thirty years, the present study gathers three main objectives: (i) Fill the gap of tegument scanning electron micrographs of in vitro transforming sporocysts; (ii) Update the current bibliographic miracidia and sporocysts image bank due to rapid evolution of SEM technology; (iii) Understand and describe the critical steps and duration of the in vitro miracidium-to-sporocyst transformation process to assist in understanding the interaction between the larval surface and snail immune factors.
Collapse
Affiliation(s)
- Pierre Poteaux
- IHPE, CNRS, IFREMER, Univ Montpellier, Univ Perpignan Via Domitia, Perpignan, France.
| | - Benjamin Gourbal
- IHPE, CNRS, IFREMER, Univ Montpellier, Univ Perpignan Via Domitia, Perpignan, France
| | - David Duval
- IHPE, CNRS, IFREMER, Univ Montpellier, Univ Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
34
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
35
|
Dagenais M, Tritten L. Hidden in plain sight: How helminths manage to thrive in host blood. FRONTIERS IN PARASITOLOGY 2023; 2:1128299. [PMID: 39816845 PMCID: PMC11732017 DOI: 10.3389/fpara.2023.1128299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 01/18/2025]
Abstract
Parasitic helminths have evolved a plethora of elegant stratagems to regulate and evade the host immune system, contributing to their considerable persistence and longevity in their vertebrate hosts. Various mechanisms to achieve this state have been described, ranging from interfering with or actively modulating host immune responses to hiding from immune recognition. Because they damage surrounding vessels and disturb blood flow, blood-borne and blood-feeding parasites in particular must deal with much more than immune effector cells. Management of the host complement system and coagulation cascade, as well as the development of processes of hiding and masking, represent hallmarks of life in blood. Here we review recent findings on putative evasion strategies employed by blood-borne parasitic helminths, focusing on the interaction with and utilisation of host serum components by nematodes and trematodes.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Sombetzki M, Reinholdt C, Winkelmann F, Rabes A, Koslowski N, Reisinger EC. A one-year unisexual Schistosoma mansoni infection causes pathologic organ alterations and persistent non-polarized T cell-mediated inflammation in mice. Front Immunol 2022; 13:1010932. [PMID: 36505463 PMCID: PMC9730239 DOI: 10.3389/fimmu.2022.1010932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
In exhibiting gonochorism and phenotypic sexual dimorphism, Schistosoma spp. are unique among trematodes. Only females mating with male schistosomes can produce the highly immunogenic parasite eggs which determine the clinical picture of the disease schistosomiasis. The strong immune-modulatory effect of the eggs masks the influence of the adult worms. To shed light on the complexity of the immune response triggered by adult worms of Schistosoma mansoni, we performed a long-term unisexual infection experiment in mice. We were able to demonstrate that both male and female schistosomes can survive unpaired for one year in the murine host. Furthermore, unisexual S. mansoni infection leads to pronounced inflammation of the liver characterized by a non-polarized Th1/Th2 immune response, regardless of worm sex.
Collapse
|
37
|
Dibo N, Liu X, Chang Y, Huang S, Wu X. Pattern recognition receptor signaling and innate immune responses to schistosome infection. Front Cell Infect Microbiol 2022; 12:1040270. [PMID: 36339337 PMCID: PMC9633954 DOI: 10.3389/fcimb.2022.1040270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Schistosomiasis remains to be a significant public health problem in tropical and subtropical regions. Despite remarkable progress that has been made in the control of the disease over the past decades, its elimination remains a daunting challenge in many countries. This disease is an inflammatory response-driven, and the positive outcome after infection depends on the regulation of immune responses that efficiently clear worms and allow protective immunity to develop. The innate immune responses play a critical role in host defense against schistosome infection and pathogenesis. Initial pro-inflammatory responses are essential for clearing invading parasites by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged inflammatory responses against the eggs trapped in the host tissues contribute to disease progression. A better understanding of the molecular mechanisms of innate immune responses is important for developing effective therapies and vaccines. Here, we update the recent advances in the definitive host innate immune response to schistosome infection, especially highlighting the critical roles of pattern recognition receptors and cytokines. The considerations for further research are also provided.
Collapse
Affiliation(s)
- Nouhoum Dibo
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Xianshu Liu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Yueyang, China
| | - Shuaiqin Huang
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| | - Xiang Wu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| |
Collapse
|
38
|
Liu X, Jiang Y, Ye J, Wang X. Helminth infection and helminth-derived products: A novel therapeutic option for non-alcoholic fatty liver disease. Front Immunol 2022; 13:999412. [PMID: 36263053 PMCID: PMC9573989 DOI: 10.3389/fimmu.2022.999412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes, and metabolic syndrome (MetS), and it has become the most common chronic liver disease. Helminths have co-evolved with humans, inducing multiple immunomodulatory mechanisms to modulate the host's immune system. By using their immunomodulatory ability, helminths and their products exhibit protection against various autoimmune and inflammatory diseases, including obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we review the pathogenesis of NAFLD from abnormal glycolipid metabolism, inflammation, and gut dysbiosis. Correspondingly, helminths and their products can treat or relieve these NAFLD-related diseases, including obesity, diabetes, and MetS, by promoting glycolipid metabolism homeostasis, regulating inflammation, and restoring the balance of gut microbiota. Considering that a large number of clinical trials have been carried out on helminths and their products for the treatment of inflammatory diseases with promising results, the treatment of NAFLD and obesity-related diseases by helminths is also a novel direction and strategy.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
40
|
Kenney ET, Mann VH, Ittiprasert W, Rosa BA, Mitreva M, Bracken BK, Loukas A, Brindley PJ, Sotillo J. Differential Excretory/Secretory Proteome of the Adult Female and Male Stages of the Human Blood Fluke, Schistosoma mansoni. FRONTIERS IN PARASITOLOGY 2022; 1:950744. [PMID: 39816473 PMCID: PMC11732030 DOI: 10.3389/fpara.2022.950744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2025]
Abstract
Intricate molecular communication between schistosome flatworms and their mammalian host, as well as between paired male and female schistosomes has shaped the secreted proteome of these flatworms. Whereas the schistosome egg is responsible for the disease manifestations of chronic schistosomiasis, the long lived, adult female and male stages also release different mediators including glycans, lipids, proteins and small molecules, known as excretory/secretory products (ESPs), that facilitate their survival. Given their importance, deeper analysis focused on analyzing the ESPs from adult schistosomes would likely be informative, beyond current understanding of the complement of ESP proteins. Here, taking advantage of highly accurate and sensitive mass spectrometers, the excretory/secretory proteome from cultured Schistosoma mansoni male or female adult worms was identified, quantified, compared and contrasted using a label-free proteomic approach. Approximately 1,000 proteins were identified, from which almost 800 could be quantified. Considering the proteins uniquely identified and proteins with a significantly regulated expression pattern in male or female flukes, a total of 370 and 140 proteins were uniquely or more abundantly secreted by males and females, respectively. Using functional analysis networks showing the gene ontology terms and KEGG pathways with the highest significance, we observed that male schistosomes secrete proteins related to carbohydrate metabolism and cytoskeletal organization more abundantly than females, while female worms secreted more hydrolases and proteins involved in cellular homeostasis than males. This analysis doubles the number of reported excreted/secreted proteins from S. mansoni, contributing to deeper understanding of the host-parasite interaction and parasitism. Furthermore, these findings expand potential vaccine and diagnostic candidates for this neglected tropical disease pathogen, and thereby also provide leads for novel intervention to control this disease and its transmission.
Collapse
Affiliation(s)
- Eric T. Kenney
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Bruce A. Rosa
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, United States
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, United States
| | | | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|