1
|
Zhong X, Tai W, Liu ML, Ma S, Shen T, Zou Y, Zhang CL. The Citron homology domain of MAP4Ks improves outcomes of traumatic brain injury. Neural Regen Res 2025; 20:3233-3244. [PMID: 39314140 PMCID: PMC11881717 DOI: 10.4103/nrr.nrr-d-24-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00027/figure1/v/2024-12-20T164640Z/r/image-tiff The mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults. Whether targeting this pathway is beneficial to brain injury remains unclear. In this study, we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis, tauopathy, lesion size, and behavioral deficits. Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain. Mechanistically, the Citron homology domain acted as a dominant-negative mutant, impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway. These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 PMCID: PMC12047516 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Lanto J, Vehlken MMN, Abramenko V, Storch A, Markert F. Hyperoxia shows duration-dependent effects on the lengths of cell cycle phases in fetal cortical neural stem cells. Front Cell Dev Biol 2025; 13:1546131. [PMID: 39936031 PMCID: PMC11811091 DOI: 10.3389/fcell.2025.1546131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Fetal neural stem cells (NSCs) physiologically reside under low-oxygen conditions (1%-5% of tissue pO2), but are often transferred and maintained under atmospheric oxygen levels of 21% pO2 (hyperoxia) for in vitro investigations. These altered oxygen conditions lead to adaptive changes in NSCs which complicate the interpretation of in vitro data. However, the underlying adaption dynamics remain largely enigmatic. Here we investigated short-term hyperoxia effects (5 days in 3% pO2 followed by 2 days in 21% pO2) in comparison to continuous hyperoxia effects (7 days in 21% pO2) and physioxic control (7 days in 3% pO2). We utilized cortical NSCs to analyze the cell cycle phases by flow cytometry and cumulative BrdU incorporation assay. NSCs showed a severe reduction of cell proliferation when cultivated under continuous hyperoxia, but no changes after short-term hyperoxia. Subsequent cell cycle analysis as assessed by flow cytometry revealed a clear shift of NSCs from G0/G1-phase towards S- or G2/M-phase after both continuous and short-term hyperoxia. However, while cell cycle length was dramatically reduced by short-term hyperoxia, it was increased during continuous hyperoxia. Taken together, our results demonstrate the beneficial effect of physioxia for expanding NSCs in vitro and reveal differential effects of short-term hyperoxia compared to continuous hyperoxia.
Collapse
Affiliation(s)
- Jennifer Lanto
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Zhang J, Yang L, Sun Y, Zhang L, Wang Y, Liu M, Li X, Liang Y, Zhao H, Liu Z, Qiu Z, Zhang T, Xie J. Up-regulation of miR-10a-5p expression inhibits the proliferation and differentiation of neural stem cells by targeting Chl1. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1483-1497. [PMID: 38841745 PMCID: PMC11532229 DOI: 10.3724/abbs.2024078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024] Open
Abstract
Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Lihong Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuqing Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Li Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yufei Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ming Liu
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Xiujuan Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Hong Zhao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
5
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
6
|
Lin S, Wang C, Li Z, Qiu X. Distinct H3K27me3 and H3K27ac Modifications in Neural Tube Defects Induced by Benzo[a]pyrene. Brain Sci 2023; 13:brainsci13020334. [PMID: 36831877 PMCID: PMC9954656 DOI: 10.3390/brainsci13020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The pathological mechanisms of neural tube defects (NTDs) are not yet fully understood. Although the dysregulation of histone modification in NTDs is recognized, it remains to be fully elucidated on a genome-wide level. We profiled genome-wide H3K27me3 and H3K27ac occupancy by CUT&Tag in neural tissues from ICR mouse embryos with benzo[a]pyrene (BaP)-induced NTDs (250 mg kg-1) at E9.5. Furthermore, we performed RNA sequencing (RNA-seq) to investigate the regulation of histone modifications on gene expressions. Gene ontology and KEGG analysis were conducted to predict pathways involved in the development of NTDs. Our analysis of histone 3 lysine 27 modification in BaP-NTD neural tissues compared to BaP-nonNTD revealed 6045 differentially trimethylated regions and 3104 acetylated regions throughout the genome, respectively. The functional analysis identified a number of pathways uniquely enriched for BaP-NTD embryos, including known neurodevelopment related pathways such as anterior/posterior pattern specification, ephrin receptor signaling pathway, neuron migration and neuron differentiation. RNA-seq identified 423 differentially expressed genes (DEGs) between BaP-NTD and BaP-nonNTD group. The combination analysis of CUT&Tag and RNA-seq found that 55 DEGs were modified by H3K27me3 and 25 by H3K27ac in BaP-NTD, respectively. In the transcriptional regulatory network, transcriptional factors including Srsf1, Ume6, Zbtb7b, and Cad were predicated to be involved in gene expression regulation. In conclusion, our results provide an overview of histone modifications during neural tube closure and demonstrate a key role of genome-wide alterations in H3K27me3 and H3K27ac in NTDs corresponding with changes in transcription profiles.
Collapse
Affiliation(s)
- Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengrui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiwen Li
- Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, National Health Commission of the China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Women’s Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| |
Collapse
|
7
|
Domingo-Muelas A, Duart-Abadia P, Morante-Redolat JM, Jordán-Pla A, Belenguer G, Fabra-Beser J, Paniagua-Herranz L, Pérez-Villalba A, Álvarez-Varela A, Barriga FM, Gil-Sanz C, Ortega F, Batlle E, Fariñas I. Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis. Nat Commun 2023; 14:373. [PMID: 36690670 PMCID: PMC9871011 DOI: 10.1038/s41467-023-36054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller.
Collapse
Grants
- EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Ministerio de Ciencia e Innovación (MICINN, Spain) - PID2020-119917RB-I00.
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Ministerio de Ciencia e Innovación (MICINN, Spain) - PID2020-117937GB-I00, PID2020-119917RB-I00, PID 2019-109155RB-I00, PID2020-114227RB-I00, RyC-2015-19058, PRE2018-084838. Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED, Spain) - MICINN- CB06/05/0086.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Duart-Abadia
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jose Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Antonio Jordán-Pla
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Germán Belenguer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jaime Fabra-Beser
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Lucía Paniagua-Herranz
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ana Pérez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Francisco M Barriga
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Gil-Sanz
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.
| |
Collapse
|
8
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
9
|
Wang Y, Wen W, Li H, Xu H, Xu M, Ma M, Luo J. Deficiency of mesencephalic astrocyte-derived neurotrophic factor affects neurogenesis in mouse brain. Brain Res Bull 2022; 183:49-56. [PMID: 35227768 PMCID: PMC10014018 DOI: 10.1016/j.brainresbull.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the regulation of neurogenesis in the adult brain remain unclear. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor that has been implicated in various neuropathological processes and endoplasmic reticulum stress. However, the role of MANF in neurogenesis has not been investigated. Using a central nervous system (CNS)-specific Manf knock-out mouse model, we examined the role of MANF in mouse neurogenesis. We demonstrated that MANF deficiency increased BrdU labeling and Ki-67 positive cells in the subgranular zone and subventricular zone. MANF knock-out-induced upregulation of proliferative activity was accompanied by a decrease of cell cycle inhibitors (p15 and p27), an increase of G2/M marker (phospho-histone H3), as well as an increase of neural progenitor markers (Sox2 and NeuroD1) in the brain. In vitro studies using N2A neuroblastoma cells showed that the gain-of-function of MANF inhibited cell cycle progression, whereas the loss-of-function of MANF promoted cell cycle progression. Collectively, our findings indicate MANF deficiency affects cell proliferation and suggest a role of MANF in the neurogenesis of the adult brain.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37372, USA
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa City VA Health Care System, Iowa City, IA 52246, USA.
| |
Collapse
|
10
|
Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proc Natl Acad Sci U S A 2022; 119:e2023784119. [PMID: 35333654 PMCID: PMC9060471 DOI: 10.1073/pnas.2023784119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SignificanceAdult hippocampal neurogenesis underpins learning, memory, and mood but diminishes with age and certain illnesses. The orphan nuclear receptor TLX/NR2E1 regulates neural stem and progenitor cell self-renewal and proliferation, but its orphan status has hindered its utilization as a therapeutic target to modulate adult neurogenesis. Here, we deorphanize TLX and report that oleic acid is an endogenous, metabolic ligand of TLX. These findings open avenues for future therapeutic modulation of TLX to counteract cognitive and mental decline in aging and diseases associated with decreased neurogenesis.
Collapse
|
11
|
Kremer LP, Cerrizuela S, Dehler S, Stiehl T, Weinmann J, Abendroth H, Kleber S, Laure A, El Andari J, Anders S, Marciniak-Czochra A, Grimm D, Martin-Villalba A. High throughput screening of novel AAV capsids identifies variants for transduction of adult NSCs within the subventricular zone. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:33-50. [PMID: 34553001 PMCID: PMC8427210 DOI: 10.1016/j.omtm.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%–60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.
Collapse
Affiliation(s)
- Lukas P.M. Kremer
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Santiago Cerrizuela
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Dehler
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weinmann
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Heike Abendroth
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Laure
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jihad El Andari
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Corresponding author: Ana Martin-Villalba, Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Rajan A, Ostgaard CM, Lee CY. Regulation of Neural Stem Cell Competency and Commitment during Indirect Neurogenesis. Int J Mol Sci 2021; 22:12871. [PMID: 34884676 PMCID: PMC8657492 DOI: 10.3390/ijms222312871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
| | - Cyrina M. Ostgaard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Kosonen R, Barua S, Kim JY, Lee JE. Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects. Anat Cell Biol 2021; 54:143-151. [PMID: 34162764 PMCID: PMC8225474 DOI: 10.5115/acb.21.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Agmatine, the primary decarboxylation product of L-arginine, generated from arginine decarboxylase. Since the discovery of agmatine in the mammalian brain in the 1990s, an increasing number of agmatine-mediated effects have been discovered, demonstrating the benefits of agmatine on ischemic strokes, traumatic brain injury and numerous psychological disorders such as depression, anxiety, and stress. Agmatine also has cellular protective effects and contributes to cell proliferation and differentiation in the central nervous system (CNS). Neural progenitor cells are an important component in the recovery and repair of many neurological disorders due to their ability to differentiate into functional adult neurons. Recent data has revealed that agmatine can regulate and increase proliferation and the fate of progenitor cells in the adult hippocampus. This review aims to summarise and discuss the role of agmatine in the CNS; specifically, the effects and relationship between agmatine and neural progenitor cells and how these ideas can be applied to potential therapeutic application.
Collapse
Affiliation(s)
- Renée Kosonen
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Role of Microglia in Modulating Adult Neurogenesis in Health and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186875. [PMID: 32961703 PMCID: PMC7555074 DOI: 10.3390/ijms21186875] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.
Collapse
|
17
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
18
|
Kumari E, Velloso FJ, Nasuhidehnavi A, Somasundaram A, Savanur VH, Buono KD, Levison SW. Developmental IL-6 Exposure Favors Production of PDGF-Responsive Multipotential Progenitors at the Expense of Neural Stem Cells and Other Progenitors. Stem Cell Reports 2020; 14:861-875. [PMID: 32302560 PMCID: PMC7220986 DOI: 10.1016/j.stemcr.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-6 (IL-6) is increased in maternal serum and amniotic fluid of children subsequently diagnosed with autism spectrum disorders. However, it is not clear how increased IL-6 alters brain development. Here, we show that IL-6 increases the prevalence of a specific platelet-derived growth factor (PDGF)-responsive multipotent progenitor, with opposite effects on neural stem cells and on subsets of bipotential glial progenitors. Acutely, increasing circulating IL-6 levels 2-fold above baseline in neonatal mice specifically stimulated the proliferation of a PDGF-responsive multipotential progenitor accompanied by increased phosphorylated STAT3, increased Fbxo15 expression, and decreased Dnmt1 and Tlx expression. Fate mapping studies using a Nestin-CreERT2 driver revealed decreased astrogliogenesis in the frontal cortex. IL-6-treated mice were hyposmic; however, olfactory bulb neuronogenesis was unaffected. Altogether, these studies provide important insights into how inflammation alters neural stem cells and progenitors and provide new insights into the molecular and cellular underpinnings of neurodevelopmental disorders associated with maternal infections.
Collapse
Affiliation(s)
- Ekta Kumari
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Fernando J Velloso
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Azadeh Nasuhidehnavi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Aditya Somasundaram
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Vibha H Savanur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | | | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA.
| |
Collapse
|
19
|
A role for the orphan nuclear receptor TLX in the interaction between neural precursor cells and microglia. Neuronal Signal 2020; 3:NS20180177. [PMID: 32269832 PMCID: PMC7104222 DOI: 10.1042/ns20180177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Microglia are an essential component of the neurogenic niche in the adult hippocampus and are involved in the control of neural precursor cell (NPC) proliferation, differentiation and the survival and integration of newborn neurons in hippocampal circuitry. Microglial and neuronal cross-talk is mediated in part by the chemokine fractalkine/chemokine (C-X3-C motif) ligand 1 (CX3CL1) released from neurons, and its receptor CX3C chemokine receptor 1 (CX3CR1) which is expressed on microglia. A disruption in this pathway has been associated with impaired neurogenesis yet the specific molecular mechanisms by which this interaction occurs remain unclear. The orphan nuclear receptor TLX (Nr2e1; homologue of the Drosophila tailless gene) is a key regulator of hippocampal neurogenesis, and we have shown that in its absence microglia exhibit a pro-inflammatory activation phenotype. However, it is unclear whether a disturbance in CX3CL1/CX3CR1 communication mediates an impairment in TLX-related pathways which may have subsequent effects on neurogenesis. To this end, we assessed miRNA expression of up- and down-stream signalling molecules of TLX in the hippocampus of mice lacking CX3CR1. Our results demonstrate that a lack of CX3CR1 is associated with altered expression of TLX and its downstream targets in the hippocampus without significantly affecting upstream regulators of TLX. Thus, TLX may be a potential participant in neural stem cell (NSC)-microglial cross-talk and may be an important target in understanding inflammatory-associated impairments in neurogenesis.
Collapse
|
20
|
Chen C, Zhong X, Smith DK, Tai W, Yang J, Zou Y, Wang LL, Sun J, Qin S, Zhang CL. Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cereb Cortex 2020; 29:54-69. [PMID: 29161339 DOI: 10.1093/cercor/bhx303] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022] Open
Abstract
Injury to the adult brain induces activation of local astrocytes, which serves as a compensatory response that modulates tissue damage and recovery. However, the mechanism governing astrocyte activation during brain injury remains largely unknown. Here we provide in vivo evidence that SOX2, a transcription factor critical for stem cells and brain development, is also required for injury-induced activation of adult cortical astrocytes. Genome-wide chromatin immunoprecipitation-seq analysis of mouse cortical tissues reveals that SOX2 binds to regulatory regions of genes associated with signaling pathways that control glial cell activation, such as Nr2e1, Mmd2, Wnt7a, and Akt2. Astrocyte-specific deletion of Sox2 in adult mice greatly diminishes glial response to controlled cortical impact injury and, most unexpectedly, dampens injury-induced cortical loss and benefits behavioral recovery of mice after injury. Together, these results uncover an essential role of SOX2 in somatic cells under pathological conditions and indicate that SOX2-dependent astrocyte activation could be targeted for functional recovery after traumatic brain injury.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jianjing Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jiahong Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Song Qin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center of Neural Injury and Repair, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| |
Collapse
|
21
|
Hakes AE, Brand AH. Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. eLife 2020; 9:e53377. [PMID: 32073402 PMCID: PMC7058384 DOI: 10.7554/elife.53377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequence of events leading to cancer relies in large part upon identifying the tumour cell of origin. Glioblastoma is the most malignant brain cancer but the early stages of disease progression remain elusive. Neural lineages have been implicated as cells of origin, as have glia. Interestingly, high levels of the neural stem cell regulator TLX correlate with poor patient prognosis. Here we show that high levels of the Drosophila TLX homologue, Tailless, initiate tumourigenesis by reverting intermediate neural progenitors to a stem cell state. Strikingly, we could block tumour formation completely by re-expressing Asense (homologue of human ASCL1), which we show is a direct target of Tailless. Our results predict that expression of TLX and ASCL1 should be mutually exclusive in glioblastoma, which was verified in single-cell RNA-seq of human glioblastoma samples. Counteracting high TLX is a potential therapeutic strategy for suppressing tumours originating from intermediate progenitor cells.
Collapse
Affiliation(s)
- Anna E Hakes
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
22
|
Shi X, Ma D, Li M, Zeng L, Chen J, Yang Y. Nuclear receptor TLX regulates islet beta cell proliferation via E2F6. Biochem Biophys Res Commun 2019; 513:560-566. [PMID: 30981507 DOI: 10.1016/j.bbrc.2019.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes are associated with loss of functional beta cell mass, and strategies to restore beta cells are urgently needed. We reported previously that overexpression of the nuclear receptor TLX induces beta cell proliferation, but the underlying molecular mechanism has not been defined. Here, we identified direct targets of TLX in beta cells at the genome-wide level by ChIP-Seq. These targets include a cadre of regulators that are known to be critical for proliferation. Among these ChIP targets, E2F6 was tightly associated with the cell cycle modules, and thus, we further analyzed E2F6 expression and function in beta cells. We showed that E2F6 is strongly downregulated by TLX, and its expression inhibits beta cell proliferation. Moreover, coexpression of E2F6 with TLX partially abrogated the proliferative effects of TLX. These results strongly suggest that TLX acts through E2F6 to regulate beta cell proliferation. Together, the results of this study reveal a direct interaction between TLX and E2F6 and suggest new targets for the expansion of functional beta cell mass.
Collapse
Affiliation(s)
- Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Liwen Zeng
- Department of Endocrinology, Taikang Tongji(Wuhan) Hospital, PR China
| | - Jing Chen
- Department of Endocrinology, Taikang Tongji(Wuhan) Hospital, PR China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
23
|
Grassi E, Santoro R, Umbach A, Grosso A, Oliviero S, Neri F, Conti L, Ala U, Provero P, DiCunto F, Merlo GR. Choice of Alternative Polyadenylation Sites, Mediated by the RNA-Binding Protein Elavl3, Plays a Role in Differentiation of Inhibitory Neuronal Progenitors. Front Cell Neurosci 2019; 12:518. [PMID: 30687010 PMCID: PMC6338052 DOI: 10.3389/fncel.2018.00518] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism involving about half of the expressed genes, resulting in varying lengths of the 3′ untranslated region (3′UTR). Variations in length and sequence of the 3′UTR may underlie changes of post-transcriptional processing, localization, miRNA targeting and stability of mRNAs. During embryonic development a large array of mRNAs exhibit APA, with a prevalence of the longer 3′UTR versions in differentiating cells. Little is known about polyA+ site usage during differentiation of mammalian neural progenitors. Here we exploit a model of adherent neural stem (ANS) cells, which homogeneously and efficiently differentiate into GABAergic neurons. RNAseq data shows a global trend towards lengthening of the 3′UTRs during differentiation. Enriched expression of the longer 3′UTR variants of Pes1 and Gng2 was detected in the mouse brain in areas of cortical and subcortical neuronal differentiation, respectively, by two-probes fluorescent in situ hybridization (FISH). Among the coding genes upregulated during differentiation of ANS cells we found Elavl3, a neural-specific RNA-binding protein homologous to Drosophila Elav. In the insect, Elav regulates polyA+ site choice while interacting with paused Pol-II promoters. We tested the role of Elavl3 in ANS cells, by silencing Elavl3 and observed consistent changes in 3′UTR length and delayed neuronal differentiation. These results indicate that choice of the polyA+ site and lengthening of 3′UTRs is a possible additional mechanism of posttranscriptional RNA modification involved in neuronal differentiation.
Collapse
Affiliation(s)
- Elena Grassi
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Roberto Santoro
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Anna Grosso
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesco Neri
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Luciano Conti
- Centre for Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Ferdinando DiCunto
- Department of Molecular Biotechnology, University of Turin, Turin, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Kozareva DA, Foley T, Moloney GM, Cryan JF, Nolan YM. TLX knockdown in the dorsal dentate gyrus of juvenile rats differentially affects adolescent and adult behaviour. Behav Brain Res 2018; 360:36-50. [PMID: 30481511 DOI: 10.1016/j.bbr.2018.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/27/2022]
Abstract
The orphan nuclear receptor TLX is predominantly expressed in the central nervous system and is an important factor regulating the maintenance and self-renewal of neural stem cells from embryonic development through adulthood. In adolescence and adulthood, TLX expression is restricted to the neurogenic niches of the brain: the dentate gyrus of the hippocampus and the subventricular zone. The adolescent period is critical for maturation of the hippocampus with heightened levels of neurogenesis observed in rodents. Therefore, we investigated whether lentiviral silencing of TLX expression (TLX knockdown) in the dorsal dentate gyrus of juvenile rats incurred differential impairments in behaviour during late adolescence and adulthood. Our results showed that knockdown of TLX in the dorsal dentate gyrus led to a decrease in cell proliferation in the dorsal but not ventral dentate gyrus. At a behavioural level we observed differential effects in adolescence and adulthood across a number of parameters. A hyperactive phenotype was present in adolescent but not adult TLX knockdown rats, and an increase in immobility during adolescence and in swimming frequency during adulthood was observed in the forced swim test. There was an increased defecation frequency in the open field during adulthood but not adolescence. There were no changes in cognitive performance on hippocampus-dependent tasks or in anxiety-related behaviours. In conclusion, silencing of TLX in the dorsal dentate gyrus led to impairments in hippocampal-independent behaviours which either did not persist or were reversed during adulthood. The current data highlight the temporal importance and function of the nuclear receptor TLX during development.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
25
|
Hatami M, Conrad S, Naghsh P, Alvarez-Bolado G, Skutella T. Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Front Cell Neurosci 2018; 12:402. [PMID: 30483057 PMCID: PMC6240695 DOI: 10.3389/fncel.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The dentate gyrus (DG) receives highly processed information from the associative cortices functionally integrated in the trisynaptic hippocampal circuit, which contributes to the formation of new episodic memories and the spontaneous exploration of novel environments. Remarkably, the DG is the only brain region currently known to have high rates of neurogenesis in adults (Andersen et al., 1966, 1971). The DG is involved in several neurodegenerative disorders, including clinical dementia, schizophrenia, depression, bipolar disorder and temporal lobe epilepsy. The principal neurons of the DG are the granule cells. DG granule cells generated in culture would be an ideal model to investigate their normal development and the causes of the pathologies in which they are involved and as well as possible therapies. Essential to establish such in vitro models is the precise definition of the most important cell-biological requirements for the differentiation of DG granule cells. This requires a deeper understanding of the precise molecular and functional attributes of the DG granule cells in vivo as well as the DG cells derived in vitro. In this review we outline the neuroanatomical, molecular and cell-biological components of the granule cell differentiation pathway, including some growth- and transcription factors essential for their development. We summarize the functional characteristics of DG granule neurons, including the electrophysiological features of immature and mature granule cells and the axonal pathfinding characteristics of DG neurons. Additionally, we discuss landmark studies on the generation of dorsal telencephalic precursors from pluripotent stem cells (PSCs) as well as DG neuron differentiation in culture. Finally, we provide an outlook and comment critical aspects.
Collapse
Affiliation(s)
- Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Stappert L, Klaus F, Brüstle O. MicroRNAs Engage in Complex Circuits Regulating Adult Neurogenesis. Front Neurosci 2018; 12:707. [PMID: 30455620 PMCID: PMC6230569 DOI: 10.3389/fnins.2018.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The finding that the adult mammalian brain is still capable of producing neurons has ignited a new field of research aiming to identify the molecular mechanisms regulating adult neurogenesis. An improved understanding of these mechanisms could lead to the development of novel approaches to delay cognitive decline and facilitate neuroregeneration in the adult human brain. Accumulating evidence suggest microRNAs (miRNAs), which represent a class of post-transcriptional gene expression regulators, as crucial part of the gene regulatory networks governing adult neurogenesis. This review attempts to illustrate how miRNAs modulate key processes in the adult neurogenic niche by interacting with each other and with transcriptional regulators. We discuss the function of miRNAs in adult neurogenesis following the life-journey of an adult-born neuron from the adult neural stem cell (NSCs) compartment to its final target site. We first survey how miRNAs control the initial step of adult neurogenesis, that is the transition of quiescent to activated proliferative adult NSCs, and then go on to discuss the role of miRNAs to regulate neuronal differentiation, survival, and functional integration of the newborn neurons. In this context, we highlight miRNAs that converge on functionally related targets or act within cross talking gene regulatory networks. The cooperative manner of miRNA action and the broad target repertoire of each individual miRNA could make the miRNA system a promising tool to gain control on adult NSCs in the context of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Frederike Klaus
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
27
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
28
|
Sexton-Oates A, Dodgshun A, Hovestadt V, Jones DTW, Ashley DM, Sullivan M, MacGregor D, Saffery R. Methylation profiling of paediatric pilocytic astrocytoma reveals variants specifically associated with tumour location and predictive of recurrence. Mol Oncol 2018; 12:1219-1232. [PMID: 28388012 PMCID: PMC6068350 DOI: 10.1002/1878-0261.12062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Childhood pilocytic astrocytomas (PA) are low-grade tumours with an excellent prognosis. However, a minority, particularly those in surgically inaccessible locations, have poorer long-term outcome. At present, it is unclear whether anatomical location in isolation, or in combination with underlying biological variation, determines clinical behaviour. Here, we have tested the utility of DNA methylation profiling to inform tumour biology and to predict behaviour in paediatric PA. Genome-wide DNA methylation profiles were generated for 117 paediatric PAs. Using a combination of analyses, we identified DNA methylation variants specific to tumour location and predictive of behaviour. Receiver-operating characteristic analysis was used to test the predictive utility of clinical and/or DNA methylation features to classify tumour behaviour at diagnosis. Unsupervised analysis distinguished three methylation clusters associated with tumour location (cortical, midline and infratentorial). Differential methylation of 5404 sites identified enrichment of genes involved in 'embryonic nervous system development'. Specific hypermethylation of NEUROG1 and NR2E1 was identified as a feature of cortical tumours. A highly accurate method to classify tumours according to behaviour, which combined three clinical features (age, location and extent of resection) and methylation level at a single site, was identified. Our findings show location-specific epigenetic profiles for PAs, potentially reflecting their cell type of origin. This may account for differences in clinical behaviour according to location independent of histopathology. We also defined an accurate method to predict tumour behaviour at diagnosis. This warrants further testing in similar patient cohorts.
Collapse
Affiliation(s)
- Alexandra Sexton-Oates
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Andrew Dodgshun
- Children's Cancer Centre, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - David M Ashley
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Michael Sullivan
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Children's Cancer Centre, The Royal Children's Hospital, Parkville, Australia
| | - Duncan MacGregor
- Department of Anatomical Pathology, The Royal Children's Hospital, Parkville, Australia.,Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
29
|
Ó'Léime CS, Hoban AE, Hueston CM, Stilling R, Moloney G, Cryan JF, Nolan YM. The orphan nuclear receptor TLX regulates hippocampal transcriptome changes induced by IL-1β. Brain Behav Immun 2018. [PMID: 29518529 DOI: 10.1016/j.bbi.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1β suppresses NPC proliferation as well as TLX expression in the hippocampus. However, it is unknown whether TLX itself is involved in regulating the inflammatory response in the hippocampus. To explore the role of TLX in inflammation, we assessed changes in the transcriptional landscape of the hippocampus of TLX knockout mice (TLX-/-) compared to wildtype (WT) littermate controls with and without intrahippocampal injection of IL-1β using a whole transcriptome RNA sequencing approach. We demonstrated that there is an increase in the transcription of genes involved in the promotion of inflammation and regulation of cell chemotaxis (Tnf, Il1b, Cxcr1, Cxcr2, Tlr4) and a decrease in the expression of genes relating to synaptic signalling (Lypd1, Syt4, Cplx2) in cannulated TLX-/- mice compared to WT controls. We demonstrate that mice lacking in TLX share a similar increase in 176 genes involved in regulating inflammation (e.g. Cxcl1, Tnf, Il1b) as WT mice injected with IL-1β into the hippocampus. Moreover, TLX-/- mice injected with IL-1β displayed a blunted transcriptional profile compared to WT mice injected with IL-1β. Thus, TLX-/- mice, which already have an exaggerated inflammatory profile after cannulation surgery, are primed to respond differently to an inflammatory stimulus such as IL-1β. Together, these results demonstrate that TLX regulates hippocampal inflammatory transcriptome response to brain injury (in this case cannulation surgery) and cytokine stimulation.
Collapse
Affiliation(s)
- Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Roman Stilling
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Yoon KJ, Vissers C, Ming GL, Song H. Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. J Cell Biol 2018; 217:1901-1914. [PMID: 29666150 PMCID: PMC5987727 DOI: 10.1083/jcb.201802117] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Yoon et al. review epigenetic and epitranscriptomic mechanisms that regulate the lineage specification of neural progenitor cells in the developing brain. During embryonic brain development, neural progenitor/stem cells (NPCs) sequentially give rise to different subtypes of neurons and glia via a highly orchestrated process. To accomplish the ordered generation of distinct progenies, NPCs go through multistep transitions of their developmental competence. The molecular mechanisms driving precise temporal coordination of these transitions remains enigmatic. Epigenetic regulation, including changes in chromatin structures, DNA methylation, and histone modifications, has been extensively investigated in the context of cortical neurogenesis. Recent studies of chemical modifications on RNA, termed epitranscriptomics, have also revealed their critical roles in neural development. In this review, we discuss advances in understanding molecular regulation of the sequential lineage specification of NPCs in the embryonic mammalian brain with a focus on epigenetic and epitranscriptomic mechanisms. In particular, the discovery of lineage-specific gene transcripts undergoing rapid turnover in NPCs suggests that NPC developmental fate competence is determined much earlier, before the final cell division, and is more tightly controlled than previously appreciated. We discuss how multiple regulatory systems work in harmony to coordinate NPC behavior and summarize recent findings in the context of a model of epigenetic and transcriptional prepatterning to explain NPC developmental competence.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| | - Caroline Vissers
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA .,The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Xu Z, Wang W, Ren Y, Zhang W, Fang P, Huang L, Wang X, Shi P. Regeneration of cortical tissue from brain injury by implantation of defined molecular gradient of semaphorin 3A. Biomaterials 2018; 157:125-135. [DOI: 10.1016/j.biomaterials.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
32
|
Shohayeb B, Diab M, Ahmed M, Ng DCH. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 2018; 7:4. [PMID: 29484176 PMCID: PMC5822640 DOI: 10.1186/s40035-018-0109-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis involves persistent proliferative neuroprogenitor populations that reside within distinct regions of the brain. This phenomenon was first described over 50 years ago and it is now firmly established that new neurons are continually generated in distinct regions of the adult brain. The potential of enhancing the neurogenic process lies in improved brain cognition and neuronal plasticity particularly in the context of neuronal injury and neurodegenerative disorders. In addition, adult neurogenesis might also play a role in mood and affective disorders. The factors that regulate adult neurogenesis have been broadly studied. However, the underlying molecular mechanisms of regulating neurogenesis are still not fully defined. In this review, we will provide critical analysis of our current understanding of the factors and molecular mechanisms that determine neurogenesis. We will further discuss pre-clinical and clinical studies that have investigated the potential of modulating neurogenesis as therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Belal Shohayeb
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| | - Mohamed Diab
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Mazen Ahmed
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Dominic Chi Hiung Ng
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
33
|
Chen JJ, Wang T, An CD, Jiang CY, Zhao J, Li S. Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer's disease. Rev Neurosci 2018; 27:793-811. [PMID: 27508959 DOI: 10.1515/revneuro-2016-0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022]
Abstract
In early- or late-onset Alzheimer's disease (AD), inflammation, which is triggered by pathologic conditions, influences the progression of neurodegeneration. Brain-derived neurotrophic factor (BDNF) has emerged as a crucial mediator of neurogenesis, because it exhibits a remarkable activity-dependent regulation of expression, which suggests that it may link inflammation to neurogenesis. Emerging evidence suggests that acute and chronic inflammation in AD differentially modulates neurotrophin functions, which are related to the roles of inflammation in neuroprotection and neurodegeneration. Recent studies also indicate novel mechanisms of BDNF-mediated neuroprotection, including the modulation of autophagy. Numerous research studies have demonstrated reverse parallel alterations between proinflammatory cytokines and BDNF during neurodegeneration; thus, we hypothesize that one mechanism that underlies the negative impact of chronic inflammation on neurogenesis is the reduction of BDNF production and function by proinflammatory cytokines.
Collapse
|
34
|
The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord. Cell Rep 2017; 17:891-903. [PMID: 27732862 DOI: 10.1016/j.celrep.2016.09.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI.
Collapse
|
35
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
36
|
O'Léime CS, Cryan JF, Nolan YM. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 2017; 66:394-412. [PMID: 28751020 DOI: 10.1016/j.bbi.2017.07.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function.
Collapse
Affiliation(s)
- Ciarán S O'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
37
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Maheu ME, Ressler KJ. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders. Learn Mem 2017; 24:492-501. [PMID: 28814475 PMCID: PMC5580529 DOI: 10.1101/lm.044271.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 11/24/2022]
Abstract
The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk for illnesses like depression and post-traumatic stress disorder, some have turned their attention instead to focusing on so-called "master regulators" of plasticity that may provide a means of controlling these potentially impaired processes in psychiatric illnesses. The mammalian homolog of Tailless (TLX), Wnt, and the homeoprotein Otx2 have all been proposed to constitute master regulators of different forms of plasticity which have, in turn, each been implicated in learning and stress-related disorders. In the present review, we provide an overview of the changing distribution of these genes and their roles both during development and in the adult brain. We further discuss how their distinct expression profiles provide clues as to their function, and may inform their suitability as candidate drug targets in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Marissa E Maheu
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| |
Collapse
|
39
|
Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 2017; 133:3-20. [PMID: 28864354 DOI: 10.1016/j.ymeth.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Qiuge Zhao
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
40
|
Kozareva DA, Hueston CM, Ó'Léime CS, Crotty S, Dockery P, Cryan JF, Nolan YM. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus. J Neuroimmunol 2017; 331:87-96. [PMID: 28844503 DOI: 10.1016/j.jneuroim.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Suzanne Crotty
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Peter Dockery
- Department of Anatomy, National University of Ireland, Galway, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
41
|
Yu J, Mu J, Guo Q, Yang L, Zhang J, Liu Z, Yu B, Zhang T, Xie J. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq. IUBMB Life 2017; 69:706-719. [PMID: 28691208 DOI: 10.1002/iub.1653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Qian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
42
|
Gonçalves JT, Schafer ST, Gage FH. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell 2017; 167:897-914. [PMID: 27814520 DOI: 10.1016/j.cell.2016.10.021] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 02/08/2023]
Abstract
The dentate gyrus of the mammalian hippocampus continuously generates new neurons during adulthood. These adult-born neurons become functionally active and are thought to contribute to learning and memory, especially during their maturation phase, when they have extraordinary plasticity. In this Review, we discuss the molecular machinery involved in the generation of new neurons from a pool of adult neural stem cells and their integration into functional hippocampal circuits. We also summarize the potential functions of these newborn neurons in the adult brain, their contribution to behavior, and their relevance to disease.
Collapse
Affiliation(s)
- J Tiago Gonçalves
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
|
44
|
REST regulation of gene networks in adult neural stem cells. Nat Commun 2016; 7:13360. [PMID: 27819263 PMCID: PMC5103073 DOI: 10.1038/ncomms13360] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. The transcription factor REST plays a crucial role in maintaining the adult neural stem cell pool. To better understand how REST maintains quiescence in neural progenitors, the authors use ChIP-seq and RNA-seq and find that REST regulates represses ribosome biogenesis, cell cycle and neuronal genes.
Collapse
|
45
|
Corso-Díaz X, de Leeuw CN, Alonso V, Melchers D, Wong BKY, Houtman R, Simpson EM. Co-activator candidate interactions for orphan nuclear receptor NR2E1. BMC Genomics 2016; 17:832. [PMID: 27782803 PMCID: PMC5080790 DOI: 10.1186/s12864-016-3173-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background NR2E1 (Tlx) is an orphan nuclear receptor that regulates the maintenance and self-renewal of neural stem cells, and promotes tumourigenesis. Nr2e1-null mice exhibit reduced cortical and limbic structures and pronounced retinal dystrophy. NR2E1 functions mainly as a repressor of gene transcription in association with the co-repressors atrophin-1, LSD1, HDAC and BCL11A. Recent evidence suggests that NR2E1 also acts as an activator of gene transcription. However, co-activator complexes that interact with NR2E1 have not yet been identified. In order to find potential novel co-regulators for NR2E1, we used a microarray assay for real-time analysis of co-regulator–nuclear receptor interaction (MARCoNI) that contains peptides representing interaction motifs from potential co-regulatory proteins, including known co-activator nuclear receptor box sequences (LxxLL motif). Results We found that NR2E1 binds strongly to an atrophin-1 peptide (Atro box) used as positive control and to 19 other peptides that constitute candidate NR2E1 partners. Two of these proteins, p300 and androgen receptor (AR), were further validated by reciprocal pull-down assays. The specificity of NR2E1 binding to peptides in the array was evaluated using two single amino acid variants, R274G and R276Q, which disrupted the majority of the binding interactions observed with wild-type NR2E1. The decreased binding affinity of these variants to co-regulators was further validated by pull-down assays using atrophin1 as bait. Despite the high conservation of arginine 274 in vertebrates, its reduced interactions with co-regulators were not significant in vivo as determined by retinal phenotype analysis in single-copy Nr2e1-null mice carrying the variant R274G. Conclusions We showed that MARCoNI is a specific assay to test interactions of NR2E1 with candidate co-regulators. In this way, we unveiled 19 potential co-regulator partners for NR2E1, including eight co-activators. All the candidates here identified need to be further validated using in vitro and in vivo models. This assay was sensitive to point mutations in NR2E1 ligand binding domain making it useful to identify mutations and/or small molecules that alter binding of NR2E1 to protein partners. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3173-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vivian Alonso
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | | | - Bibiana K Y Wong
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - René Houtman
- PamGene International B.V., Den Bosch, The Netherlands
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada. .,Department of Ophthalmology and Visual Science, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada.
| |
Collapse
|
46
|
Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming. Stem Cell Reports 2016; 5:805-815. [PMID: 26607952 PMCID: PMC4649261 DOI: 10.1016/j.stemcr.2015.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/26/2022] Open
Abstract
The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming. An evolutionarily conserved enhancer drives Tlx expression in neural stem cells SOX2 directly activates the identified enhancer and Tlx expression SOX2-mediated in vivo reprogramming of astrocytes to neuroblasts requires TLX
Collapse
|
47
|
Tuoc T, Dere E, Radyushkin K, Pham L, Nguyen H, Tonchev AB, Sun G, Ronnenberg A, Shi Y, Staiger JF, Ehrenreich H, Stoykova A. Ablation of BAF170 in Developing and Postnatal Dentate Gyrus Affects Neural Stem Cell Proliferation, Differentiation, and Learning. Mol Neurobiol 2016; 54:4618-4635. [PMID: 27392482 PMCID: PMC5509785 DOI: 10.1007/s12035-016-9948-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/03/2016] [Indexed: 10/27/2022]
Abstract
The BAF chromatin remodeling complex plays an essential role in brain development. However its function in postnatal neurogenesis in hippocampus is still unknown. Here, we show that in postnatal dentate gyrus (DG), the BAF170 subunit of the complex is expressed in radial glial-like (RGL) progenitors and in cell types involved in subsequent steps of adult neurogenesis including mature astrocytes. Conditional deletion of BAF170 during cortical late neurogenesis as well as during adult brain neurogenesis depletes the pool of RGL cells in DG, and promotes terminal astrocyte differentiation. These derangements are accompanied by distinct behavioral deficits, as reflected by an impaired accuracy of place responding in the Morris water maze test, during both hidden platform as well as reversal learning. Inducible deletion of BAF170 in DG during adult brain neurogenesis resulted in mild spatial learning deficits, having a more pronounced effect on spatial learning during the reversal test. These findings demonstrate involvement of BAF170-dependent chromatin remodeling in hippocampal neurogenesis and cognition and suggest a specific role of adult neurogenesis in DG in adaptive behavior.
Collapse
Affiliation(s)
- Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany. .,Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany. .,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Ekrem Dere
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Konstantin Radyushkin
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Linh Pham
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Huong Nguyen
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Anton B Tonchev
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Anatomy, Histology and Embryology, Medical University of Varna, Varna, Bulgaria
| | - Guoqiang Sun
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Cancer Center, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Cancer Center, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany.,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anastassia Stoykova
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany. .,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
48
|
Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells Int 2016; 2016:9745315. [PMID: 27069486 PMCID: PMC4812498 DOI: 10.1155/2016/9745315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
The cerebral cortex is essential for our higher cognitive functions and emotional reasoning. Arguably, this brain structure is the distinguishing feature of our species, and yet our remarkable cognitive capacity has seemingly come at a cost to the regenerative capacity of the human brain. Indeed, the capacity for regeneration and neurogenesis of the brains of vertebrates has declined over the course of evolution, from fish to rodents to primates. Nevertheless, recent evidence supporting the existence of neural stem cells (NSCs) in the adult human brain raises new questions about the biological significance of adult neurogenesis in relation to ageing and the possibility that such endogenous sources of NSCs might provide therapeutic options for the treatment of brain injury and disease. Here, we highlight recent insights and perspectives on NSCs within both the developing and adult cerebral cortex. Our review of NSCs during development focuses upon the diversity and therapeutic potential of these cells for use in cellular transplantation and in the modeling of neurodevelopmental disorders. Finally, we describe the cellular and molecular characteristics of NSCs within the adult brain and strategies to harness the therapeutic potential of these cell populations in the treatment of brain injury and disease.
Collapse
|
49
|
Wang T, Xiong JQ. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases. Neurosci Bull 2016; 32:108-14. [PMID: 26769490 DOI: 10.1007/s12264-015-0004-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022] Open
Abstract
The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.
Collapse
Affiliation(s)
- Tao Wang
- Department of Intensive Care, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jian-Qiong Xiong
- Department of Intensive Care, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
50
|
TLX-Its Emerging Role for Neurogenesis in Health and Disease. Mol Neurobiol 2016; 54:272-280. [PMID: 26738856 PMCID: PMC5219886 DOI: 10.1007/s12035-015-9608-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.
Collapse
|