1
|
Meng L, Fang J, Lin X, Zhuang R, Huang L, Li Y, Zhang X, Guo Z. Development of radioligands with an albumin-binding moiety of 4-(P-Iodophenyl) butyric acid for theranostic applications. J Control Release 2025; 382:113757. [PMID: 40262707 DOI: 10.1016/j.jconrel.2025.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
The rapid clearance of imaging probes from blood circulation is beneficial for receptor imaging, as it minimizes non-target tissue exposure and improves tumor-to-background contrast. However, this rapid clearance can hinder radioligand therapy by limiting tumor uptake of radiolabeled compounds. An optimal blood half-life is crucial, as it enhances the uptake of radiolabeled compounds in targets, improving tumor uptake and retention of small molecule drugs, and thus therapeutic outcomes. To address this, strategies to extend blood half-life have been developed, with the addition of an albumin-binding moiety (ABM) being particularly effective. Among these, 4-(p-iodophenyl)butyric acid (IPBA) has emerged as a versatile ABM for radiopharmaceutical design. IPBA conjugation has successfully enhanced tissue distribution profiles across various cancer types. This review highlights recent progress in the design, radiosynthesis, and application of IPBA-based small molecular radioligands, providing insights for future clinical development of IPBA-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xiaoru Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China; Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
2
|
Sun Y, Song H, Li S, Zhang H, Sun Y, Gao Z. Albumin-based nanoparticles: a potential and emerging oral drug delivery system. Drug Dev Ind Pharm 2025:1-29. [PMID: 40340573 DOI: 10.1080/03639045.2025.2504440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/09/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE The purpose of this review is to elaborate current development and challenges of oral albumin nanoparticles, and realize their clinical application. SIGNIFICANCE Albumin is an emerging protein nanocarrier with a high degree of versatility, safety, stability, modifiability. These characteristics endow albumin nanoparticles with considerable attention and unique roles in drug delivery. However, most albumin nanoparticles are administered intravenously instead of orally, although oral administration is the most popular and common drug delivery route. Oral administration of albumin nanoparticles is their inevitable tendency, but researches referred to this area are still in infancy. METHODS AND RESULTS Given that, firstly, the basic properties of albumin nanoparticles, like preparation methods, drug loading strategies, targeted drug delivery, and clinical application were simply discussed to provide design guide for their oral administration. Subsequently, the functions and challenges of albumin nanoparticles in oral drug delivery, and strategies to overcome the barriers were highlighted. Finally, aiming to realize their clinical potentials, the possible future trends of orally administrated albumin nanoparticles were also elaborated. CONCLUSIONS In this review, albumin nanoparticles were comprehensively introduced, especially their functions and challenges in oral drug delivery, aiming to guide their design and development.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
3
|
Vesović M, Jelić R, Nikolić M, Nedeljković N, Živanović A, Bukonjić A, Mrkalić E, Radić G, Ratković Z, Kljun J, Tomović D. Investigation of the interaction between S-isoalkyl derivatives of the thiosalicylic acid and human serum albumin. J Biomol Struct Dyn 2025; 43:4081-4094. [PMID: 38192057 DOI: 10.1080/07391102.2024.2301745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
S-isoalkyl derivatives of thiosalicylic acid (isopropyl-(L1), isobutyl-(L2) and isoamyl-(L3)) were selected in order to investigate the binding interaction with the human serum albumin (HSA) using different spectroscopic methods and molecular docking simulation. Association constants and number of binding sites were used to analyze the quenching mechanism. The experimental results showed that the fluorescence quenching of HSA by L1, L2 and L3 occurs because of static quenching and that binding processes were spontaneous, with the leading forces in bonding by hydrogen bonding, hydrophobic interactions, and electrostatic interactions. Fluorescence spectroscopy, UV-Vis spectroscopy and synchronous fluorescence spectroscopy showed that ligands (L1, L2 and L3) can bind to HSA and that the binding of ligands induced some microenvironmental and conformational changes in HSA. The calculated distance between the donor and the acceptor according to fiFörster's theory confirms the energy transfer efficiency between the acceptor and HSA. Results of site marker competitive experiments showed that the tested compounds bind to HSA in domain IIA (Site I). Molecular dynamics and docking calculations demonstrated that L3 binds to the Sudlow site I of HSA with lower values of binding energies compared to L1 and L2, indicating the formation of the most stable ligand-HSA complex. Understanding the binding mechanisms of S-isoalkyl derivatives of the thiosalicylic acid to HSA may provide valuable data for the future studies of their biological activity and application as potential antitumor drugs.
Collapse
Affiliation(s)
- Marina Vesović
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Ratomir Jelić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Miloš Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Nikola Nedeljković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Ana Živanović
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Andriana Bukonjić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Emina Mrkalić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, Kragujevac, Serbia
| | - Gordana Radić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Zoran Ratković
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, Kragujevac, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia
| | - Dušan Tomović
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| |
Collapse
|
4
|
Castillo O, Rivera LM, Albalawi A, Morales Orrante EY, Brancaleon L. Organic-solvent mediated self-assembly of protoporphyrin IX with human serum albumin. Int J Biol Macromol 2025; 306:141073. [PMID: 39984104 DOI: 10.1016/j.ijbiomac.2025.141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
This study investigates the non-native interactions between the photosensitizer protoporphyrin IX (PPIX) and human serum albumin (HSA). Non-covalent binding between small molecules and proteins, is crucial for various applications in biomedicine, food processing, energy conversion, and sensing. The research focuses on the role of a series of organic solvents in facilitating the binding of water-insoluble PPIX to the protein. By using dialysis and centrifugation for sample preparation and combining experimental and computational methods for characterization, the study found that non-protic solvents such as THF and DMSO are more effective in forming the PPIX:HSA complex compared to protic solvents. Additionally, the temporary presence of these organic solvents during incubation does not cause significant and irreversible changes in the protein structure. Instead, THF and DMSO temporarily loosen the protein, increasing the distance between two tyrosine residues (Y138 and Y161) that are believed to coordinate the porphyrin at its binding site. This finding underscores the importance of selecting appropriate solvents to enhance the binding efficiency of small ligands to proteins.
Collapse
Affiliation(s)
- Omar Castillo
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Lydia Martinez Rivera
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abdullah Albalawi
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Erick Y Morales Orrante
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Abbaspour S, Mohamadzadeh M, Shojaosadati SA. Protein-based nanocarriers for paclitaxel (PTX) delivery in cancer treatment: A review. Int J Biol Macromol 2025; 310:143068. [PMID: 40220831 DOI: 10.1016/j.ijbiomac.2025.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Paclitaxel (PTX) is recognized as one of the most potent chemotherapy agents and is widely used to treat various cancers, including ovarian, lung, breast, head, and neck cancer. Due to the limited solubility and high toxicity of PTX, its use in cancer treatment is challenging and limited. Hence, strategies have been devised to improve the solubility and bioavailability of paclitaxel. In recent years, biocompatible nanocarriers have garnered attention due to their desirable properties, including increased permeability, targeted delivery, extended circulatory half-life, and biological drug delivery for the delivery of chemotherapeutic drugs. Protein nanostructures have been widely studied for the delivery of paclitaxel due to their significant advantages, such as safety, low toxicity, availability, and relatively easy preparation. This review article reviews recent advances in the development of protein-based drug delivery systems for loading and releasing paclitaxel. These nanocarriers have great potential to improve paclitaxel's antitumor properties and efficacy. Therefore, in the future, the integration of the pharmaceutical industry and artificial intelligence techniques will provide more opportunities for research and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Pongprayoon P, Kuntip N, Suwanasopee T, Jattawa D, Niramitranon J, Japrung D, Koonawootrittriron S. Comparative studies of structure and dynamics of caprine, leporine, ovine, and equine serum albumins. J Biomol Struct Dyn 2025; 43:2772-2780. [PMID: 38116752 DOI: 10.1080/07391102.2023.2294378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Serum albumin (SA) is the most prevalent protein found in blood. Human albumin was used as an albumin substitute in hypoalbuminemia pets due to high sequence similarity. SAs from furry animals were also reported to be the major indoor allergens. Sensitizing to one of SAs coupled with high sequence identity can lead to cross-reactive antibodies in allergic individuals. Thus, understanding the structural and dynamic characters of SAs is crucial for not only albumin substitution but also allergen therapy. Herein, Molecular dynamics (MD) simulations were performed to elucidate the structural and dynamic dissimilarity and similarity of economic animals [equine (ESA), caprine (CASA), ovine (OSA), and leporine (LSA)] to albumins from human (HSA), bovine (BSA), porcine (PSA), and pets [cat (FSA) and dog (CSA)]. The aim is to explore the feasibility of HSA substitution and understand how albumins cause the cross-reactivity. Generally, all albumins studied here show the scissoring motion like other mammalian albumins. The uniqueness of each albumin is defined by different sequence identity of domain I. Also, the drug binding affinity of studied albumins differs from HSA, CSA, FSA, BSA, and PSA. Especially, LSA displays the most deviated behavior from the group. So, such albumin may not be suitable for albumin therapy for pets and humans. CASA, OSA, and ESA share similar characteristics, therefore it is possible to use them to monitor the osmotic pressure among their species, but the allergenic response must be seriously considered. An insight obtained here can be useful to develop albumin therapy and understand clinical allergy.
Collapse
Affiliation(s)
- Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thanathip Suwanasopee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Danai Jattawa
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Jitti Niramitranon
- Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | | |
Collapse
|
7
|
Santos AM, Vieira EM, de Jesus JR, Santana Júnior CC, Nascimento Júnior JAC, Oliveira AMS, Araújo AADS, Picot L, Alves IA, Serafini MR. Development and characterization of farnesol complexed in β- and hydroxypropyl-β-cyclodextrin and their antibacterial activity. Carbohydr Res 2025; 550:109406. [PMID: 39864120 DOI: 10.1016/j.carres.2025.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity. Initially, physical mixture and freeze-dried inclusion complexes of FAR/β-CD and FAR/HP-β-CD were obtained in the molar ratio (1:1). The samples were characterized by DSC, TG/DTG, FTIR, PXRD, SEM, pHPZC, and the complexation efficiency were performed by HPLC. In vivo toxicity assay was performed using Tenebrio molitor larvae to determine the LD50 and toxic dose of the samples. Also, it was proposed that the evaluation of the fluorescence suppression of Bovine Serum Albumin and the antibacterial activity. The complexation of FAR was evidenced with β-CD and HP-β-CD by the characterization techniques analyzed. The complexation efficiency of FAR/β-CD and FAR/HP-β-CD were 73,53 % and 74.12 %, respectively. The inclusion complexes demonstrated a reduction in toxicity, as evidenced by lower toxic and LD50 doses compared to the free FAR. The inclusion complexes induced conformational changes in BSA, suggesting that they reached the subdomains containing tryptophan residues. In terms of antibacterial activity, FAR/β-CD and FAR/HP-β-CD did not exhibit significant MIC results compared to free FAR, except for FAR/HP-β-CD against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | - Edileuza Marcelo Vieira
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jemmyson Romário de Jesus
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
8
|
Bartusik-Aebisher D, Przygórzewska A, Woźnicki P, Aebisher D. Nanoparticles for Photodynamic Therapy of Breast Cancer: A Review of Recent Studies. Molecules 2025; 30:1571. [PMID: 40286175 PMCID: PMC11990253 DOI: 10.3390/molecules30071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic method based on the interaction between light and a photosensitizer. Supported by nanoparticles, this method represents a promising interdisciplinary approach for the treatment of many diseases. This article reviews the latest 2024 developments in the design and applications of nanoparticles dedicated to stand-alone PDT of breast cancer. Strategies to improve therapeutic efficacy by enhancing reactive oxygen species (ROS) production, precise delivery of photosensitizers and their stabilization in the systemic circulation are discussed, among others. Results from preclinical studies indicate significant improvements in therapeutic efficacy, including inhibition of tumor growth, reduction in metastasis and improvement of the immune microenvironment. The potential of these technologies to expand PDT applications in medicine and the need for further clinical trials to confirm their safety and efficacy are highlighted.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Paweł Woźnicki
- Doctoral School, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
9
|
Stukan I, Żuk A, Pukacka K, Mierzejewska J, Pawłowski J, Kowalski B, Dąbkowska M. Wolf in Sheep's Clothing: Taming Cancer's Resistance with Human Serum Albumin? Int J Nanomedicine 2025; 20:3493-3525. [PMID: 40125439 PMCID: PMC11930253 DOI: 10.2147/ijn.s500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Human serum albumin (HSA) has emerged as a promising carrier for nanodrug delivery, offering unique structural properties that can be engineered to overcome key challenges in cancer treatment, especially resistance to chemotherapy. This review focuses on the cellular uptake of albumin-based nanoparticles and the modifications that enhance their ability to bypass resistance mechanisms, particularly multidrug resistance type 1 (MDR1), by improving targeting to cancer cells. In our unique approach, we integrate the chemical properties of albumin, its interactions with cancer cells, and surface modifications of albumin-based delivery systems that enable to bypass resistance mechanisms, particularly those related to MDR1, and precisely target receptors on cancer cells to improve treatment efficacy. We discuss that while well-established albumin receptors such as gp60 and gp18/30 are crucial for cellular uptake and transcytosis, their biology remains underexplored, limiting their translational potential. Additionally, we explore the potential of emerging targets, such as cluster of differentiation 44 (CD44), cluster of differentiation (CD36) and transferrin receptor TfR1, as well as the advantages of using dimeric forms of albumin (dHSA) to further enhance delivery to resistant cancer cells. Drawing from clinical examples, including the success of albumin-bound paclitaxel (Abraxane) and new formulations like Pazenir and Fyarro (for Sirolimus), we identify gaps in current knowledge and propose strategies to optimize albumin-based systems. In conclusion, albumin-based nanoparticles, when tailored with appropriate modifications, have the potential to bypass multidrug resistance and improve the targeting of cancer cells. By enhancing albumin's ability to efficiently deliver therapeutic agents, these carriers represent a promising approach to addressing one of oncology's most persistent challenges, with substantial potential to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Żuk
- Independent Laboratory of Community Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Pukacka
- Department of Pharmaceutical Technology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Julia Mierzejewska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Pawłowski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
10
|
Zhu Y, Zhuang W, Cheng H. Strategies to Enhance Protein Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6457-6470. [PMID: 40052814 PMCID: PMC11924232 DOI: 10.1021/acs.langmuir.4c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Therapeutic proteins play a crucial role in modern healthcare. However, the rapid clearance of proteins in the circulation system poses a significant threat to their therapeutic efficacy. The generation of anti-drug antibodies expedites drug clearance, resulting in another challenge to overcome in protein delivery. Several methods to increase the circulation half-lives of these proteins and to minimize their immunogenicity have been developed. This Review discusses the causes of protein clearance in the body, evaluates the FDA-approved strategies to prolong protein circulation, and highlights recent progress in the field. Additionally, the strengths and drawbacks of these methods and our perspectives for advancing protein delivery are provided.
Collapse
Affiliation(s)
- Yucheng Zhu
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Weisi Zhuang
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Cheng
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Ye T, Wu C, Na J, Liu X, Huang Y. Multi-Pathway Study for Oxaliplatin Resistance Reduction. Curr Issues Mol Biol 2025; 47:172. [PMID: 40136426 PMCID: PMC11941373 DOI: 10.3390/cimb47030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapy for cancer frequently uses platinum-based medications, including oxaliplatin, carboplatin, and cisplatin; however, due to their high systemic toxicity, lack of selectivity, drug resistance, and other side effects, platinum-based medications have very limited clinical application. As a first-line medication in antitumor therapy, oxaliplatin must be administered to minimize side effects while achieving anticancer objectives. A new CDC7 inhibitor called XL413 has demonstrated promising antitumor therapeutic effects in a variety of malignant tumors and may have anticancer properties. This offers a fresh viewpoint on how to lessen oxaliplatin resistance and, specifically, increase the potency of already prescribed anticancer therapies. In this paper, the current developments in anticancer therapy are discussed, along with the many mechanisms of oxaliplatin's antitumor effects, clinical treatment challenges, and related approaches. We conducted more research on oxaliplatin resistance that arose during chemotherapy and searched for ways to lessen it in order to enhance its chemotherapeutic performance. Ultimately, we studied how distinct resistance routes relate to one another. Meanwhile, XL413, a novel CDC7 inhibitor, offers a perspective on the possibilities for developing treatment approaches for this innovation point. The search terms "Oxaliplatin, XL413, drug resistance, cancer treatment," etc., were applied in the X-MOL and PubMed databases for this review's literature search. Boolean logic was then employed to maximize the search approach. These databases can offer thorough research data and cover a broad range of biological publications. Excluded publications were works of low relevance, duplicates, or those with insufficient information. The mechanism of oxaliplatin's anticancer effect, oxaliplatin resistance and its amelioration, and the role of XL413 in oxaliplatin treatment were the main topics of the 140 publications that were ultimately included for analysis.
Collapse
Affiliation(s)
- Tong Ye
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Chen Wu
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China;
| | - Jintong Na
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China;
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Yong Huang
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China;
| |
Collapse
|
12
|
Chen IW, Hsu JH, Huang JC, Liu WC, Wu JY, Wang KF, Hung KC. Association between Geriatric Nutritional Risk Index and survival outcomes in patients with urological cancers: an updated meta-analysis. BMJ Open 2025; 15:e091639. [PMID: 39961710 PMCID: PMC11962781 DOI: 10.1136/bmjopen-2024-091639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025] Open
Abstract
OBJECTIVES This meta-analysis aimed to evaluate the association between the Geriatric Nutritional Risk Index (GNRI) and survival outcomes in patients with urological cancer. DESIGN Systematic review and meta-analysis of observational studies. DATA SOURCES A comprehensive literature search was conducted in Medline, EMBASE, Google Scholar and the Cochrane Library from inception to 7 July 2024. ELIGIBILITY CRITERIA Studies were included if they examined the correlation between the GNRI and long-term survival outcomes in adult patients (≥18 years old) with urological cancers. DATA EXTRACTION AND SYNTHESIS Two researchers independently extracted data and assessed study quality using the Newcastle-Ottawa Scale and certainty of evidence using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) methodology. Publication bias was evaluated using funnel plots and Egger's test for outcomes with more than 10 studies. Pooled HRs and 95% CIs were calculated using a random-effects model. Subgroup analyses, meta-regression and sensitivity analyses were performed. RESULTS 17 studies involving 8816 patients were included. Study quality assessment showed that 15 studies had a low risk of bias (scores 7-9) and two had a high risk (scores 5-6). Low GNRI was significantly associated with poor overall survival (OS) (HR: 2.6, 95% CI: 2.0 to 3.38, p<0.00001, I² = 64%, 13 studies), cancer-specific survival (CSS) (HR: 2.65, 95% CI: 1.76 to 3.98, p<0.00001, I² = 75%, 7 studies), recurrence-free survival (RFS) (HR: 1.47, 95% CI: 1.02 to 2.1, p=0.04, I² = 58%, four studies) and progression-free survival (PFS) (HR: 1.86, 95% CI: 1.54 to 2.23, p<0.00001, I² = 0%, five studies). Funnel plot and Egger's test (p=0.948) indicated a low risk of publication bias for OS. GRADE assessment showed low certainty of evidence for OS and PFS, and very low certainty for CSS and RFS. Meta-regression identified follow-up time and sample size as significant sources of heterogeneity. CONCLUSIONS A low GNRI is significantly associated with poor survival outcomes in patients with urological cancer. The GNRI may serve as a valuable prognostic tool in clinical practice. Further research is needed to validate these findings in diverse populations and to explore the underlying biological mechanisms. PROSPERO REGISTRATION NUMBER CRD42023476678.
Collapse
Affiliation(s)
- I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Kaohsiung City, Taiwan
| | - Jui-Hung Hsu
- Department of Medical Education, Keelung Chang Gung Memorial Hospital of the CGMF, Keelung, Taiwan Province, Taiwan
| | - Jing-Cyuan Huang
- Department of General Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Cheng Liu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Jheng-Yan Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Kuei-Fen Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Kuo-Chuan Hung
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Kaohsiung City, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
13
|
Yadav K, Ebenezer Gnanakani SP, Kumar Sahu K, Sucheta, Dubey A, Minz S, Raza W, Pradhan M. Unleashing the potential of natural protein based nanoparticles for the delivery of therapeutic nucleic Acid: A comprehensive review. Int J Pharm 2025; 669:125049. [PMID: 39674384 DOI: 10.1016/j.ijpharm.2024.125049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Nucleic acid-based therapeutics represent a revolutionary approach in treating genetic disorders, offering unprecedented potential for addressing pathologies at their molecular level. However, effective cellular delivery remains a critical challenge hindering their clinical implementation. While existing delivery systems, including viral vectors and lipid nanoparticles, have shown utility, they face limitations in immunogenicity, cargo capacity, and manufacturing complexity. Natural protein-based nanoparticles, derived from proteins such as albumin, ferritin, and elastin, have emerged as promising alternative delivery systems. These carriers offer distinct advantages including reduced immunogenicity, enhanced biocompatibility, and optimal biodegradation profiles. Their engineerable nature enables precise control over particle size, surface charge, and ligand conjugation, facilitating selective cellular targeting and improved pharmacokinetics. Recent technological advances have expanded the application of protein nanoparticles across various nucleic acid modalities, including mRNA, siRNA, and plasmid DNA. Extensive research has characterized these systems through rigorous in vitro and in vivo studies, advancing our understanding of their biological behavior and clinical potential. Advanced engineering methodologies have further enhanced their optimization for specific therapeutic applications. This review examines the development and potential of protein-based nanoparticles in nucleic acid delivery, highlighting their advantages and addressing current challenges. By analyzing recent advances and clinical progress, we underscore their significant potential to enhance the safety, specificity, and efficacy of nucleic acid therapeutics, potentially revolutionizing the treatment of genetic disorders.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - S Princely Ebenezer Gnanakani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Limda, Waghodia, Vadodara, Gujarat 391760, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Wasim Raza
- Central Laboratory Facility, Chhattisgarh Council of Science and Technology, Vigyan Bhawan, Raipur, Chhattisgarh, India
| | | |
Collapse
|
14
|
Bao P, Ling L, Xiang L, Liu X, Zhang J, Yue W. Analysis of Risk Factors for Hemorrhagic Transformation of Cerebral Infarction and Recurrence of Cerebral Infarction: A Retrospective Study on Cerebral Infarction Patients with or without Hemorrhagic Transformation. Int J Gen Med 2025; 18:221-236. [PMID: 39834912 PMCID: PMC11745044 DOI: 10.2147/ijgm.s498228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025] Open
Abstract
Background Acute ischemic stroke, especially hemorrhage cerebral infarction (HCI), resulted in the leading causes of mortality and long-term disability across populations. However, fewer researches have focused on the risk factors of first admission and recurrence of HCI. Methods The study included 1857 patients who underwent cerebral infarction with or without hemorrhagic transformation. Clinical characteristics were collected, and univariate and multivariate analysis were performed to explore the risk factors. The subgroup analysis of cerebral infarction recurrence was performed. ROC analysis was utilized, and AUCs were showed the diagnostic values of the risk factors. Results Compared to the patients with non-hemorrhage cerebral infarction, the patients with hemorrhage cerebral infarction were older and had higher Neutrophil infiltration, AST expression, globulin and BUN, while had lower ALT expression, triglyceride, PT, APTT, homocysteine, d-dimer, CRP and glycosylated hemoglobin. Utilizing univariate and multivariate analysis, age, thrombolytic, Hb, AST and glycosylated hemoglobin were the risk factors between the patients with hemorrhagic cerebral infarction and non-hemorrhagic cerebral infarction. ROC analysis was performed to demonstrate that glycosylated hemoglobin was a diagnostic biomarker for the patients with hemorrhagic cerebral infarction and non-hemorrhagic cerebral infarction (AUC = 0.808). Utilizing univariate and multivariate analysis, age, hypertension history, LDL and MRS Score on admission were the risk factors between non-hemorrhagic cerebral infarction patients with first admission or the cerebral infarction recurrence. ROC analysis was performed to demonstrate MRS Score on admission was a diagnostic biomarker for recurrence of cerebral infarction in patients with non-hemorrhagic cerebral infarction (AUC = 0.708). Utilizing univariate and multivariate analysis, only hypertension history was the risk factors between hemorrhagic cerebral infarction patients with first admission or the cerebral infarction recurrence. Conclusion In conclusion, age, hypertension history, LDL and MRS Score on admission were the risk factors between cerebral infarction patients with first admission or the cerebral infarction recurrence.
Collapse
Affiliation(s)
- Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300000, People’s Republic of China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300000, People’s Republic of China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300000, People’s Republic of China
| | - Xueqing Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300000, People’s Republic of China
| | - Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300000, People’s Republic of China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300000, People’s Republic of China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300000, People’s Republic of China
| |
Collapse
|
15
|
Gulyaev IA, Sokol MB, Mollaeva MR, Klimenko MA, Yabbarov NG, Chirkina MV, Nikolskaya ED. Polymeric Drug Delivery Systems in Biomedicine. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S233-S262. [PMID: 40164161 DOI: 10.1134/s0006297924603976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Our review examines the key aspects of using polymeric carriers in biomedicine. The section "Polymers for Biomedicine" provides an overview of different types of polymers, their structural features and properties that determine their use as drug delivery vehicles. The section "Polymeric Carriers" characterizes the role of polymeric delivery systems in modern medicine. The main forms of polymeric carriers are described, as well as their key advantages for drug delivery. The section "Preclinical and Clinical Trials of Polymeric Drug Carriers" reviews the examples of clinical and preclinical studies of polymeric forms used for antitumor therapy, therapy for bacterial and infectious diseases. The final section "Targeted Drug Delivery Systems" is devoted to the discussion of approaches, as well as ligands that provide targeted drug delivery using polymeric carriers. We have paid special attention to modern approaches for increasing the efficacy of antibacterial therapy using vector molecules.
Collapse
Affiliation(s)
- Ivan A Gulyaev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim A Klimenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
16
|
Anwar S, Lin PCP, Pacheco L, Imai K, Tan Z, Song Z, Wakamatsu Y, Minamiya Y, Cheng J, Ko C, Inoue M. Decreased lymph node estrogen levels cause nonremitting progressive experimental autoimmune encephalomyelitis disease. PNAS NEXUS 2025; 4:pgaf010. [PMID: 39871825 PMCID: PMC11770340 DOI: 10.1093/pnasnexus/pgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Estrogen, a steroid hormone synthesized by both gonadal and nongonadal tissues, plays a pivotal role in modulating immune responses, including reducing relapse rates in relapsing-remitting multiple sclerosis (MS). This study explored the expression of aromatase, the enzyme responsible for estrogen synthesis, in lymph nodes (LNs) and its potential role in the pathogenesis of MS using a mouse model. We utilized Cyp19-RFP mice where cells that express or have previously expressed the Cyp19 gene (encoding aromatase) are marked by red fluorescent protein (RFP). RFP was detected in the high endothelial venules of all morphologically identifiable LNs, indicating aromatase activity within these tissues. We discovered that LNs actively synthesize 17β-estradiol, but this activity declines with age. Targeted delivery of an aromatase inhibitor specifically to LNs induced an interferon-β-resistant experimental autoimmune encephalomyelitis (EAE) phenotype. This phenotype was accompanied by significant gray matter atrophy in the spinal cord. These findings underscore LNs as crucial sites of de novo 17β-estradiol production, potentially contributing to nonremitting EAE phenotypes. The observed decline in 17β-estradiol likely exacerbates MS pathogenesis in aging mice. Importantly, aromatase expression in human cervical LNs suggests that these sites may similarly contribute to estrogen synthesis in humans, potentially opening new avenues for understanding and treating MS.
Collapse
Affiliation(s)
- Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
- Faculty of Veterinary Medicine, Department of Pathology, Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Lazaro Pacheco
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Zhengzhong Tan
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Ziyuan Song
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Yuki Wakamatsu
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Jianjun Cheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - CheMyong Ko
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
17
|
Sabe H, Takenaka S, Kakunaga S, Tamiya H, Wakamatsu T, Nakai S, Takami H, Yamada Y, Okada S. Prognostic nutrition index as a predictive factor for overall survival in trabectedin-treated advanced soft tissue sarcoma. J Orthop Sci 2025; 30:171-179. [PMID: 38467532 DOI: 10.1016/j.jos.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Trabectedin binds covalently to the DNA minor groove and causes DNA to bend toward the main groove, then trabectedin regulates the transcription of the involved genes in cell proliferation or acts on the mononuclear phagocyte system in tumors, which contributes to its antitumor effects. Several clinical trials confirmed the efficacy of trabectedin for patients with advanced soft tissue sarcoma (STS) although clinically useful biomarkers remained unidentified. This study aimed to identify prognostic factors of trabectedin treatment, especially focusing on the systemic inflammatory, immune response, and nutritional status. METHODS This study included 44 patients with advanced STS treated with trabectedin from January 2018 to August 2022. We evaluated the associations of clinical factors that influence the efficacy of trabectedin treatment with progression-free survival (PFS) and overall survival (OS), focusing on systemic inflammatory, immune response, and nutritional status represented by the absolute lymphocyte count (ALC), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic inflammation response index (SIRI), prognostic nutrition index (PNI), and C-reactive protein (CRP) using the Kaplan-Meier method and the log-rank test. RESULTS ALC, LMR, PNI, NLR, PLR, and SIRI demonstrated no association with PFS. Patients with CRP of ≥0.3 had a significantly shorter PFS than those with CRP of <0.3 (median PFS: 863 vs. 105 days, P = 0.045). PNI of ≥44 (median: 757 days vs. 232 days, P = 0.021) and CRP of <0.3 (median: 877 days vs. 297 days, P = 0.043) were significantly good prognostic factors in terms of OS. CONCLUSIONS The study results indicate pretreatment PNI and CRP levels as prognostic factors for trabectedin treatment in advanced STS.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan.
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hironari Tamiya
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Toru Wakamatsu
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruna Takami
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Yamada
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
18
|
Li KJ, Zhang ZY, Sulayman S, Shu Y, Wang K, Ababaike S, Zeng XY, Zhao ZL. Prognostic value of combined systemic inflammation response index and prognostic nutritional index in colorectal cancer patients. World J Gastrointest Surg 2024; 16:3794-3805. [PMID: 39734462 PMCID: PMC11650238 DOI: 10.4240/wjgs.v16.i12.3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The prognosis of colorectal cancer (CRC) patients is notably influenced by both inflammation and nutritional status. The prognostic nutritional index (PNI) and systemic inflammatory response index (SIRI) have been reported in prognostic studies of various tumors. However, the efficacy of the combination of the two in predicting the prognosis of CRC patients has not been studied. AIM To evaluate the effectiveness of PNI and SIRI in predicting the prognosis of patients with CRC. METHODS We retrospectively gathered data from 470 CRC patients who underwent feasible radical surgery at Xinjiang Cancer Hospital. The optimal cut-off values for SIRI and PNI, along with their predictive power for survival, were determined through area under the receiver operating characteristic curve using time-dependent receiver operating characteristic analysis. The Kaplan-Meier method and log-rank test were applied to assess prognostic impact, and a multifactorial Cox proportional hazards model was employed for analysis. Additionally, a new model, PSIRI, was developed and assessed for its survival prediction capability. RESULTS The optimal cutoff values for PNI and SIRI were determined to be 47.80 and 1.38, respectively. Based on these values, patients were categorized into high PNI and low PNI groups, as well as high SIRI and low SIRI groups. Significant differences in age, T stage, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) subgroups were observed between the PNI groups in the baseline profile. In the SIRI group, notable differences were found in gender, T stage, nerve invasion, intravascular tumor emboli, NLR, MLR, and PLR subgroups. Both low PNI and high SIRI were identified as independent risk factors for poor prognosis in CRC patients. When combined into the PSIRI model, it was shown that patients with a PSIRI ≤ 1 had a higher risk of death compared to those with a PSIRI of 2. CONCLUSION We assessed the impact of PNI and SIRI on the prognostic survival of CRC patients and developed a new model, PSIRI. This model demonstrated superior predictive accuracy, with a concordance index of 0.767.
Collapse
Affiliation(s)
- Ke-Jin Li
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Zi-Yi Zhang
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Subinur Sulayman
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Yin Shu
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Kuan Wang
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Saibihutula Ababaike
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiang-Yue Zeng
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Ze-Liang Zhao
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
19
|
Li Z, Ruan Q, Jiang Y, Wang Q, Yin G, Feng J, Zhang J. Current Status and Perspectives of Novel Radiopharmaceuticals with Heterologous Dual-targeted Functions: 2013-2023. J Med Chem 2024; 67:21644-21670. [PMID: 39648432 DOI: 10.1021/acs.jmedchem.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Radiotracers provide molecular- and cellular-level information in a noninvasive manner and have become important tools for precision medicine. In particular, the successful clinical application of radioligand therapeutic (RLT) has further strengthened the role of nuclear medicine in clinical treatment. The complicated microenvironment of the lesion has rendered traditional single-targeted radiopharmaceuticals incapable of fully meeting the requirements. The design and development of dual-targeted and multitargeted radiopharmaceuticals have rapidly emerged. In recent years, significant progress has been made in the development of heterologous dual-targeted radiopharmaceuticals. This perspective aims to provide a comprehensive overview of the recent progress in these heterologous dual-targeted radiopharmaceuticals, with a special focus on the design of ligand structures, pharmacological properties, and preclinical and clinical evaluation. Furthermore, future directions are discussed from this perspective.
Collapse
Affiliation(s)
- Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
20
|
Xu L, Zhou XY, Ju WT, Ge YD, Xing MY, Wang X. Effect of the presence of berberine/curcumin on the binding of limonin to human serum albumin and antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124929. [PMID: 39116592 DOI: 10.1016/j.saa.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China
| | - Xin-Yi Zhou
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ying-Di Ge
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Mei-Yi Xing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
21
|
Hacker RM, Grimard DM, Morgan KA, Saleh E, Wrublik MM, Meiss CJ, Kant CC, Jones MA, Brennessel WW, Webb MI. Ru(II)-arene azole complexes as anti-amyloid-β agents. Dalton Trans 2024; 53:18845-18855. [PMID: 39093049 DOI: 10.1039/d4dt01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
With the recent clinical success of anti-amyloid-β (Aβ) monoclonal antibodies, there is a renewed interest in agents which target the Aβ peptide of Alzheimer's disease (AD). Metal complexes are particularly well-suited for this development, given their structural versatility and ability to form stabile interactions with soluble Aβ. In this report, a small series of ruthenium-arene complexes were evaluated for their respective ability to modulate both the aggregation and cytotoxicity of Aβ. First, the stability of the complexes was evaluated in a variety of aqueous media where the complexes demonstrated exceptional stability. Next, the ability to coordinate and modulate the Aβ peptide was evaluated using several spectroscopic methods, including thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the complex RuBO consistently gave the greatest inhibitory action towards Aβ aggregation, which correlated with its ability to coordinate to Aβ in solution. Furthermore, RuBO also had the lowest affinity for serum albumin, which is a key consideration for a neurotherapeutic, as this protein does not cross the blood brain barrier. Lastly, RuBO also displayed promising neuroprotective properties, as it had the greatest inhibition of Aβ-inducted cytotoxicity.
Collapse
Affiliation(s)
- Ryan M Hacker
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Daniela M Grimard
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Katie A Morgan
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Eaman Saleh
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Morgan M Wrublik
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Cade J Meiss
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Caitlyn C Kant
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | - Michael I Webb
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| |
Collapse
|
22
|
Kaumbekova S, Sugita M, Sakaguchi N, Takahashi Y, Sadakane A, Umezawa M. Effect of Acetonitrile on the Conformation of Bovine Serum Albumin. ACS OMEGA 2024; 9:47680-47689. [PMID: 39651098 PMCID: PMC11618402 DOI: 10.1021/acsomega.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024]
Abstract
The use of organic solvents in drug delivery systems (DDSs) either to produce albumin nanoparticles or to manipulate the binding of target molecules to albumin, a promising nanocarrier material, presents challenges due to the conformational changes induced in the protein. In this study, we investigated the alterations in the conformation of bovine serum albumin (BSA) caused by acetonitrile (ACN) in aqueous solution by using a combination of spectroscopic analysis and molecular dynamics (MD) simulations. Ultraviolet (UV) absorption, fluorescence, and infrared (IR) absorption spectroscopy were used to analyze the BSA conformation in the solutions containing 0-60 vol % ACN. Additionally, MD simulations were conducted to elucidate the interactions between BSA and solvent components, focusing on the structural changes in the hydrophobic pocket with Trp residues of the albumin. Increasing the ACN concentration leads to significant changes in the BSA conformation, as evidenced by shifts in UV fluorescence wavelength, decreased intensity, and alterations in IR absorption bands. Furthermore, the formation of protein aggregates was observed at high ACN concentration (30 vol % ACN), shown by increased hydrodynamic diameter distribution. MD simulations further demonstrate that the presence of ACN molecules near the hydrophobic pocket with the Trp-213 residue increases the fluctuations in the positions of amino acids observed near the hydrophobic pocket with Trp-213. Moreover, the intrusion of water molecules into the hydrophobic pocket under 60% ACN conditions with highly decreased solvent polarity was correlated with the changes in the BSA secondary structure. These findings enhance our understanding of how solvent polarity affects the albumin conformation, which is crucial for optimizing albumin-based DDS applications.
Collapse
Affiliation(s)
- Samal Kaumbekova
- Department
of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masatake Sugita
- Department
of Computer Science, School of Computing, Institute of Science Tokyo, Tokyo 152-8552, Japan
- Middle Molecule
IT-based Drug Discovery Laboratory (MIDL), Institute of Science Tokyo, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naoya Sakaguchi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yuta Takahashi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Akira Sadakane
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masakazu Umezawa
- Department
of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
23
|
Tripathi D, Sakthivel N, Mohanty AK, Kumar MS, Kumar U, Manimaran B. Cytotoxic potential of novel selenolato-bridged manganese(I)-based CORM and its molecular interaction with human serum albumin and DNA through spectroscopic and in silico docking studies. Int J Biol Macromol 2024; 282:137191. [PMID: 39489249 DOI: 10.1016/j.ijbiomac.2024.137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The prevalence of cancer is increasing steadily over the past few decades due to social and environmental factors. Several drugs and medications have also been reported, but with inevitable side effects. Herein comes the urgent need for the development of precision medicine, which increases the efficiency of the drug on the target tissue and minimizes systemic toxicity and non-specificity. One of the several approaches developed includes the formulation of smart or trigger-specific drugs for spatiotemporal delivery. In this view, an arena of carbon monoxide-releasing molecules (CORMs) that could be rendered trigger-specific using labile ligands has been developed. In the present investigation, one such novel, manganese based CORM (Mn-CORM) was synthesized and analysed for its selective cytotoxic potential. The Mn-CORM exerted a broad-spectrum cytotoxicity against cancer cells such as PAN C1 (pancreatic cancer), PC 3 (prostate cancer) and HT 29 (colon cancer). Present study further investigated the binding potential of Mn-CORM for human serum albumin (HSA), the major transporter of anticancer drugs and DNA using a multi-spectroscopic (UV-VIS absorption, quenching analysis, time resolved fluorescence spectroscopy, circular dichroism spectroscopy) and molecular docking techniques. The analysis of thermodynamic parameters ΔS0and ΔH0 showed that the binding of Mn-CORM to HSA was spontaneous and dominated by Van der Waals forces and hydrogen bonding. The binding potential of Mn-CORM for CT DNA was also investigated using spectroscopic studies, dye displacement assay, circular dichroism spectroscopy, thermal denaturation and DNA cleavage studies. Results demonstrated a good binding potential of Mn-CORM for CT DNA. The probable mode of binding of Mn-CORM and CT DNA was concluded to be a partial intercalation. All these experimental and computational results confirmed that the novel Mn-CORM used in the present study can be a promising anticancer agent.
Collapse
Affiliation(s)
- Diksha Tripathi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| | - Natarajan Sakthivel
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| | - Amaresh Kumar Mohanty
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Muthuvel Suresh Kumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Udit Kumar
- Department of Chemistry, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| |
Collapse
|
24
|
Wang J, Ye D, Li S, Lu X, Chi Y, Tang C, Zhou X, Chen M, Zheng Y, Ge J, Zou Q. Generation of human induced pluripotent stem cells carrying albumin-sfGFP reporter. Stem Cell Res 2024; 81:103543. [PMID: 39208640 DOI: 10.1016/j.scr.2024.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/18/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Current methodologies for hepatocyte induction from human induced pluripotent stem cells (hiPSCs) have limited efficacy due to lack of a functional hepatocyte reporter. To address this, we developed an endogenous albumin (ALB)-sfGFP reporter system in hiPSCs using homologous directed recombination (HDR)-mediated knock-in. The hiPSCs maintained the characteristic morphology, pluripotency, and normal karyotype while demonstrating successful differentiation into all three germ layers both in vitro and in vivo. Co-expression of EGFP and ALB was observed in the derived hepatocyte-like cells (HLCs). This reporter system holds promise for functional hepatocyte induction.
Collapse
Affiliation(s)
- Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Di Ye
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Shuangpeng Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Xuan Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yunwen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Jianyun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| |
Collapse
|
25
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
26
|
Liu Q, Miao H, Shi C, Hu P, An S. Association between the lowest level of serum albumin during hospitalization and adverse outcomes in older adults with COVID-19. Medicine (Baltimore) 2024; 103:e40734. [PMID: 39612427 PMCID: PMC11608705 DOI: 10.1097/md.0000000000040734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Abstract
Serum albumin on admission has been investigated among inpatients with COVID-19. However, studies on the lowest level of serum albumin during hospitalization and adverse outcomes are limited. This research aimed to explore association between them in older adults with COVID-19. A retrospective study was conducted with 300 patients aged 60 or older with first confirmed COVID-19 from January to February 2023. An adverse outcome was defined as development of acute respiratory failure, shock, or death. Data on demographics, comorbidities, laboratory parameters, the initial phase of COVID-19, coinfection, sepsis, receipt of antiviral treatment and outcomes were gathered from the electronic medical records. The association between the lowest level of serum albumin and adverse outcomes was analyzed using univariate and multivariate regression models, along with generalized additive models. After adjusting potential confounders, nonlinear relationship with an inflection point of 29.1 g/L was detected between the lowest level of serum albumin and adverse outcomes in the elderly. The effect sizes and the confidence intervals on the left and right sides of the inflection point were 0.667 (0.520, 0.856) and 1.171 (0.875, 1.568), respectively. This demonstrated that the lowest level of serum albumin was negatively correlated with adverse outcomes when albumin was <29.1 g/L. A rise of 1 unit in the lowest level of albumin equated to a 33.3% decrease in the risk of adverse outcomes. The correlation between the lowest level of serum albumin and adverse outcomes of COVID-19 is a nonlinear. this study indicates that serum albumin levels should be sustained above the critical inflection point identified to reduce the risk of adverse outcomes.
Collapse
Affiliation(s)
- Qiaoli Liu
- Department of Infectious Diseases, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Haifeng Miao
- Department of Infectious Diseases, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Chunwei Shi
- Department of Infectious Diseases, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Piao Hu
- Department of Infectious Diseases, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Suhong An
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Huang B, Zhang H, Liu J, Gu J, Chen M, Kuang L, Li X, Li J. The characteristics of patients with multiple myeloma surviving over 10 years. Front Oncol 2024; 14:1490630. [PMID: 39640278 PMCID: PMC11617579 DOI: 10.3389/fonc.2024.1490630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Objective To explore the characteristics of patients with multiple myeloma (MM) who have achieved long-term survival of over 10 years in the context where novel agents and autologous stem cell transplantation (ASCT) serve as the primary therapeutic modalities. Methods A retrospective analysis was conducted on 168 MM patients diagnosed and treated in our institution from January 2004 to January 2014. 44 patients with a survival period exceeding 10 years were categorized into the long-term survival group, while 124 patients with a survival period of less than 10 years were categorized into the non-long-term survival group. Results Being younger than 57 years old (OR 3.634, 95%CI 1.302-10.143), having a neutrophil count of at least 3.66 * 109/L (OR 3.122, 95% CI 1.093-8.918), absence of high-risk genetic abnormalities (OR 7.146, 95%CI 1.066-47.904), and receiving frontline ASCT (OR 4.225, 95%CI 1.000-17.841) were positively associated with a survival period exceeding 10 years in patients with MM. Achieving sustained minimal residual disease (MRD) negativity for at least 24 months is associated with long-term survival regardless of the presence of high-risk cytogenetic abnormalities. Conclusion Being younger, having a neutrophil count above 3.66 * 109/L, the absence of high-risk cytogenetic abnormalities, and receiving frontline ASCT are independent protective factors for transplant-eligible MM patients to survive more than 10 years. Achieving maintained MRD negativity status for over 24 months might be associated with long-term survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Gunjkar S, Gupta U, Nair R, Paul P, Aalhate M, Mahajan S, Maji I, Chourasia MK, Guru SK, Singh PK. The Neoteric Paradigm of Biomolecule-Functionalized Albumin-Based Targeted Cancer Therapeutics. AAPS PharmSciTech 2024; 25:265. [PMID: 39500822 DOI: 10.1208/s12249-024-02977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Albumin is a nature-derived, versatile protein carrier, that has been explored extensively by researchers for anticancer drug delivery due to its role in enhancing drug stability, solubility, circulation time, targeting capabilities, and overall therapeutic efficacy. Albumin nanoparticles possess inherent biocompatibility, biodegradability, and passive tumor-targeting ability due to the enhanced permeability and retention effect. However, non-specific accumulation of cytotoxic agents in healthy tissues remains a challenge. In this paper, the functionalization of albumin nanoparticles using various biomolecules including antibodies, nucleic acids, proteins and peptides, vitamins, chondroitin sulfate, hyaluronic acid, and lactobionic acid have been discussed which enables specific recognition and binding to cancer cells. Furthermore, we highlight the supremacy of such a targeted approach in tumor-specific drug delivery, minimization of off-target effects, potential improvement in therapeutic efficacy, cellular internalization, reduced side effects, and better clinical outcomes. This review centers on how they have revolutionized the field of biomedical research and tuned into an excellent targeted approach. In conclusion, this review highlights in detail the role of albumin as a nanocarrier for tumor-targeted delivery using biomolecules as ligands.
Collapse
Affiliation(s)
- Swati Gunjkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
29
|
Yildiz M. Computational Analysis of Interactions Between Drugs and Human Serum Albumin. J Mol Recognit 2024; 37:e3105. [PMID: 39305213 DOI: 10.1002/jmr.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/16/2024]
Abstract
Drug molecules exist as complexed with serum proteins such as human serum albumin (HSA) and/or unbound free form in the blood circulation. Drugs can be effective only when they are free. Thus, it is important to understand aspects that are important for interaction between drugs and interacting proteins. In this study, interactions among 2990 FDA approved drugs and HSA were computational analyzed to unravel principles that are critical for drug-HSA interactions. Docking results showed that drugs have higher affinity toward cavity-1 (C1) than cavity-2 (C2). A total of 1131 drug molecules have docking score greater than 60 while 768 molecules have docking score greater than 60 when they are docked in C2. In addition, three solvent channels have potential to direct solvent to C1 cavity while C2 does not have any effective channel. The post MD analyses demonstrated that drugs are making polar interactions with basic amino acids in the binding cavities. Verbscoside and ceftazidime both have stable low RMSD values throughout MD simulation with 2 Å on average in C1 cavity. The ligand RMSD shows less stability for verbscoside, which is around 4 Å when it is in complex with HSA in C1. The individual contribution of the residues K192, K196, R215, and R254 to ceftazidime are -1.92 ± 0.18, -3.09 ± 0.09, -2.17 ± 0.17, and - 2.32 ± 0.098, respectively. These residues contribute the binding energy of the verbscoside by -6.06 ± 0.08, -2.10 ± 0.06, and - 1.57 ± 0.03 kcal/mol individually in C1 cavity. C2 is making polar interactions with drug via R469, K472, and K488 residues and their contribution to the two drugs are -3.13 ± 0.21 kcal/mol for R469, -1.94 ± 0.18 kcal/mol for K472, and -1.96 ± 0.11 kcal/mol for K488 to total binding energy of ceftazidime. The binding energy of verbscoside is 57.17 ± 7.00 kcal/mol and Arg-407 has the highest contribution this bind energy individually with -4.29 ± 0.12 kcal/mol. Drugs with hydrogen bond donor/acceptor chemical adducts such as verbscoside involve higher hydrogen bond formation in C1 pocket. Ceftazidime makes interaction with HSA toward hydrophobic residues, L384, L404, L487, and L488 in the C2 cavity.
Collapse
Affiliation(s)
- Muslum Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
30
|
Aslan C, Eraslan G. Effect of baicalin and baicalin-bovine serum albumin nanoparticle against bendiocarb exposure in rats. Toxicol Res (Camb) 2024; 13:tfae134. [PMID: 39233847 PMCID: PMC11369930 DOI: 10.1093/toxres/tfae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/17/2024] [Indexed: 09/06/2024] Open
Abstract
Background The aim of the study was to investigate the effect of baicalin and baicalin-bovine serum albumin nanoparticles against bendiocarb exposure in rats. Methods Eighty male Wistar Albino rats aged 4-6 weeks were used. Corn oil (vehicle) alone was administered to the control group. To other groups, BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 20 mg/kg.bw baicalin, baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 4 mg/kg.bw bendiocarb, combination of 4 mg/kg.bw bendiocarb and 20 mg/kg.bw baicalin, combination of 4 mg/kg.bw bendiocarb and BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw and combination of 4 mg/kg.bw bendiocarb and baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw was administered to animals by oral gavage with vehicle for 21 days, after which organs (liver, kidney, brain, testes, heart and lung) and blood samples were collected. Blood/tissue oxidative stress (MDA, NO, GSH, SOD, CAT, GSH-Px, GR, GST, G6PD), serum biochemical (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, total protein, albumin, LDH, AST, ALT, ALP and pseudocholinesterase) and liver and kidney apoptotic/anti-apoptotic (caspase 3, 9, p53, Bcl-2 and Bax) parameters were evaluated. Body weights/organ weights and plasma/liver bendiocarb analyses were obtained. Conclusion While bendiocarb administered alone caused oxidative stress/tissue damage, baicalin and baicalin-BSA nanoparticle showed a mitigating effect. However, this effect was more pronounced in the baicalin-BSA nanoparticle group. BSA-nanoparticle alone did not have a significant effect in reversing the adverse effect caused by bendiocarb.
Collapse
Affiliation(s)
- Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, 50700, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
31
|
Liu S, Li Y, Li Z, Wu S, Harrold JM, Shah DK. Translational two-pore PBPK model to characterize whole-body disposition of different-size endogenous and exogenous proteins. J Pharmacokinet Pharmacodyn 2024; 51:449-476. [PMID: 38691205 DOI: 10.1007/s10928-024-09922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - John M Harrold
- Pharmacometrics & Systems Pharmacology, Pfizer Inc, South San Francisco, CA, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
32
|
Pang HL, Zhang LT, Zhang YT, Ren Q. Separation and purification of bovine nasal cartilage-derived chondroitin sulfate and evaluation of its binding to bovine serum albumin. Int J Biol Macromol 2024; 277:134501. [PMID: 39111483 DOI: 10.1016/j.ijbiomac.2024.134501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
This study employs an optimized and environmentally friendly method to extract and purify chondroitin sulfate (CS) from bovine nasal cartilage using enzymatic hydrolysis, ethanol precipitation, and DEAE Sepharose Fast Flow column chromatography. The extracted CS, representing 44.67 % ± 0.0016 of the cartilage, has a molecular weight of 7.62 kDa. Characterization through UV, FT-IR, NMR spectroscopy, and 2-aminoacridone derivatization HPLC revealed a high content of sulfated disaccharides, particularly ΔDi4S (73.59 %) and ΔDi6S (20.61 %). Interaction studies with bovine serum albumin (BSA) using fluorescence spectroscopy and molecular docking confirmed a high-affinity, static quenching interaction with a single binding site, primarily mediated by van der Waals forces and hydrogen bonding. The interaction did not significantly alter the polarity or hydrophobicity of BSA aromatic amino acids. These findings provide a strong foundation for exploring the application of CS in tissue engineering and drug delivery systems, leveraging its unique interaction with BSA for targeted delivery and enhanced efficacy.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Li-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
33
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
34
|
Wang Y, Sun Y, Shen Z, Wang C, Qian J, Mao Q, Wang Y, Song W, Kong Y, Zhan C, Chen Z, Dimitrov DS, Yang Z, Jiang S, Wu F, Lu L, Ying T, Sun L, Wu Y. Fully human single-domain antibody targeting a highly conserved cryptic epitope on the Nipah virus G protein. Nat Commun 2024; 15:6892. [PMID: 39134522 PMCID: PMC11319437 DOI: 10.1038/s41467-024-51066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Nipah virus infection, one of the top priority diseases recognized by the World Health Organization, underscores the urgent need to develop effective countermeasures against potential epidemics and pandemics. Here, we identify a fully human single-domain antibody that targets a highly conserved cryptic epitope situated at the dimeric interface of the Nipah virus G protein (receptor binding protein, RBP), as elucidated through structures by high-resolution cryo-electron microscopy (cryo-EM). This unique binding mode disrupts the tetramerization of the G protein, consequently obstructing the activation of the F protein and inhibiting viral membrane fusion. Furthermore, our investigations reveal that this compact antibody displays enhanced permeability across the blood-brain barrier (BBB) and demonstrates superior efficacy in eliminating pseudovirus within the brain in a murine model of Nipah virus infection, particularly compared to the well-characterized antibody m102.4 in an IgG1 format. Consequently, this single-domain antibody holds promise as a therapeutic candidate to prevent Nipah virus infections and has potential implications for vaccine development.
Collapse
Affiliation(s)
- Yulu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yifang Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhaoling Shen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery (MOE), School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiyu Mao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yajie Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenping Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu Kong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Zhenlin Yang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China.
| |
Collapse
|
35
|
Cao Y, Xu R, Liang Y, Tan J, Guo X, Fang J, Wang S, Xu L. Nature-inspired protein mineralization strategies for nanoparticle construction: advancing effective cancer therapy. NANOSCALE 2024; 16:13718-13754. [PMID: 38954406 DOI: 10.1039/d4nr01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaotang Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering and Zhejiang Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
36
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
37
|
Du J, Shi LL, Jiang WW, Liu XA, Wu XH, Huang XX, Huo MW, Shi LZ, Dong J, Jiang X, Huang R, Cao QR, Zhang W. Crafting Docetaxel-Loaded Albumin Nanoparticles Through a Novel Thermal-Driven Self-Assembly/Microfluidic Combination Technology: Formulation, Process Optimization, Stability, and Bioavailability. Int J Nanomedicine 2024; 19:5071-5094. [PMID: 38846644 PMCID: PMC11155381 DOI: 10.2147/ijn.s457482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Wei-Wei Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jingjian Dong
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Xiaohong Jiang
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Renyu Huang
- College of Social Science, Soochow University, Institute of Culture and Tourism Development, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
38
|
Ximenes VF, Yoguim MI, de Souza AR, Morgon NH. Circular dichroism spectrum of (R)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol in albumin: Alterations caused by complexation-Experimental and in silico investigation. Chirality 2024; 36:e23675. [PMID: 38699899 DOI: 10.1002/chir.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
This study describes the interaction of human serum albumin (HSA) with the binol derivative (R)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol (R-BrB), which has its optical activity based on the prohibitive energetic barrier for conversion into the enantiomer (S)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol (S-BrB). The objective was to assess the ability of HSA to differentiate axial enantiomers based on their binding efficiency and their impact on the CD spectra. We discovered that both enantiomers were effective ligands, and the CD signal disappeared when equimolar amounts of R-BrB and S-BrB were simultaneously added, indicating no preference for either enantiomer. The complexation resulted in a significant signal increase at 250 nm and a bathochromic effect at 370 nm. Molecular docking simulations were performed, and the lower energy pose of R-BrB was selected for DFT calculations. The theoretical CD spectra of free and complexed R-BrB were obtained and showed alterations corroborating the experimental results. By comparing the difference spectrum (HSA:R-BrB minus HSA) with the spectrum of free RBrB in water or ethyl alcohol, we concluded that the CD signal intensification was due to the increased solubilization of R-BrB upon binding to HSA.
Collapse
Affiliation(s)
- Valdecir Farias Ximenes
- Department Chemistry, Faculty of Science, São Paulo State University (UNESP), Bauru, SP, Brazil
| | - Maurício Ikeda Yoguim
- Department Chemistry, Faculty of Science, São Paulo State University (UNESP), Bauru, SP, Brazil
| | | | - Nelson Henrique Morgon
- Department of Physical Chemistry, Institute of Chemistry Campinas State University (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
39
|
Li J, Wen Q, Dai J, Wang B, Lu Y, Wu Z, Fan Y, Zeng F, Chen Y, Zhang Y, Chen R, Fu S. An oral bioactive chitosan-decorated doxorubicin nanoparticles/bacteria bioconjugates enhance chemotherapy efficacy in an in-situ breast cancer model. Int J Biol Macromol 2024; 267:131428. [PMID: 38583834 DOI: 10.1016/j.ijbiomac.2024.131428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Breast cancer is the second leading cause of cancer-related deaths among women worldwide. Despite significant advancements in chemotherapy, its effectiveness is often limited by poor drug distribution and systemic toxicity caused by the weak targeting ability of conventional therapeutic agents. The hypoxic tumor microenvironment (TME) also plays a vital role in treatment outcomes. Oral anticancer therapeutic agents have gained popularity and show promising results due to their ease of repeated administration. This study introduces autopilot biohybrids (Bif@BDC-NPs) for the effective delivery of doxorubicin (DOX) to the tumor site. This hybrid combines albumin-encapsulated DOX nanoparticles (BD-NPs) coated with chitosan (CS) for breast cancer chemotherapy, along with anaerobic Bifidobacterium infantis (B. infantis, Bif) serving as self-propelled motors. Due to Bif's specific anaerobic properties, Bif@BDC-NPs precisely anchor hypoxic regions of tumor tissue and significantly increase drug accumulation at the tumor site, thereby promoting tumor cell death. In an in-situ mouse breast cancer model, Bif@BDC-NPs achieved 94 % tumor inhibition, significantly prolonging the median survival of mice to 62 days, and reducing the toxic side effects of DOX. Therefore, the new bacteria-driven oral drug delivery system, Bif@BDC-NPs, overcomes multiple physiological barriers and holds great potential for the precise treatment of solid tumors.
Collapse
Affiliation(s)
- Jianmei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Qian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jie Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Biqiong Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yun Lu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zhouxue Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China
| | - Yan Zhang
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| | - Renjin Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
40
|
Li Q, Kong Y, Zhong Y, Huang A, Ying T, Wu Y. Half-life extension of single-domain antibody-drug conjugates by albumin binding moiety enhances antitumor efficacy. MedComm (Beijing) 2024; 5:e557. [PMID: 38737471 PMCID: PMC11082534 DOI: 10.1002/mco2.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
Single-domain antibody-drug conjugates (sdADCs) have been proven to have deeper solid tumor penetration and intratumor accumulation capabilities due to their smaller size compared with traditional IgG format ADCs. However, one of the key challenges for improving clinical outcomes of sdADCs is their abbreviated in vivo half-life. In this study, we innovatively fused an antihuman serum albumin (αHSA) nanobody to a sdADCs targeting oncofetal antigen 5T4, conferring serum albumin binding to enhance the pharmacokinetic profiles of sdADCs. The fusion protein was conjugated with monomethyl auristatin E (MMAE) at s224c site mutation. The conjugate exhibited potent cytotoxicity against various tumor cells. Compared with the nonalbumin-binding counterparts, the conjugate exhibited a 10-fold extended half-life in wild-type mice and fivefold prolonged serum half-life in BxPC-3 xenograft tumor models as well as enhanced tumor accumulation and retention in mice. Consequently, n501-αHSA-MMAE showed potent antitumor effects, which were comparable to n501-MMAE in pancreatic cancer BxPC-3 xenograft tumor models; however, in human ovarian teratoma PA-1 xenograft tumor models, n501-αHSA-MMAE significantly improved antitumor efficacy. Moreover, the conjugate showed mitigated hepatotoxicity. In summary, our results suggested that fusion to albumin-binding moiety as a viable strategy can enhance the therapeutic potential of sdADCs through optimized pharmacokinetics.
Collapse
Affiliation(s)
- Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yu Kong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yuxuan Zhong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Ailing Huang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
41
|
Ingrasciotta Y, Vitturi G, Trifirò G. Pharmacological and Benefit-Risk Profile of Once-Weekly Basal Insulin Administration (Icodec): Addressing Patients' Unmet Needs and Exploring Future Applications. J Clin Med 2024; 13:2113. [PMID: 38610878 PMCID: PMC11012332 DOI: 10.3390/jcm13072113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease affecting over 500 million people worldwide, which leads to severe complications and to millions of deaths yearly. When therapeutic goals are not reached with diet, physical activity, or non-insulin drugs, starting/adding insulin treatment is recommended by international guidelines. A novel recombinant insulin is icodec, a once-weekly insulin that successfully completed phase III trials and that has recently obtained the marketing authorization approval from the European Medicines Agency. This narrative review aims to assess icodec pharmacological and clinical features concerning evidence on benefit-risk profile, as compared to other basal insulins, addressing the potential impact on patients' unmet needs. Icodec is a full agonist, recombinant human insulin analogue characterized by an ultra-long half-life (196 h), enabling its use in once-weekly administration. Phase III randomized clinical trials involving more than 4000 diabetic patients, mostly type 2 DM, documented non-inferiority of icodec, as compared to currently available basal insulins, in terms of estimated mean reduction of glycated hemoglobin levels; a superiority of icodec, compared to control, was confirmed in insulin-naïve patients (ONWARDS 1, 3, and 5), and in patients previously treated with basal insulin (ONWARDS 2). Icodec safety profile was comparable to the currently available basal insulins. Once-weekly icodec has the potential to improve patients' adherence, thus positively influencing patients' treatment satisfaction as well as quality of life, especially in type 2 DM insulin-naïve patients. An improved adherence might positively influence glycemic target achievement, reduce overall healthcare costs and overcome some of the unmet patients' needs. Icodec has the potential to emerge as a landmark achievement in the evolution of insulin therapy, with a positive impact also for the National Health Services and the whole society.
Collapse
Affiliation(s)
- Ylenia Ingrasciotta
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (Y.I.); (G.V.)
- Academic Spin-off “Innovative Solutions for Medical Prediction and Big Data Integration in Real World Setting Srl—INSPIRE SRL”, University of Messina, 98125 Messina, Italy
| | - Giacomo Vitturi
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (Y.I.); (G.V.)
| | - Gianluca Trifirò
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (Y.I.); (G.V.)
- Academic Spin-off “Innovative Solutions for Medical Prediction and Big Data Integration in Real World Setting Srl—INSPIRE SRL”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
42
|
Mitin D, Bullinger F, Dobrynin S, Engelmann J, Scheffler K, Kolokolov M, Krumkacheva O, Buckenmaier K, Kirilyuk I, Chubarov A. Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI. Int J Mol Sci 2024; 25:4041. [PMID: 38612851 PMCID: PMC11012161 DOI: 10.3390/ijms25074041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential "metal-free" organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40-50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21-27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Collapse
Affiliation(s)
- Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Friedemann Bullinger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Sergey Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Mikhail Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Igor Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
43
|
Jiang J, Liu H, Ni W, Zhang M, Gu F, Pei J, Wang Y, Tian Y. Variable Control and Its Influence Before Urine Sample Analysis in a Field Environment. Biopreserv Biobank 2024; 22:146-156. [PMID: 37590468 DOI: 10.1089/bio.2022.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Background and Objectives: The aim of the study was to store urine samples at different temperatures and humidity levels and analyze common biochemical test results and point-of-care testing (POCT) indicators according to different storage times and evaluate whether the samples should be centrifuged to study the best storage conditions for urine samples. Methods: Random midstream urine samples (100 mL) were collected from 10 healthy individuals. A portion of the samples was centrifuged. The remaining samples were not centrifuged and were stored under different temperature and humidity conditions for different periods. We measured urine indicators ([Na+], [K+], [Cl-], gamma-glutamyl transpeptidase [GGT], urea, and creatinine [Cr]) at 2, 4, 24, and 72 hours and 7 and 55 days, and we used POCT to measure myoglobin (Mb) and microalbumin (mAlb) concentrations. Results: Centrifugation of urine samples decreased the measured GGT and increased the measured Mb. In urine samples stored at 4°C and room temperature, electrolyte concentrations were scarcely affected by storage time. After storage at 50°C for 24 hours, the measured [Na+] and [Cl-] levels changed. Metabolites (urea and Cr) underwent no obvious change across temperatures. GGT did not change during long-term storage at 4°C. The mAlb level changed significantly only after storage at 4°C. When stored at 4°C, Mb changed little within 4 hours. Under humid conditions, [Na+] and [Cl-] increased significantly after 24 hours, and urea decreased significantly after 7 days of storage. Under dry storage conditions, urinary Cr and GGT decreased, and under humid conditions, these concentrations increased. At high humidity, mAlb increased significantly after 72 hours. Conclusions: Electrolyte and amino acid metabolite concentrations were less affected by storage time at 4°C and room temperature than at other temperatures. Some proteins are sensitive to environmental changes; samples collected for quantification of these proteins can be stored briefly at 4°C after centrifugation. Normal humidity conditions meet most physiological testing requirements.
Collapse
Affiliation(s)
- Jingjing Jiang
- Clinical and Biological Sample Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanxuan Liu
- Beijing Jinghua Anliang Technology Co., Ltd., Beijing, China
| | - Wenfeng Ni
- Clinical and Biological Sample Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Manli Zhang
- Technical Research Center for the Prevention and Control of Birth Defects, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Fangyan Gu
- Clinical and Biological Sample Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jinlian Pei
- Clinical and Biological Sample Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yan Wang
- Clinical and Biological Sample Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yaping Tian
- Technical Research Center for the Prevention and Control of Birth Defects, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Tang Q, Li X, Sun CR. Predictive value of serum albumin levels on cancer survival: a prospective cohort study. Front Oncol 2024; 14:1323192. [PMID: 38500655 PMCID: PMC10944876 DOI: 10.3389/fonc.2024.1323192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Serum albumin levels and cancer mortality are closely related, yet large-sample studies encompassing a broad spectrum of cancer types are lacking. Methods This study encompassed patients diagnosed with cancer across the continuous 10 cycles of NHANES surveys from 1999 to 2018. The study population was stratified into two groups based on median albumin levels (≤ 4.2g/dL and > 4.2 g/dL) or cancer aggressiveness (well-survived cancers and poorly-survived cancers). Survival rates were estimated using the Kaplan-Meier method. The Cox proportional hazards model was employed to evaluate the association between serum albumin levels and cancer mortality. Restricted cubic spline (RCS) analysis was conducted to assess the nonlinear relationship between serum albumin levels and the risk of cancer mortality. Results Kaplan-Meier curves demonstrated that patients with albumin levels ≤ 4.2 g/dL exhibited lower survival rates compared to those with levels > 4.2 g/dL, irrespective of cancer aggressiveness. Following adjustment for confounders, decreased albumin levels were associated with an elevated risk of cancer mortality across all groups [all cancers, HR (95%CI) = 2.03(1.73, 2.37); well survived cancers, HR (95%CI) = 1.78(1.38, 2.32); and poorly survived cancers, HR (95%CI) = 1.99(1.64, 2.42)]. RCS analyses revealed a stable nonlinear negative association between albumin levels and cancer mortality in all groups, regardless of confounder adjustment. Conclusion Low serum albumin levels predict higher cancer mortality. Furthermore, a nonlinear negative association was observed between serum albumin levels and the risk of cancer mortality.
Collapse
Affiliation(s)
- Quan Tang
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xu Li
- Division of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Rong Sun
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
45
|
Pang HL, Lu H, Liu P, Zhang YT, Zhang LT, Ren Q. A chondroitin sulfate purified from shark cartilage and bovine serum albumin interaction activity. Int J Biol Macromol 2024; 260:129499. [PMID: 38262829 DOI: 10.1016/j.ijbiomac.2024.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Chondroitin sulfate (CS) was extracted and purified from shark cartilage, and its interaction with bovine serum albumin (BSA) were studied. The content of chondroitin sulfate in shark cartilage was 29.97 % using the 1,9-dimethyl-methylene blue method. The molecular weight of CS was determined to be 62.464 kDa by high-performance gel permeation chromatography. UV and FT-IR spectroscopy identified the characteristics of CS and its functional group information. NMR spectroscopy and disaccharide derivatization revealed that CS was predominantly composed of disulfated disaccharides, specifically ΔDi4,6S. Fluorescence quenching experiments indicated that the interaction between CS and BSA exhibited static quenching, with a binding site number of 1. The binding process was primarily mediated by van der Waals forces and hydrogen bonds. Furthermore, synchronous and 3D fluorescence spectroscopy demonstrated that CS had minimal impact on the polarity and hydrophobicity of the microenvironment surrounding Tyr and Trp residues. UV-vis absorption and circular dichroism (CD) spectroscopy demonstrated the altered structure of BSA. The molecular docking analysis revealed that CS formed hydrogen bonds and salt bridges with BSA, predominantly binding to the IIA substructure domain of BSA. Investigating the interaction between CS and BSA holds the potential for enhancing its applications in drug delivery and tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Han Lu
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Peng Liu
- Rizhao Science and Technology Innovation Service Center, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Li-Tao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
46
|
Kuna K, Baddam SR, Kalagara S, Akkiraju PC, Tade RS, Enaganti S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int J Biol Macromol 2024; 262:129434. [PMID: 38232877 DOI: 10.1016/j.ijbiomac.2024.129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The field of cancer therapy is advancing rapidly, placing a crucial emphasis on innovative drug delivery systems. The increasing global impact of cancer highlights the need for creative therapeutic strategies. Natural polymer-based nanotherapeutics have emerged as a captivating avenue in this pursuit, drawing substantial attention due to their inherent attributes. These attributes include biodegradability, biocompatibility, negligible toxicity, extended circulation time, and a wide range of therapeutic payloads. The unique size, shape, and morphological characteristics of these systems facilitate profound tissue penetration, complementing active and passive targeting strategies. Moreover, these nanotherapeutics exploit specific cellular and subcellular trafficking pathways, providing precise control over drug release kinetics. This comprehensive review emphasizes the utilization of naturally occurring polymers such as polysaccharides (e.g., chitosan, hyaluronic acid, alginates, dextran, and cyclodextrin) and protein-based polymers (e.g., ferritin, gelatin, albumin) as the foundation for nanoparticle development. The paper meticulously examines their in vitro characteristics alongside in vivo efficacy, particularly focusing on their pivotal role in ameliorating diverse types of solid tumors within cancer therapy. The amalgamation of material science ingenuity and biological insight has led to the formulation of these nanoparticles, showcasing their potential to reshape the landscape of cancer treatment.
Collapse
Affiliation(s)
- Krishna Kuna
- Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana, India.
| | - Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01655, United States of America
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States of America
| | - Pavan C Akkiraju
- Department of Biotechnology, School of Allied Healthcare Sciences, Malla Reddy University, Hyderabad, India
| | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Sreenivas Enaganti
- Department of Bioinformatics, Averinbiotech Laboratories, Nallakunta, Hyderabad, Telangana, India
| |
Collapse
|
47
|
Wang T, Ding J, Chen Z, Zhang Z, Rong Y, Li G, He C, Chen X. Injectable, Adhesive Albumin Nanoparticle-Incorporated Hydrogel for Sustained Localized Drug Delivery and Efficient Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9868-9879. [PMID: 38349713 DOI: 10.1021/acsami.3c18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Injectable hydrogels are receiving increasing attention as local depots for sustained anticancer drug delivery. However, most current hydrogel-based carriers lack tissue-adhesive ability, a property that is important for the immobilization of drug-loaded systems at tumor sites to increase local drug concentration. In this study, we developed a paclitaxel (PTX)-loaded injectable hydrogel with firm tissue adhesion for localized tumor therapy. PTX-loaded bovine serum albumin (BSA) nanoparticles (PTX@BN) were prepared, and the drug-loaded hydrogel was then fabricated by cross-linking PTX@BN with o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) via a condensation reaction between OPA and the amines in BSA. The hydrogel showed firm adhesion to various organs and tumor tissues ex vivo due to the condensation reaction of unreacted OPA groups and amines in the tissues. The PTX-loaded nanocomposite hydrogels sustained PTX release over 30 days following the Korsmeyer-Peppas model and exhibited notable inhibition activities against mouse C26 colon and 4T1 breast cancer cells in vitro. Following peritumoral injection into mice with C26 or 4T1 tumors, the PTX@BN-loaded hydrogel significantly enhanced the antitumor efficacy and prolonged animal survival time compared to free PTX solutions with low systemic toxicity. Therefore, the adhesive, PTX-loaded nanocomposite hydrogels have the potential for efficient localized tumor therapy.
Collapse
Affiliation(s)
- Tianran Wang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
48
|
Liu C, Liu X, Wei Z, Chang Z, Bai Y, Zeng P, Cao Q, Tie C, Lei Z, Sun P, Liang H, Sun Q, Zhang X. Amorphous Albumin Gadolinium-Based Nanoparticles for Ultrahigh-Resolution Magnetic Resonance Angiography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9702-9712. [PMID: 38363797 PMCID: PMC10911108 DOI: 10.1021/acsami.3c16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Magnetic resonance angiography (MRA) contrast agents are extensively utilized in clinical practice due to their capability of improving the image resolution and sensitivity. However, the clinically approved MRA contrast agents have the disadvantages of a limited acquisition time window and high dose administration for effective imaging. Herein, albumin-coated gadolinium-based nanoparticles (BSA-Gd) were meticulously developed for in vivo ultrahigh-resolution MRA. Compared to Gd-DTPA, BSA-Gd exhibits a significantly higher longitudinal relaxivity (r1 = 76.7 mM-1 s-1), nearly 16-fold greater than that of Gd-DTPA, and an extended blood circulation time (t1/2 = 40 min), enabling a dramatically enhanced high-resolution imaging of microvessels (sub-200 μm) and low dose imaging (about 1/16 that of Gd-DTPA). Furthermore, the clinically significant fine vessels were successfully mapped in large mammals, including a circle of Willis, kidney and liver vascular branches, tumor vessels, and differentiated arteries from veins using dynamic contrast-enhanced MRA BSA-Gd, and have superior imaging capability and biocompatibility, and their clinical applications hold substantial promise.
Collapse
Affiliation(s)
- Chenchen Liu
- Department
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Guangdong
Provincial Key Laboratory of Biomedical Optical Imaging Technology
& Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese
Academy of Science, Shenzhen 518055, China
| | - Xiaoming Liu
- Department
of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zhihao Wei
- Department
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zong Chang
- Guangdong
Provincial Key Laboratory of Biomedical Optical Imaging Technology
& Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese
Academy of Science, Shenzhen 518055, China
| | - Yaowei Bai
- Department
of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pei Zeng
- Department
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changjun Tie
- Paul
C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziqiao Lei
- Department
of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Peng Sun
- Clinical
& Technical Support, Philips Healthcare, Beijing 100600, China
| | - Huageng Liang
- Department
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qinchao Sun
- Guangdong
Provincial Key Laboratory of Biomedical Optical Imaging Technology
& Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese
Academy of Science, Shenzhen 518055, China
| | - Xiaoping Zhang
- Department
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute
of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
49
|
Bernardim B, Conde J, Hakala T, Becher JB, Canzano M, Vasco AV, Knowles TPJ, Cameron J, Bernardes GJL. Cathepsin B Processing Is Required for the In Vivo Efficacy of Albumin-Drug Conjugates. Bioconjug Chem 2024; 35:132-139. [PMID: 38345213 PMCID: PMC10885003 DOI: 10.1021/acs.bioconjchem.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.
Collapse
Affiliation(s)
- Barbara Bernardim
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - João Conde
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tuuli Hakala
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Julie B. Becher
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Mary Canzano
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Aldrin V. Vasco
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Jason Cameron
- Albumedix
Ltd, Mabel Street, Nottingham NG2 3ED, United Kingdom
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
50
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|