1
|
Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao AK. RUNX1 isoforms regulate RUNX1 and target genes differentially in platelets-megakaryocytes: association with clinical cardiovascular events. J Thromb Haemost 2024; 22:3581-3598. [PMID: 39181539 DOI: 10.1016/j.jtha.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoters to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream gene regulation in megakaryocytes and platelets are unknown. OBJECTIVES To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. METHODS We performed studies on RUNX1 isoforms in megakaryocytic human erythroleukemia (HEL) cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). RESULTS In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells, RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A, and others) differentially in HEL cells. In platelets, RUNX1B transcripts (by RNA sequencing) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. CONCLUSION RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner, and this is associated with acute events in CVD.
Collapse
Affiliation(s)
- Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Deepak Voora
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rachel Myers
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - A Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Nobuhisa I, Melig G, Taga T. Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos. Cells 2024; 13:1840. [PMID: 39594589 PMCID: PMC11593047 DOI: 10.3390/cells13221840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells. HSCs expand in the fetal liver, and finally migrate to the bone marrow (BM) during the peripartum period. IAHCs are absent in the dorsal aorta in mice deficient in transcription factors such as Runx-1, GATA2, and c-Myb that are essential for definitive hematopoiesis. In this review, we focus on the transcription factor Sry-related high mobility group (HMG)-box (Sox) F family of proteins that is known to regulate hematopoiesis in the hemogenic endothelium and IAHCs. The SoxF family is composed of Sox7, Sox17, and Sox18, and they all have the HMG box, which has a DNA-binding ability, and a transcriptional activation domain. Here, we describe the functional and phenotypic properties of SoxF family members, with a particular emphasis on Sox17, which is the most involved in hematopoiesis in the fetal stages considering that enhanced expression of Sox17 in hemogenic endothelial cells and IAHCs leads to the production and maintenance of HSCs. We also discuss SoxF-inducing signaling pathways.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
3
|
Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao AK. RUNX1 Isoforms Regulate RUNX1 and Target-Genes Differentially in Platelets-Megakaryocytes: Association with Clinical Cardiovascular Events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599563. [PMID: 38948740 PMCID: PMC11212995 DOI: 10.1101/2024.06.18.599563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoter to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream-gene regulation in megakaryocytes and platelets are unknown. Objectives To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. Methods We performed studies on RUNX1 isoforms in megakaryocytic HEL cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). Results In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A and others) differentially in HEL cells. In platelets RUNX1B transcripts (by RNAseq) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. Conclusions RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner and this associates with acute events in CVD.
Collapse
Affiliation(s)
- Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Deepak Voora
- Department of Medicine, Duke University, Durham, NC
| | - Rachel Myers
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, NC
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
4
|
Robertson AL, Yue L, Choudhuri A, Kubaczka C, Wattrus SJ, Mandelbaum J, Avagyan S, Yang S, Freeman RJ, Chan V, Blair MC, Daley GQ, Zon LI. Hematopoietic stem cell division is governed by distinct RUNX1 binding partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.596542. [PMID: 38895208 PMCID: PMC11185638 DOI: 10.1101/2024.06.07.596542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.
Collapse
|
5
|
Schreiber S, Daum P, Danzer H, Hauke M, Jäck HM, Wittmann J. Identification of miR-128 Target mRNAs That Are Expressed in B Cells Using a Modified Dual Luciferase Vector. Biomolecules 2023; 13:1517. [PMID: 37892199 PMCID: PMC10605364 DOI: 10.3390/biom13101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
MicroRNAs (miRNAs) are 21-25 nucleotide long non-coding ribonucleic acids that modulate gene expression by degrading transcripts or inhibiting translation. The miRNA miR-128, originally thought to be brain-specific, was later also found in immune cells. To identify a valuable immune cell model system to modulate endogenous miR-128 amounts and to validate predicted miR-128 target mRNAs in B cells, we first investigated miR-128 expression using Northern blot analysis in several cell lines representing different stages of B cell development. The results showed that only primary brain cells showed significant levels of mature miR-128. To study the function of miR-128 in immune cells, we modified dual luciferase vectors to allow easy transfer of 3' UTR fragments with predicted miR-128 binding sites from widely used single to dual luciferase vectors. Comparison of in silico predicted miR-128-regulated mRNAs in single and dual luciferase constructs yielded similar results, validating the dual luciferase vector for miRNA target analysis. Furthermore, we confirmed miR-128-regulated mRNAs identified in silico and in vivo using the Ago HITS-CLIP technique and known to be expressed in B cells using the dual luciferase assay. In conclusion, this study provides new insights into the expression and function of miR-128 by validating novel target mRNAs expressed in B cells and identifying additional pathways likely controlled by this miRNA in the immune system.
Collapse
Affiliation(s)
| | | | | | | | | | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine (NFZ), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 6, D-91054 Erlangen, Germany
| |
Collapse
|
6
|
Gouife M, Wang F, Ban Z, Yue X, Jiang J, Xie J. Molecular and functional characterization of two granulocyte colony stimulating factors in goldfish (Carassius auratus L.). Comp Biochem Physiol B Biochem Mol Biol 2023; 268:110879. [PMID: 37490965 DOI: 10.1016/j.cbpb.2023.110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Granulocyte colony-stimulating factor (GCSF) is a member of the hematopoietic growth factor family that acts primarily on neutrophils and neutrophilic precursors to promote cell proliferation and differentiation. Although multiple GCSF genes have been found in teleosts, knowledge of their functions during fish hematopoietic development is still limited. Here, we report for the first time the molecular and functional characterization of two goldfish GCSFs (gfGCSF-a and gfGCSF-b). The open reading frame (ORF) of the gfGCSF-a and gfGCSF-b cDNA transcript consisted respectively of 624 bp and 678 bp with its ORF encoding 207 and 225 amino acids (aa), with a 17 aa signal peptide for each gene and a conserved domain of the IL-6 superfamily. Treatment of goldfish head kidney leukocytes (HKLs) with LPS increased gfGCSF-a and gfGCSF-b mRNA expression levels, also exposure of HKLs to either heat-killed or live A. hydrophila, induced transcriptional upregulation of gfGCSF-a and gfGCSF-b levels. Recombinant gfGCSF-a and gfGCSF-b protein (rgGCSF-a and rgGCSF-b) induced a dose-dependent production of TNFα and IL-1β from goldfish neutrophils. In vitro experiments showed rgGCSF-a and rgGCSF-b differentially promoted the proliferation and differentiation of leukocytes in goldfish. Furthermore, treatment of HKLs with rgGCSF-a showed significant upregulation of mRNA levels of the hematopoietic transcription factor GATA2, Runx1, MafB, and cMyb, while gfGCSF-b induces not only all four transcriptional factors mentioned above but also CEBPα. Our results indicate that goldfish GCSF-a and GCSF-b are important regulators of neutrophil proliferation and differentiation, which could stimulate different stages and lineages of hematopoiesis.
Collapse
Affiliation(s)
- Moussa Gouife
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang 313001, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China. https://twitter.com/Mouskharim
| | - Feiyang Wang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang 313001, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ziqi Ban
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang 313001, China.
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
7
|
Sendker S, Awada A, Domagalla S, Sendker M, Orhan E, Hoffmeister LM, Antoniou E, Niktoreh N, Reinhardt D, von Neuhoff N, Schneider M. RUNX1 mutation has no prognostic significance in paediatric AML: a retrospective study of the AML-BFM study group. Leukemia 2023; 37:1435-1443. [PMID: 37188777 PMCID: PMC10317839 DOI: 10.1038/s41375-023-01919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
In acute myeloid leukaemia (AML) RUNX1 mutation is characterised by certain clinicopathological features with poor prognosis and adverse risk by the European LeukemiaNet recommendation. Though initially considered as provisional category, the recent World Health Organisation (WHO) classification of 2022 removed RUNX1-mutated AML from the unique entity. However, the significance of RUNX1 mutation in paediatric AML remains unclear. We retrospectively analysed a German cohort of 488 paediatric patients with de novo AML, enroled in the AMLR12 or AMLR17 registry of the AML-BFM Study Group (Essen, Germany). A total of 23 paediatric AML patients (4.7%) harboured RUNX1 mutations, 18 of which (78%) had RUNX1 mutation at initial diagnosis. RUNX1 mutations were associated with older age, male gender, number of coexisting alterations and presence of FLT3-ITD but mutually exclusive of KRAS, KIT and NPM1 mutation. RUNX1 mutations did not prognostically impact overall or event-free survival. Response rates did not differ between patients with and without RUNX1 mutations. This comprehensive study, comprising the largest analysis of RUNX1 mutation in a paediatric cohort to date, reveals distinct but not unique clinicopathologic features, with no prognostic significance of RUNX1-mutated paediatric AML. These results broaden the perspective on the relevance of RUNX1 alterations in leukaemogenesis in AML.
Collapse
Affiliation(s)
- Stephanie Sendker
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Amani Awada
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sophia Domagalla
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Michael Sendker
- University of Applied Sciences for Economics and Management (FOM), 20357, Hamburg, Germany
| | - Eser Orhan
- Centre for Research Acceleration in Paediatrics GmbH, 30175, Hannover, Germany
| | - Lina Marie Hoffmeister
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Evangelia Antoniou
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Naghmeh Niktoreh
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nils von Neuhoff
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Markus Schneider
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
8
|
An insight on the role of genetic testing of RUNX1-a key transcriptional gene in familial platelet disorder with predisposition to acute myeloid leukemia. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
9
|
Proteomic Analysis of Murine Bone Marrow Very Small Embryonic-like Stem Cells at Steady-State Conditions and after In Vivo Stimulation by Nicotinamide and Follicle-Stimulating Factor Reflects their Germ-Lineage Origin and Multi Germ Layer Differentiation Potential. Stem Cell Rev Rep 2023; 19:120-132. [PMID: 35986128 PMCID: PMC9823037 DOI: 10.1007/s12015-022-10445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a dormant population of development early stem cells deposited in adult tissues that as demonstrated contribute to tissue/organ repair and regeneration. We postulated developmental relationship of these cells to migrating primordial germ cells (PGCs) and explained the quiescent state of these cells by the erasure of differently methylated regions (DMRs) at some of the paternally imprinted genes involved in embryogenesis. Recently, we reported that VSELs began to proliferate and expand in vivo in murine bone marrow (BM) after exposure to nicotinamide (NAM) and selected pituitary and gonadal sex hormones. In the current report, we performed proteomic analysis of VSELs purified from murine bone marrow (BM) after repeated injections of NAM + Follicle-Stimulating Hormone (FSH) that in our previous studies turned out to be an effective combination to expand these cells. By employing the Gene Ontology (GO) resources, we have performed a combination of standard GO annotations (GO-CAM) to produce a network between BM steady-state conditions VSELs (SSC-VSELS) and FSH + NAM expanded VSELs (FSH + NAM VSELs). We have identified several GO biological processes regulating development, organogenesis, gene expression, signal transduction, Wnt signaling, insulin signaling, cytoskeleton organization, cell adhesion, inhibiting apoptosis, responses to extra- and intracellular stimuli, protein transport and stabilization, protein phosphorylation and ubiquitination, DNA repair, immune response, and regulation of circadian rhythm. We report that VSELs express a unique panel of proteins that only partially overlapped with the proteome of BM - derived hematopoietic stem cells (HSCs) and hematopoietic mononuclear cells (MNCs) and respond to FSH + NAM stimulation by expressing proteins involved in the development of all three germ layers. Thus, our current data supports further germ-lineage origin and multi germ layer differentiation potential of these cells.
Collapse
|
10
|
Bain FM, Che JLC, Jassinskaja M, Kent DG. Lessons from early life: understanding development to expand stem cells and treat cancers. Development 2022; 149:277217. [PMID: 36217963 PMCID: PMC9724165 DOI: 10.1242/dev.201070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Haematopoietic stem cell (HSC) self-renewal is a process that is essential for the development and homeostasis of the blood system. Self-renewal expansion divisions, which create two daughter HSCs from a single parent HSC, can be harnessed to create large numbers of HSCs for a wide range of cell and gene therapies, but the same process is also a driver of the abnormal expansion of HSCs in diseases such as cancer. Although HSCs are first produced during early embryonic development, the key stage and location where they undergo maximal expansion is in the foetal liver, making this tissue a rich source of data for deciphering the molecules driving HSC self-renewal. Another equally interesting stage occurs post-birth, several weeks after HSCs have migrated to the bone marrow, when HSCs undergo a developmental switch and adopt a more dormant state. Characterising these transition points during development is key, both for understanding the evolution of haematological malignancies and for developing methods to promote HSC expansion. In this Spotlight article, we provide an overview of some of the key insights that studying HSC development have brought to the fields of HSC expansion and translational medicine, many of which set the stage for the next big breakthroughs in the field.
Collapse
Affiliation(s)
- Fiona M. Bain
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - James L. C. Che
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - David G. Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Author for correspondence ()
| |
Collapse
|
11
|
Jeong EM, Pereira M, So EY, Wu KQ, Del Tatto M, Wen S, Dooner MS, Dubielecka PM, Reginato AM, Ventetuolo CE, Quesenberry PJ, Klinger JR, Liang OD. Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovasc Res 2022; 118:3211-3224. [PMID: 35018410 PMCID: PMC9799056 DOI: 10.1093/cvr/cvac001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/06/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.
Collapse
Affiliation(s)
| | | | - Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael Del Tatto
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sicheng Wen
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Mark S Dooner
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Peter J Quesenberry
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - James R Klinger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Olin D Liang
- Corresponding author. Tel: 617-816-8885; fax: 401-444-2486, E-mail:
| |
Collapse
|
12
|
Wu F, Chen Z, Liu J, Hou Y. The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp Hematol 2021; 103:15-23. [PMID: 34464661 DOI: 10.1016/j.exphem.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multilineage differentiation capacity. Homeostasis is critical for HSC potential and lifelong hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt)-mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, because it responds to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. Dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, autophagy, and aging, as well as transformation of HSCs to leukemia stem cells. Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights into future clinical applications.
Collapse
Affiliation(s)
- Feng Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
13
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Ren S, Wu G, Huang Y, Wang L, Li Y, Zhang Y. MiR-18a Aggravates Intracranial Hemorrhage by Regulating RUNX1-Occludin/ZO-1 Axis to Increase BBB Permeability. J Stroke Cerebrovasc Dis 2021; 30:105878. [PMID: 34077824 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To study the molecular mechanisms of miR-18a aggravating intracranial hemorrhage (ICH) by increasing the blood-brain barrier (BBB) permeability. METHODS Brain microvascular endothelial cells (BMVECs) and astrocytes were isolated, identified, and co-cultured to establish in vitro BBB model. BMVECs co-cultured with astrocytes were stimulated with or without thrombase and then transfected with miR-18a mimic and/or si-RUNX1. The trans-endothelial electric resistance (TEER) and FlNa flux were measured, respectively. The potential interaction between RUNX1 and miR-18a was also detected. Additionally, SD rats were injected with fresh autologous non-anticoagulant blood into the brain basal ganglia to establish ICH model. After administration with miR-18a, sh-miR-18a, miR-18a+RUNX1, sh-miR-18a+sh-RUNX1, respectively, BBB permeability was assessed. RESULTS After overexpressing miR-18a, the expression levels of RUNX1, Occludin and ZO-1 were decreased, but the Evan's blue contents and brain water contents were significantly increased in ICH rats. Additionally, rat neurological function was impaired, accompanying with an increase of TEER and fluorescein sodium flux. MiR-18a was a direct target of RUNX1 and it could bind to the promoters of RUNX1 to inhibit the expression of Occuldin and ZO-1. Consistently, these phenomena could also be observed in the corresponding cell model. Conversely, miR-18a knockdown or RUNX1 overexpression just presented an improvement effect on ICH. CONCLUSIONS MiR-18a plays a critical role during ICH because it targets to RUNX1 to inhibit the expression of tight junction proteins (Occludin and ZO-1) and then disrupt BBB permeability. MiR-18a might be a probable therapeutic target for ICH diseases.
Collapse
Affiliation(s)
- Siying Ren
- Guizhou Medical University, Guiyang 550025, China; Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guofeng Wu
- Guizhou Medical University, Guiyang 550025, China; Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Yuanxin Huang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yinghui Li
- Guizhou Medical University, Guiyang 550025, China
| | - Yan Zhang
- Guizhou Medical University, Guiyang 550025, China; Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
15
|
Mottram L, Lundgren A, Svennerholm AM, Leach S. A Systems Biology Approach Identifies B Cell Maturation Antigen (BCMA) as a Biomarker Reflecting Oral Vaccine Induced IgA Antibody Responses in Humans. Front Immunol 2021; 12:647873. [PMID: 33828557 PMCID: PMC8019727 DOI: 10.3389/fimmu.2021.647873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccines against enteric diseases could improve global health. Despite this, only a few oral vaccines are currently available for human use. One way to facilitate such vaccine development could be to identify a practical and relatively low cost biomarker assay to assess oral vaccine induced primary and memory IgA immune responses in humans. Such an IgA biomarker assay could complement antigen-specific immune response measurements, enabling more oral vaccine candidates to be tested, whilst also reducing the work and costs associated with early oral vaccine development. With this in mind, we take a holistic systems biology approach to compare the transcriptional signatures of peripheral blood mononuclear cells isolated from volunteers, who following two oral priming doses with the oral cholera vaccine Dukoral®, had either strong or no vaccine specific IgA responses. Using this bioinformatical method, we identify TNFRSF17, a gene encoding the B cell maturation antigen (BCMA), as a candidate biomarker of oral vaccine induced IgA immune responses. We then assess the ability of BCMA to reflect oral vaccine induced primary and memory IgA responses using an ELISA BCMA assay on a larger number of samples collected in clinical trials with Dukoral® and the oral enterotoxigenic Escherichia coli vaccine candidate ETVAX. We find significant correlations between levels of BCMA and vaccine antigen-specific IgA in antibodies in lymphocyte secretion (ALS) specimens, as well as with proportions of circulating plasmablasts detected by flow cytometry. Importantly, our results suggest that levels of BCMA detected early after primary mucosal vaccination may be a biomarker for induction of long-lived vaccine specific memory B cell responses, which are otherwise difficult to measure in clinical vaccine trials. In addition, we find that ALS-BCMA responses in individuals vaccinated with ETVAX plus the adjuvant double mutant heat-labile toxin (dmLT) are significantly higher than in subjects given ETVAX only. We therefore propose that as ALS-BCMA responses may reflect the total vaccine induced IgA responses to oral vaccination, this BCMA ELISA assay could also be used to estimate the total adjuvant effect on vaccine induced-antibody responses, independently of antigen specificity, further supporting the usefulness of the assay.
Collapse
Affiliation(s)
- Lynda Mottram
- Gothenburg University Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lundgren
- Gothenburg University Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Mari Svennerholm
- Gothenburg University Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susannah Leach
- Gothenburg University Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pharmacology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
17
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
18
|
Xiao L, Peng Z, Zhu A, Xue R, Lu R, Mi J, Xi S, Chen W, Jiang S. Inhibition of RUNX1 promotes cisplatin-induced apoptosis in ovarian cancer cells. Biochem Pharmacol 2020; 180:114116. [PMID: 32579960 DOI: 10.1016/j.bcp.2020.114116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 1 (RUNX1), one subunit of core-binding factors in hematopoiesis and leukemia, was highly expressed in ovarian cancer (OC), but the role of RUNX1 in OC is largely unknown. Since we found that high expression of RUNX1 is correlated with poor survival in patients with OC through bioinformatic analysis of TCGA database, we developed RUNX1-knockout clones by CRISPR/Cas9 technique and discovered that RUNX1 depletion could promote cisplatin-induced apoptosis in OC cells, which was further confirmed by RUNX1 knockdown and overexpression. We also proved that RUNX1 could elevate the expression of BCL2. We then examined a total of 32 candidate miRNAs that might mediate the regulation between RUNX1 and BCL2, of which three miRNAs from the miR-17~92 cluster were found to be negatively regulated by RUNX1. Consistently, our analysis of data from TCGA database revealed the negative correlation between RUNX1 and the cluster. We further confirmed that miR-17~92 cluster could enhance cisplatin-induced apoptosis by directly targeting BCL2 3'UTR. Since rescue experiments proved that RUNX1 could repress cisplatin-induced apoptosis by up-regulating BCL2 via miR-17~92 cluster, combining RUNX1 inhibitor Ro5-3335 and cisplatin showed synergic effect in triggering OC cell apoptosis. Collectively, these findings show for the first time that combinational treatment of cisplatin and RUNX1 inhibitor could be used to potentiate apoptosis of ovarian cancer cells, and reveal the potential of targeting RUNX1 in ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Li Xiao
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhennan Peng
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Zhu
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renxing Xue
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renming Lu
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Mi
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaowei Xi
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songshan Jiang
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Wang K, Zhou F, Cai X, Chao H, Zhang R, Chen S. Mutational landscape of patients with acute myeloid leukemia or myelodysplastic syndromes in the context of RUNX1 mutation. Hematology 2020; 25:211-218. [PMID: 32476595 DOI: 10.1080/16078454.2020.1765561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kai Wang
- Department of Hematology, The First Affiliated Hospital of Suzhou University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People’s Republic of China
| | - Feng Zhou
- Department of Hematology, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaohui Cai
- Department of Hematology, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Ri Zhang
- Department of Hematology, The First Affiliated Hospital of Suzhou University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People’s Republic of China
| | - Suning Chen
- Department of Hematology, The First Affiliated Hospital of Suzhou University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People’s Republic of China
| |
Collapse
|
20
|
Nguyen L, Zhang X, Roberts E, Yun S, McGraw K, Abraham I, Song J, Braswell D, Qin D, Sallman DA, Lancet JE, List AF, Moscinski LC, Padron E, Zhang L. Comparison of mutational profiles and clinical outcomes in patients with acute myeloid leukemia with mutated RUNX1 versus acute myeloid leukemia with myelodysplasia-related changes with mutated RUNX1. Leuk Lymphoma 2020; 61:1395-1405. [PMID: 32091281 DOI: 10.1080/10428194.2020.1723016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies comparing the prognostic role of RUNX1 mutations (RUNX1mut) in acute myeloid leukemia (AML) and acute myeloid leukemia-with myelodysplasia-related changes (AML-MRC) are limited. Our study examines the genetic profile of 118 RUNX1mut AML patients including 57 AML with RUNX1mut and 61 AML-MRC with RUNX1mut and 100 AML, NOS patients with wild type RUNX1 (RUNX1wt). Results revealed that AML-MRC patients with RUNX1mut had shorter median overall survival (OS) (11 ± 3.3 months) when compared to AML with RUNX1mut (19 ± 7.1 months) and AML, NOS with RUNX1wt (not reached) (p = .001). The most common concurrent mutations observed in AML-MRC with RUNX1mut patients were DNMT3A, SRSF2, ASXL1, and IDH2 while in AML with RUNX1mut patients were ASXL1, SRSF2, TET2, IDH2, and DNMT3A. ASXL1 and TET2 mutations appeared to adversely affect OS in AML-MRC, but not in AML with RUNX1mut. Concurrent RUNX1/DNMT3A mutations, in contrast had negative impact on OS in AML with RUNX1mut, but not in AML-MRC with RUNX1mut.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, James A. Haley Veterans' Hospital, Tampa, FL, USA.,Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Evans Roberts
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathy McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Diana Braswell
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Dahui Qin
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lynn C Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
21
|
Rho SS, Kobayashi I, Oguri-Nakamura E, Ando K, Fujiwara M, Kamimura N, Hirata H, Iida A, Iwai Y, Mochizuki N, Fukuhara S. Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. Dev Cell 2019; 49:681-696.e6. [DOI: 10.1016/j.devcel.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/16/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023]
|
22
|
Chi Y, Huang Z, Chen Q, Xiong X, Chen K, Xu J, Zhang Y, Zhang W. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biol 2019; 8:rsob.180043. [PMID: 30045885 PMCID: PMC6070721 DOI: 10.1098/rsob.180043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription factor RUNX1 holds an integral role in multiple-lineage haematopoiesis and is implicated as a cofactor in V(D)J rearrangements during lymphocyte development. Runx1 deficiencies resulted in immaturity and reduction of lymphocytes in mice. In this study, we found that runx1W84X/W84X mutation led to the reduction and disordering of B cells, as well as the failure of V(D)J rearrangements in B cells but not T cells, resulting in antibody-inadequate-mediated immunodeficiency in adult zebrafish. By contrast, T cell development was not affected. The decreased number of B cells mainly results from excessive apoptosis in immature B cells. Disrupted B cell development results in runx1W84X/W84X mutants displaying a similar phenotype to common variable immunodeficiency—a primary immunodeficiency disease primarily characterized by frequent susceptibility to infection and deficient immune response, with marked reduction of antibody production of IgG, IgA and/or IgM. Our studies demonstrated an evolutionarily conserved function of runx1 in maturation and differentiation of B cells in adult zebrafish, which will serve as a valuable model for the study of immune deficiency diseases and their treatments.
Collapse
Affiliation(s)
- Yali Chi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qi Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiaojie Xiong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Kemin Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China .,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
23
|
Azzoni E, Frontera V, McGrath KE, Harman J, Carrelha J, Nerlov C, Palis J, Jacobsen SEW, de Bruijn MF. Kit ligand has a critical role in mouse yolk sac and aorta-gonad-mesonephros hematopoiesis. EMBO Rep 2018; 19:e45477. [PMID: 30166337 PMCID: PMC6172468 DOI: 10.15252/embr.201745477] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/10/2022] Open
Abstract
Few studies report on the in vivo requirement for hematopoietic niche factors in the mammalian embryo. Here, we comprehensively analyze the requirement for Kit ligand (Kitl) in the yolk sac and aorta-gonad-mesonephros (AGM) niche. In-depth analysis of loss-of-function and transgenic reporter mouse models show that Kitl-deficient embryos harbor decreased numbers of yolk sac erythro-myeloid progenitor (EMP) cells, resulting from a proliferation defect following their initial emergence. This EMP defect causes a dramatic decrease in fetal liver erythroid cells prior to the onset of hematopoietic stem cell (HSC)-derived erythropoiesis, and a reduction in tissue-resident macrophages. Pre-HSCs in the AGM require Kitl for survival and maturation, but not proliferation. Although Kitl is expressed widely in all embryonic hematopoietic niches, conditional deletion in endothelial cells recapitulates germline loss-of-function phenotypes in AGM and yolk sac, with phenotypic HSCs but not EMPs remaining dependent on endothelial Kitl upon migration to the fetal liver. In conclusion, our data establish Kitl as a critical regulator in the in vivoAGM and yolk sac endothelial niche.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kathleen E McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joana Carrelha
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marella Ftr de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Liu H, Cui Y, Wang GF, Dong Q, Yao Y, Li P, Cao C, Liu X. The nonreceptor tyrosine kinase c-Abl phosphorylates Runx1 and regulates Runx1-mediated megakaryocyte maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1060-1072. [PMID: 29730354 DOI: 10.1016/j.bbamcr.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The transcription factor Runx1 is an essential regulator of definitive hematopoiesis, megakaryocyte (MK) maturation, and lymphocyte differentiation. Runx1 mutations that interfere with its transcriptional activity are often present in leukemia patients. Recent work demonstrated that the transcriptional activity of Runx1 is regulated by kinase-mediated phosphorylation. In this study, we showed that c-Abl, but not Arg tyrosine kinase, associated with Runx1 both in cultured cells and in vitro. c-Abl-mediated tyrosine phosphorylation in the Runx1 transcription inhibition domain negatively regulated the transcriptional activity of Runx1 and inhibited Runx1-mediated MK maturation. Consistent with these findings, increased numbers of MKs were detected in the spleens and bone marrow of abl gene conditional knockout mice. Our findings demonstrate an important role of c-Abl kinase in Runx1-mediated MK maturation and platelet formation and provide a potential mechanism of Abl kinase-regulated hematopoiesis.
Collapse
Affiliation(s)
- Hainan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Yan Cui
- Department of Laboratory Animal Science, Third Military Medical University, Chongqing 400038, China
| | - Guang-Fei Wang
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Yebao Yao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| |
Collapse
|
25
|
Dharampuriya PR, Scapin G, Wong C, John Wagner K, Cillis JL, Shah DI. Tracking the origin, development, and differentiation of hematopoietic stem cells. Curr Opin Cell Biol 2018; 49:108-115. [PMID: 29413969 DOI: 10.1016/j.ceb.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The hierarchical nature of the hematopoietic system provides an ideal model system to illustrate the features of lineage tracing. We have outlined the utility of lineage tracing methods in establishing the origin and development of hematopoietic cells. RECENT FINDINGS Methods such as CRISPR/Cas9, Polylox barcoding, and single-cell RNA-sequencing have improved our understanding of hematopoiesis. SUMMARY This review chronicles the fate of the hematopoietic cells emerging from the mesoderm that subsequently develops into the adult blood lineages. Specifically, we explain classic techniques utilized in lineage tracing for the hematopoietic system, as well as novel state-of-the-art methods to elucidate clonal hematopoiesis and cell fate mapping at a single-cell level.
Collapse
Affiliation(s)
- Priyanka R Dharampuriya
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Giorgia Scapin
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA
| | - Colline Wong
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Boston College, Chestnut Hill, MA 02467, USA
| | - K John Wagner
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Boston College, Chestnut Hill, MA 02467, USA
| | - Jennifer L Cillis
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA
| | - Dhvanit I Shah
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Li Y, Jin C, Bai H, Gao Y, Sun S, Chen L, Qin L, Liu PP, Cheng L, Wang QF. Human NOTCH4 is a key target of RUNX1 in megakaryocytic differentiation. Blood 2018; 131:191-201. [PMID: 29101237 PMCID: PMC5757696 DOI: 10.1182/blood-2017-04-780379] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Megakaryocytes (MKs) in adult marrow produce platelets that play important roles in blood coagulation and hemostasis. Monoallelic mutations of the master transcription factor gene RUNX1 lead to familial platelet disorder (FPD) characterized by defective MK and platelet development. However, the molecular mechanisms of FPD remain unclear. Previously, we generated human induced pluripotent stem cells (iPSCs) from patients with FPD containing a RUNX1 nonsense mutation. Production of MKs from the FPD-iPSCs was reduced, and targeted correction of the RUNX1 mutation restored MK production. In this study, we used isogenic pairs of FPD-iPSCs and the MK differentiation system to identify RUNX1 target genes. Using integrative genomic analysis of hematopoietic progenitor cells generated from FPD-iPSCs, and mutation-corrected isogenic controls, we identified 2 gene sets the transcription of which is either up- or downregulated by RUNX1 in mutation-corrected iPSCs. Notably, NOTCH4 expression was negatively controlled by RUNX1 via a novel regulatory DNA element within the locus, and we examined its involvement in MK generation. Specific inactivation of NOTCH4 by an improved CRISPR-Cas9 system in human iPSCs enhanced megakaryopoiesis. Moreover, small molecules known to inhibit Notch signaling promoted MK generation from both normal human iPSCs and postnatal CD34+ hematopoietic stem and progenitor cells. Our study newly identified NOTCH4 as a RUNX1 target gene and revealed a previously unappreciated role of NOTCH4 signaling in promoting human megakaryopoiesis. Our work suggests that human iPSCs with monogenic mutations have the potential to serve as an invaluable resource for discovery of novel druggable targets.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chen Jin
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Bai
- Division of Hematology, Department of Medicine and
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Yongxing Gao
- Division of Hematology, Department of Medicine and
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Shu Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Qin
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul P Liu
- Translational and Functional Genomics Branch, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine and
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Raghuwanshi S, Gutti U, Kandi R, Gutti RK. MicroRNA-9 promotes cell proliferation by regulating RUNX1 expression in human megakaryocyte development. Cell Prolif 2017; 51. [PMID: 29193421 DOI: 10.1111/cpr.12414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sanjeev Raghuwanshi
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Usha Gutti
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Ravinder Kandi
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Ravi Kumar Gutti
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| |
Collapse
|
28
|
A DNA Contact Map for the Mouse Runx1 Gene Identifies Novel Haematopoietic Enhancers. Sci Rep 2017; 7:13347. [PMID: 29042628 PMCID: PMC5645309 DOI: 10.1038/s41598-017-13748-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023] Open
Abstract
The transcription factor Runx1 is essential for definitive haematopoiesis, and the RUNX1 gene is frequently translocated or mutated in leukaemia. Runx1 is transcribed from two promoters, P1 and P2, to give rise to different protein isoforms. Although the expression of Runx1 must be tightly regulated for normal blood development, the mechanisms that regulate Runx1 isoform expression during haematopoiesis remain poorly understood. Gene regulatory elements located in non-coding DNA are likely to be important for Runx1 transcription. Here we use circular chromosome conformation capture sequencing to identify DNA interactions with the P1 and P2 promoters of Runx1, and the previously identified +24 enhancer, in the mouse multipotent haematopoietic progenitor cell line HPC-7. The active promoter, P1, interacts with nine non-coding regions that are occupied by transcription factors within a 1 Mb topologically associated domain. Eight of nine regions function as blood-specific enhancers in zebrafish, of which two were previously shown to harbour blood-specific enhancer activity in mice. Interestingly, the +24 enhancer interacted with multiple distant regions on chromosome 16, suggesting it may regulate the expression of additional genes. The Runx1 DNA contact map identifies connections with multiple novel and known haematopoietic enhancers that are likely to be involved in regulating Runx1 expression in haematopoietic progenitor cells.
Collapse
|
29
|
Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci (Lond) 2017; 131:2161-2182. [DOI: 10.1042/cs20170238] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022]
Abstract
The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed–forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system.
Collapse
|
30
|
Rahman N, Brauer PM, Ho L, Usenko T, Tewary M, Zúñiga-Pflücker JC, Zandstra PW. Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nat Commun 2017; 8:15380. [PMID: 28541275 PMCID: PMC5477512 DOI: 10.1038/ncomms15380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Efforts to recapitulate haematopoiesis, a process guided by spatial and temporal inductive signals, to generate haematopoietic progenitors from human pluripotent stem cells (hPSCs) have focused primarily on exogenous signalling pathway activation or inhibition. Here we show haemogenic niches can be engineered using microfabrication strategies by micropatterning hPSC-derived haemogenic endothelial (HE) cells into spatially-organized, size-controlled colonies. CD34+VECAD+ HE cells were generated with multi-lineage potential in serum-free conditions and cultured as size-specific haemogenic niches that displayed enhanced blood cell induction over non-micropatterned cultures. Intra-colony analysis revealed radial organization of CD34 and VECAD expression levels, with CD45+ blood cells emerging primarily from the colony centroid area. We identify the induced interferon gamma protein (IP-10)/p-38 MAPK signalling pathway as the mechanism for haematopoietic inhibition in our culture system. Our results highlight the role of spatial organization in hPSC-derived blood generation, and provide a quantitative platform for interrogating molecular pathways that regulate human haematopoiesis.
Collapse
Affiliation(s)
- Nafees Rahman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3ES
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Patrick M. Brauer
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
| | - Lilian Ho
- Life Sciences (Biochemistry), University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Tatiana Usenko
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Medicine by Design, a Canada First Research Excellence Program at the University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W. Zandstra
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3ES
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Medicine by Design, a Canada First Research Excellence Program at the University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
31
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
32
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
33
|
Kanz D, Konantz M, Alghisi E, North TE, Lengerke C. Endothelial-to-hematopoietic transition: Notch-ing vessels into blood. Ann N Y Acad Sci 2016; 1370:97-108. [DOI: 10.1111/nyas.13030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Dirk Kanz
- Department of Stem Cell and Regenerative Biology; Harvard University; Boston Massachusetts
| | - Martina Konantz
- Department of Biomedicine; University Hospital Basel; Basel Switzerland
| | - Elisa Alghisi
- Department of Biomedicine; University Hospital Basel; Basel Switzerland
| | - Trista E. North
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
- Harvard Stem Cell Institute; Cambridge Massachusetts
| | - Claudia Lengerke
- Department of Biomedicine; University Hospital Basel; Basel Switzerland
- Division of Hematology; University Hospital Basel; Basel Switzerland
| |
Collapse
|
34
|
Kohrs N, Kolodziej S, Kuvardina ON, Herglotz J, Yillah J, Herkt S, Piechatzek A, Salinas Riester G, Lingner T, Wichmann C, Bonig H, Seifried E, Platzbecker U, Medyouf H, Grez M, Lausen J. MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO. PLoS Genet 2016; 12:e1005946. [PMID: 26990877 PMCID: PMC4798443 DOI: 10.1371/journal.pgen.1005946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.
Collapse
Affiliation(s)
- Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Olga N. Kuvardina
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Julia Herglotz
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jasmin Yillah
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Alexander Piechatzek
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | | | - Thomas Lingner
- Medical-University Goettingen, Transcriptome Analysis Laboratory, Goettingen, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Uwe Platzbecker
- Department of Hematology, Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Manuel Grez
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
35
|
The artificial loss of Runx1 reduces the expression of quiescence-associated transcription factors in CD4 + T lymphocytes. Mol Immunol 2015; 68:223-33. [DOI: 10.1016/j.molimm.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
|
36
|
Leong WY, Guo H, Ma O, Huang H, Cantor AB, Friedman AD. Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis. J Biol Chem 2015; 291:826-36. [PMID: 26598521 DOI: 10.1074/jbc.m115.674234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Src phosphorylates Runx1 on one central and four C-terminal tyrosines. We find that activated Src synergizes with Runx1 to activate a Runx1 luciferase reporter. Mutation of the four Runx1 C-terminal tyrosines to aspartate or glutamate to mimic phosphorylation increases trans-activation of the reporter in 293T cells and allows induction of Cebpa or Pu.1 mRNAs in 32Dcl3 myeloid cells, whereas mutation of these residues to phenylalanine to prevent phosphorylation obviates these effects. Three mechanisms contribute to increased Runx1 activity upon tyrosine modification as follows: increased stability, reduced histone deacetylase (HDAC) interaction, and increased DNA binding. Mutation of the five modified Runx1 tyrosines to aspartate markedly reduced co-immunoprecipitation with HDAC1 and HDAC3, markedly increased stability in cycloheximide or in the presence of co-expressed Cdh1, an E3 ubiquitin ligase coactivator, with reduced ubiquitination, and allowed DNA-binding in gel shift assay similar to wild-type Runx1. In contrast, mutation of these residues to phenylalanine modestly increased HDAC interaction, modestly reduced stability, and markedly reduced DNA binding in gel shift assays and as assessed by chromatin immunoprecipitation with the -14-kb Pu.1 or +37-kb Cebpa enhancers after stable expression in 32Dcl3 cells. Affinity for CBFβ, the Runx1 DNA-binding partner, was not affected by these tyrosine modifications, and in vitro translated CBFβ markedly increased DNA affinity of both the translated phenylalanine and aspartate Runx1 variants. Finally, further supporting a positive role for Runx1 tyrosine phosphorylation during granulopoiesis, mutation of the five Src-modified residues to aspartate but not phenylalanine allows Runx1 to increase Cebpa and granulocyte colony formation by Runx1-deleted murine marrow.
Collapse
Affiliation(s)
- Wan Yee Leong
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| | - Hong Guo
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| | - Ou Ma
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| | - Hui Huang
- the Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Alan B Cantor
- the Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Alan D Friedman
- From the Division of Pediatric Oncology, The Johns Hopkins University, Baltimore, Maryland 21231 and
| |
Collapse
|
37
|
LeBlanc KT, Walcott ME, Gaur T, O'Connell SL, Basil K, Tadiri CP, Mason-Savas A, Silva JA, van Wijnen AJ, Stein JL, Stein GS, Ayers DC, Lian JB, Fanning PJ. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. J Cell Physiol 2015; 230:440-8. [PMID: 25078095 DOI: 10.1002/jcp.24727] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
Runx1, the hematopoietic lineage determining transcription factor, is present in perichondrium and chondrocytes. Here we addressed Runx1 functions, by examining expression in cartilage during mouse and human osteoarthritis (OA) progression and in response to mechanical loading. Spared and diseased compartments in knees of OA patients and in mice with surgical destabilization of the medial meniscus were examined for changes in expression of Runx1 mRNA (Q-PCR) and protein (immunoblot, immunohistochemistry). Runx1 levels were quantified in response to static mechanical compression of bovine articular cartilage. Runx1 function was assessed by cell proliferation (Ki67, PCNA) and cell type phenotypic markers. Runx1 is enriched in superficial zone (SZ) chondrocytes of normal bovine, mouse, and human tissues. Increasing loading conditions in bovine cartilage revealed a positive correlation with a significant elevation of Runx1. Runx1 becomes highly expressed at the periphery of mouse OA lesions and in human OA chondrocyte 'clones' where Runx1 co-localizes with Vcam1, the mesenchymal stem cell (MSC) marker and lubricin (Prg4), a cartilage chondroprotective protein. These OA induced cells represent a proliferative cell population, Runx1 depletion in MPCs decreases cell growth, supporting Runx1 contribution to cell expansion. The highest Runx1 levels in SZC of normal cartilage suggest a function that supports the unique phenotype of articular chondrocytes, reflected by upregulation under conditions of compression. We propose Runx1 co-expression with Vcam1 and lubricin in murine cell clusters and human 'clones' of OA cartilage, participate in a cooperative mechanism for a compensatory anabolic function.
Collapse
Affiliation(s)
- Kimberly T LeBlanc
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Marie E Walcott
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tripti Gaur
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shannon L O'Connell
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kirti Basil
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christina P Tadiri
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - April Mason-Savas
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jason A Silva
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andre J van Wijnen
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Janet L Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David C Ayers
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Paul J Fanning
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
38
|
Umansky KB, Gruenbaum-Cohen Y, Tsoory M, Feldmesser E, Goldenberg D, Brenner O, Groner Y. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration. PLoS Genet 2015; 11:e1005457. [PMID: 26275053 PMCID: PMC4537234 DOI: 10.1371/journal.pgen.1005457] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle’s response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx-/Runx1f/f), exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts’ normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx-/Runx1f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases. In response to muscle injury, the muscle initiates a repair process that calls for the proliferation of muscle stem cells, which differentiate and fuse to create the myofibers that regenerate the tissue. Maintaining the balance between myoblast proliferation and differentiation is crucial for proper regeneration, with disruption leading to impaired regeneration characteristic of muscle-wasting diseases. Our study highlights the important role the Runx1 transcription factor plays in muscle regeneration and in regulating the balance between muscle stem cell proliferation and differentiation. While not expressed in healthy muscle tissue, Runx1 level significantly increases in response to various types of muscle damage. This aligns with our finding that mice lacking Runx1 in their muscles suffer from impaired muscle regeneration. Their muscles contained a significantly low number of regenerating myofibers, which were also relatively smaller in size, resulting in loss of muscle mass and motor capabilities. Our results indicate that Runx1 regulates muscle regeneration by preventing premature differentiation of proliferating myoblasts, thereby facilitating the buildup of the myoblast pool required for proper regeneration. Through genome-wide gene-expression analysis we identify a set of Runx1-regulated genes responsible for muscle regeneration thereby implicating Runx1 in the pathology of muscle wasting diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Kfir Baruch Umansky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruenbaum-Cohen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Grand Israel National Center for Personalized Medicine (INCPM), The Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Goldenberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
39
|
Katakura F, Katzenback BA, Belosevic M. Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:157-169. [PMID: 25450454 DOI: 10.1016/j.dci.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Thrombopoietin (TPO) is the principal regulator of thrombopoiesis and promotes the proliferation, differentiation and maturation of megakaryocytic progenitor cells in mammals. In this study we report on the molecular and functional characterization of goldfish TPO. Quantitative expression analysis of goldfish tpo revealed the highest mRNA levels in heart, followed by spleen, liver, brain, intestine and kidney tissues. Significant decrease of tpo and c-mpl expressions in goldfish primary kidney macrophage (PKM) cultures, as progenitor to macrophage development progressed, indicates that TPO is not involved in monopoiesis. Recombinant goldfish TPO (rgTPO) alone did not induce significant proliferation of progenitor cells, but TPO in cooperation with recombinant goldfish kit ligand A (rgKITLA) supported proliferation of progenitor cells in a dose-dependent manner. In response to rgTPO or a combination of rgTPO and rgKITLA, the mRNA levels of thrombopoietic markers cd41 and c-mpl as well as thrombo/erythropoietic transcription factors gata1 and lmo2 in sorted progenitor cells were up-regulated, while the mRNA levels of granulopoietic markers (cebpα and gcsfr) and the lymphoid transcription factor gata3 were down-regulated. Furthermore, rgTPO and rgKITLA synergistically stimulated thrombocytic colony-formation. Our results demonstrate that goldfish TPO has similar functions to mammalian TPO as a regulator of thrombopoiesis, and suggests a highly conserved molecular mechanism of thrombocyte development throughout evolution of vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
40
|
Li BE, Ernst P. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia. Exp Hematol 2014; 42:995-1012. [PMID: 25264566 PMCID: PMC4307938 DOI: 10.1016/j.exphem.2014.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers.
Collapse
Affiliation(s)
- Bin E Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Patricia Ernst
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics Hematology/Oncology/BMT, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
41
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
McDonald L, Ferrari N, Terry A, Bell M, Mohammed ZM, Orange C, Jenkins A, Muller WJ, Gusterson BA, Neil JC, Edwards J, Morris JS, Cameron ER, Blyth K. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis Model Mech 2014; 7:525-34. [PMID: 24626992 PMCID: PMC4007404 DOI: 10.1242/dmm.015040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer.
Collapse
Affiliation(s)
- Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marsman J, O'Neill AC, Kao BRY, Rhodes JM, Meier M, Antony J, Mönnich M, Horsfield JA. Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:50-61. [PMID: 24321385 DOI: 10.1016/j.bbagrm.2013.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
Abstract
Runx1 is a transcription factor essential for definitive hematopoiesis. In all vertebrates, the Runx1 gene is transcribed from two promoters: a proximal promoter (P2), and a distal promoter (P1). We previously found that runx1 expression in a specific hematopoietic cell population in zebrafish embryos depends on cohesin. Here we show that zebrafish runx1 is directly bound by cohesin and CCCTC binding factor (CTCF) at the P1 and P2 promoters, and within the intron between P1 and P2. Cohesin initiates expression of runx1 in the posterior lateral mesoderm and influences promoter use, while CTCF represses its expression in the newly emerging cells of the tail bud. The intronic binding sites for cohesin and CTCF coincide with histone modifications that confer enhancer-like properties, and two of the cohesin/CTCF sites behaved as insulators in an in vivo assay. The identified cohesin and CTCF binding sites are likely to be cis-regulatory elements (CREs) for runx1 since they also recruit RNA polymerase II (RNAPII). CTCF depletion excluded RNAPII from two intronic CREs but not the promoters of runx1. We propose that cohesin and CTCF have distinct functions in the regulation of runx1 during zebrafish embryogenesis, and that these regulatory functions are likely to involve runx1 intronic CREs. Cohesin (but not CTCF) depletion enhanced RUNX1 expression in a human leukemia cell line, suggesting conservation of RUNX1 regulation through evolution.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Adam C O'Neill
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Betty Rui-Yun Kao
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jenny M Rhodes
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Maren Mönnich
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
44
|
Swiers G, Rode C, Azzoni E, de Bruijn MFTR. A short history of hemogenic endothelium. Blood Cells Mol Dis 2013; 51:206-12. [PMID: 24095001 DOI: 10.1016/j.bcmd.2013.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Definitive hematopoietic cells are generated de novo during ontogeny from a specialized subset of endothelium, the so-called hemogenic endothelium. In this review we give a brief overview of the identification of hemogenic endothelium, explore its links with the HSC lineage, and summarize recent insights into the nature of hemogenic endothelium and the microenvironmental and intrinsic regulators contributing to its transition into blood. Ultimately, a better understanding of the processes controlling the transition of endothelium into blood will advance the generation and expansion of hematopoietic stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Gemma Swiers
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Medicine, John Radcliffe Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
45
|
Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nuñez J, Martinez F, Dominguez O, Torres M, Gonzalez S. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 2013; 11:649-62. [PMID: 23122289 DOI: 10.1016/j.stem.2012.08.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/08/2012] [Accepted: 08/04/2012] [Indexed: 01/07/2023]
Abstract
Polycomb group (PcG) proteins are key epigenetic regulators of hematopietic stem cell (HSC) fate. The PcG members Ezh2 and Ezh1 are important determinants of embryonic stem cell identity, and the transcript levels of these histone methyltransferases are inversely correlated during development. However, the role of Ezh1 in somatic stem cells is largely unknown. Here we show that Ezh1 maintains repopulating HSCs in a slow-cycling, undifferentiated state, protecting them from senescence. Ezh1 ablation induces significant loss of adult HSCs, with concomitant impairment of their self-renewal capacity due to a potent senescence response. Epigenomic and gene expression changes induced by Ezh1 deletion in senesced HSCs demonstrated that Ezh1-mediated PRC2 activity catalyzes monomethylation and dimethylation of H3K27. Deletion of Cdkn2a on the Ezh1 null background rescued HSC proliferation and survival. Our results suggest that Ezh1 is an important histone methyltransferase for HSC maintenance.
Collapse
Affiliation(s)
- Isabel Hidalgo
- Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Katakura F, Katzenback BA, Belosevic M. Molecular and functional characterization of erythropoietin of the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:148-157. [PMID: 23474427 DOI: 10.1016/j.dci.2013.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Erythropoietin is the principal regulator of erythropoiesis and promotes the survival, proliferation and differentiation of erythroid progenitor cells in mammals. In this study we report on the molecular and functional characterization of erythropoietin from the goldfish. Quantitative expression analysis of goldfish epo revealed the highest mRNA levels in heart, followed by brain, liver, spleen and kidney tissues. There was no marked change of epo expression in goldfish primary kidney macrophage cultures, as progenitor cell to macrophage development progressed, indicating that erythropoietin is not involved in monopoiesis. Recombinant goldfish erythropoietin induced proliferation of progenitor cells in a dose-dependent manner, and up-regulated the expression of erythroid transcription factors gata1 and lmo2 in progenitor cells. Furthermore, recombinant goldfish erythropoietin stimulated erythroid colony formation in a dose-dependent manner and promoted survival of erythroid progenitor cells as colony-forming cells. Our results demonstrate that the function of erythropoietin in the goldfish is similar to that of mammals and suggest a highly conserved mechanism of early erythrocyte development in lower and higher vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
47
|
Song MJ, Dean D, Knothe Tate ML. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds. Biomaterials 2013; 34:5766-75. [PMID: 23660249 DOI: 10.1016/j.biomaterials.2013.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106-7207, USA
| | | | | |
Collapse
|
48
|
Logan TT, Villapol S, Symes AJ. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One 2013; 8:e59250. [PMID: 23555640 PMCID: PMC3605457 DOI: 10.1371/journal.pone.0059250] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases neurogenesis in the forebrain subventricular zone (SVZ) and the hippocampal dentate gyrus (DG). Transforming growth factor-β (TGF-β) superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI) injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1), which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Trevor T. Logan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Koyano-Nakagawa N, Kweon J, Iacovino M, Shi X, Rasmussen TL, Borges L, Zirbes KM, Li T, Perlingeiro RCR, Kyba M, Garry DJ. Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 2013; 30:1611-23. [PMID: 22628281 DOI: 10.1002/stem.1131] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages; however, the precise roles of Etv2 in yolk sac development remains unclear. In this study, we define the role of Etv2 in yolk sac blood island development using the Etv2 mutant and a novel Etv2-EYFP reporter transgenic line. Both the hematopoietic and the endothelial lineages are absent in the Etv2 mutant yolk sac. In the Etv2-EYFP transgenic mouse, the EYFP reporter is activated in the nascent mesoderm, expressed in the endothelial and blood progenitors, and in the Tie2(+), c-kit(+), and CD41(+) hematopoietic population. The hematopoietic activity in the E7.75 yolk sac was exclusively localized to the Etv2-EYFP(+) population. In the Etv2 mutant yolk sac, Tie2(+) cells are present but do not express hematopoietic or endothelial markers. In addition, these cells do not form hematopoietic colonies, indicating an essential role of Etv2 in the specification of the hematopoietic lineage. Forced overexpression of Etv2 during embryoid body differentiation induces the hematopoietic and the endothelial lineages, and transcriptional profiling in this context identifies Lmo2 as a downstream target. Using electrophoretic mobility shift assay, chromatin immunoprecipitation, transcriptional assays, and mutagenesis, we demonstrate that Etv2 binds to the Lmo2 enhancer and transactivates its expression. Collectively, our studies demonstrate that Etv2 is expressed during and required for yolk sac hematoendothelial development, and that Lmo2 is one of the downstream targets of Etv2.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart-Institute, Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood 2013; 121:2882-90. [PMID: 23372166 DOI: 10.1182/blood-2012-08-451641] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advancements in human pluripotent stem cell (hPSC) research have potential to revolutionize therapeutic transplantation. It has been demonstrated that transcription factors may play key roles in regulating maintenance, expansion, and differentiation of hPSCs. In addition to its regulatory functions in hematopoiesis and blood-related disorders, the transcription factor RUNX1 is also required for the formation of definitive blood stem cells. In this study, we demonstrated that expression of endogenous RUNX1a, an isoform of RUNX1, parallels with lineage commitment and hematopoietic emergence from hPSCs, including both human embryonic stem cells and inducible pluripotent stem cells. In a defined hematopoietic differentiation system, ectopic expression of RUNX1a facilitates emergence of hematopoietic progenitor cells (HPCs) and positively regulates expression of mesoderm and hematopoietic differentiation-related factors, including Brachyury, KDR, SCL, GATA2, and PU.1. HPCs derived from RUNX1a hPSCs show enhanced expansion ability, and the ex vivo-expanded cells are capable of differentiating into multiple lineages. Expression of RUNX1a in embryoid bodies (EBs) promotes definitive hematopoiesis that generates erythrocytes with β-globin production. Moreover, HPCs generated from RUNX1a EBs possess ≥9-week repopulation ability and show multilineage hematopoietic reconstitution in vivo. Together, our results suggest that RUNX1a facilitates the process of producing therapeutic HPCs from hPSCs.
Collapse
|