1
|
Spencer PS. Neuroprotein Targets of γ-Diketone Metabolites of Aliphatic and Aromatic Solvents That Induce Central-Peripheral Axonopathy. Toxicol Pathol 2020; 48:411-421. [PMID: 32162603 DOI: 10.1177/0192623320910960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathy associated with chronic occupational and deliberate overexposure to neurotoxic organic solvents results from axonal degeneration in the central and peripheral nervous system. Human and experimental studies show that axonopathy is triggered by the action of neuroprotein-reactive γ-diketone metabolites formed from exposure to certain aliphatic solvents (n-hexane, 2-hexanone) and aromatic compounds (1,2-diethylbenzene, 1,2-4-triethylbenzene, 6-acetyl-1,1,4,4-tetramethyl-7-ethyl-1,2,3,4-tetralin). Neuroprotein susceptibility is related primarily to their differential content of lysine, the ∊-amino group of which is targeted by γ-diketones. Specific neuroprotein targets have been identified, and the sequence of molecular mechanisms leading to axonal pathology has been illuminated. While occupational n-hexane neuropathy continues to be reported, lessons learned from its experimental study may have relevance to other causes of peripheral neuropathy, including those associated with aging and diabetes mellitus.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Institute of Occupational Health Sciences and Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Lee S, Eyer J, Letournel F, Boumil E, Hall G, Shea TB. Neurofilaments form flexible bundles during neuritogenesis in culture and in mature axons in situ. J Neurosci Res 2019; 97:1306-1318. [PMID: 31304612 DOI: 10.1002/jnr.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022]
Abstract
Neurofilaments (NFs) undergo cation-dependent phospho-mediated associations with each other and other cytoskeletal elements that support axonal outgrowth. Progressive NF-NF associations generate a resident, bundled population that undergoes exchange with transporting NFs. We examined the properties of bundled NFs. Bundles did not always display a fully linear profile but curved and twisted at various points along the neurite length. Bundles retracted faster than neurites and retracted bundles did not expand following extraction with Triton, indicating that they coiled passively rather than due to pressure from the cell. Bundles consisted of helically wound NFs, which may provide flexibility necessary for turning of growing axons during pathfinding. Interactions between NFs and other cytoskeletal elements may be disrupted en masse during neurite retraction or regionally during remodeling. It is suggested that bundles within long axons that cannot be fully retracted into the soma could provide maintain proximal support yet still allow more distal flexibility for remodeling and changing direction during pathfinding.
Collapse
Affiliation(s)
- Sangmook Lee
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Joel Eyer
- Institut de Biologie en Santé PBH-IRIS, Universitaire d'Angers, Angers, France
| | | | - Edward Boumil
- Center for Vision Research, SUNY Upstate, Syracuse, New York
| | - Garth Hall
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| |
Collapse
|
3
|
Boumil EF, Vohnoutka R, Lee S, Pant H, Shea TB. Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 2018; 7:bio.028795. [PMID: 29158321 PMCID: PMC5829495 DOI: 10.1242/bio.028795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurofilaments (NFs) are thought to provide stability to the axon. We examined NF dynamics within axonal neurites of NB2a/d1 neuroblastoma by transient transfection with green fluorescent protein-tagged NF-heavy (GFP-H) under the control of a tetracycline-inducible promoter. Immunofluorescent and biochemical analyses demonstrated that GFP-H expressed early during neurite outgrowth associated with a population of centrally-situated, highly-phosphorylated crosslinked NFs along the length of axonal neurites (‘bundled NFs’). By contrast, GFP-H expressed after considerable neurite outgrowth displayed markedly reduced association with bundled NFs and was instead more evenly distributed throughout the axon. This differential localization was maintained for up to 2 weeks in culture. Once considerable neurite outgrowth had progressed, GFP that had previously associated with the NF bundle during early expression was irreversibly depleted by photobleaching. Cessation of expression allowed monitoring of NF turnover. GFP-H associated bundled NFs underwent slower decay than GFP-H associated with surrounding, less-phosphorylated NFs. Notably, GFP associated with bundled NFs underwent similar decay rates within the core and edges of this bundle. These results are consistent with previous demonstration of a resident NF population within axonal neurites, but suggest that this population is more dynamic than previously considered. Summary: Immunofluorescent and radiolabel analyses demonstrate that neurofilaments establish a resident population within growing axonal neurites that undergoes exchange with a surrounding, transporting pool.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Rishel Vohnoutka
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish Pant
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 , USA
| | - Thomas B Shea
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
4
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
5
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
6
|
Guardia Clausi M, Paez P, Pasquini L, Pasquini J. Inhalation of growth factors and apo-transferrin to protect and repair the hypoxic-ischemic brain. Pharmacol Res 2016; 109:81-5. [DOI: 10.1016/j.phrs.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
7
|
Robert A, Hookway C, Gelfand VI. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 2016; 38:232-43. [PMID: 26763143 DOI: 10.1002/bies.201500142] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical properties of vertebrate cells are largely defined by the system of intermediate filaments (IF). As part of a dense network, IF polymers are constantly rearranged and relocalized in the cell to fulfill their duty as cells change shape, migrate, or divide. With the development of new imaging technologies, such as photoconvertible proteins and super-resolution microscopy, a new appreciation for the complexity of IF dynamics has emerged. This review highlights new findings about the transport of IF, the remodeling of filaments by a process of severing and re-annealing, and the subunit exchange that occurs between filament precursors and a soluble pool of IF. We will also discuss the unique dynamic features of the keratin IF network. Finally, we will speculate about how the dynamic properties of IF are related to their functions.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Yuan A, Hassinger L, Rao MV, Julien JP, Miller CCJ, Nixon RA. Dissociation of Axonal Neurofilament Content from Its Transport Rate. PLoS One 2015. [PMID: 26208164 PMCID: PMC4514674 DOI: 10.1371/journal.pone.0133848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The axonal cytoskeleton of neurofilament (NF) is a long-lived network of fibrous elements believed to be a stationary structure maintained by a small pool of transported cytoskeletal precursors. Accordingly, it may be predicted that NF content in axons can vary independently from the transport rate of NF. In the present report, we confirm this prediction by showing that human NFH transgenic mice and transgenic mice expressing human NFL Ser55 (Asp) develop nearly identical abnormal patterns of NF accumulation and distribution in association with opposite changes in NF slow transport rates. We also show that the rate of NF transport in wild-type mice remains constant along a length of the optic axon where NF content varies 3-fold. Moreover, knockout mice lacking NFH develop even more extreme (6-fold) proximal to distal variation in NF number, which is associated with a normal wild-type rate of NF transport. The independence of regional NF content and NF transport is consistent with previous evidence suggesting that the rate of incorporation of transported NF precursors into a metabolically stable stationary cytoskeletal network is the major determinant of axonal NF content, enabling the generation of the striking local variations in NF number seen along axons.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (AY); (RAN)
| | - Linda Hassinger
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Mala V. Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
| | - Jean-Pierre Julien
- Centre de Recherche du Centre Hospitalier de l'Université Laval, Département d'anatomie et physiologie de l'Université Laval, Québec, Canada
| | - Christopher C. J. Miller
- Department of Neuroscience, Institute of Psychiatry, Kings College London, London, United Kingdom
- Clinical Neurosciences, Institute of Psychiatry, Kings College London, London, United Kingdom
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (AY); (RAN)
| |
Collapse
|
9
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
10
|
Abstract
Mitochondria are highly dynamic organelles with complex structural features which play several important cellular functions, such as the production of energy by oxidative phosphorylation, the regulation of calcium homeostasis, or the control of programmed cell death (PCD). Given its essential role in neuronal viability, alterations in mitochondrial biology can lead to neuron dysfunction and cell death. Defects in mitochondrial respiration have long been implicated in the etiology and pathogenesis of Parkinson's disease (PD). However, the role of mitochondria in PD extends well beyond defective respiration and also involves perturbations in mitochondrial dynamics, leading to alterations in mitochondrial morphology, intracellular trafficking, or quality control. Whether a primary or secondary event, mitochondrial dysfunction holds promise as a potential therapeutic target to halt the progression of dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Celine Perier
- Vall d'Hebron Research Institute-CIBERNED, Barcelona 08035, Spain
| | | |
Collapse
|
11
|
5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation. Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03322799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Shea TB, Lee S. The discontinuous nature of neurofilament transport accommodates both establishment and repair of the axonal neurofilament array. Cytoskeleton (Hoboken) 2012; 70:67-73. [PMID: 23124969 DOI: 10.1002/cm.21087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/19/2022]
Abstract
Neurofilaments (NFs) provide structural support to axons. Timely and regional deposition of NFs is essential during axonogenesis, since progressive stabilization of proximal axons is essential to support continued pathfinding of distal axonal regions. NFs undergo short bursts of microtubule-mediated axonal transport interspersed by prolonged pauses. We demonstrate herein that it is this unique "on-off" method of axonal transport, coupled with the ability of NFs to form cation-dependent, phosphomediated lateral associations that allow neurons to mediate the orderly transition from exploratory process to stabilized axon following synaptogenesis. We further demonstrate how this transport method provides for NF maintenance following maturation and encompasses the potential for regeneration.
Collapse
Affiliation(s)
- Thomas B Shea
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
13
|
Guardia Clausi M, Paez PM, Campagnoni AT, Pasquini LA, Pasquini JM. Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event. Glia 2012; 60:1540-54. [PMID: 22736466 DOI: 10.1002/glia.22374] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/31/2012] [Indexed: 12/22/2022]
Abstract
Our previous studies showed that the intracerebral injection of apotransferrin (aTf) attenuates white matter damage and accelerates the remyelination process in a neonatal rat model of cerebral hypoxia-ischemia (HI) injury. However, the intracerebral injection of aTf might not be practical for clinical treatments. Therefore, the development of less invasive techniques capable of delivering aTf to the central nervous system would clearly aid in its effective clinical use. In this work, we have determined whether intranasal (iN) administration of human aTf provides neuroprotection to the neonatal mouse brain following a cerebral hypoxic-ischemic event. Apotransferrin was infused into the naris of neonatal mice and the HI insult was induced by right common carotid artery ligation followed by exposure to low oxygen concentration. Our results showed that aTf was successfully delivered into the neonatal HI brain and detected in the olfactory bulb, forebrain and posterior brain 30 min after inhalation. This treatment successfully reduced white matter damage, neuronal loss and astrogliosis in different brain regions and enhanced the proliferation and survival of oligodendroglial progenitor cells (OPCs) in the subventricular zone and corpus callosum (CC). Additionally, using an in vitro hypoxic model, we demonstrated that aTf prevents oligodendrocyte progenitor cell death by promoting their differentiation. In summary, these data suggest that iN administration of aTf has the potential to be used for clinical treatment to protect myelin and to induce remyelination in demyelinating hypoxic-ischemic events in the neonatal brain.
Collapse
Affiliation(s)
- Mariano Guardia Clausi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, and Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | | | | | | | | |
Collapse
|
14
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
15
|
Abstract
Adult-onset neurodegenerative disorders are disabling and often fatal diseases of the nervous system whose underlying mechanisms of cell death remain unknown. Defects in mitochondrial respiration had previously been proposed to contribute to the occurrence of many, if not all, of the most common neurodegenerative disorders. However, the discovery of genes mutated in hereditary forms of these enigmatic diseases has additionally suggested defects in mitochondrial dynamics. Such disturbances can lead to changes in mitochondrial trafficking, in interorganellar communication, and in mitochondrial quality control. These new mechanisms by which mitochondria may also be linked to neurodegeneration will likely have far-reaching implications for our understanding of the pathophysiology and treatment of adult-onset neurodegenerative disorders.
Collapse
|
16
|
Lee S, Sunil N, Tejada JM, Shea TB. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. J Cell Sci 2011; 124:1022-31. [PMID: 21363889 DOI: 10.1242/jcs.079046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurofilament (NF) subunits translocate within axons as short NFs, non-filamentous punctate structures ('puncta') and diffuse material that might comprise individual subunits and/or oligomers. Transport of NFs into and along axons is mediated by the microtubule (MT) motor proteins kinesin and dynein. Despite being characterized as a retrograde motor, dynein nevertheless participates in anterograde NF transport through associating with long MTs or the actin cortex through its cargo domain; relatively shorter MTs associated with the motor domain are then propelled in an anterograde direction, along with any linked NFs. Here, we show that inhibition of dynein function, through dynamitin overexpression or intracellular delivery of anti-dynein antibody, selectively reduced delivery of GFP-tagged short NFs into the axonal hillock, with a corresponding increase in the delivery of puncta, suggesting that dynein selectively delivered short NFs into axonal neurites. Nocodazole-mediated depletion of short MTs had the same effect. By contrast, intracellular delivery of anti-kinesin antibody inhibited anterograde transport of short NFs and puncta to an equal extent. These findings suggest that anterograde axonal transport of linear NFs is more dependent upon association with translocating MTs (which are themselves translocated by dynein) than is transport of NF puncta or oligomers.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
17
|
The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS One 2011; 6:e17087. [PMID: 21359212 PMCID: PMC3040190 DOI: 10.1371/journal.pone.0017087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/16/2011] [Indexed: 12/30/2022] Open
Abstract
The neurofilament light subunit (NF-L) binds to myosin Va (Myo Va) in neurons but the sites of interaction and functional significance are not clear. We show by deletion analysis that motor domain of Myo Va binds to the NF-L rod domain that forms the NF backbone. Loss of NF-L and Myo Va binding from axons significantly reduces the axonal content of ER, and redistributes ER to the periphery of axon. Our data are consistent with a novel function for NFs as a scaffold in axons for maintaining the content and proper distribution of vesicular organelles, mediated in part by Myo Va. Based on observations that the Myo Va motor domain binds to intermediate filament (IF) proteins of several classes, Myo Va interactions with IFs may serve similar roles in organizing organelle topography in different cell types.
Collapse
|
18
|
Goshima Y, Usui H, Shiozawa T, Hida T, Kuraoka S, Takeshita S, Yamashita N, Ichikawa Y, Kamiya Y, Gotoh T, Gotoh T. Computational analysis of the effects of antineoplastic agents on axonal transport. J Pharmacol Sci 2010; 114:168-79. [PMID: 20859062 DOI: 10.1254/jphs.09352fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Axonal transport plays a crucial role in neuronal morphogenesis, survival, and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for axonal transport has been lacking. In order to better characterize the molecular mechanisms involved in axonal transport, we here developed a computer-assisted monitoring system. Using lipophilic fluorochrome chloromethylbenzamido dialkylcarbocyanine (CM-DiI) as a labeling dye, we have successfully labeled membranous organelles in cultured chick dorsal root ganglia neurons. We confirmed that sodium azide, an ATPase inhibitor, and nocodazole, a microtubule-destabilizing agent, markedly suppressed anterograde and retrograde axonal transport of CM-DiI-labeled particles. We further tested the effects of several anti-neoplastic drugs on axonal transport. Paclitaxel, vincristine, cisplatin, and oxaliplatin, all of which are known to be neurotoxic and to cause neurological symptoms, suppressed anterograde and retrograde axonal transport. Another series of anti-neoplastic drugs, including methotrexate and 5-fluorouracil, did not affect the axonal transport. This is the first report of an automated monitoring system for axonal transport. This system will be useful for toxicity assays, characterizing axonal transport, or screening drugs that may modify neuronal functions.
Collapse
Affiliation(s)
- Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chetta J, Kye C, Shah SB. Cytoskeletal dynamics in response to tensile loading of mammalian axons. Cytoskeleton (Hoboken) 2010; 67:650-65. [DOI: 10.1002/cm.20478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Bridgman PC. Myosin motor proteins in the cell biology of axons and other neuronal compartments. Results Probl Cell Differ 2010; 48:91-105. [PMID: 19554282 DOI: 10.1007/400_2009_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most neurons of both the central and peripheral nervous systems express multiple members of the myosin superfamily that include nonmuscle myosin II, and a number of classes of unconventional myosins. Several classes of unconventional myosins found in neurons have been shown to play important roles in transport processes. A general picture of the myosin-dependent transport processes in neurons is beginning to emerge, although much more work still needs to be done to fully define these roles and establish the importance of myosin for axonal transport. Myosins appear to contribute to three types of transport processes in neurons; recycling of receptors or other membrane components, dynamic tethering of vesicular components, and transport or tethering of protein translational machinery including mRNA. Defects in one or more of these functions have potential to contribute to disease processes.
Collapse
Affiliation(s)
- Paul C Bridgman
- Department of Anatomy and Neurobiology, Box 8108, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Kushkuley J, Chan WKH, Lee S, Eyer J, Leterrier JF, Letournel F, Shea TB. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J Cell Sci 2009; 122:3579-86. [PMID: 19737816 DOI: 10.1242/jcs.051318] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesin and microtubules (MTs). Bundled NFs transport substantially slower than the surrounding individual NFs and might represent a resident population that stabilizes axons and undergoes replacement by individual NFs. To examine this possibility, fractions enriched in bundled NFs and individual NFs were generated from mice and NB2a/d1 cells by sedimentation of cytoskeletons over a sucrose cushion. More kinesin was recovered within individual versus bundled NF fractions. Individual but not bundled NFs aligned with purified MTs under cell-free conditions. The percentage of NFs that aligned with MTs was increased by the addition of kinesin, and inhibited by anti-kinesin antibodies. Bundles dissociated following incubation with EGTA or alkaline phosphatase, generating individual NFs that retained or were depleted of phospho-epitopes, respectively. These dissociated NFs aligned with MTs at a level identical to those originally isolated as individual NFs regardless of phosphorylation state. EGTA-mediated dissociation of bundles was prevented and reversed by excess Ca(2+), whereas individual NFs did not associate in the presence of excess Ca(2+). These findings confirm that bundling competes with NF-MT association, and provide a mechanism by which C-terminal NF phosphorylation might indirectly contribute to the observed slowing in axonal transport of phospho-NFs.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Alami NH, Jung P, Brown A. Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses. J Neurosci 2009; 29:6625-34. [PMID: 19458233 PMCID: PMC2943491 DOI: 10.1523/jneurosci.3829-08.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 03/27/2009] [Accepted: 04/03/2009] [Indexed: 12/21/2022] Open
Abstract
We investigated the axonal transport of neurofilaments in cultured neurons from two different strains of dilute lethal mice, which lack myosin Va. To analyze the motile behavior, we tracked the movement of green fluorescent protein (GFP)-tagged neurofilaments through naturally occurring gaps in the axonal neurofilament array of cultured superior cervical ganglion neurons from DLS/LeJ dilute lethal mice. Compared with wild-type controls, we observed no statistically significant difference in velocity or frequency of movement. To analyze the pausing behavior, we used a fluorescence photoactivation pulse-escape technique to measure the rate of departure of PAGFP (photoactivatable GFP)-tagged neurofilaments from photoactivated axonal segments in cultured dorsal root ganglion neurons from DLS/LeJ and dl20J dilute lethal mice. Compared with wild-type controls, we observed a 48% increase in the mean time for neurofilaments to depart the activated regions in neurons from DLS/LeJ mice (p < 0.001) and a 169% increase in neurons from dl20J mice (p < 0.0001). These data indicate that neurofilaments pause for more prolonged periods in the absence of myosin Va. We hypothesize that myosin Va is a short-range motor for neurofilaments and that it can function to enhance the efficiency of neurofilament transport in axons by delivering neurofilaments to their microtubule tracks, thereby reducing the duration of prolonged off-track pauses.
Collapse
Affiliation(s)
- Nael H. Alami
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, and
| | - Peter Jung
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Anthony Brown
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, and
| |
Collapse
|
23
|
Shea TB, Lee S, Kushkuley J, Dubey M, Chan WKH. Neurofilament dynamics: a tug of war by microtubule motors. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural support for axons, which can consist of volumes thousands of times larger than the neuronal perikaryon, is provided in part by neurofilaments (NFs), the major fibrous constituent of the axonal cytoskeleton. Most NFs undergo anterograde transport (towards the synapse or growth cone), while a few undergo retrograde transport (back towards the perikaryon). Some NFs exhibit an extended residence time along axons, which allows NFs to provide structural support to the axon yet minimizes NF turnover, which would otherwise impart a prohibitive metabolic burden upon the neuron. Herein, we explore known and hypothesized roles for microtubule motors in transport and distribution of NFs along axons. We present evidence that those NFs that display extended residence along axons are critically dependent upon surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force regulating their distribution.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sangmook Lee
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Jacob Kushkuley
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Maya Dubey
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Walter K-H Chan
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
24
|
Chen Q, Peto CA, Shelton GD, Mizisin A, Sawchenko PE, Schubert D. Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration. J Neurosci 2009; 29:118-30. [PMID: 19129390 PMCID: PMC2669744 DOI: 10.1523/jneurosci.3985-08.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/13/2008] [Accepted: 11/27/2008] [Indexed: 12/19/2022] Open
Abstract
Axonal dysfunction is the major phenotypic change in many neurodegenerative diseases, but the processes underlying this impairment are not clear. Modifier of cell adhesion (MOCA) is a presenilin binding protein that functions as a guanine nucleotide exchange factor for Rac1. The loss of MOCA in mice leads to axonal degeneration and causes sensorimotor impairments by decreasing cofilin phosphorylation and altering its upstream signaling partners LIM kinase and p21-activated kinase, an enzyme directly downstream of Rac1. The dystrophic axons found in MOCA-deficient mice are associated with abnormal aggregates of neurofilament protein, the disorganization of the axonal cytoskeleton, and the accumulation of autophagic vacuoles and polyubiquitinated proteins. Furthermore, MOCA deficiency causes an alteration in the actin cytoskeleton and the formation of cofilin-containing rod-like structures. The dystrophic axons show functional abnormalities, including impaired axonal transport. These findings demonstrate that MOCA is required for maintaining the functional integrity of axons and define a model for the steps leading to axonal degeneration.
Collapse
Affiliation(s)
- Qi Chen
- Cellular Neurobiology Laboratory and
| | - Charles A. Peto
- Neuronal Structure and Function Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - G. Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Andrew Mizisin
- Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Paul E. Sawchenko
- Neuronal Structure and Function Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
| | | |
Collapse
|
25
|
Abstract
Actin filaments are thin polymers of the 42 kD protein actin. In mature axons a network of subaxolemmal actin filaments provide stability for membrane integrity and a substrate for short distance transport of cargos. In developing neurons dynamic regulation of actin polymerization and organization mediates axonal morphogenesis and axonal pathfinding to synaptic targets. Other changes in axonal shape, collateral branching, branch retraction, and axonal regeneration, also depend on actin filament dynamics. Actin filament organization is regulated by a diversity of actin-binding proteins (ABP). ABP are the focus of complex extrinsic and intrinsic signaling pathways, and many neurological pathologies and dysfunctions arise from defective regulation of ABP function.
Collapse
Affiliation(s)
- Paul C Letourneau
- Department of Neuroscience, 6-145 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Shea TB, Chan WKH, Kushkuley J, Lee S. Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments. Results Probl Cell Differ 2009; 48:29-45. [PMID: 19554281 DOI: 10.1007/400_2009_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurofilament phosphorylation has long been considered to regulate their axonal transport rate, and in doing so it provides stability to mature axons. We evaluate the collective evidence to date regarding how neurofilament C-terminal phosphorylation may regulate axonal transport. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. We present evidence that the NFs that display extended residence along axons are critically dependent upon the surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force that regulates their distribution. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance might contribute to motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Departments of Biological Sciences and Biochemistry, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, England.
| | | | | | | |
Collapse
|
27
|
Zhang WC, Peng YJ, He WQ, Lv N, Chen C, Zhi G, Chen HQ, Zhu MS. Identification and functional characterization of an aggregation domain in long myosin light chain kinase. FEBS J 2008; 275:2489-500. [PMID: 18400030 DOI: 10.1111/j.1742-4658.2008.06393.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The functions of long smooth muscle myosin light chain kinase (L-MLCK), a molecule with multiple domains, are poorly understood. To examine the existence of further potentially functional domains in this molecule, we analyzed its amino acid sequence with a tango program and found a putative aggregation domain located at the 4Ig domain of the N-terminal extension. To verify its aggregation capability in vitro, expressible truncated L-MLCK variants driven by a cytomegalovirus promoter were transfected into cells. As anticipated, only the overexpression of the 4Ig fragment led to particle formation in Colon26 cells. These particles contained 4Ig polymers and actin. Analysis with detergents demonstrated that the particles shared features in common with aggregates. Thus, we conclude that the 4Ig domain has a potent aggregation ability. To further examine this aggregation domain in vivo, eight transgenic mouse lines expressing the 4Ig domain (4Ig lines) were generated. The results showed that the transgenic mice had typical aggregation in the thigh and diaphragm muscles. Histological examination showed that 7.70 +/- 1.86% of extensor digitorum longus myofibrils displayed aggregates with a 36.44% reduction in myofibril diameter, whereas 65.13 +/- 3.42% of diaphragm myofibrils displayed aggregates and the myofibril diameter was reduced by 43.08%. Electron microscopy examination suggested that the aggregates were deposited at the mitochondria, resulting in structural impairment. As a consequence, the oxygen consumption of mitochondria in the affected muscles was also reduced. Macrophenotypic analysis showed the presence of muscular degeneration characterized by a reduction in force development, faster fatigue, decreased myofibril diameters, and structural alterations. In summary, our study revealed the existence of a novel aggregation domain in L-MLCK and provided a direct link between L-MLCK and aggregation. The possible significance and mechanism underlying the aggregation-based pathological processes mediated by L-MLCK are also discussed.
Collapse
|
28
|
Takagishi Y, Hashimoto K, Kayahara T, Watanabe M, Otsuka H, Mizoguchi A, Kano M, Murata Y. Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Dev Neurobiol 2007; 67:909-23. [PMID: 17506494 DOI: 10.1002/dneu.20375] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myosin Va is an actin-based molecular motor that is involved in organelle transport and membrane trafficking. Here, we explored the role of myosin Va in the formation of synaptic circuitry by examining climbing fiber (CF) innervation of Purkinje cells (PCs) in the cerebella of dilute-neurological (d-n) mice and dilute-opisthotonus (dop) rats that have mutations in dilute-encoded myosin Va. Anterograde labeling of CFs with biotinylated dextran amine (BDA) revealed that they arborized poorly and that their tips extended only half way through the thickness of the molecular layer (ML) in adult d-n mice. Using immunohistochemistry specific for vesicular glutamate transporter 2 (VGluT2) to visualize CF synaptic terminals, we found that during development and in adulthood, these terminals did not ascend as far along the proximal shaft dendrites of PCs in d-n mice and dop rats as they did in normal animals. An irregular distribution of BDA-labeled bulbous varicosities and VGluT2 spots along CF branches were also noted in these animals. Finally, VGluT2-positive CF terminals were occasionally localized on the PC somata of adult d-n cerebella. These phenotypes are consistent with our electrophysiological findings that CF-mediated excitatory postsynaptic currents (EPSCs) were significantly smaller in amplitude and faster in decay in adult d-n mice, and that the regression of multiple CFs was slightly delayed in developing d-n mice. Taken together, our results suggest that myosin Va is essential for terminal CF extension and for the establishment of CF synapses within the proper dendritic territories of PCs.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T. Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 2007; 16:2345-51. [PMID: 17141617 DOI: 10.1016/j.cub.2006.10.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/17/2006] [Accepted: 10/05/2006] [Indexed: 11/15/2022]
Abstract
mRNA localization has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion, and allowing the local control of protein synthesis in neurons. In neuronal dendrites, the localization and translocation of mRNA is considered as one of the molecular bases of synaptic plasticity. Recent imaging and functional studies revealed that several RNA-binding proteins form a large messenger ribonucleoprotein (mRNP) complex that is involved in transport and translation of mRNA in dendrites. However, the mechanism of mRNA translocation into dendritic spines is unknown. Here, we show that an actin-based motor, myosin-Va, plays a significant role in mRNP transport in neuronal dendrites and spines. Myosin-Va was Ca2+-dependently associated with TLS, an RNA-binding protein, and its target RNA Nd1-L, an actin stabilizer. A dominant-negative mutant or RNAi of myosin-Va in neurons suppressed TLS accumulation in spines and further impaired TLS dynamics upon activation of mGluRs. The TLS translocation into spines was impeded also in neurons prepared from myosin-Va-null dilute-lethal (dl) mice, which exhibit neurological defects. Our results demonstrate that myosin-Va facilitates the transport of TLS-containing mRNP complexes in spines and may function in synaptic plasticity through Ca2+ signaling.
Collapse
|
30
|
Jones SL, Selzer ME, Gallo G. Developmental regulation of sensory axon regeneration in the absence of growth cones. JOURNAL OF NEUROBIOLOGY 2006; 66:1630-45. [PMID: 17058187 PMCID: PMC2664685 DOI: 10.1002/neu.20309] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The actin filament (F-actin) cytoskeleton is thought to be required for normal axon extension during embryonic development. Whether this is true of axon regeneration in the mature nervous system is not known, but a progressive simplification of growth cones during development has been described and where specifically investigated, mature spinal cord axons appear to regenerate without growth cones. We have studied the cytoskeletal mechanisms of axon regeneration in developmentally early and late chicken sensory neurons, at embryonic day (E) 7 and 14 respectively. Depletion of F-actin blocked the regeneration of E7 but not E14 sensory axons in vitro. The differential sensitivity of axon regeneration to the loss of F-actin and growth cones correlated with endogenous levels of F-actin and growth cone morphology. The growth cones of E7 axons contained more F-actin and were more elaborate than those of E14 axons. The ability of E14 axons to regenerate in the absence of F-actin and growth cones was dependent on microtubule tip polymerization. Importantly, while the regeneration of E7 axons was strictly dependent on F-actin, regeneration of E14 axons was more dependent on microtubule tip polymerization. Furthermore, E14 axons exhibited altered microtubule polymerization relative to E7, as determined by imaging of microtubule tip polymerization in living neurons. These data indicate that the mechanism of axon regeneration undergoes a developmental switch between E7 and E14 from strict dependence on F-actin to a greater dependence on microtubule polymerization. Collectively, these experiments indicate that microtubule polymerization may be a therapeutic target for promoting regeneration of mature neurons.
Collapse
Affiliation(s)
- Steven L Jones
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
31
|
Yang CX, Chen HQ, Chen C, Yu WP, Zhang WC, Peng YJ, He WQ, Wei DM, Gao X, Zhu MS. Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase. Cell Res 2006; 16:367-76. [PMID: 16617332 DOI: 10.1038/sj.cr.7310047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myosin light chain kinases (MLCK) phosphorylate the regulatory light chain of myosin II in thick filaments and bind to F-actin-containing thin filaments with high affinity. The ability of short myosin light chain kinase (S-MLCK) to bind F-actin is structurally attributed to the DFRXXL regions in its N-terminus. The long myosin light chain kinase (L-MLCK) has two additional DFRXXL motifs and six Ig-like modules in its N-terminal extension. The six Ig-like modules are capable of binding to stress fibers independently. Our results from the imaging analysis demonstrated that the first two intact Ig-like modules (2Ig) in N-terminal extension of L-MLCK is the minimal binding module required for microfilament binding. Binding assay confirmed that F-actin was able to bind 2Ig. Stoichiometries of 2Ig peptide were similar for myofilament or pure F-actin. The binding affinities were slightly lower than 5DFRXXL peptide as reported previously. Similar to DFRXXL peptides, the 2Ig peptide also caused efficient F-actin bundle formation in vitro. In the living cell, over-expression of 2Ig fragment increased "spike"-like protrusion formation with over-bundled F-actin. Our results suggest that L-MLCK may act as a potent F-actin bundling protein via its DFRXXL region and the 2Ig region, implying that L-MLCK plays a role in cytoskeleton organization.
Collapse
Affiliation(s)
- Chun Xiang Yang
- Model Animal Research Center and National Key Lab of Medicine, Nanjing University, Nanjing 210061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fukushima N, Morita Y. Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons. Brain Res 2006; 1094:65-75. [PMID: 16690038 DOI: 10.1016/j.brainres.2006.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 03/31/2006] [Accepted: 04/03/2006] [Indexed: 01/24/2023]
Abstract
It has been shown that lysophosphatidic acid (LPA), a signaling phospholipid, induces neurite retraction and the formation of retraction fibers in young cortical neurons by actin rearrangement. This study examined the rearrangement of microtubules (MTs) during LPA-induced neurite remodeling by immunostaining with antibodies against several types of tubulin. The results showed that alpha-tubulin was present in growing neurites as well as in cell bodies with various localization profiles. Exposure of neurons to LPA resulted in neurite retraction, accompanied by the rearrangement of MTs in neurites and the accumulation of MTs in cell bodies, without significant changes in the total amount of MTs in the cytoskeletal fraction of cultured neurons. Similar findings were obtained when young neurons were stained for other types of tubulin, including beta-tubulin type III and posttranslationally acetylated and tyrosinated tubulin. LPA-induced MT rearrangement was accompanied by accumulation of myosin IIB and polymerized actin at the base of retraction fibers. These effects of LPA on MTs and myosin IIB were blocked by pretreatment with inhibitors of the actomyosin and Rho pathways (cytochalasin D, blebbistatin, and Y27632), but not by an MT stabilizer (taxol), whereas taxol inhibited neurite retraction and MT depolymerization induced by nocodazole. Furthermore, neurofilaments also showed rearrangement in response to LPA, which was blocked by cytochalasin D and Y27632, but not taxol. Taken together, these results suggested that LPA did not induce MT depolymerization and that LPA-induced actomyosin activation produced MT and neurofilament rearrangement, leading to neurite remodeling.
Collapse
Affiliation(s)
- Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka 577-8502, Japan.
| | | |
Collapse
|
33
|
Windoffer R, Kölsch A, Wöll S, Leube RE. Focal adhesions are hotspots for keratin filament precursor formation. J Cell Biol 2006; 173:341-8. [PMID: 16682525 PMCID: PMC2063835 DOI: 10.1083/jcb.200511124] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 04/04/2006] [Indexed: 12/19/2022] Open
Abstract
Recent studies showed that keratin filament (KF) formation originates primarily from sites close to the actin-rich cell cortex. To further characterize these sites, we performed multicolor fluorescence imaging of living cells and found drastically increased KF assembly in regions of elevated actin turnover, i.e., in lamellipodia. Abundant KF precursors (KFPs) appeared within these areas at the distal tips of actin stress fibers, moving alongside the stress fibers until their integration into the peripheral KF network. The earliest KFPs were detected next to actin-anchoring focal adhesions (FAs) and were only seen after the establishment of FAs in emerging lamellipodia. Tight spatiotemporal coupling of FAs and KFP formation were not restricted to epithelial cells, but also occurred in nonepithelial cells and cells producing mutant keratins. Finally, interference with FA formation by talin short hairpin RNA led to KFP depletion. Collectively, our results support a major regulatory function of FAs for KF assembly, thereby providing the basis for coordinated shaping of the entire cytoskeleton during cell relocation and rearrangement.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
34
|
Lamprecht R, Margulies DS, Farb CR, Hou M, Johnson LR, LeDoux JE. Myosin light chain kinase regulates synaptic plasticity and fear learning in the lateral amygdala. Neuroscience 2006; 139:821-9. [PMID: 16515842 DOI: 10.1016/j.neuroscience.2005.12.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/18/2005] [Accepted: 12/22/2005] [Indexed: 01/29/2023]
Abstract
Learning and memory depend on signaling molecules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the training stimuli were presented in a non-associative manner. Anatomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically implicated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nucleus of the amygdala. When ML-7 was applied without associative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the circuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.
Collapse
Affiliation(s)
- R Lamprecht
- W. M. Keck Foundation Laboratory for Neurobiology, Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Chan WKH, Yabe JT, Pimenta AF, Ortiz D, Shea TB. Neurofilaments can undergo axonal transport and cytoskeletal incorporation in a discontinuous manner. ACTA ACUST UNITED AC 2006; 62:166-79. [PMID: 16211584 DOI: 10.1002/cm.20089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurofilaments (NFs) are thought to provide structural support for axons. Some NFs exhibit an extended residence time along axons, the nature of which remains unclear. In prior studies in NB2a/d1 cells, hypophosphorylated NFs were demonstrated to be dispersed throughout the axon and to undergo relatively rapid axonal transport, while extensively phosphorylated NFs organized into a "bundle" localized along the center of the axon. It was not conclusively determined whether bundled NFs underwent transport or instead underwent turnover via exchange with transporting individual NFs. Herein, using transfection with multiple constructs and regional photobleaching, we demonstrate that bundled NFs undergo relatively slow transport as well as exchange with surrounding individual NFs. We also demonstrate that newly synthesized NFs disperse nonhomogenously throughout axonal neurites and perikarya. These findings provide a mechanism by which some NFs exhibit extended residence time within axons, which lessens the metabolic burden of cytoskeletal turnover.
Collapse
Affiliation(s)
- Walter K-H Chan
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts-Lowell, One University Avenue Lowell, Massachusetts 01854, USA
| | | | | | | | | |
Collapse
|
36
|
Triana-Baltzer GB, Blank M. Cytoplasmic domain of protocadherin-α enhances homophilic interactions and recognizes cytoskeletal elements. ACTA ACUST UNITED AC 2006; 66:393-407. [PMID: 16408303 DOI: 10.1002/neu.20228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell adhesion molecules of the protocadherin-alpha (pcdh-alpha), -beta, and -gamma families have been proposed to be synaptic specifiers. Pcdh-alpha and -gamma family members localize in part to synapses, and deletion of all pcdh-gammas in mouse affects synaptogenesis. Little is known, however, about the binding specificities and intracellular signaling of protocadherins. Using heterologous expression of tagged constructs, immunostaining, and biotinylation of surface components followed by Western blots we demonstrate that pcdh-alphas undergo homophilic interactions that are significantly enhanced by the cytoplasmic domain. Pcdh-alphas cloned from chick ciliary ganglion have one of two cytoplasmic constant regions (A- and B-types). Screening a yeast two-hybrid library of ciliary ganglion cDNA with the A-type domain yielded a fragment of neurofilament M (NFM); screening with B-type domain yielded a fragment of the actin-bundling protein fascin. Cotransfection of HEK cells with the constructs indicated that the NFM and A-type fragments codistributed as did the fascin and B-type fragments, and the latter could be coimmunoprecipitated. Antibody-induced clustering of full-length pcdh-alphas on the surface of transfected HEK cells induced coclustering of the interacting NFM fragment. Native full-length NFM in tissue extracts bound specifically to the A-type domain on beads, while native full-length fascin in tissue extracts specifically coimmunoprecipitated with pcdh-alpha. Immunostaining neurons demonstrated codistribution of full-length pcdh-alpha with both NFM and actin filaments. These findings suggest cytoskeletal links for pcdh-alphas and identify candidate targets. They also demonstrate homophilic interactions for pcdh-alphas as described for classical cadherins.
Collapse
Affiliation(s)
- Gallen B Triana-Baltzer
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, California 92093-0357, USA
| | | |
Collapse
|
37
|
Motil J, Chan WKH, Dubey M, Chaudhury P, Pimenta A, Chylinski TM, Ortiz DT, Shea TB. Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: Regulation by multiple phosphorylation events. ACTA ACUST UNITED AC 2006; 63:266-86. [PMID: 16570247 DOI: 10.1002/cm.20122] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the respective roles of dynein and kinesin in axonal transport of neurofilaments (NFs). Differentiated NB2a/d1 cells were transfected with green fluorescent protein-NF-M (GFP-M) and dynein function was inhibited by co-transfection with a construct expressing myc-tagged dynamitin, or by intracellular delivery of purified dynamitin and two antibodies against dynein's cargo domain. Monitoring of the bulk distribution of GFP signal within axonal neurites, recovery of GFP signal within photobleached regions, and real-time monitoring of individual NFs/punctate structures each revealed that pertubation of dynein function inhibited retrograde transport and accelerated anterograde, confirming that dynein mediated retrograde axonal transport, while intracellular delivery of two anti-kinesin antibodies selectively inhibited NF anterograde transport. In addition, dynamitin overexpression inhibited the initial translocation of newly-expressed NFs out of perikarya and into neurites, indicating that dynein participated in the initial anterograde delivery of NFs into neurites. Delivery of NFs to the axon hillock inner plasma membrane surface, and their subsequent translocation into neurites, was also prevented by vinblastine-mediated inhibition of microtubule assembly. These data collectively suggest that some NFs enter axons as cargo of microtubues that are themselves undergoing transport into axons via dynein-mediated interactions with the actin cortex and/or larger microtubules. C-terminal NF phosphorylation regulates motor association, since anti-dynein selectively coprecipitated extensively phosphorylated NFs, while anti-kinesin selectively coprecipitated less phosphorylated NFs. In addition, however, the MAP kinase inhibitor PD98059 also inhibited transport of a constitutively-phosphorylated NF construct, indicating that one or more additional, non-NF phosphorylation events also regulated NF association with dynein or kinesin.
Collapse
Affiliation(s)
- Jennifer Motil
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
De Stefano ME, Leone L, Lombardi L, Paggi P. Lack of dystrophin leads to the selective loss of superior cervical ganglion neurons projecting to muscular targets in genetically dystrophic mdx mice. Neurobiol Dis 2005; 20:929-42. [PMID: 16023353 DOI: 10.1016/j.nbd.2005.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 12/31/2022] Open
Abstract
Autonomic imbalance is a pathological aspect of Duchenne muscular dystrophy. Here, we show that the sympathetic superior cervical ganglion (SCG) of mdx mice, which lack dystrophin (Dp427), has 36% fewer neurons than that of wild-type animals. Cell loss occurs around P10 and affects those neurons innervating muscular targets (heart and iris), which, differently from the submandibular gland (non-muscular target), are precociously damaged by the lack of Dp427. In addition, although we reveal altered axonal defasciculation in the submandibular gland and reduced terminal sprouting in all SCG target organs, poor adrenergic innervation is observed only in the heart and iris. These alterations, detected as early as P5, when neuronal loss has not yet occurred, suggest that in mdx mice the absence of Dp427 directly impairs the axonal growth and terminal sprouting of sympathetic neurons. However, when these intrinsic alterations combine with structural and/or functional damages of muscular targets, neuronal death occurs.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System Diseases/genetics
- Autonomic Nervous System Diseases/metabolism
- Autonomic Nervous System Diseases/physiopathology
- Cell Death/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Heart/growth & development
- Heart/innervation
- Iris/growth & development
- Iris/innervation
- Iris/ultrastructure
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Microscopy, Electron, Transmission
- Muscle, Smooth/innervation
- Muscle, Smooth/physiopathology
- Muscles/innervation
- Muscles/ultrastructure
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardium/ultrastructure
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neuronal Plasticity/genetics
- Neurons/metabolism
- Neurons/pathology
- Superior Cervical Ganglion/metabolism
- Superior Cervical Ganglion/pathology
- Superior Cervical Ganglion/physiopathology
Collapse
Affiliation(s)
- M Egle De Stefano
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | |
Collapse
|