1
|
Ma Z, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34:929-951. [PMID: 39219068 PMCID: PMC11427152 DOI: 10.1080/13543776.2024.2400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Cun Zhang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| |
Collapse
|
2
|
Huang C, Liu Z, Chen M, Zhang H, Mo R, Chen R, Liu Y, Wang S, Xue Q. Up-regulation of BRD4 contributes to gestational diabetes mellitus-induced cardiac hypertrophy in offspring by promoting mitochondria dysfunction in sex-independent manner. Biochem Pharmacol 2024; 226:116387. [PMID: 38944397 DOI: 10.1016/j.bcp.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Gestational diabetes mellitus (GDM) is associated with cardiovascular disease in postnatal life. The current study tested the hypothesis that GDM caused the cardiac hypertrophy in fetal (ED18.5), postnatal day 7 (PD7), postnatal day 21 (PD21) and postnatal day 90 (PD90) offspring by upregulation of BRD4 and mitochondrial dysfunction. Pregnant mice were divided into control and GDM groups. Hearts were isolated from ED18.5, PD7, PD21 and PD90. GDM increased the body weight (BW) and heart weight (HW) in ED18.5 and PD7, but not PD21 and PD90 offspring. However, HW/BW ratio was increased in all ages of GDM offspring compared to control group. Electron microscopy showed disorganized myofibrils, mitochondrial swelling, vacuolization, and cristae disorder in GDM offspring. GDM resulted in myocardial hypertrophy in offspring, which persisted from fetus to adult in a sex-independent manner. Echocardiography analysis revealed that GDM caused diastolic dysfunction, but had no effect on systolic function. Meanwhile, myocardial BRD4 was significantly upregulated in GDM offspring and BRD4 inhibition by JQ1 alleviated GDM-induced myocardial hypertrophy in offspring. Co-immunoprecipitation showed that BRD4 interacted with DRP1 and there was an increase of BRD4 and DRP1 interaction in GDM offspring. Furthermore, GDM caused the accumulation of damaged mitochondria in hearts from all ages of offspring, including mitochondrial fusion fission imbalance (upregulation of DRP1, and downregulation of MFN1, MFN2 and OPA1) and myocardial mitochondrial ROS accumulation, which was reversed by JQ1. These results suggested that the upregulation of BRD4 is involved in GDM-induced myocardial hypertrophy in the offspring through promoting mitochondrial damage in a gender-independent manner.
Collapse
Affiliation(s)
- Cailing Huang
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zimo Liu
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mei Chen
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Haichuan Zhang
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruyao Mo
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Renshan Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, Guangdong, China
| | - Yinghua Liu
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shixiang Wang
- Department of Cardiology, the third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Qin Xue
- Department of Pharmacology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Bradley E, Fusani L, Chung CW, Craggs PD, Demont EH, Humphreys PG, Mitchell DJ, Phillipou A, Rioja I, Shah RR, Wellaway CR, Prinjha RK, Palmer DS, Kerr WJ, Reid M, Wall ID, Cookson R. Structure-Guided Design of a Domain-Selective Bromodomain and Extra Terminal N-Terminal Bromodomain Chemical Probe. J Med Chem 2023; 66:15728-15749. [PMID: 37967462 PMCID: PMC10726358 DOI: 10.1021/acs.jmedchem.3c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.
Collapse
Affiliation(s)
- Erin Bradley
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Lucia Fusani
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Chun-wa Chung
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Peter D. Craggs
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | | | | | - Alex Phillipou
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Inmaculada Rioja
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rishi R. Shah
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | - Rab K. Prinjha
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - David S. Palmer
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - William J. Kerr
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Marc Reid
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Ian D. Wall
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rosa Cookson
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| |
Collapse
|
4
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
5
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
6
|
Ali MM, Naz S, Ashraf S, Knapp S, Ul-Haq Z. Epigenetic modulation by targeting bromodomain containing protein 9 (BRD9): Its therapeutic potential and selective inhibition. Int J Biol Macromol 2023; 230:123428. [PMID: 36709803 DOI: 10.1016/j.ijbiomac.2023.123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia. Its role in tumorigenesis suggests that selective BRD9 inhibitors may have therapeutic value in cancer therapy. Currently, there has been increasing interest in developing small molecules that can specifically target BRD9 or the closely related bromodomain protein BRD7. Available chemical probes will help to clarify biological functions of BRD9 and its potential for cancer therapy. Since the report of the first BRD9 inhibitor LP99 in 2015, numerous inhibitors have been developed. In this review, we summarized the biological roles of BRD9, structural details and the progress made in the development of BRD9 inhibitors.
Collapse
Affiliation(s)
- Maria Mushtaq Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Max von Lauestrasse 9, 60438 Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max von Lauestrasse 15, 60438 Frankfurt, Germany
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
7
|
Wang F, Feng X, He Q, Li H, Li H. The Saccharomyces cerevisiae Yta7 ATPase hexamer contains a unique bromodomain tier that functions in nucleosome disassembly. J Biol Chem 2023; 299:102852. [PMID: 36592926 PMCID: PMC9898759 DOI: 10.1016/j.jbc.2022.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier. Unexpectedly, the Yta7 BRD stabilizes a four-stranded β-helix, termed BRD-interacting motif (BIM), of the largely disordered N-terminal region. The BIM motif is unique to the baker's yeast, and we show both BRD and BIM contribute to nucleosome recognition. We found that Yta7 binds both acetylated and nonacetylated H3 peptides but with a higher affinity for the unmodified peptide. This property is consistent with the absence of key residues of canonical BRDs involved in acetylated peptide recognition and the role of Yta7 in general nucleosome remodeling. Interestingly, the BRD tier exists in a spiral and a flat-ring form on top of the Yta7 AAA+ hexamer. The spiral is likely in a nucleosome-searching mode because the bottom BRD blocks the entry to the AAA+ chamber. The flat ring may be in a nucleosome disassembly state because the entry is unblocked and the H3 peptide has entered the AAA+ chamber and is stabilized by the AAA1 pore loops 1 and 2. Indeed, we show that the BRD tier is a flat ring when bound to the nucleosome. Overall, our study sheds light on the nucleosome disassembly by Yta7.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
8
|
Humphreys PG, Anderson NA, Bamborough P, Baxter A, Chung CW, Cookson R, Craggs PD, Dalton T, Fournier JCL, Gordon LJ, Gray HF, Gray MW, Gregory R, Hirst DJ, Jamieson C, Jones KL, Kessedjian H, Lugo D, McGonagle G, Patel VK, Patten C, Poole DL, Prinjha RK, Ramirez-Molina C, Rioja I, Seal G, Stafford KAJ, Shah RR, Tape D, Theodoulou NH, Tomlinson L, Ukuser S, Wall ID, Wellaway N, White G. Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I-BET432. J Med Chem 2022; 65:15174-15207. [DOI: 10.1021/acs.jmedchem.2c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Niall A. Anderson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rosa Cookson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Toryn Dalton
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laurie J. Gordon
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather F. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew W. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Richard Gregory
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David J. Hirst
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | | | | | - David Lugo
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L. Poole
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Inmaculada Rioja
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gail Seal
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Rishi R. Shah
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel Tape
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Sabri Ukuser
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Natalie Wellaway
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gemma White
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
9
|
NUT Carcinoma in Children and Adolescents: The Expert European Standard Clinical Practice Harmonized Recommendations. J Pediatr Hematol Oncol 2022; 45:165-173. [PMID: 36219702 DOI: 10.1097/mph.0000000000002568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Nuclear protein of the testis (NUT) carcinoma (NC) is a rare and highly aggressive tumor mainly occurring in adolescents and young adults, defined by the presence of a somatic NUTM1 rearrangement. The aim is to establish internationally harmonized consensus recommendations for the diagnosis and treatment of adolescents and young adults with NC in the framework of the European Reference Network for Paediatric Oncology. METHODS The European Cooperative Study Group for Pediatric Rare Tumors developed recommendations according to the Consensus Conference Standard Operating procedure methodology and reviewed by external "experts." No evidence of level I to II exists. Recommendations were developed based on published prospective (level III), but more frequently retrospective series (level IV), case reports (level V), and personal expertise (level V). In addition, "strength" of recommendations were categorized by grading (grade A to E). RESULTS Histology is mandatory for the diagnosis of NC, including immunolabeling with anti-NUT antibodies and molecular biology (NUTM1 rearrangement) (level V; grade A). Treatment of NC usually combines aggressive approaches in multimodal regimens. Chemotherapy should be considered as first-line treatment (neoadjuvant vincristine-adriamycin-ifosfamide/cisplatin-adriamycin-ifsofamide or vincristine-doxorubicin-cyclophosphamide/ifosfamide-etoposide) for unresectable or metastatic tumor (ie, 3 courses), rapidly followed by local treatment (level IV; grade B). Referral to a specialized surgical oncology center is highly recommended (level V; grade A). In localized NC, a complete microscopic surgical resection should be attempted whenever and as soon as possible, followed by primary irradiation (60 to 70 Gy) and involved lymph nodes area (level IV; grade B). For head and neck tumors, a systematic neck dissection might be considered, even if N0 (level V; grade C). Adjuvant postirradiation chemotherapy is recommended, for a total of 9 to 12 courses (level IV; grade B). For first-line resected tumors, concomitant adjuvant chemotherapy to radiotherapy may be discussed (level IV; grade B). Targeted therapies and immunotherapeutic regimens should be delivered in the setting of prospective trials (level V; grade B). CONCLUSIONS This project leads to a consensus strategy based on international experience with this very rare disease.
Collapse
|
10
|
Lemelle L, Moya-Plana A, Dumont B, Fresneau B, Laprie A, Claude L, Deneuve S, Cordero C, Pierron G, Couloigner V, Bernard S, Cardoen L, Brisse HJ, Jehanno N, Metayer L, Fréneaux P, Helfre S, Kolb F, Thariat J, Réguerre Y, Orbach D. NUT carcinoma in children, adolescents and young adults. Bull Cancer 2022; 109:491-504. [DOI: 10.1016/j.bulcan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
11
|
Pei Y, Qian Y, Wang H, Tan L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front Oncol 2022; 12:771870. [PMID: 35174081 PMCID: PMC8841808 DOI: 10.3389/fonc.2022.771870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an evolutionarily conserved form of regulated cell death triggered by iron-dependent phospholipid peroxidation. Ferroptosis contributes to the maintenance of tissue homeostasis under physiological conditions while its aberration is tightly connected with lots of pathophysiological processes such as acute tissue injury, chronic degenerative disease, and tumorigenesis. Epigenetic regulation controls chromatin structure and gene expression by writing/reading/erasing the covalent modifications on DNA, histone, and RNA, without altering the DNA sequence. Accumulating evidences suggest that epigenetic regulation is involved in the determination of cellular vulnerability to ferroptosis. Here, we summarize the recent advances on the epigenetic mechanisms that control the expression of ferroptosis-associated genes and thereby the ferroptosis process. Moreover, the potential value of epigenetic drugs in targeting or synergizing ferroptosis during cancer therapy is also discussed.
Collapse
Affiliation(s)
- Yanzi Pei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yujie Qian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| |
Collapse
|
12
|
He Y, Yang C, Wang Y, Sacher JR, Sims MM, Pfeffer LM, Miller DD. Novel structural-related analogs of PFI-3 (SRAPs) that target the BRG1 catalytic subunit of the SWI/SNF complex increase the activity of temozolomide in glioblastoma cells. Bioorg Med Chem 2022; 53:116533. [PMID: 34863065 DOI: 10.1016/j.bmc.2021.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Joshua R Sacher
- Cyclica, Inc., 207 Queens Quay West, Suite 420, Toronto, Ontario M5J 1A7, Canada
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
13
|
Jermakowicz AM, Rybin MJ, Suter RK, Sarkaria JN, Zeier Z, Feng Y, Ayad NG. The novel BET inhibitor UM-002 reduces glioblastoma cell proliferation and invasion. Sci Rep 2021; 11:23370. [PMID: 34862404 PMCID: PMC8642539 DOI: 10.1038/s41598-021-02584-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM.
Collapse
Affiliation(s)
- Anna M Jermakowicz
- Department of Neurological Surgery, Miami Project To Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Matthew J Rybin
- Department of Psychiatry and Behavioral Sciences, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Robert K Suter
- Department of Neurological Surgery, Miami Project To Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yangbo Feng
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Nagi G Ayad
- Department of Neurological Surgery, Miami Project To Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
14
|
Elamin G, Aljoundi A, Soliman ME. A synergistic multitargeted of BET and HDAC: an intra-molecular mechanism of communication in treatment of Waldenström macroglobulinemia. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2005248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
|
16
|
Wu C, Cheng D, Peng Y, Li Y, Fu C, Wang Y, Fu L, Peng S, Ni X. Hepatic BRD4 Is Upregulated in Liver Fibrosis of Various Etiologies and Positively Correlated to Fibrotic Severity. Front Med (Lausanne) 2021; 8:683506. [PMID: 34336890 PMCID: PMC8317578 DOI: 10.3389/fmed.2021.683506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) has been implicated to play a regulatory role in fibrogenic gene expression in animal models of liver fibrosis. The potential role of BRD4 in liver fibrosis in humans remains unclear. We sought to investigate the expression and cellular localization of BRD4 in fibrotic liver tissues. Human liver tissues were collected from healthy individuals and patients with liver fibrosis of various etiologies. RNA-seq showed that hepatic BRD4 mRNA was elevated in patients with liver fibrosis compared with that in healthy controls. Subsequent multiple manipulations such as western blotting, real-time quantitative polymerase chain reaction, and dual immunofluorescence analysis confirmed the abnormal elevation of the BRD4 expression in liver fibrosis of various etiologies compared to healthy controls. BRD4 expression was positively correlated with the severity of liver fibrosis, and also correlated with the serum levels of aspartate aminotransferase and total bilirubin. Moreover, the expression of C-X-C motif chemokine ligand 6 (CXCL6), a factor interplayed with BRD4, was increased in hepatic tissues of the patients with liver fibrosis. Its expression level was positively correlated with BRD4 level. BRD4 is up-regulated in liver fibrosis, regardless of etiology, and its increased expression is positively correlated with higher degrees of liver fibrosis. Our data indicate that BRD4 play a critical role in the progress of liver fibrosis, and it holds promise as a potential target for intervention of liver fibrosis.
Collapse
Affiliation(s)
- Cichun Wu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Da Cheng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Yanghui Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Chunyan Fu
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China.,International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
17
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
18
|
Bai P, Lan Y, Wang H, Liu Y, Striar R, Yuan G, Afshar S, Zagaroli JS, Tocci DR, Langan AG, Wang C. Synthesis and Characterization of a Positron Emission Tomography Imaging Probe Selectively Targeting the Second Bromodomain of Bromodomain Protein BRD4. Bioconjug Chem 2021; 32:1711-1718. [PMID: 34139120 DOI: 10.1021/acs.bioconjchem.1c00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two tandem bromodomains (BD1 and BD2) of bromodomain and extraterminal domain (BET) family proteins have shown distinct roles in mediating gene transcription and expression. Inhibitors that interact with a specific bromodomain may contribute to a specific therapeutic potential with fewer side effects. However, little is known about this disease-related target. Positron emission tomography (PET) imaging could allow us to achieve in-depth knowledge of the BD2 bromodomain. Herein we describe the radiosynthesis and evaluation of [11C]1 as a BRD4 BD2 bromodomain PET imaging radioligand. Our preliminary PET imaging results in rodents demonstrated that [11C]1 had suitable biodistribution in peripheral organs and tissues. Further blocking studies indicated that [11C]1 had good binding specificity toward the BD2 bromodomain. This study may pave the way for the development of a PET radioligand specifically targeting BD1/2 bromodomains as well as for the biological mechanism investigation of BD1/2 bromodomains.
Collapse
|
19
|
Wu S, Wang L, Zhang L, Xu X, Zhao J. Molecular dynamics insights into binding selectivity of inhibitors toward BRD4 and CBP. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Bai P, Lu X, Liu Y, Lan Y, Wang H, Fiedler S, Striar R, Wang C. Discovery of a Positron Emission Tomography Radiotracer Selectively Targeting the BD1 Bromodomains of BET Proteins. ACS Med Chem Lett 2021; 12:282-287. [PMID: 33603976 DOI: 10.1021/acsmedchemlett.0c00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we report the design, synthesis, and biological evaluation of the first selective bromodomain and extra-terminal domain (BET) BD1 bromodomains of the PET radiotracer [18F]PB006. The standard compound PB006 showed high affinity and good selectivity toward BRD4 BD1 (K d = 100 nM and 29-fold selectively for BD1 over BD2) in an in vitro binding assay. PET imaging experiments in rodents were performed to evaluate the bioactivity of [18F]PB006 in vivo. A biodistribution study of [18F]PB006 in mice revealed high radiotracer uptake in peripheral tissues, such as liver and kidney, and moderate radiotracer uptake in the brain. Further blocking studies demonstrated the significant radioactivity decreasing (20-30% reduction compared with baseline) by pretreating unlabeled PB006 and JQ1, suggesting the high binding selectivity and specificity of [18F]PB006. Our study indicated that [18F]PB006 is a potent PET probe selectively targeting BET BD1, and further structural optimization of the radiotracer is still required to improve brain uptake to support neuroepigenetic imaging.
Collapse
Affiliation(s)
- Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephanie Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
21
|
Li L, Xie W, Gui Y, Zheng XL. Bromodomain-containing protein 4 and its role in cardiovascular diseases. J Cell Physiol 2020; 236:4829-4840. [PMID: 33345363 DOI: 10.1002/jcp.30225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Bromodomain-containing protein 4 (BRD4), a chromatin-binding protein, is involved in the development of various tumors. Recent evidence suggests that BRD4 also plays a significant role in cardiovascular diseases, such as ischemic heart disease, hypertension, and cardiac hypertrophy. This review summarizes the roles of BRD4 as a potential regulator of various pathophysiological processes in cardiovascular diseases, implicating that BRD4 may be a new therapeutic target for cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Liang Li
- Department of Pathophysiology, Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Wei Xie
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Han N, Anwar D, Hama N, Kobayashi T, Suzuki H, Takahashi H, Wada H, Otsuka R, Baghdadi M, Seino KI. Bromodomain-containing protein 4 regulates interleukin-34 expression in mouse ovarian cancer cells. Inflamm Regen 2020; 40:25. [PMID: 33072227 PMCID: PMC7556959 DOI: 10.1186/s41232-020-00129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/30/2020] [Indexed: 01/26/2023] Open
Abstract
Background Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth. Also, we reported poor prognosis in patients with IL-34-expressing tumor. Therefore, blocking of IL-34 is considered as a promising therapeutic strategy to suppress tumor progression. However, the molecular mechanisms that control IL-34 production are still largely unknown. Methods IL-34 producing ovarian cancer cell line HM-1 was treated by bromodomain and extra terminal inhibitor JQ1. The mRNA and protein expression of IL-34 was evaluated after JQ1 treatment. Chromatin immunoprecipitation was performed to confirm the involvement of bromodomain-containing protein 4 (Brd4) in the regulation of the Il34 gene. Anti-tumor effect of JQ1 was evaluated in mouse tumor model. Results We identified Brd4 as one of the critical molecules that regulate Il34 expression in cancer cells. Consistent with this, we found that JQ1 is capable of efficiently suppressing the recruitment of Brd4 to the promotor region of Il34 gene. Additionally, JQ1 treatment of mice bearing IL-34-producing tumor inhibited the tumor growth along with decreasing Il34 expression in the tumor. Conclusion The results unveiled for the first time the responsible molecule Brd4 that regulates Il34 expression in cancer cells and suggested its possibility as a treatment target.
Collapse
Affiliation(s)
- Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Delnur Anwar
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, School of Medicine, Yokohama City University, 3-9 of Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, School of Medicine, Yokohama City University, 3-9 of Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815 Japan
| |
Collapse
|
23
|
Bai P, Lan Y, Wang H, Chen Z, Fiedler S, Striar R, Lu X, Wang C. Development of a Novel Positron Emission Tomography (PET) Radiotracer Targeting Bromodomain and Extra-Terminal Domain (BET) Family Proteins. Front Mol Biosci 2020; 7:198. [PMID: 32903367 PMCID: PMC7434981 DOI: 10.3389/fmolb.2020.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins have become a hot research area because of their close relationship with a variety of human diseases. The non-invasive imaging technique, such as positron emission tomography (PET), provides a powerful tool to visualize and quantify the BET family proteins that accelerating the investigation of this domain. Herein, we describe the development of a promising PET probe, [11C]1, specifically targeting BET family proteins based on the potent BET inhibitor CF53. [11C]1 was successfully radio-synthesized with good yield and high purity after the optimization of radiolabeling conditions. The in vivo bio-activities evaluation of [11C]1 was performed using PET imaging in rodents. The results demonstrated that [11C]1 has favorable uptake in peripheral organs and moderate uptake in the brain. Further blocking studies indicated the high binding specificity and selectivity for BET proteins of this probe. Our findings suggest that [11C]1 is a promising BET PET probe for BET proteins as well as epigenetic imaging.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stephanie Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Wu SL, Wang LF, Sun HB, Wang W, Yu YX. Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:547-570. [PMID: 32657160 DOI: 10.1080/1062936x.2020.1777584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
It is well known that bromodomain-containing protein 4 (BRD4) has been thought as a promising target utilized for treating various human diseases, such as inflammatory disorders, malignant tumours, acute myelogenous leukaemia (AML), bone diseases, etc. For this study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were integrated together to uncover binding modes of inhibitors 8P9, 8PU, and 8PX to BRD4(1). The results obtained from binding free energy calculations show that van der Waals interactions act as the main regulator in bindings of inhibitors to BRD4(1). The information stemming from PCA reveals that inhibitor associations extremely affect conformational changes, internal dynamics, and movement patterns of BRD4(1). Residue-based free energy decomposition method was wielded to unveil contributions of independent residues to inhibitor bindings and the data signify that hydrogen bonding interactions and hydrophobic interactions are decisive factors affecting bindings of inhibitors to BRD4(1). Meanwhile, eight residues Trp81, Pro82, Val87, Leu92, Leu94, Cys136, Asn140, and Ile146 are recognized as the common hot interaction spots of three inhibitors with BRD4(1). The results from this work are expected to provide a meaningfully theoretical guidance for design and development of effective inhibitors inhibiting of the activity of BRD4.
Collapse
Affiliation(s)
- S L Wu
- School of Science, Shandong Jiaotong University , Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University , Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - Y X Yu
- School of Science, Shandong Jiaotong University , Jinan, China
| |
Collapse
|
25
|
Nguyen MV, Loof L, Falchook GS. Bromodomain and Extra-Terminal (BET) Domain Protein Inhibitors for Solid Tumor Cancers. ACTA ACUST UNITED AC 2020; 3:16-22. [PMID: 35756176 PMCID: PMC9208386 DOI: 10.4103/jipo.jipo_2_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/02/2022]
Abstract
The bromodomain and extraterminal (BET) domain protein family is involved in the process of transcription of genetic information. The BET protein family includes BRD2, BRD3, BRD4, and bromodomain testis-specific protein. BET protein alterations are associated with some solid tumor cancers, including nuclear protein in testis midline carcinoma. BET protein has a role in carcinogenesis and in the regulation of the cell cycle. A number of BET inhibitors have entered clinical trials. This review discusses the results of BET inhibitor clinical trials in solid tumor cancers.
Collapse
Affiliation(s)
| | - Lydia Loof
- Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| | | |
Collapse
|
26
|
Lu T, Lu W, Luo C. A patent review of BRD4 inhibitors (2013-2019). Expert Opin Ther Pat 2020; 30:57-81. [PMID: 31815566 DOI: 10.1080/13543776.2020.1702645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Introduction: The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family, functions as an 'epigenetic reader' that binds to acetylated lysine (KAc) residues on histone tails sophisticatedly regulating chromatin structure and gene expression. Recently, emerging evidence demonstrates that BRD4 plays a significant role in the occurrence and progression of several malignant human diseases especially cancers, making it a hot target in cancer therapy.Areas covered: This review mainly summarizes the patents of BRD4 inhibitors that have been authorized from 2013 to 2019. The patents are mostly described in terms of chemical structures, molecular mechanisms of action, pharmacological activities and potential clinical applications, including combination therapies. The development of BRD4 inhibitors in the clinical phase has been highlighted. Prospects for further development of more selective BRD4 inhibitors are provided.Expert opinion: In 2013-2019, several previously known chemical scaffolds have been further developed and disclosed. Although many small molecule BRD4 inhibitors with high potency and diverse scaffolds have been developed, the selectivity of most BRD4 inhibitors still needs to be improved. Therefore, the development of more selective small molecule inhibitors or combined use of drugs such as immunotherapy may provide new ideas for drug development.
Collapse
Affiliation(s)
- Tian Lu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenchao Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheng Luo
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Phillipou AN, Lay CS, Carver CE, Messenger C, Evans JP, Lewis AJ, Gordon LJ, Mahmood M, Greenhough LA, Sammon D, Cheng AT, Chakraborty S, Jones EJ, Lucas SCC, Gatfield KM, Brierley DJ, Craggs PD. Cellular Target Engagement Approaches to Monitor Epigenetic Reader Domain Interactions. SLAS DISCOVERY 2019; 25:163-175. [PMID: 31875412 DOI: 10.1177/2472555219896278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.
Collapse
Affiliation(s)
- Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Charles S Lay
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Antonia J Lewis
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Luke A Greenhough
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Douglas Sammon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Aaron T Cheng
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Syandan Chakraborty
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma J Jones
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Simon C C Lucas
- Epigenetics Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - David J Brierley
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| |
Collapse
|
28
|
Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E. Aim for the Readers! Bromodomains As New Targets Against Chagas’ Disease. Curr Med Chem 2019; 26:6544-6563. [DOI: 10.2174/0929867325666181031132007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone
proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery
because the miss-regulation of human bromodomains was discovered to be involved in the development
of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains
continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain-
containing proteins in protozoa, offering a new opportunity for the development of antiparasitic
drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains
were classified in eight groups based on sequence similarity but parasitic bromodomains are very
divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors
can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains
in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize
the myriad of small-molecules under study to treat different pathologies and which of them have been
tested in trypanosomatids and other protozoa. All the information available led us to propose that
T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules
to inhibit them should be empowered.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Alejandro Pezza
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Carla Ritagliati
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Esteban Serra
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
29
|
Design, synthesis and biological evaluation of hypolipidemic compounds based on BRD4 inhibitor RVX-208. Bioorg Med Chem Lett 2019; 29:2168-2172. [PMID: 31257080 DOI: 10.1016/j.bmcl.2019.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is a new therapeutic target for the treatment of diseases including cardiovascular diseases, cancer, inflammation and central nervous system (CNS) disorders. In this study, we introduced the pharmacophore of fibrates to a BRD4 inhibitor, RVX-208, to design dual-active hypolipidemic compounds, and found that some of new analogues showed favorable hypolipidemic activities. Synthetic accessibility towards this class of compounds optimized RVX-208 as well as would supply more thoughts on hypolipidemic drugs.
Collapse
|
30
|
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P, Gong W. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci 2019; 110:2493-2506. [PMID: 31215139 PMCID: PMC6676267 DOI: 10.1111/cas.14102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the bile duct and has a high mortality rate. Here, we demonstrated that BRD4 inhibitor JQ1 and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) synergistically inhibited the GBC cells in vitro and in vivo. Our results showed that cotreatment with JQ1 and SAHA significantly inhibited proliferation, cell viability and metastasis, and induced apoptosis and G2/M arrest in GBC cells, with only minor effects in benign cells. In vivo, tumor volumes and weights of GBC xenograft models were significantly decreased after treatment with JQ1 or SAHA; meanwhile, the cotreatment showed the strongest effect. Further study indicated that the above anticancer effects was associated with the downregulation of BRD4 and suppression of PI3K/AKT and MAPK/ERK pathways. These findings highlight JQ1 and SAHA as potential therapeutic agents and their combination as a promising therapeutic strategy for GBC.
Collapse
Affiliation(s)
- Shilei Liu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Fengnan Li
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Lijia Pan
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ziyi Yang
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yijun Shu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wenjie Lv
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
31
|
Mader P, Mendoza-Sanchez R, Iqbal A, Dong A, Dobrovetsky E, Corless VB, Liew SK, Houliston SR, De Freitas RF, Smil D, Sena CCD, Kennedy S, Diaz DB, Wu H, Dombrovski L, Allali-Hassani A, Min J, Schapira M, Vedadi M, Brown PJ, Santhakumar V, Yudin AK, Arrowsmith CH. Identification and characterization of the first fragment hits for SETDB1 Tudor domain. Bioorg Med Chem 2019; 27:3866-3878. [PMID: 31327677 DOI: 10.1016/j.bmc.2019.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022]
Abstract
SET domain bifurcated protein 1 (SETDB1) is a human histone-lysine methyltransferase which is amplified in human cancers and was shown to be crucial in the growth of non-small and small cell lung carcinoma. In addition to its catalytic domain, SETDB1 harbors a unique tandem tudor domain which recognizes histone sequences containing both methylated and acetylated lysines, and likely contributes to its localization on chromatin. Using X-ray crystallography and NMR spectroscopy fragment screening approaches, we have identified the first small molecule fragment hits that bind to histone peptide binding groove of the Tandem Tudor Domain (TTD) of SETDB1. Herein, we describe the binding modes of these fragments and analogues and the biophysical characterization of key compounds. These confirmed small molecule fragments will inform the development of potent antagonists of SETDB1 interaction with histones.
Collapse
Affiliation(s)
- Pavel Mader
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Aman Iqbal
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Elena Dobrovetsky
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Sean K Liew
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Scott R Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Carlo C Dela Sena
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Diego B Diaz
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
32
|
Zucconi BE, Makofske JL, Meyers DJ, Hwang Y, Wu M, Kuroda MI, Cole PA. Combination Targeting of the Bromodomain and Acetyltransferase Active Site of p300/CBP. Biochemistry 2019; 58:2133-2143. [PMID: 30924641 DOI: 10.1021/acs.biochem.9b00160] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p300 and CBP are highly related histone acetyltransferase (HAT) enzymes that regulate gene expression, and their dysregulation has been linked to cancer and other diseases. p300/CBP is composed of a number of domains including a HAT domain, which is inhibited by the small molecule A-485, and an acetyl-lysine binding bromodomain, which was recently found to be selectively antagonized by the small molecule I-CBP112. Here we show that the combination of I-CBP112 and A-485 can synergize to inhibit prostate cancer cell proliferation. We find that the combination confers a dramatic reduction in p300 chromatin occupancy compared to the individual effects of blocking either domain alone. Accompanying this loss of p300 on chromatin, combination treatment leads to the reduction of specific mRNAs including androgen-dependent and pro-oncogenic prostate genes such as KLK3 (PSA) and c-Myc. Consistent with p300 directly affecting gene expression, mRNAs that are significantly reduced by combination treatment also exhibit a strong reduction in p300 chromatin occupancy at their gene promoters. The relatively few mRNAs that are up-regulated upon combination treatment show no correlation with p300 occupancy. These studies provide support for the pharmacologic advantage of concurrent targeting of two domains within one key epigenetic modification enzyme.
Collapse
Affiliation(s)
- Beth E Zucconi
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jessica L Makofske
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Mingxuan Wu
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Philip A Cole
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
33
|
Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T, Senzer N, Nemunaitis J. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA 2019; 5:FSO372. [PMID: 30906568 PMCID: PMC6426170 DOI: 10.4155/fsoa-2018-0115] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/04/2019] [Indexed: 01/18/2023] Open
Abstract
Histone lysine acetylation is critical in regulating transcription. Dysregulation of this process results in aberrant gene expression in various diseases, including cancer. The bromodomain, present in several proteins, recognizes promotor lysine acetylation and recruits other transcription factors. The bromodomain extra-terminal (BET) family of proteins consists of four conserved mammalian members that regulate transcription of oncogenes such as MYC and the NUT fusion oncoprotein. Targeting the acetyl-lysine-binding property of BET proteins is a potential therapeutic approach of cancer. Consequently, following the demonstration that thienotriazolodiazepine small molecules effectively inhibit BET, clinical trials were initiated. We thus discuss the mechanisms of action of various BET inhibitors and the prospects for their clinical use as cancer therapeutics.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Internal Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Khalil Choucair
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Mushtaq Ashraf
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Danae M Hammouda
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Abduraham Alloghbi
- Department of Internal Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Talal Khan
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Neil Senzer
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - John Nemunaitis
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
- ProMedica Health System, Toledo, OH, 43606, USA
| |
Collapse
|
34
|
Yang YM, Shi RH, Xu CX, Li L. BRD4 expression in patients with essential hypertension and its effect on blood pressure in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2018; 12:e107-e117. [DOI: 10.1016/j.jash.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022]
|
35
|
Liu S, Yosief HO, Dai L, Huang H, Dhawan G, Zhang X, Muthengi AM, Roberts J, Buckley DL, Perry JA, Wu L, Bradner JE, Qi J, Zhang W. Structure-Guided Design and Development of Potent and Selective Dual Bromodomain 4 (BRD4)/Polo-like Kinase 1 (PLK1) Inhibitors. J Med Chem 2018; 61:7785-7795. [PMID: 30125504 PMCID: PMC6309379 DOI: 10.1021/acs.jmedchem.8b00765] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The simultaneous inhibition of polo-like kinase 1 (PLK1) and BRD4 bromodomain by a single molecule could lead to the development of an effective therapeutic strategy for a variety of diseases in which PLK1 and BRD4 are implicated. Compound 23 has been found to be a potent dual kinase-bromodomain inhibitor (BRD4-BD1 IC50 = 28 nM, PLK1 IC50 = 40 nM). Compound 6 was found to be the most selective PLK1 inhibitor over BRD4 in our series (BRD4-BD1 IC50 = 2579 nM, PLK1 IC50 = 9.9 nM). Molecular docking studies with 23 and BRD4-BD1/PLK1 as well as with 6 corroborate the biochemical assay results.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry , University of Massachusetts-Boston , Boston , Massachusetts 02125 , United States
| | - Hailemichael O Yosief
- Department of Chemistry , University of Massachusetts-Boston , Boston , Massachusetts 02125 , United States
| | - Lingling Dai
- Phase I Clinical Trial Center & Department of Clinical Pharmacology, Xiangya Hospital , Central South University , Changsha , Hunan 410008 , P.R. China
| | - He Huang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Gagan Dhawan
- Department of Chemistry , University of Massachusetts-Boston , Boston , Massachusetts 02125 , United States
- Department of Biomedical Science, Acharya Narendra Dev College , University of Delhi , New Delhi 110019 , India
| | - Xiaofeng Zhang
- Department of Chemistry , University of Massachusetts-Boston , Boston , Massachusetts 02125 , United States
| | - Alex M Muthengi
- Department of Chemistry , University of Massachusetts-Boston , Boston , Massachusetts 02125 , United States
| | | | | | | | | | - James E Bradner
- Novartis Institutes for Biomedical Research , Cambridge , Massachusetts 02139 , United States
| | - Jun Qi
- Department of Medicine , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Wei Zhang
- Department of Chemistry , University of Massachusetts-Boston , Boston , Massachusetts 02125 , United States
| |
Collapse
|
36
|
Tahir A, Alharthy RD, Naseem S, Mahmood N, Ahmed M, Shahzad K, Akhtar MN, Hameed A, Sadiq I, Nawaz H, Muddassar M. Investigations of Structural Requirements for BRD4 Inhibitors through Ligand- and Structure-Based 3D QSAR Approaches. Molecules 2018; 23:molecules23071527. [PMID: 29941841 PMCID: PMC6099705 DOI: 10.3390/molecules23071527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
The bromodomain containing protein 4 (BRD4) recognizes acetylated histone proteins and plays numerous roles in the progression of a wide range of cancers, due to which it is under intense investigation as a novel anti-cancer drug target. In the present study, we performed three-dimensional quantitative structure activity relationship (3D-QSAR) molecular modeling on a series of 60 inhibitors of BRD4 protein using ligand- and structure-based alignment and different partial charges assignment methods by employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The developed models were validated using various statistical methods, including non-cross validated correlation coefficient (r2), leave-one-out (LOO) cross validated correlation coefficient (q2), bootstrapping, and Fisher’s randomization test. The highly reliable and predictive CoMFA (q2 = 0.569, r2 = 0.979) and CoMSIA (q2 = 0.500, r2 = 0.982) models were obtained from a structure-based 3D-QSAR approach using Merck molecular force field (MMFF94). The best models demonstrate that electrostatic and steric fields play an important role in the biological activities of these compounds. Hence, based on the contour maps information, new compounds were designed, and their binding modes were elucidated in BRD4 protein’s active site. Further, the activities and physicochemical properties of the designed molecules were also predicted using the best 3D-QSAR models. We believe that predicted models will help us to understand the structural requirements of BRD4 protein inhibitors that belong to quinolinone and quinazolinone classes for the designing of better active compounds.
Collapse
Affiliation(s)
- Adeena Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| | - Rima D Alharthy
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, 21577 Jeddah, Saudi Arabia.
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| | - Natasha Mahmood
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| | - Mahmood Ahmed
- Institute of Chemistry, University of the Punjab, 54590 Lahore, Pakistan.
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| | - Malik Nadeem Akhtar
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| | - Abdul Hameed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan.
| | - Irfan Sadiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| |
Collapse
|
37
|
Sharp PP, Garnier JM, Hatfaludi T, Xu Z, Segal D, Jarman KE, Jousset H, Garnham A, Feutrill JT, Cuzzupe A, Hall P, Taylor S, Walkley CR, Tyler D, Dawson MA, Czabotar P, Wilks AF, Glaser S, Huang DCS, Burns CJ. Design, Synthesis, and Biological Activity of 1,2,3-Triazolobenzodiazepine BET Bromodomain Inhibitors. ACS Med Chem Lett 2017; 8:1298-1303. [PMID: 29259751 DOI: 10.1021/acsmedchemlett.7b00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c-MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.
Collapse
Affiliation(s)
- Phillip P. Sharp
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jean-Marc Garnier
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tamas Hatfaludi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zhen Xu
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David Segal
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kate E. Jarman
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hélène Jousset
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alexandra Garnham
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John T. Feutrill
- Synthesis MedChem, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Anthony Cuzzupe
- Synthesis MedChem, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Peter Hall
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Scott Taylor
- St.
Vincent’s Institute of Medical Research and Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3052, Australia
| | - Carl R. Walkley
- St.
Vincent’s Institute of Medical Research and Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3052, Australia
| | - Dean Tyler
- Cancer
Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Mark A. Dawson
- Cancer
Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department
of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir
Peter MacCallum Department of Oncology, The University of Melbourne, East
Melbourne, VIC 3002, Australia
| | - Peter Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew F. Wilks
- Synthesis MedChem, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Stefan Glaser
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Christopher J. Burns
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- School
of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
38
|
Lemelle L, Pierron G, Fréneaux P, Huybrechts S, Spiegel A, Plantaz D, Julieron M, Dumoucel S, Italiano A, Millot F, Le Tourneau C, Leverger G, Chastagner P, Carton M, Orbach D. NUT carcinoma in children and adults: A multicenter retrospective study. Pediatr Blood Cancer 2017. [PMID: 28643357 DOI: 10.1002/pbc.26693] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nuclear protein of the testis (NUT) carcinoma (formerly NUT midline carcinoma) is an aggressive tumor defined by the presence of NUT rearrangement with a poor prognosis. This rare cancer is underdiagnosed and poorly treated. OBJECTIVE The primary objective of this study was to describe the clinical, radiologic, and biological features of NUT carcinoma. The secondary objective was to describe the various treatments and assess their efficacy. METHODS This retrospective multicenter study was based on review of the medical records of children and adults with NUT carcinoma with specific rearrangement or positive anti-NUT nuclear staining (>50%). RESULTS This series of 12 patients had a median age of 18.1 years (ranges: 12.3-49.7 years). The primary tumor was located in the chest in eight patients, the head and neck in three patients, and one patient had a multifocal tumor. Nine patients presented regional lymph node involvement and eight distant metastases. One-half of patients were initially misdiagnosed. Specific NUT antibody was positive in all cases tested. A transient response to chemotherapy was observed in four of 11 patients. Only two patients were treated by surgery and five received radiotherapy with curative intent. At the end of follow-up, only one patient was still in remission more than 12 years after the diagnosis. Median overall survival was 4.7 months (95% confidence interval [CI]: 2.1-17.7). CONCLUSION NUT carcinoma is an aggressive disease refractory to conventional therapy. Early diagnosis by NUT-specific antibody immunostaining in cases of undifferentiated or poorly differentiated carcinoma to identify the specific rearrangement of NUT gene is useful to propose the optimal therapeutic strategy.
Collapse
Affiliation(s)
- Lauriane Lemelle
- Department of Pediatric, Adolescent, Young Adults, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique somatique, Institut Curie, Paris, France
| | - Paul Fréneaux
- Département de pathologie, Institut Curie, Paris, France
| | - Sophie Huybrechts
- Hematology-Oncology Unit, Hôpital Universitaire des Enfants Reine Fabiola, ULB Université libre de Bruxelles, Brussels, Belgium
| | - Alexandra Spiegel
- Department of Pediatric Hematology-Oncology, CHU Hautepierre, Strasbourg, France
| | - Dominique Plantaz
- Department of Pediatric Hematology-Oncology, Hôpital de Grenoble, Grenoble, France
| | - Morbize Julieron
- Head and Neck Surgery Department, Centre Oscar Lambret, Lille, France
| | - Sophie Dumoucel
- CHU Sainte Justine, University of Montreal, Montreal, Canada
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Fréderic Millot
- Pediatric Oncology Department, Centre Hospitalier Universitaire Poitiers, Poitiers, France
| | - Christophe Le Tourneau
- Medical Oncology Department, Institut Curie, Paris, France.,INSERM U900 Research unit, Saint-Cloud, France
| | - Guy Leverger
- Department of Pediatric Hematology and Oncology, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Pascal Chastagner
- Department of Pediatric Hematology-Oncology, Hôpital d'Enfants de Brabois, Vandoeuvre Les Nancy, France
| | - Matthieu Carton
- Population-Based Epidemiological Cohorts Unit, INSERM UMS 11, Villejuif, France
| | - Daniel Orbach
- Department of Pediatric, Adolescent, Young Adults, Institut Curie, Paris, France.,French Pediatric Rare Tumor Group (groupe Fracture)
| |
Collapse
|
39
|
Lu P, Shen Y, Yang H, Wang Y, Jiang Z, Yang X, Zhong Y, Pan H, Xu J, Lu H, Zhu H. BET inhibitors RVX-208 and PFI-1 reactivate HIV-1 from latency. Sci Rep 2017; 7:16646. [PMID: 29192216 PMCID: PMC5709369 DOI: 10.1038/s41598-017-16816-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023] Open
Abstract
Persistent latent reservoir in resting CD4+ T cells is a major obstacle in curing HIV-1 infection. Effective strategies for eradication of the HIV-1 reservoir are urgently needed. We report here for the first time that two BET inhibitors, RVX-208, which has entered phase II clinical trials for diverse cardiovascular disorders, and PFI-1, which has been widely studied in oncology, can reactivate HIV-1 from latency. RVX-208 and PFI-1 treatment alone or in combination with other latency reversing agents efficiently reactivated HIV-1 transcription through an up-regulation of P-TEFb by increasing CDK9 Thr-186 phosphorylation in latently infected Jurkat T cells in vitro. The two BET inhibitors also reactivated HIV-1 transcription in cART treated patient-derived resting CD4+ T cells ex vivo, without influence on global immune cell activation. Our findings, in combination with previous reports, further confirm that BET inhibitors are a group of leading compounds for combating HIV-1 latency for viral eradication.
Collapse
Affiliation(s)
- Panpan Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yinzhong Shen
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - He Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianqing Xu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Hongzhou Lu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
40
|
Yoo M, Yoo M, Kim JE, Lee HK, Lee CO, Park CH, Jung KY. Synthesis and biological evaluation of indazole-4,7-dione derivatives as novel BRD4 inhibitors. Arch Pharm Res 2017; 41:46-56. [PMID: 29103140 DOI: 10.1007/s12272-017-0978-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is known to regulate the expression of c-Myc to control the proliferation of cancer cells. Therefore, development of small-molecule inhibitors targeting the bromodomain has been widely studied. However, some clinical trials on BRD4 inhibitors have shown its drawbacks such as toxicity including the loss of organ weight. Here, we report the development of the novel and promising scaffold, 1H-indazol-4,7-dione, as a bromodomain inhibitor and synthesized derivatives for the inhibition of binding of bromodomain to acetylated histone peptide. Through this effort, we obtained 6-chloro-5-((2,6-difluorophenyl)amino)-1H-indazole-4,7-dione (5i), which showed a highly potent activity with a half-maximal inhibitory concentration (IC50) of 60 nM. The in vivo xenograft assay confirmed that the 1H-indazol-4,7-dione compound reduced the tumor size significantly. These results show that the 1H-indazol-4,7-dione scaffold is highly potent against bromodomain.
Collapse
Affiliation(s)
- Minjin Yoo
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Miyoun Yoo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ji Eun Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Heung Kyoung Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Chong Ock Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Chi Hoon Park
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Kwan-Young Jung
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
41
|
Olp MD, Zhu N, Smith BC. Metabolically Derived Lysine Acylations and Neighboring Modifications Tune the Binding of the BET Bromodomains to Histone H4. Biochemistry 2017; 56:5485-5495. [PMID: 28945351 DOI: 10.1021/acs.biochem.7b00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent proteomic studies discovered histone lysines are modified by acylations beyond acetylation. These acylations derive from acyl-CoA metabolites, potentially linking metabolism to transcription. Bromodomains bind lysine acylation on histones and other nuclear proteins to influence transcription. However, the extent bromodomains bind non-acetyl acylations is largely unknown. Also unclear are the effects of neighboring post-translational modifications, especially within heavily modified histone tails. Using peptide arrays, binding assays, sucrose gradients, and computational methods, we quantified 10 distinct acylations for binding to the bromodomain and extraterminal domain (BET) family. Four of these acylations (hydroxyisobutyrylation, malonylation, glutarylation, and homocitrullination) had never been tested for bromodomain binding. We found N-terminal BET bromodomains bound acetylated and propionylated peptides, consistent with previous studies. Interestingly, all other acylations inhibited binding of the BET bromodomains to peptides and nucleosomes. To understand how context tunes bromodomain binding, effects of neighboring methylation, phosphorylation, and acylation within histone H4 tails were determined. Serine 1 phosphorylation inhibited binding of the BRD4 N-terminal bromodomain to polyacetylated H4 tails by >5-fold, whereas methylation had no effect. Furthermore, binding of BRDT and BRD4 N-terminal bromodomains to H4K5acetyl was enhanced 1.4-9.5-fold by any neighboring acylation of lysine 8, indicating a secondary H4K8acyl binding site that is more permissive of non-acetyl acylations than previously appreciated. In contrast, C-terminal BET bromodomains exhibited 9.9-13.5-fold weaker binding for polyacylated than for monoacylated H4 tails, indicating the C-terminal bromodomains do not cooperatively bind multiple acylations. These results suggest acyl-CoA levels tune or block recruitment of the BET bromodomains to histones, linking metabolism to bromodomain-mediated transcription.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Nan Zhu
- Stem Cell Biology and Hematopoiesis Program, Blood Research Institute, Blood Center of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
42
|
Ali I, Lee J, Go A, Choi G, Lee K. Discovery of novel [1,2,4]triazolo[4,3-a]quinoxaline aminophenyl derivatives as BET inhibitors for cancer treatment. Bioorg Med Chem Lett 2017; 27:4606-4613. [PMID: 28939121 DOI: 10.1016/j.bmcl.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/28/2022]
Abstract
Bromodomain and extra-terminal (BET) proteins, a class of epigenetic reader domains has emerged as a promising new target class for small molecule drug discovery for the treatment of cancer, inflammatory, and autoimmune diseases. Starting from in silico screening campaign, herein we report the discovery of novel BET inhibitors based on [1,2,4]triazolo[4,3-a]quinoxaline scaffold and their biological evaluation. The hit compound was optimized using the medicinal chemistry approach to the lead compound with excellent inhibitory activities against BRD4 in the binding assay. The substantial antiproliferative activities in human cancer cell lines, promising drug-like properties, and the selectivity for the BET family make the lead compound (13) as a novel BRD4 inhibitor motif for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Imran Ali
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jooyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea
| | - Areum Go
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Gildon Choi
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Kwangho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
43
|
Protein-Protein Interaction Modulators for Epigenetic Therapies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:65-84. [PMID: 29413000 DOI: 10.1016/bs.apcsb.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeting protein-protein interactions (PPIs) is becoming an attractive approach for drug discovery. This is particularly true for difficult or emerging targets, such as epitargets that may be elusive to drugs that fall into the traditional chemical space. The chemical nature of the PPIs makes attractive the use of peptides or peptidomimetics to selectively modulate such interactions. Despite the fact peptide-based drug discovery has been challenging, the use of peptides as leads compounds for drug discovery is still a valid strategy. This chapter discusses the current status of PPIs in epigenetic drug discovery. A special emphasis is made on peptides and peptide-like compounds as potential drug candidates.
Collapse
|
44
|
Braun T, Gardin C. Investigational BET bromodomain protein inhibitors in early stage clinical trials for acute myelogenous leukemia (AML). Expert Opin Investig Drugs 2017; 26:803-811. [PMID: 28541716 DOI: 10.1080/13543784.2017.1335711] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Acute myelogenous leukemia (AML) is a heterogeneous group of malignancies driven by genetic mutations and deregulated epigenetic control. Relapse/refractory disease remains frequent in younger patients and even more so in older patients, including treatment with epigenetic drugs in this age group, mainly with hypomethylating agents. New treatment strategies are urgently needed. The recent discovery that epigenetic readers of the bromodomain (BRD) and extraterminal (BET) protein family, are crucial for AML maintenance by transcription of oncogenic c-MYC lead to rapid development of BET inhibitors entering clinical trials. Areas covered: We provide a critical overview using main sources for the use of BET inhibitors in AML treatment. Limits of this treatment approach including resistance mechanisms and future directions including development of new generation BET inhibitors and combination strategies with other drugs are detailed. Expert opinion: BET inhibitors were expected to overcome limits of conventional treatment in patients as impressive in vitro data emerged recently in well-characterized AML subsets, including those associated with poor risk characteristics in the clinic. Nevertheless single activity of BET inhibitors appears to be modest and resistance mechanisms were already identified. BET inhibitors with alternative mechanisms of action and/or combination strategies with epigenetic drugs should be tested.
Collapse
Affiliation(s)
- Thorsten Braun
- a Hematology Department , Avicenne Hospital-Assistance Publique Hôpitaux de Paris (AP-HP), University Paris XIII , Bobigny , France.,b Laboratoire de Transfert des Leucémies , Institut Universitaire d'Hématologie, University Paris VII , Paris , France
| | - Claude Gardin
- a Hematology Department , Avicenne Hospital-Assistance Publique Hôpitaux de Paris (AP-HP), University Paris XIII , Bobigny , France.,b Laboratoire de Transfert des Leucémies , Institut Universitaire d'Hématologie, University Paris VII , Paris , France
| |
Collapse
|
45
|
Zhu Y, Yang W, Ji G, Lin N, Wu W, Xiong P, Zheng C, Yan L, Wan P, Wang Y. Bromodomain protein 4 is a novel predictor of survival for gastric carcinoma. Oncotarget 2017; 8:31092-31100. [PMID: 28415703 PMCID: PMC5458191 DOI: 10.18632/oncotarget.16087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/01/2017] [Indexed: 01/13/2023] Open
Abstract
Expression of bromodomain protein 4 (BRD4) has been reported to predict a worse prognosis in solid tumors. However, its expression profile and prognostic value in gastric carcinoma (GC) remains unknown. Here we investigated BRD4 expression in GC and explored its association with patient survival. Tissue samples were obtained from 95 GC patients who underwent surgical resection to remove the primary tumor from January 2009 to December 2010. Immunohistochemistry was used to detect the expression of BRD4 in GC tissues and adjacent normal tissues. Kaplan-Meier survival curves and Cox proportional hazards regression were used to analyze the data of BRD4 expression profile and clinicopathological characteristics. Immunohistochemical analysis revealed BRD4 was overexpressed in GC tissue compared with adjacent normal tissue. BRD4 expression was significantly associated with TNM stage (p < 0.001), lymphatic permeation (p = 0.011), and vital status at the end of follow-up (p < 0.001). Kaplan-Meier survival curves and the log-rank test demonstrated that higher BRD4 expression was an adverse predictive factor for survival in GC. Multivariate analysis by Cox proportional hazards regression revealed that BRD4 expression was an independent worse prognostic factor in GC. In conclusion, BRD4 could act as a potential biomarker for prognostic assessment of GC.
Collapse
Affiliation(s)
- Yixin Zhu
- Clinical Institute of Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Weijin Yang
- Department of General Surgery, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, China
- Department of General Surgery, Fuzhou General Hospital, Fuzhou 350025, China
| | - Guangnian Ji
- Dongfang Hospital Affiliated to Xiamen University, Xiamen University, Xiamen, Fujian 361005, China
| | - Nan Lin
- Department of General Surgery, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, China
- Department of General Surgery, Fuzhou General Hospital, Fuzhou 350025, China
| | - Weihang Wu
- Department of General Surgery, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, China
- Department of General Surgery, Fuzhou General Hospital, Fuzhou 350025, China
| | - Ping Xiong
- Clinical Institute of Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Chenxin Zheng
- Clinical Institute of Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Lei Yan
- Clinical Institute of Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Peng Wan
- Department of General Surgery, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, China
- Department of General Surgery, Fuzhou General Hospital, Fuzhou 350025, China
| | - Yu Wang
- Department of General Surgery, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, China
- Department of General Surgery, Fuzhou General Hospital, Fuzhou 350025, China
| |
Collapse
|
46
|
Design, synthesis and biological evaluation of 7-methylimidazo[1,5- a ]pyrazin-8(7 H )-one derivatives as BRD4 inhibitors. Bioorg Med Chem 2017; 25:2482-2490. [DOI: 10.1016/j.bmc.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 11/22/2022]
|
47
|
Liu Z, Wang P, Chen H, Wold EA, Tian B, Brasier AR, Zhou J. Drug Discovery Targeting Bromodomain-Containing Protein 4. J Med Chem 2017; 60:4533-4558. [PMID: 28195723 PMCID: PMC5464988 DOI: 10.1021/acs.jmedchem.6b01761] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
BRD4,
the most extensively studied member of the BET family, is
an epigenetic regulator that localizes to DNA via binding to acetylated
histones and controls the expression of therapeutically important
gene regulatory networks through the recruitment of transcription
factors to form mediator complexes, phosphorylating RNA polymerase
II, and by its intrinsic histone acetyltransferase activity. Disrupting
the protein–protein interactions between BRD4 and acetyl-lysine
has been shown to effectively block cell proliferation in cancer,
cytokine production in acute inflammation, and so forth. To date,
significant efforts have been devoted to the development of BRD4 inhibitors,
and consequently, a dozen have progressed to human clinical trials.
Herein, we summarize the advances in drug discovery and development
of BRD4 inhibitors by focusing on their chemotypes, in vitro and in
vivo activity, selectivity, relevant mechanisms of action, and therapeutic
potential. Opportunities and challenges to achieve selective and efficacious
BRD4 inhibitors as a viable therapeutic strategy for human diseases
are also highlighted.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Bing Tian
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
48
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
49
|
Noguchi-Yachide T, Amemiya S, Yamaguchi T, Hashimoto Y. Development of N6-(Heteroarylcarbonyl)adenines as BRD4 Inhibitors. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Moustakim M, Clark PGK, Trulli L, Fuentes de Arriba AL, Ehebauer MT, Chaikuad A, Murphy EJ, Mendez-Johnson J, Daniels D, Hou CFD, Lin YH, Walker JR, Hui R, Yang H, Dorrell L, Rogers CM, Monteiro OP, Fedorov O, Huber KVM, Knapp S, Heer J, Dixon DJ, Brennan PE. Discovery of a PCAF Bromodomain Chemical Probe. Angew Chem Int Ed Engl 2016; 56:827-831. [PMID: 27966810 PMCID: PMC5412877 DOI: 10.1002/anie.201610816] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/28/2016] [Indexed: 12/14/2022]
Abstract
The p300/CBP‐associated factor (PCAF) and related GCN5 bromodomain‐containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine‐based L‐45 (dubbed L‐Moses) as the first potent, selective, and cell‐active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)‐(−)‐norephedrine furnished L‐45 in enantiopure form. L‐45 was shown to disrupt PCAF‐Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co‐crystal structure of L‐45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L‐45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell‐permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for in vivo use.
Collapse
Affiliation(s)
- Moses Moustakim
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ, UK.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter G K Clark
- Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Laura Trulli
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Angel L Fuentes de Arriba
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthias T Ehebauer
- ARUK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Apirat Chaikuad
- Johann Wolfgang Goethe-University, Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, 60438, Frankfurt am Main, Germany
| | - Emma J Murphy
- ARUK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Danette Daniels
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 153611, USA
| | - Chun-Feng D Hou
- Structural Genomics Consortium, MaRS South Tower, Suite 732, 101 College Street, Toronto, Ontario, M5G 1LZ, Canada
| | - Yu-Hui Lin
- Structural Genomics Consortium, MaRS South Tower, Suite 732, 101 College Street, Toronto, Ontario, M5G 1LZ, Canada
| | - John R Walker
- Structural Genomics Consortium, MaRS South Tower, Suite 732, 101 College Street, Toronto, Ontario, M5G 1LZ, Canada
| | - Raymond Hui
- Structural Genomics Consortium, MaRS South Tower, Suite 732, 101 College Street, Toronto, Ontario, M5G 1LZ, Canada
| | - Hongbing Yang
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7FZ, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7FZ, UK
| | - Catherine M Rogers
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ, UK
| | - Octovia P Monteiro
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ, UK
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ, UK
| | - Kilian V M Huber
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ, UK
| | - Stefan Knapp
- Johann Wolfgang Goethe-University, Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, 60438, Frankfurt am Main, Germany
| | - Jag Heer
- UCB Pharma Ltd, Slough, SL1 3WE, UK
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Paul E Brennan
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ, UK.,ARUK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|