1
|
Zhang S, Jiang R, Wang C, Yang M, Wang T, Cui J, Li G, Chen S, Huang M. Transcriptional programs associated with luminal play a vital role in invasive mucinous lung adenocarcinoma. Genes Dis 2025; 12:101278. [PMID: 39584073 PMCID: PMC11582536 DOI: 10.1016/j.gendis.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rong Jiang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Changguo Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Manqiu Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tao Wang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianzhou Cui
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- NUS-Cambridge Immunophenotyping Centre, National University of Singapore, Singapore 117456, Singapore
| | - Guangbin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Prince SS, Chijioke O, Bubendorf L. Unravelling lung adenocarcinoma with mucinous histology and its translational implications. Ann Oncol 2025; 36:235-237. [PMID: 39984222 DOI: 10.1016/j.annonc.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/23/2025] Open
Affiliation(s)
- S S Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - O Chijioke
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - L Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Kawai H, Miura T, Kawamatsu N, Nakagawa T, Shiba-Ishii A, Yoshimoto T, Amano Y, Kihara A, Sakuma Y, Fujita K, Shibano T, Ishikawa S, Ushiku T, Fukayama M, Tsubochi H, Endo S, Hagiwara K, Matsubara D, Niki T. Expression patterns of HNF4α, TTF-1, and SMARCA4 in lung adenocarcinomas: impacts on clinicopathological and genetic features. Virchows Arch 2025; 486:343-354. [PMID: 38710944 PMCID: PMC11876232 DOI: 10.1007/s00428-024-03816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION HNF4α expression and SMARCA4 loss were thought to be features of non-terminal respiratory unit (TRU)-type lung adenocarcinomas, but their relationships remained unclear. MATERIALS AND METHODS HNF4α-positive cases among 241 lung adenocarcinomas were stratified based on TTF-1 and SMARCA4 expressions, histological subtypes, and driver mutations. Immunohistochemical analysis was performed using xenograft tumors of lung adenocarcinoma cell lines with high HNF4A expression. RESULT HNF4α-positive adenocarcinomas(n = 33) were divided into two groups: the variant group(15 mucinous, 2 enteric, and 1 colloid), where SMARCA4 was retained in all cases, and the conventional non-mucinous group(6 papillary, 5 solid, and 4 acinar), where SMARCA4 was lost in 3/15 cases(20%). All variant cases were negative for TTF-1 and showed wild-type EGFR and frequent KRAS mutations(10/18, 56%). The non-mucinous group was further divided into two groups: TRU-type(n = 7), which was positive for TTF-1 and showed predominantly papillary histology(6/7, 86%) and EGFR mutations(3/7, 43%), and non-TRU-type(n = 8), which was negative for TTF-1, showed frequent loss of SMARCA4(2/8, 25%) and predominantly solid histology(4/8, 50%), and never harbored EGFR mutations. Survival analysis of 230 cases based on histological grading and HNF4α expression revealed that HNF4α-positive poorly differentiated (grade 3) adenocarcinoma showed the worst prognosis. Among 39 cell lines, A549 showed the highest level of HNF4A, immunohistochemically HNF4α expression positive and SMARCA4 lost, and exhibited non-mucinous, high-grade morphology in xenograft tumors. CONCLUSION HNF4α-positive non-mucinous adenocarcinomas included TRU-type and non-TRU-type cases; the latter tended to exhibit the high-grade phenotype with frequent loss of SMARCA4, and A549 was a representative cell line.
Collapse
Affiliation(s)
- Hitomi Kawai
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Natsumi Kawamatsu
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tomoki Nakagawa
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Aya Shiba-Ishii
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Taichiro Yoshimoto
- Department of Pathology, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-Shi, Tokyo, 187-851, Japan
| | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Sapporo Medical University, 1-17, Minami Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Kazutaka Fujita
- Department of Respiratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Koichi Hagiwara
- Omiya Medical Association Medical Examination Center, 2-107, Higashioonari-Chou, Kita-Ku, Saitama-Shi, Saitama, 331-8689, Japan
| | - Daisuke Matsubara
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
4
|
Li X, Ma K, Ma X, Zhao X, Fan M, Xu Y. Lung enteric-type adenocarcinoma with gastric metastasis: a rare case report and literature review. Front Immunol 2024; 15:1486214. [PMID: 39507527 PMCID: PMC11537902 DOI: 10.3389/fimmu.2024.1486214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Lung enteric-type adenocarcinoma (ETAC) is a rare subtype of non-small cell lung cancer (NSCLC), comprising approximately 0.6% of all primary lung adenocarcinomas. It is characterized by a tendency for early metastasis and a prognosis comparable to that of common lung adenocarcinoma. This case report described a patient with lung-ETAC who developed gastric metastasis. The patient underwent treatment with chemotherapy and a PD-1 inhibitor, resulting in disease remission with a progression-free survival (PFS) of 8 months. The follow-up time was 13 months. This case report was aimed to enhance understanding of the biological behavior of this rare tumor and provide insights into potential future treatment strategies.
Collapse
Affiliation(s)
- Xiaoning Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaobo Ma
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangye Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengge Fan
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Kim SH, Seong H, Lee J, Ahn HY, Cho JS, I H, Kim YD, Lee MK, Eom JS, Kim MH. The role of local ablative therapy in patients with advanced invasive mucinous adenocarcinoma of the lung. J Cancer Res Clin Oncol 2024; 150:409. [PMID: 39230677 PMCID: PMC11374817 DOI: 10.1007/s00432-024-05931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Invasive mucinous adenocarcinoma (IMA) of the lungs is a rare subtype of lung adenocarcinoma with a limited understanding of its prognosis, particularly in advanced stages. This study aimed to assess the prognosis of patients with advanced IMA by focusing on treatment modalities. METHODS This single-center retrospective study evaluated 33 patients with IMAs diagnosed with advanced-stage disease or disease progression after curative treatment between 2011 and 2021. The primary outcome was overall survival (OS), and the secondary outcome was progression-free survival (PFS). OS and PFS were calculated from the date of the diagnosis of advanced IMA. RESULTS The study cohort included 13 patients at the initial advanced stage and 20 patients who progressed after curative treatment. Treatment modalities included conventional chemotherapy in 24 patients (72.7%), targeted therapy in seven (21.2%), immunotherapy in 13 (39.4%), and local ablative therapy (LAT) in 13 (39.4%). The median OS was 32 months (95% confidence interval [CI], 2.9-61.0), with LAT significantly associated with improved OS compared to non-LAT treatment (not reached vs. 11.3 months, p = 0.001). However, there was no significant difference in OS based on conventional chemotherapy (p = 0.396), targeted therapy (p = 0.655), or immunotherapy (p = 0.992). In multivariate analysis, LAT remained an independent prognostic factor for OS (hazard ratio, 0.125; 95% CI, 0.026-0.608; p = 0.01). PFS was 8.6 months (95% CI, 3.6-13.7), with no significant differences observed among the treatment modalities. CONCLUSION Our findings suggest that LAT may provide favorable survival outcomes in patients with advanced IMA.
Collapse
Affiliation(s)
- Soo Han Kim
- Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hayoung Seong
- Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Jonggeun Lee
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Hyo Yeong Ahn
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Jeong Su Cho
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Hoseok I
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Yeong Dae Kim
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Min Ki Lee
- Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung Seop Eom
- Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea.
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| |
Collapse
|
6
|
Mori S, Maiguma T, Yoshii K, Moriya Y, Takada R, Shinkai F, Haruki Y, Hashimoto H, Komoto A, Takayanagi K, Tamura K, Okura Y, Sugiyama T, Shimada K. Effect of the thyroid transcription factor 1 expression and treatment discontinuation due to adverse events on progression-free survival in patients with advanced non-squamous non-small cell lung cancer treated with pembrolizumab plus pemetrexed and platinum chemotherapy: a Japanese four-hospital, retrospective study. Am J Cancer Res 2024; 14:3852-3858. [PMID: 39267683 PMCID: PMC11387863 DOI: 10.62347/jtwp3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/21/2024] [Indexed: 09/15/2024] Open
Abstract
Although a significant improvement in progression-free survival (PFS) has been reported in the thyroid transcription factor 1 (TTF-1) positive patients under treatment for non-squamous non-small cell lung cancer (NS-NSCLC), including immune checkpoint inhibitor therapy, the association between TTF-1 expression and adverse event occurrence remains unclear. Therefore, this study investigated the impact of TTF-1 and its adverse events on PFS during pembrolizumab plus pemetrexed and platinum chemotherapy for NS-NSCLC. Patients who received the pembrolizumab plus pemetrexed and platinum chemotherapy from 1/1/2018 to 12/31/2022 and whose TTF-1 expression was measured were included in the study. This was a retrospective study conducted using electronic medical records. The mean age of the 79 patients was 67.5 ± 8.4 years, with 75.95% patients being male. Among them, 59.49% were TTF-1 positive. PFS comparison between TTF-1-positive and -negative patients showed a trend toward longer PFS for TTF-1 positive patients, though the results were statistically insignificant (P = 0.190). Proportional hazards analysis indicated significant PFS extension from treatment interruption, as adverse events related to cancer therapy stopped (hazard ratio [HR] = 0.32, P = 0.005) and the number of anticancer agents used (HR = 0.01, P < 0.001). Additionally, pembrolizumab plus pemetrexed and platinum chemotherapy for TTF-1-positive NS-NSCLC significantly extended PFS after treatment discontinuation as related adverse events stopped (827 vs. 210 days, P = 0.021). Measurement of TTF-1 may accordingly serve as a predictor of treatment response to the pembrolizumab plus pemetrexed and platinum chemotherapy. It may also be a predictor of patient prognosis when treatment is discontinued due to related adverse events.
Collapse
Affiliation(s)
- Shoma Mori
- Department of Pharmacy, Tsuyama Chuo Hospital Okayama, Japan
- Graduate School of Clinical Pharmacy, Shujitsu University Okayama, Japan
| | - Takayoshi Maiguma
- Graduate School of Clinical Pharmacy, Shujitsu University Okayama, Japan
- School of Pharmacy, Shujitsu University Okayama, Japan
| | | | - Yasushi Moriya
- Department of Pharmacy, Kurashiki Central Hospital Okayama, Japan
| | - Ryo Takada
- Department of Pharmacy, NHO Fukuyama Medical Center Hiroshima, Japan
| | - Fumitaka Shinkai
- Department of Pharmacy, NHO Okayama Medical Center Okayama, Japan
| | - Yuto Haruki
- Department of Pharmacy, Tsuyama Chuo Hospital Okayama, Japan
| | | | | | | | - Koji Tamura
- Department of Pharmacy, NHO Fukuyama Medical Center Hiroshima, Japan
| | - Yusuke Okura
- Department of Pharmacy, NHO Okayama Medical Center Okayama, Japan
| | | | - Kenichi Shimada
- Graduate School of Clinical Pharmacy, Shujitsu University Okayama, Japan
- School of Pharmacy, Shujitsu University Okayama, Japan
| |
Collapse
|
7
|
He H, Li L, Wen YY, Qian LY, Yang ZQ. Micropapillary Pattern in Invasive Mucinous Adenocarcinoma of the Lung: Comparison With Invasive Non-Mucinous Adenocarcinoma. Int J Surg Pathol 2024; 32:926-934. [PMID: 37915205 DOI: 10.1177/10668969231209784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Background. The presence of a micropapillary pattern is associated with poor outcomes in lung adenocarcinoma. This study aimed to assess the clinicopathological features of micropapillary pattern in mucinous adenocarcinoma of the lung. Methods. The patients were stratified into three groups: the invasive mucinous adenocarcinoma group (60 patients), the mixed invasive mucinous adenocarcinoma group (33 patients), and the invasive non-mucinous adenocarcinoma group (237 patients). The presence of micropapillary pattern and its clinicopathological features were analyzed and compared between the three groups. Results. Compared to mixed invasive mucinous adenocarcinoma, invasive mucinous adenocarcinoma had lower frequencies of micropapillary pattern (28.3% vs 87.9%, respectively; P < .001) and lymph node metastasis (00.0% vs 15.1%, respectively; P = .005). The frequency of tumor spread through air space (STAS) in invasive mucinous adenocarcinoma (23.3%) was higher than that in invasive non-mucinous adenocarcinoma (6.3%; P < .001), while lower than that in mixed invasive mucinous adenocarcinoma (60.6%; P < .001). When the three groups were all accompanied by micropapillary pattern, there was no obvious difference in STAS between invasive mucinous adenocarcinoma with micropapillary pattern and mixed mucinous adenocarcinoma with micropapillary pattern (P > .05). No filigree pattern occurred in invasive mucinous adenocarcinoma with micropapillary pattern. Conclusions. The micropapillary pattern is frequently observed in invasive mucinous adenocarcinoma and has a better prognosis compared to mixed invasive mucinous adenocarcinoma and invasive non-mucinous adenocarcinoma. However, the malignancy of the micropapillary pattern in mixed mucinous adenocarcinoma was similar to that in invasive non-mucinous adenocarcinoma, even with the presence of mucus. These findings suggest that the development mechanisms of the micropapillary pattern in invasive mucinous adenocarcinoma and mixed mucinous adenocarcinoma may differ.
Collapse
Affiliation(s)
- Hui He
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan City, Zhejiang Province, China
| | - Lue Li
- Department of Respiratory Medicine, Zhoushan Hospital, Wenzhou Medical University, Zhoushan City, Zhejiang Province, China
| | - Yuan-Yuan Wen
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan City, Zhejiang Province, China
| | - Li-Yong Qian
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan City, Zhejiang Province, China
| | - Zhi-Qiang Yang
- Department of Respiratory Medicine, Zhoushan Hospital, Wenzhou Medical University, Zhoushan City, Zhejiang Province, China
| |
Collapse
|
8
|
Iwai M, Yokota E, Ishida Y, Yukawa T, Naomoto Y, Monobe Y, Haisa M, Takigawa N, Fukazawa T, Yamatsuji T. Establishment and characterization of novel high mucus-producing lung tumoroids derived from a patient with pulmonary solid adenocarcinoma. Hum Cell 2024; 37:1194-1204. [PMID: 38632190 PMCID: PMC11194211 DOI: 10.1007/s13577-024-01060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Among mucus-producing lung cancers, invasive mucinous adenocarcinoma of the lung is a rare and unique subtype of pulmonary adenocarcinoma. Notably, mucus production may also be observed in the five subtypes of adenocarcinoma grouped under the higher-level diagnosis of Invasive Non-mucinous Adenocarcinomas (NMA). Overlapping pathologic features in mucus-producing tumors can cause diagnostic confusion with significant clinical consequences. In this study, we established lung tumoroids, PDT-LUAD#99, from a patient with NMA and mucus production. The tumoroids were derived from the malignant pleural effusion of a patient with lung cancer and have been successfully developed for long-term culture (> 11 months). Karyotyping by fluorescence in situ hybridization using an alpha-satellite probe showed that tumoroids harbored aneuploid karyotypes. Subcutaneous inoculation of PDT-LUAD#99 lung tumoroids into immunodeficient mice resulted in tumor formation, suggesting that the tumoroids were derived from cancer. Xenografts from PDT-LUAD#99 lung tumoroids reproduced the solid adenocarcinoma with mucin production that was observed in the patient's metastatic lymph nodes. Immunoblot analysis showed MUC5AC secretion into the culture supernatant of PDT-LUAD#99 lung tumoroids, which in contradistinction was barely detected in the culture supernatants of NCI-A549 and NCI-H2122 pulmonary adenocarcinoma cells known for their mucin-producing abilities. Here, we established a novel high-mucus-producing lung tumoroids from a solid adenocarcinoma. This preclinical model may be useful for elucidating the pathogenesis of mucus-producing lung cancer.
Collapse
Affiliation(s)
- Miki Iwai
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yuta Ishida
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Takuro Yukawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | | | - Minoru Haisa
- Kawasaki Medical School General Medical Center, Okayama, Japan
- Department of Medical Care Work, Kawasaki College of Health Professions, Okayama, Japan
- Kawasaki Geriatric Medical Center, Okayama, Japan
| | - Nagio Takigawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Takuya Fukazawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan.
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan.
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
9
|
Stuart WD, Ito M, Baldauf IF, Fukazawa T, Yamatsuji T, Tsuchiya T, Watanabe H, Okada M, Snyder EL, Mino-Kenudson M, Guo M, Maeda Y. Patho-transcriptomic analysis of invasive mucinous adenocarcinoma of the lung (IMA): comparison with lung adenocarcinoma with signet ring cell features (SRCC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598839. [PMID: 38948839 PMCID: PMC11212912 DOI: 10.1101/2024.06.13.598839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Invasive mucinous adenocarcinoma (IMA) comprises ∼5% of lung adenocarcinoma. There is no effective therapy for IMA when surgical resection is not possible. IMA is sometimes confused with adenocarcinoma with signet ring cell features (SRCC) pathologically since both adenocarcinomas feature tumor cells with abundant intracellular mucin. The molecular mechanisms by which such mucin-producing lung adenocarcinomas develop remain unknown. Methods Using a Visium spatial transcriptomics approach, we analyzed IMA and compared it with SRCC patho-transcriptomically. Combining spatial transcriptomics data with in vitro studies using RNA-seq and ChIP-seq, we assessed downstream targets of transcription factors HNF4A and SPDEF that are highly expressed in IMA and/or SRCC. Results Spatial transcriptomics analysis indicated that there are 6 distinct cell clusters in IMA and SRCC. Notably, two clusters (C1 and C3) of mucinous tumor cells exist in both adenocarcinomas albeit at a different ratio. Importantly, a portion of genes (e.g., NKX2-1 , GKN1 , HNF4A and FOXA3 ) are distinctly expressed while some mucous-related genes (e.g., SPDEF and FOXA2 ) are expressed in both adenocarcinomas. We determined that HNF4A induces MUC3A/B and TM4SF4 and that BI 6015, an HNF4A antagonist, suppressed the growth of IMA cells. Using mutant SPDEF that is associated with COVID-19, we also determined that an intact DNA-binding domain of SPDEF is required for SPDEF-mediated induction of mucin genes ( MUC5AC , MUC5B and AGR2 ). Additionally, we found that XMU-MP-1, a SPDEF inhibitor, suppressed the growth of IMA cells. Conclusion These results revealed that IMA and SRCC contain heterogenous tumor cell types, some of which are targetable.
Collapse
|
10
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
11
|
Xiao Z, Chen J, Feng X, Zhou Y, Liu H, Dai G, Qi W. Use of CT-derived radiomic features to preoperatively identify invasive mucinous adenocarcinoma in solitary pulmonary nodules ≤3 cm. Heliyon 2024; 10:e30209. [PMID: 38707270 PMCID: PMC11066683 DOI: 10.1016/j.heliyon.2024.e30209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Objective In this study, we aimed to utilize computed tomography (CT)-derived radiomics and various machine learning approaches to differentiate between invasive mucinous adenocarcinoma (IMA) and invasive non-mucinous adenocarcinoma (INMA) preoperatively in solitary pulmonary nodules (SPN) ≤3 cm. Methods A total of 538 patients with SPNs measuring ≤3 cm were enrolled, categorized into either the IMA group (n = 50) or INMA group (n = 488) based on postoperative pathology. Radiomic features were extracted from non-contrast-enhanced CT scans and identified using the least absolute shrinkage and selection operator (LASSO) algorithm. In constructing radiomics-based models, logistic regression, support vector machines, classification and regression trees, and k-nearest neighbors were employed. Additionally, a clinical model was developed, focusing on CT radiological features. Subsequently, this clinical model was integrated with the most effective radiomic model to create a combined model. Performance assessments of these models were conducted, utilizing metrics such as the area under the receiver operating characteristic curve (AUC), DeLong's test, net reclassification index (NRI), and integrated discrimination improvement (IDI). Results The support vector machine approach showed superior predictive efficiency, with AUCs of 0.829 and 0.846 in the training and test cohorts, respectively. The clinical model had AUCs of 0.760 and 0.777 in the corresponding cohorts. The combined model had AUCs of 0.847 and 0.857 in the corresponding cohorts. Furthermore, compared to the radiomic model, the combined model significantly improved performance in both the training (DeLong test P = 0.045, NRI 0.206, IDI 0.024) and test cohorts (P = 0.029, NRI 0.125, IDI 0.032), as well as compared to the clinical model in both the training (P = 0.01, NRI 0.310, IDI 0.09) and test cohorts (P = 0.047, NRI 0.382, IDI 0.085). Conclusion the combined model exhibited excellent performance in distinguishing between IMA and INMA in SPNs ≤3 cm.
Collapse
Affiliation(s)
- Zhengyuan Xiao
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Xiaolan Feng
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Yinjun Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Haibo Liu
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Wanyin Qi
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646100, China
| |
Collapse
|
12
|
Liu J, Chang X, Qian L, Chen S, Xue Z, Wu J, Luo D, Huang B, Fan J, Guo T, Nie X. Proteomics-Derived Biomarker Panel Facilitates Distinguishing Primary Lung Adenocarcinomas With Intestinal or Mucinous Differentiation From Lung Metastatic Colorectal Cancer. Mol Cell Proteomics 2024; 23:100766. [PMID: 38608841 PMCID: PMC11092395 DOI: 10.1016/j.mcpro.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis of primary lung adenocarcinomas with intestinal or mucinous differentiation (PAIM) remains challenging due to the overlapping histomorphological, immunohistochemical (IHC), and genetic characteristics with lung metastatic colorectal cancer (lmCRC). This study aimed to explore the protein biomarkers that could distinguish between PAIM and lmCRC. To uncover differences between the two diseases, we used tandem mass tagging-based shotgun proteomics to characterize proteomes of formalin-fixed, paraffin-embedded tumor samples of PAIM (n = 22) and lmCRC (n = 17).Then three machine learning algorithms, namely support vector machine (SVM), random forest, and the Least Absolute Shrinkage and Selection Operator, were utilized to select protein features with diagnostic significance. These candidate proteins were further validated in an independent cohort (PAIM, n = 11; lmCRC, n = 19) by IHC to confirm their diagnostic performance. In total, 105 proteins out of 7871 proteins were significantly dysregulated between PAIM and lmCRC samples and well-separated two groups by Uniform Manifold Approximation and Projection. The upregulated proteins in PAIM were involved in actin cytoskeleton organization, platelet degranulation, and regulation of leukocyte chemotaxis, while downregulated ones were involved in mitochondrial transmembrane transport, vasculature development, and stem cell proliferation. A set of ten candidate proteins (high-level expression in lmCRC: CDH17, ATP1B3, GLB1, OXNAD1, LYST, FABP1; high-level expression in PAIM: CK7 (an established marker), NARR, MLPH, S100A14) was ultimately selected to distinguish PAIM from lmCRC by machine learning algorithms. We further confirmed using IHC that the five protein biomarkers including CDH17, CK7, MLPH, FABP1 and NARR were effective biomarkers for distinguishing PAIM from lmCRC. Our study depicts PAIM-specific proteomic characteristics and demonstrates the potential utility of new protein biomarkers for the differential diagnosis of PAIM and lmCRC. These findings may contribute to improving the diagnostic accuracy and guide appropriate treatments for these patients.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liujia Qian
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangzhi Xue
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiannan Guo
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
14
|
Zhao T, Yi J, Luo D, Liu J, Fan X, Wu Q, Wang W. Prognostic factors for invasive mucinous adenocarcinoma of the lung: systematic review and meta-analysis. World J Surg Oncol 2024; 22:41. [PMID: 38303008 PMCID: PMC10835932 DOI: 10.1186/s12957-024-03326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Invasive mucinous adenocarcinoma of the lung (IMA) is a unique and rare subtype of lung adenocarcinoma with poorly defined prognostic factors and highly controversial studies. Hence, this study aimed to comprehensively identify and summarize the prognostic factors associated with IMA. METHODS A comprehensive search of relevant literature was conducted in the PubMed, Embase, Cochrane, and Web of Science databases from their inception until June 2023. The pooled hazard ratio (HR) and corresponding 95% confidence intervals (CI) of overall survival (OS) and/or disease-free survival (DFS) were obtained to evaluate potential prognostic factors. RESULTS A total of 1062 patients from 11 studies were included. In univariate analysis, we found that gender, age, TNM stage, smoking history, lymph node metastasis, pleural metastasis, spread through air spaces (STAS), tumor size, pathological grade, computed tomography (CT) findings of consolidative-type morphology, pneumonia type, and well-defined heterogeneous ground-glass opacity (GGO) were risk factors for IMA, and spiculated margin sign was a protective factor. In multivariate analysis, smoking history, lymph node metastasis, pathological grade, STAS, tumor size, and pneumonia type sign were found to be risk factors. There was not enough evidence that epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) mutations, CT signs of lobulated margin, and air bronchogram were related to the prognosis for IMA. CONCLUSION In this study, we comprehensively analyzed prognostic factors for invasive mucinous adenocarcinoma of the lung in univariate and multivariate analyses of OS and/or DFS. Finally, 12 risk factors and 1 protective factor were identified. These findings may help guide the clinical management of patients with invasive mucinous adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
| | - Jianhua Yi
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
| | - Dan Luo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine and University Hospital, Macau University of Science and Technology, Taipa, 999078, Macao, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
| | - Junjun Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China.
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine and University Hospital, Macau University of Science and Technology, Taipa, 999078, Macao, China.
- Zhuhai MUST Science and Technology Research Institute, 51900, Zhuhai, Guangdong, China.
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China.
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, 646099, Luzhou, Sichuan, China.
| |
Collapse
|
15
|
Zuo Z, Zhang G, Chen J, Xue Q, Lin S, Zeng Y, Ge W, Qi W, Yang L, Liu H, Fan X, Zhang S. CT Radiomic Nomogram Using Optimal Volume of Interest for Preoperatively Predicting Invasive Mucinous Adenocarcinomas in Patients with Incidental Pulmonary Nodules: A Multicenter, Large-Scale Study. Technol Cancer Res Treat 2024; 23:15330338241308307. [PMID: 39703067 DOI: 10.1177/15330338241308307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION This study evaluated the efficacy of radiomic analysis with optimal volumes of interest (VOIs) on computed tomography images to preoperatively differentiate invasive mucinous adenocarcinoma (IMA) from non-mucinous adenocarcinoma (non-IMA) in patients with incidental pulmonary nodules (IPNs). METHODS This multicenter, large-scale retrospective study included 1383 patients with IPNs, 110 (8%) of whom were pathologically diagnosed with IMA postoperatively. Radiomic features were extracted from multi-scale VOI subgroups (VOI-2 mm, VOIentire, VOI + 2 mm, and VOI + 4 mm). Resampling methods, specifically, the synthetic minority oversampling technique, addressed the imbalance between the majority (IMA) and minority (non-IMA) groups. Radiomic features were identified using the least absolute shrinkage and selection operator algorithm. Radscores were calculated by linearly combining the selected features with their weights. A combined nomogram integrating the optimal VOI-based radiomic model with the image-finding classifier was constructed. RESULTS Bubble lucency and lower lobe predominance were significant in establishing an image-finding classifier to differentiate between IMA and non-IMA in IPNs, achieving an area under the curve (AUC) value of 0.684 (0.568-0.801). Across all radiomic models, IMA had a higher Radscore than did non-IMA. Specifically, the VOI + 2 mm-based radiomic model exhibited the highest performance, with an AUC of 0.832 (0.753-0.911). The combined nomogram outperformed the recognized image-finding classifier and radiomic models, achieving an AUC of 0.850 (0.776-0.925). CONCLUSION A nomogram that combines a recognized image-finding classifier with an optimal VOI-based radiomic model effectively predicts IMA in IPNs, aiding physicians in developing comprehensive treatment strategies.
Collapse
Affiliation(s)
- Zhichao Zuo
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shanyue Lin
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, P. R. China
| | - Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Wu Ge
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Wanyin Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Haibo Liu
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Xiaohong Fan
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, P. R. China
| | - Shuangping Zhang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
16
|
Wang Y, Gao Y, Zhang Z, Zhang Z, Wang A, Zhao K, Zhang M, Zhang S, Li M, Sun J, Guo D, Liang Z. Claudin18.2 expression in pulmonary mucinous adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:12923-12929. [PMID: 37466797 DOI: 10.1007/s00432-023-05150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Pulmonary invasive mucinous adenocarcinoma (IMA) is a unique type of lung adenocarcinoma with a high recurrence rate and limited treatment strategies. The tight-junction-associated protein claudin18.2 is a new therapeutic target for several solid tumors. This study aimed to detect the expression of claudin18.2 in IMA and its clinicopathological association with the disease. METHODS The expression of claudin18.2 was immunohistochemically evaluated in an IMA cohort of 84 patients, who underwent partial pneumonectomy between January 2017 and December 2021. Positive staining for claudin18.2 was defined as ≥ 10% of tumor cells showing ≥ 1 + membrane staining or any ≥ 2 + membrane staining. RESULTS Claudin18.2 was detected in 76.2% (64/84) of IMA patients, significantly higher than that in non-mucinous adenocarcinoma (NMA). 46.4% (39/84) of the IMA patients met the enrollment criteria of the clinical trials of monoclonal antibodies (≥ 75% of tumor cells demonstrating ≥ 2 + staining intensity). Positive staining for claudin18.2 was significantly associated with smaller tumor size (p = 0.010), less pleural invasion (p = 0.019), and earlier pN stage (p < 0.001). Expression of claudin18.2 was not related to prognosis in multivariate analysis. CONCLUSIONS To summarize, in this study we found that claudin18.2 was remarkably highly expressed in IMA and the overexpression was associated with low invasive capacity. Thus, this protein appears to be a promising therapeutic target and deserves further investigation in IMA patients.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhiwen Zhang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Miao Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Sumei Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Dan Guo
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
17
|
Park D, Lee D, Kim Y, Park Y, Lee YJ, Lee JE, Yeo MK, Kang MW, Chong Y, Han SJ, Choi J, Park JE, Koh Y, Lee J, Park Y, Kim R, Lee JS, Choi J, Lee SH, Ku B, Kang DH, Chung C. Cryobiopsy: A Breakthrough Strategy for Clinical Utilization of Lung Cancer Organoids. Cells 2023; 12:1854. [PMID: 37508518 PMCID: PMC10377875 DOI: 10.3390/cells12141854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One major challenge associated with lung cancer organoids (LCOs) is their predominant derivation from surgical specimens of patients with early-stage lung cancer. However, patients with advanced lung cancer, who are in need of chemotherapy, often cannot undergo surgery. Therefore, there is an urgent need to successfully generate LCOs from biopsy specimens. Conventional lung biopsy techniques, such as transthoracic needle biopsy and forceps biopsy, only yield small amounts of lung tissue, resulting in a low success rate for culturing LCOs from biopsy samples. Furthermore, potential complications, like bleeding and pneumothorax, make it difficult to obtain sufficient tissue. Another critical issue is the overgrowth of normal lung cells in later passages of LCO culture, and the optimal culture conditions for LCOs are yet to be determined. To address these limitations, we attempted to create LCOs from cryobiopsy specimens obtained from patients with lung cancer (n = 113). Overall, the initial success rate of establishing LCOs from cryobiopsy samples was 40.7% (n = 46). Transbronchial cryobiopsy enables the retrieval of significantly larger amounts of lung tissue than bronchoscopic forceps biopsy. Additionally, cryobiopsy can be employed for peripheral lesions, and it is aided via radial endobronchial ultrasonography. This study significantly improved the success rate of LCO culture and demonstrated that the LCOs retained characteristics that resembled the primary tumors. Single-cell RNA sequencing confirmed high cancer cell purity in early passages of LCOs derived from patients with advanced lung cancer. Furthermore, the three-dimensional structure and intracellular components of LCOs were characterized using three-dimensional holotomography. Finally, drug screening was performed using a specialized micropillar culture system with cryobiopsy-derived LCOs. LCOs derived from cryobiopsy specimens offer a promising solution to the critical limitations of conventional LCOs. Cryobiopsy can be applied to patients with lung cancer at all stages, including those with peripheral lesions, and can provide sufficient cells for LCO generation. Therefore, we anticipate that cryobiopsy will serve as a breakthrough strategy for the clinical application of LCOs in all stages of lung cancer.
Collapse
Affiliation(s)
- Dongil Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dahye Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoonjoo Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yeonhee Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, Republic of Korea
| | - Yeon-Jae Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Eun Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Woong Kang
- Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Munhwa-ro 282, Jung-Gu, Daejeon 35015, Republic of Korea
| | - Yooyoung Chong
- Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Munhwa-ro 282, Jung-Gu, Daejeon 35015, Republic of Korea
| | - Sung Joon Han
- Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Munhwa-ro 282, Jung-Gu, Daejeon 35015, Republic of Korea
| | - Jinwook Choi
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - YongKeun Park
- Tomocube Inc., Daejeon 34141, Republic of Korea
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - Jimin Choi
- Central R&D Center, Medical & Bio Decision Co., Ltd., Suwon 16229, Republic of Korea
| | - Sang-Hyun Lee
- Central R&D Center, Medical & Bio Decision Co., Ltd., Suwon 16229, Republic of Korea
| | - Bosung Ku
- Central R&D Center, Medical & Bio Decision Co., Ltd., Suwon 16229, Republic of Korea
| | - Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
18
|
Tomoshige K, Stuart WD, Fink-Baldauf IM, Ito M, Tsuchiya T, Nagayasu T, Yamatsuji T, Okada M, Fukazawa T, Guo M, Maeda Y. FOXA2 Cooperates with Mutant KRAS to Drive Invasive Mucinous Adenocarcinoma of the Lung. Cancer Res 2023; 83:1443-1458. [PMID: 37067057 PMCID: PMC10160002 DOI: 10.1158/0008-5472.can-22-2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 04/18/2023]
Abstract
The endoderm-lineage transcription factor FOXA2 has been shown to inhibit lung tumorigenesis in in vitro and xenograft studies using lung cancer cell lines. However, FOXA2 expression in primary lung tumors does not correlate with an improved patient survival rate, and the functional role of FOXA2 in primary lung tumors remains elusive. To understand the role of FOXA2 in primary lung tumors in vivo, here, we conditionally induced the expression of FOXA2 along with either of the two major lung cancer oncogenes, EGFRL858R or KRASG12D, in the lung epithelium of transgenic mice. Notably, FOXA2 suppressed autochthonous lung tumor development driven by EGFRL858R, whereas FOXA2 promoted tumor growth driven by KRASG12D. Importantly, FOXA2 expression along with KRASG12D produced invasive mucinous adenocarcinoma (IMA) of the lung, a fatal mucus-producing lung cancer comprising approximately 5% of human lung cancer cases. In the mouse model in vivo and human lung cancer cells in vitro, FOXA2 activated a gene regulatory network involved in the key mucous transcription factor SPDEF and upregulated MUC5AC, whose expression is critical for inducing IMA. Coexpression of FOXA2 with mutant KRAS synergistically induced MUC5AC expression compared with that induced by FOXA2 alone. ChIP-seq combined with CRISPR interference indicated that FOXA2 bound directly to the enhancer region of MUC5AC and induced the H3K27ac enhancer mark. Furthermore, FOXA2 was found to be highly expressed in primary tumors of human IMA. Collectively, this study reveals that FOXA2 is not only a biomarker but also a driver for IMA in the presence of a KRAS mutation. SIGNIFICANCE FOXA2 expression combined with mutant KRAS drives invasive mucinous adenocarcinoma of the lung by synergistically promoting a mucous transcriptional program, suggesting strategies for targeting this lung cancer type that lacks effective therapies.
Collapse
Affiliation(s)
- Koichi Tomoshige
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - William D. Stuart
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Iris M. Fink-Baldauf
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Herrera JA, Dingle LA, Monetero MA, Venkateswaran RV, Blaikley JF, Granato F, Pearson S, Lawless C, Thornton DJ. Morphologically intact airways in lung fibrosis have an abnormal proteome. Respir Res 2023; 24:99. [PMID: 37005656 PMCID: PMC10066954 DOI: 10.1186/s12931-023-02400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Honeycombing is a histological pattern consistent with Usual Interstitial Pneumonia (UIP). Honeycombing refers to cystic airways located at sites of dense fibrosis with marked mucus accumulation. Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the fibrotic honeycomb airway cells and fibrotic uninvolved airway cells (distant from honeycomb airways and morphologically intact) in specimens from 10 patients with UIP. Non-fibrotic airway cell specimens from 6 patients served as controls. Furthermore, we performed LCM-MS on the mucus plugs found in 6 patients with UIP and 6 patients with mucinous adenocarcinoma. The mass spectrometry data were subject to both qualitative and quantitative analysis and validated by immunohistochemistry. Surprisingly, fibrotic uninvolved airway cells share a similar protein profile to honeycomb airway cells, showing deregulation of the slit and roundabout receptor (Slit and Robo) pathway as the strongest category. We find that (BPI) fold-containing family B member 1 (BPIFB1) is the most significantly increased secretome-associated protein in UIP, whereas Mucin-5AC (MUC5AC) is the most significantly increased in mucinous adenocarcinoma. We conclude that fibrotic uninvolved airway cells share pathological features with fibrotic honeycomb airway cells. In addition, fibrotic honeycomb airway cells are enriched in mucin biogenesis proteins with a marked derangement in proteins essential for ciliogenesis. This unbiased spatial proteomic approach generates novel and testable hypotheses to decipher fibrosis progression.
Collapse
Affiliation(s)
- Jeremy A Herrera
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK.
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Lewis A Dingle
- Blond McIndoe Laboratories, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| | - M Angeles Monetero
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Rajamiyer V Venkateswaran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - John F Blaikley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Felice Granato
- Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Stella Pearson
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| | - Craig Lawless
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| | - David J Thornton
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, Great Manchester, UK
| |
Collapse
|
20
|
Transcription factor NKX2-1 drives serine and glycine synthesis addiction in cancer. Br J Cancer 2023; 128:1862-1878. [PMID: 36932191 PMCID: PMC10147615 DOI: 10.1038/s41416-023-02216-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.
Collapse
|
21
|
Koh KD, Bonser LR, Eckalbar WL, Yizhar-Barnea O, Shen J, Zeng X, Hargett KL, Sun DI, Zlock LT, Finkbeiner WE, Ahituv N, Erle DJ. Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. CELL GENOMICS 2023; 3:100229. [PMID: 36777184 PMCID: PMC9903679 DOI: 10.1016/j.xgen.2022.100229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke R. Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ofer Yizhar-Barnea
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiangshan Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kirsten L. Hargett
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dingyuan I. Sun
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna T. Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter E. Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Vantaggiato L, Shaba E, Cameli P, Bergantini L, d’Alessandro M, Carleo A, Montuori G, Bini L, Bargagli E, Landi C. BAL Proteomic Signature of Lung Adenocarcinoma in IPF Patients and Its Transposition in Serum Samples for Less Invasive Diagnostic Procedures. Int J Mol Sci 2023; 24:ijms24020925. [PMID: 36674438 PMCID: PMC9861565 DOI: 10.3390/ijms24020925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a form of chronic and irreversible fibrosing interstitial pneumonia of unknown etiology. Although antifibrotic treatments have shown a reduction of lung function decline and a slow disease progression, IPF is characterize by a very high mortality. Emerging evidence suggests that IPF increases the risk of lung carcinogenesis. Both diseases show similarities in terms of risk factors, such as history of smoking, concomitant emphysema, and viral infections, besides sharing similar pathogenic pathways. Lung cancer (LC) diagnosis is often difficult in IPF patients because of the diffuse lung injuries and abnormalities due to the underlying fibrosis. This is reflected in the lack of optimal therapeutic strategies for patients with both diseases. For this purpose, we performed a proteomic study on bronchoalveolar lavage fluid (BALF) samples from IPF, LC associated with IPF (LC-IPF) patients, and healthy controls (CTRL). Molecular pathways involved in inflammation, immune response, lipid metabolism, and cell adhesion were found for the dysregulated proteins in LC-IPF, such as TTHY, APOA1, S10A9, RET4, GDIR1, and PROF1. The correlation test revealed a relationship between inflammation- and lipid metabolism-related proteins. PROF1 and S10A9, related to inflammation, were up-regulated in LC-IPF BAL and serum, while APOA1 and APOE linked to lipid metabolism, were highly abundant in IPF BAL and low abundant in IPF serum. Given the properties of cytokine/adipokine of the nicotinamide phosphoribosyltransferase, we also evaluated its serum abundance, highlighting its down-regulation in LC-IPF. Our retrospective analyses of BAL samples extrapolated some potential biomarkers of LC-IPF useful to improve the management of these contemporary pathologies. Their differential abundance in serum samples permits the measurement of these potential biomarkers with a less invasive procedure.
Collapse
Affiliation(s)
- Lorenza Vantaggiato
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Enxhi Shaba
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Paolo Cameli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Laura Bergantini
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Miriana d’Alessandro
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Alfonso Carleo
- Department of Pneumology, Medical School Hannover (MHH), 30539 Hannover, Germany
| | - Giusy Montuori
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Elena Bargagli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Claudia Landi
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
23
|
de Alcântara AL, Pastana LF, Gellen LPA, Vieira GM, Dobbin EAF, Silva TA, Pereira EEB, Rodrigues JCG, Guerreiro JF, Fernandes MR, de Assumpção PP, Cohen-Paes ADN, Santos SEBD, dos Santos NPC. Mucin (MUC) Family Influence on Acute Lymphoblastic Leukemia in Cancer and Non-Cancer Native American Populations from the Brazilian Amazon. J Pers Med 2022; 12:jpm12122053. [PMID: 36556273 PMCID: PMC9853325 DOI: 10.3390/jpm12122053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
The mucin (MUC) family includes several genes aberrantly expressed in multiple carcinomas and mediates diverse pathways essentials for oncogenesis, in both solid and hematological malignancies. Acute Lymphoblastic Leukemia (ALL) can have its course influenced by genetic variants, and it seems more frequent in the Amerindian population, which has been understudied. Therefore, the present work aimed to investigate the MUC family exome in Amerindian individuals from the Brazilian Amazon, in a sample containing healthy Native Americans (NAMs) and indigenous subjects with ALL, comparing the frequency of polymorphisms between these two groups. The population was composed of 64 Amerindians from the Brazilian Amazon, from 12 different isolated tribes, five of whom were diagnosed with ALL. We analyzed 16 genes from the MUC family and found a total of 1858 variants. We compared the frequency of each variant in the ALL vs. NAM group, which led to 77 variants with a significant difference and, among these, we excluded those with a low impact, resulting in 63 variants, which were distributed in nine genes, concentrated especially in MUC 19 (n = 30) and MUC 3A (n = 18). Finally, 11 new variants were found in the NAM population. This is the first work with a sample of native Americans with cancer, a population which is susceptible to ALL, but remains understudied. The MUC family seems to have an influence on the development of ALL in the Amerindian population and especially MUC19 and MUC3A are shown as possible hotspots. In addition, the 11 new variants found point to the need to have their clinical impact analyzed.
Collapse
Affiliation(s)
| | - Lucas Favacho Pastana
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | | | | | | - Thays Amâncio Silva
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | | | | - João Farias Guerreiro
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66077-830, PA, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Kwon M, Rubio G, Wang H, Riedlinger G, Adem A, Zhong H, Slegowski D, Post-Zwicker L, Chidananda A, Schrump DS, Pine SR, Libutti SK. Smoking-associated Downregulation of FILIP1L Enhances Lung Adenocarcinoma Progression Through Mucin Production, Inflammation, and Fibrosis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1197-1213. [PMID: 36860703 PMCID: PMC9973389 DOI: 10.1158/2767-9764.crc-22-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD. Loss of FILIP1L increases xenograft growth, and, in lung-specific knockout mice, induces lung adenoma formation and mucin secretion. In syngeneic allograft tumors, reduction of FILIP1L and subsequent increase in its binding partner, prefoldin 1 (PFDN1) increases mucin secretion, proliferation, inflammation, and fibrosis. Importantly, from the RNA-sequencing analysis of these tumors, reduction of FILIP1L is associated with upregulated Wnt/β-catenin signaling, which has been implicated in proliferation of cancer cells as well as inflammation and fibrosis within the tumor microenvironment. Overall, these findings suggest that down-regulation of FILIP1L is clinically relevant in LUAD, and warrant further efforts to evaluate pharmacologic regimens that either directly or indirectly restore FILIP1L-mediated gene regulation for the treatment of these neoplasms. Significance This study identifies FILIP1L as a tumor suppressor in LUADs and demonstrates that downregulation of FILIP1L is a clinically relevant event in the pathogenesis and clinical course of these neoplasms.
Collapse
Affiliation(s)
- Mijung Kwon
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Genesaret Rubio
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Gregory Riedlinger
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Asha Adem
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Hua Zhong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Daniel Slegowski
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Sharon R. Pine
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
25
|
Sang L, Wang X, Bai W, Shen J, Zeng Y, Sun J. The role of hepatocyte nuclear factor 4α (HNF4α) in tumorigenesis. Front Oncol 2022; 12:1011230. [PMID: 36249028 PMCID: PMC9554155 DOI: 10.3389/fonc.2022.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 Alpha (HNF4α) is a master transcription factor mainly expressed in the liver, kidney, intestine and endocrine pancreas. It regulates multiple target genes involved in embryonic development and metabolism. HNF4α-related diseases include non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and diabetes mellitus. Recently, HNF4α has been emerging as a key player in a variety of cancers. In this review, we summarized the role and mechanism of HNF4α in different types of cancers, especially in liver and colorectal cancer, aiming to provide additional guidance for intervention of these diseases.
Collapse
Affiliation(s)
- Lei Sang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junling Shen
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Zhang X, Qiao W, Kang Z, Pan C, Chen Y, Li K, Shen W, Zhang L. CT Features of Stage IA Invasive Mucinous Adenocarcinoma of the Lung and Establishment of a Prediction Model. Int J Gen Med 2022; 15:5455-5463. [PMID: 35692354 PMCID: PMC9176337 DOI: 10.2147/ijgm.s368344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate computed tomography (CT) features of stage IA invasive mucinous adenocarcinoma (IMA) of the lung and establish a predictive model. Methods Fifty-three lesions from 53 cases of stage IA IMA between January 2017 and December 2019 were examined, while 141 lesions from 141 cases of invasive non-mucinous lung adenocarcinoma (INMA) served as control cases. Univariate analysis was performed to compare differences in demographics and CT features between the two groups, and multivariate logistic regression analysis was performed to determine primary influencing factors of solitary nodular IMA. A risk score prediction model was established based on the regression coefficients of these factors, and receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the model. Results Univariate analysis showed that age, nodule type, maximum nodule diameter, tumor lung interface, lobulation, spiculation, air bronchogram or vacuolar signs, and abnormal vascular changes differed significantly between the two groups (p < 0.05). Compared to INMA, spiculation of IMA was relatively longer and softer. Multivariate logistic regression analysis showed that nodule type, indistinct tumor lung interface, air bronchogram or vacuolar signs, and abnormal vascular changes were the primary influencing factors. A prediction model based on the regression coefficients of these factors was established. ROC curve analysis indicated that the area under the curve was 0.882 (p < 0.05). Conclusion Compared to INMA, solitary peripheral stage IA nodular IMA were more common in older patients; they more frequently had indistinct tumor lung interface and air bronchogram or vacuolar signs on CT; spiculation was relatively longer and softer; our risk score prediction model based on nodule type, tumor lung interface, air bronchogram or vacuolar signs, and abnormal vascular changes was established with good predictive efficacy for solitary nodular IMA.
Collapse
Affiliation(s)
- Xiuming Zhang
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Qiao
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zheng Kang
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunhan Pan
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Kang Li
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenrong Shen
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lei Zhang
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Lei Zhang; Wenrong Shen, Email ;
| |
Collapse
|
27
|
3'untranslated regions of tumor suppressor genes evolved specific features to favor cancer resistance. Oncogene 2022; 41:3278-3288. [PMID: 35523946 DOI: 10.1038/s41388-022-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Cancer-related genes have evolved specific genetic and genomic features to favor tumor suppression. Previously we reported that tumor suppressor genes (TSGs) acquired high promoter CpG dinucleotide frequencies during evolution to maintain high expression in normal tissues and resist cancer-specific downregulation. In this study, we investigated whether 3'untranslated regions (3'UTRs) of TSGs have evolved specific features to carry out similar functions. We found that 3'UTRs of TSGs, especially those involved in multiple histological types and pediatric cancers, are longer than those of non-cancer genes. 3'UTRs of TSGs also exhibit higher density of binding sites for RNA-binding proteins (RBPs), particularly those having high affinities to C-rich motifs. Both longer 3'UTR length and RBP binding sites enrichment are correlated with higher gene expression in normal tissues across tissue types. Moreover, both features together with the correlated N6-methyladenosine modification and the extent of protein-protein interactions are positively associated with the ability of TSGs to resist cancer-specific downregulation. These results were successfully validated with independent datasets. Collectively, these findings indicate that TSGs have evolved longer 3'UTR with increased propensity to RBP binding, N6-methyladenosine modification and protein-protein interactions for optimizing their tumor-suppressing functions.
Collapse
|
28
|
Wolber P, Mayer M, Nachtsheim L, Prinz J, Klußmann JP, Quaas A, Arolt C. Expression of Mucins in Different Entities of Salivary Gland Cancer: Highest Expression of Mucin-1 in Salivary Duct Carcinoma : Mucin-1 - highest expression in Salivary Duct Carcinoma. Head Neck Pathol 2022; 16:792-801. [PMID: 35389164 PMCID: PMC9424401 DOI: 10.1007/s12105-022-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Therapeutic options for advanced salivary gland cancer (SGC) are rare. Therefore, it was the aim of this study to investigate the extent and intensity of Mucin-1 (MUC1), Mucin-16 (MUC16), and Mucin-5AC (MUC5AC) as potential molecular targets using immunohistochemistry. The medical records of all patients who underwent primary surgery for salivary gland cancer with curative intent in a tertiary referral center between 1990 and 2018 were reviewed. Immunohistochemical staining for MUC1, MUC16, and MUC5AC was performed for all patients with sufficient formalin-fixed paraffin-embedded material, and a semi-quantitative combined score derived from the H-score for the cytoplasmatic, the membranous and the apical membrane was built for the most common entities of SGC. 107 patients with malignancies of the parotid (89.7%) and the submandibular gland (10.3%) were included. The most common entities were mucoepidermoid carcinoma (MuEp; n = 23), adenoid cystic carcinoma (AdCy; n = 22), and salivary duct carcinoma (SaDu; n = 21). The highest mean MUC1 combined score was found in SaDu with 223.6 (±91.7). The highest mean MUC16 combined score was found in MuEp with 177.0 (±110.0). The mean MUC5AC score was low across all entities. A higher MUC1 combined score was significantly associated with male gender (p = 0.03), lymph node metastasis (p < 0.01), lymphovascular invasion (p = 0.045), and extracapsular extension (p = 0.03). SaDu patients with MUC16 expression showed a significantly worse 5-year progression-free survival than those without MUC16 expression (p = 0.02). This is the first study to give a comprehensive overview of the expression of MUC1, MUC16, and MUC5AC in SGC. Since advanced SGCs lack therapeutic options in many cases, these results warrant in vitro research on therapeutic targets against MUC1 in SaDu cell lines and xenograft models.
Collapse
Affiliation(s)
- P. Wolber
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - M. Mayer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - L. Nachtsheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - J. Prinz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - J. P. Klußmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - A. Quaas
- Institute of Pathology, Medical Faculty, University of Cologne, Cologne, Germany
| | - C. Arolt
- Institute of Pathology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
MUC6 expression is a preferable prognostic marker for invasive mucinous adenocarcinoma of the lung. Histochem Cell Biol 2022; 157:671-684. [PMID: 35353213 DOI: 10.1007/s00418-022-02093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Gastric gland mucin consists of core protein MUC6 with residues heavily glycosylated by unique O-glycans carrying α1,4-linked N-acetylglucosamine (αGlcNAc). αGlcNAc-glycosylated MUC6 protein is seen in normal gastric and duodenal glands. Decreased αGlcNAc glycosylation on MUC6-positive tumor cells is often observed in premalignant lesions of the stomach, pancreas, and bile duct, and decreased MUC6 expression is seen in invasive cancer of these organs. Lung cancer (LC) is the most common cause of cancer death worldwide. Recently, the adenocarcinoma subtype has become the most common histological subtype of LC, and one of its invasive forms is invasive mucinous adenocarcinoma (IMA). Currently, prognostic markers of LC IMA are unknown. Here, we analyzed MUC5AC, MUC6, and αGlcNAc expression in 54 IMA LC cases. MUC5AC was positively expressed in 50 (93%), MUC6 in 38 (70%), and αGlcNAc in 19 (35%). Each expression level was scored from 0 to 3. The αGlcNAc expression score was significantly decreased relative to MUC6 (P < 0.001). Interestingly, disease-free survival was significantly higher in MUC6-positive than MUC6-negative cases based on the log-rank test (P = 0.021). For in vitro analysis, we ectopically expressed MUC6 in A549 cells, derived from LC and harboring a KRAS mutation. MUC6-expressing A549 cells showed significantly lower proliferation, motility, and invasiveness than control cells. Finally, F-actin staining in MUC6-expressing cells revealed a decrease or loss of filopodia associated with decreased levels of FSCN transcripts, which encodes an actin-bundling protein fascin1 necessary for cell migration. We conclude that MUC6 expression is a preferable prognostic biomarker in IMA LC.
Collapse
|
30
|
Floros J, Tsotakos N. Differential Regulation of Human Surfactant Protein A Genes, SFTPA1 and SFTPA2, and Their Corresponding Variants. Front Immunol 2021; 12:766719. [PMID: 34917085 PMCID: PMC8669794 DOI: 10.3389/fimmu.2021.766719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states. Moreover, a number of agents have been shown to differentially regulate SFTPA1 and SFTPA2 transcripts. The focus in this review is on the differential regulation of SFTPA1 and SFTPA2 with primary focus on the role of 5′ and 3′ untranslated regions (UTRs) and flanking sequences on this differential regulation as well molecules that may mediate the differential regulation.
Collapse
Affiliation(s)
- Joanna Floros
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University - Harrisburg, Middletown, PA, United States
| |
Collapse
|
31
|
Zhou B, Stueve TR, Mihalakakos EA, Miao L, Mullen D, Wang Y, Liu Y, Luo J, Tran E, Siegmund KD, Lynch SK, Ryan AL, Offringa IA, Borok Z, Marconett CN. Comprehensive epigenomic profiling of human alveolar epithelial differentiation identifies key epigenetic states and transcription factor co-regulatory networks for maintenance of distal lung identity. BMC Genomics 2021; 22:906. [PMID: 34922464 PMCID: PMC8684104 DOI: 10.1186/s12864-021-08152-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Disruption of alveolar epithelial cell (AEC) differentiation is implicated in distal lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma that impact morbidity and mortality worldwide. Elucidating underlying disease pathogenesis requires a mechanistic molecular understanding of AEC differentiation. Previous studies have focused on changes of individual transcription factors, and to date no study has comprehensively characterized the dynamic, global epigenomic alterations that facilitate this critical differentiation process in humans. RESULTS We comprehensively profiled the epigenomic states of human AECs during type 2 to type 1-like cell differentiation, including the methylome and chromatin functional domains, and integrated this with transcriptome-wide RNA expression data. Enhancer regions were drastically altered during AEC differentiation. Transcription factor binding analysis within enhancer regions revealed diverse interactive networks with enrichment for many transcription factors, including NKX2-1 and FOXA family members, as well as transcription factors with less well characterized roles in AEC differentiation, such as members of the MEF2, TEAD, and AP1 families. Additionally, associations among transcription factors changed during differentiation, implicating a complex network of heterotrimeric complex switching in driving differentiation. Integration of AEC enhancer states with the catalog of enhancer elements in the Roadmap Epigenomics Mapping Consortium and Encyclopedia of DNA Elements (ENCODE) revealed that AECs have similar epigenomic structures to other profiled epithelial cell types, including human mammary epithelial cells (HMECs), with NKX2-1 serving as a distinguishing feature of distal lung differentiation. CONCLUSIONS Enhancer regions are hotspots of epigenomic alteration that regulate AEC differentiation. Furthermore, the differentiation process is regulated by dynamic networks of transcription factors acting in concert, rather than individually. These findings provide a roadmap for understanding the relationship between disruption of the epigenetic state during AEC differentiation and development of lung diseases that may be therapeutically amenable.
Collapse
Affiliation(s)
- B Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - T R Stueve
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - E A Mihalakakos
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - L Miao
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - D Mullen
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Y Wang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Y Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - J Luo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - E Tran
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - K D Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - S K Lynch
- Department of Engineering, Test Manufacturing Group, MAXIM Integrated Products, Sunnyvale, CA, 95134, USA
| | - A L Ryan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - I A Offringa
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Z Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - C N Marconett
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
32
|
Chen X, Zhao Y, Wang D, Lin Y, Hou J, Xu X, Wu J, Zhong L, Zhou Y, Shen J, Zhang W, Cao H, Hong X, Hu T, Zhan YY. The HNF4α-BC200-FMR1-Positive Feedback Loop Promotes Growth and Metastasis in Invasive Mucinous Lung Adenocarcinoma. Cancer Res 2021; 81:5904-5918. [PMID: 34654723 DOI: 10.1158/0008-5472.can-21-0980] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Invasive mucinous lung adenocarcinoma (IMA) is a subtype of lung adenocarcinoma with a strong invasive ability. IMA frequently carries "undruggable" KRAS mutations, highlighting the need for new molecular targets and therapies. Nuclear receptor HNF4α is abnormally enriched in IMA, but the potential of HNF4α to be a therapeutic target for IMA remains unknown. Here, we report that P2 promoter-driven HNF4α expression promotes IMA growth and metastasis. Mechanistically, HNF4α transactivated lncRNA BC200, which acted as a scaffold for mRNA binding protein FMR1. BC200 promoted the ability of FMR1 to bind and regulate stability of cancer-related mRNAs and HNF4α mRNA, forming a positive feedback circuit. Mycophenolic acid, the active metabolite of FDA-approved drug mycophenolate mofetil, was identified as an HNF4α antagonist exhibiting anti-IMA activities in vitro and in vivo. This study reveals the role of a HNF4α-BC200-FMR1-positive feedback loop in promoting mRNA stability during IMA progression and metastasis, providing a targeted therapeutic strategy for IMA. SIGNIFICANCE: Growth and metastatic progression of invasive mucinous lung adenocarcinoma can be restricted by targeting HNF4α, a critical regulator of a BC200-FMR1-mRNA stability axis.
Collapse
Affiliation(s)
- Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Yujie Zhao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Daxuan Wang
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Ying Lin
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Xiaolin Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Jianben Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Linhai Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Yitong Zhou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Jinying Shen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Hanwei Cao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Xiaoting Hong
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, P.R. China.
| |
Collapse
|
33
|
Trombetta D, Sparaneo A, Fabrizio FP, Di Micco CM, Rossi A, Muscarella LA. NRG1 and NRG2 fusions in non-small cell lung cancer (NSCLC): seven years between lights and shadows. Expert Opin Ther Targets 2021; 25:865-875. [PMID: 34706602 DOI: 10.1080/14728222.2021.1999927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Fusions in neuregulin 1 (NRG1) and neuregulin 2 (NRG2) genes are molecular features of non-small cell lung cancer (NSCLC). These rearrangements enhance ectopic expression of the NRG/ErbB receptor-ligand and induce the triggering of downstream pathways. Evidence suggests the involvement of the NRG1/ErbB3 axis deregulation in the progression and treatment resistance of NSCLC cancer (NSCLC) and that NRG1 fusions are prognostic/predictive markers for targeted therapy. AREAS COVERED Biological and prognostic/predictive value of NRG1 and NRG2 fusions in NSCLC and their related cellular pathways are described and discussed. Publications in English language, peer-reviewed, high-quality international journals were identified on PubMed, as well as scientific official sites were used to update the international clinical trials progress. EXPERT OPINION NRG1 and NRG2 fusions should be considered as novel markers for biological therapy targeting ErbB2/ErbB3. There is evidence for the involvement of the NRG1/ErbB3 axis deregulation in cancer stem cell phenotype, tumor progression, and resistance to NSCLC therapy. Neuregulin fusions are very complex, hence many question marks must be tackled before translating these molecular lesions into clinical practice. Biology, and aggressiveness of the NRG1 and NRG2 fusions warrant further investigations.
Collapse
Affiliation(s)
- Domenico Trombetta
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Concetta Martina Di Micco
- Unit of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Unit of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
34
|
SPDEF suppresses head and neck squamous cell carcinoma progression by transcriptionally activating NR4A1. Int J Oral Sci 2021; 13:33. [PMID: 34667150 PMCID: PMC8526567 DOI: 10.1038/s41368-021-00138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
SAM pointed domain containing E26 transformation-specific transcription factor (SPDEF) plays dual roles in the initiation and development of human malignancies. However, the biological role of SPDEF in head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, the expression level of SPDEF and its correlation with the clinical parameters of patients with HNSCC were determined using TCGA-HNSC, GSE65858, and our own clinical cohorts. CCK8, colony formation, cell cycle analysis, and a xenograft tumor growth model were used to determine the molecular functions of SPDEF in HNSCC. ChIP-qPCR, dual luciferase reporter assay, and rescue experiments were conducted to explore the potential molecular mechanism of SPDEF in HNSCC. Compared with normal epithelial tissues, SPDEF was significantly downregulated in HNSCC tissues. Patients with HNSCC with low SPDEF mRNA levels exhibited poor clinical outcomes. Restoring SPDEF inhibited HNSCC cell viability and colony formation and induced G0/G1 cell cycle arrest, while silencing SPDEF promoted cell proliferation in vitro. The xenograft tumor growth model showed that tumors with SPDEF overexpression had slower growth rates, smaller volumes, and lower weights. SPDEF could directly bind to the promoter region of NR4A1 and promoted its transcription, inducing the suppression of AKT, MAPK, and NF-κB signaling pathways. Moreover, silencing NR4A1 blocked the suppressive effect of SPDEF in HNSCC cells. Here, we demonstrate that SPDEF acts as a tumor suppressor by transcriptionally activating NR4A1 in HNSCC. Our findings provide novel insights into the molecular mechanism of SPDEF in tumorigenesis and a novel potential therapeutic target for HNSCC.
Collapse
|
35
|
Lin YH, Zhu LY, Yang YQ, Zhang ZH, Chen QG, Sun YP, Bi JJ, Luo XM, Ni ZH, Wang XB. Resveratrol inhibits MUC5AC expression by regulating SPDEF in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153601. [PMID: 34139546 DOI: 10.1016/j.phymed.2021.153601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND MUC5AC was recently identified to play important roles in the proliferation and metastasis of malignant mucinous lung tumor cells. Resveratrol (Res), a natural compound with anticancer effects in lung cancer cells, has been reported to inhibit mucin production in airway epithelial cells. This study aimed to investigate the inhibitory effect of Res on MUC5AC expression in lung mucinous adenocarcinoma cells and the potential mechanisms. METHODS Mucus-producing A549 human lung carcinoma cells were used to test the effects of Res on SPDEF and MUC5AC expression. Gene and protein expression was assessed by real-time quantitative PCR (qPCR), immunofluorescence and western blotting assays. SPDEF lentivirus was used to upregulate SPDEF expression levels in mucus-producing A549 human lung carcinoma cells. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay. RESULTS Res decreased MUC5AC expression in an SPDEF-dependent manner in mucus-producing A549 human lung carcinoma cells, and this change was accompanied by decreased ERK expression and AKT pathway activation. Moreover, SPDEF was found to be overexpressed in lung adenocarcinoma (LUAD), especially in mucinous adenocarcinoma. In-vitro functional assays showed that overexpression of SPDEF reduced the chemosensitivity of A549 cells to cisplatin (DDP). In addition, Res treatment increased A549 cell chemosensitivity to DDP by inhibiting the SPDEF-MUC5AC axis. CONCLUSION Our results indicate that the SPDEF-MUC5AC axis is associated with DDP sensitivity, and that Res decreases SPDEF and MUC5AC expression by inhibiting ERK and AKT signaling in A549 cells, which provides a potential pharmacotherapy for the prevention and therapeutic management of mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Yu-Hua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin-Yun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yan-Qin Yang
- Department of Pathology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhu-Hua Zhang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing-Ge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yi-Peng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jun-Jie Bi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xu-Ming Luo
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhen-Hua Ni
- Central lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Xiong-Biao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
36
|
Jang YJ, Hyun DG, Choi CM, Lee DH, Kim SW, Yoon S, Kim WS, Ji W, Lee JC. Optimizing palliative chemotherapy for advanced invasive mucinous adenocarcinoma of the lung. BMC Cancer 2021; 21:731. [PMID: 34174841 PMCID: PMC8235206 DOI: 10.1186/s12885-021-08472-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background A primary pulmonary invasive mucinous adenocarcinoma (IMA) is a rare subtype of invasive adenocarcinoma of the lung. The prognosis of advanced IMA depending on chemotherapy regimen has not been fully investigated. Here, we compared the clinical outcomes of patients with advanced IMA treated with different palliative chemotherapies that included novel therapeutics. Methods This single-center retrospective study included a total of 79 patients diagnosed with IMA and treated with palliative chemotherapy. The primary outcome was the comparison of overall survival according to palliative chemotherapy type. Risk factors associated with death were evaluated as a secondary outcome. Results The study cohort of 79 patients comprised 27 progressive or recurrent cases and 52 initial metastatic patients. Thirteen patients (16.5%) received targeted therapy and 18 cases (22.8%) received immunotherapy. When we compared the survival outcomes of the different treatment regimens, patients with IMA treated by immunotherapy (undefined vs. non-immunotherapy 17.0 months, p < 0.001) had better overall survival rates. However, there was no difference in the prognosis between the cases treated with a targeted therapy (35.6 vs. non-targeted therapy 17.0 months, p = 0.211). None of the conventional regimens produced a better outcome. By multivariable analysis, immunotherapy (HR 0.28; 95% CI 0.11–0.74; P = 0.008) was found to be an independent prognostic factor for death. Conclusions This study suggests that immunotherapy for patients with advanced IMA may provide favorable outcomes than other chemotherapy options.
Collapse
Affiliation(s)
- Yoon Jung Jang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Dong-Gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Woo Sung Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
37
|
Xu X, Li N, Wang D, Chen W, Fan Y. Clinical Relevance of PD-L1 Expression and CD8+ T Cells' Infiltration in Patients With Lung Invasive Mucinous Adenocarcinoma. Front Oncol 2021; 11:683432. [PMID: 34249733 PMCID: PMC8264667 DOI: 10.3389/fonc.2021.683432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Invasive mucinous adenocarcinoma (IMA) of the lung is a rare and distinct subtype of adenocarcinoma. At present, people have no idea whether IMA patients can benefit from immunotherapy and target therapy; thus there is an urgent need to clarify the immune microenvironment and genetic characteristics of this cohort. METHODS A total of 31 IMA patients matched with 27 non-mucinous adenocarcinoma (non-IMA) patients were enrolled in this study, and clinical data was collected. The expression of PD-L1, CD8+ tumor-infiltrating lymphocytes (TILs) and ALK was determined by immunohistochemistry. Polymerase Chain Reaction was used to determine the mutations of EGFR. The Chi-square test, Kaplan-Meier method and Cox proportional hazard regression model were used to explore the correlations between these clinicopathological variables, survival and identify risk factors. RESULTS Of the patients with IMA 9.7% (3/31) revealed positive PD-L1 expression and 35.5% (11/31) showed CD8+ TIL infiltration, which were markedly lower than that of non-IMA group [PD-L1: 48.1% (13/27); CD8: 81.5% (22/27)]. Moreover, five (16.1%) patients in IMA group and 10 (37.0%) patients in non-IMA group had EGFR mutations, and nine (29.0%) patients in IMA group and zero (0.0%) patient in non-IMA group had ALK rearrangements. Additionally, we observed that IMA patients with CD8+ TIL infiltration had a worse prognosis than CD8-negative group (P = 0.024). Multivariate analyses showed that CD8 was an independent prognostic factor for patient's survival (HR = 5.60, 95% CI: 1.35-23.22, P = 0.017). CONCLUSION Patients with IMA have down-regulated expression of PD-L1 and less CD8+ TIL infiltration in tumor microenvironment. Besides, a lower frequency of EGFR mutations was detected in patients with IMA than non-IMA patients while a higher rate of ALK rearrangements was found. Our results provide important reference for therapy of lung IMA.
Collapse
Affiliation(s)
- Xiaoling Xu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Na Li
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ding Wang
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Chen
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yun Fan
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
Gong J, Fan Y, Lu H. Pulmonary enteric adenocarcinoma. Transl Oncol 2021; 14:101123. [PMID: 34000642 PMCID: PMC8141771 DOI: 10.1016/j.tranon.2021.101123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetically expounded the clinical characteristics of PEAC. Systematically described the differentiation of PEAC from primary lung adenocarcinoma and MCRC. Found patients with PEAC may have high frequencies of HER2 and MMR mutations. Proposed a new conjecture that patients with PEAC might benefit from anti-HER2 therapy and immune checkpoint inhibitors.
Pulmonary enteric adenocarcinoma (PEAC) is an exceptionally rare subtype of non–small cell lung cancer (NSCLC). It is characterized by pathological features similar to those of colorectal adenocarcinoma. Most patients with PEAC have almost no special clinical manifestations, and it is often difficult to differentiate from metastatic colorectal adenocarcinoma (MCRC). As a special type of lung adenocarcinoma, PEAC has unique mutation expression and immune characteristics; its mutation profile shows higher Kirsten rat sarcoma viral oncogene (KRAS), human epidermal growth factor receptor-2 (HER2) , DNA mismatch repair(MMR) mutation rates, and much lower epidermal growth factor receptor (EGFR) rate. So in the future, targeted therapy may tend to be a new light in the treatment of PEAC. As for immunohistochemistry (IHC), CDX-2, villin, and CK7 are significantly positive in PEAC. This review focuses on the pathologic features, immunohistochemical examination, mutation analysis, diagnosis, treatment, and prognosis of PEAC.
Collapse
Affiliation(s)
- Jiali Gong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, 310022, PR China
| | - Ying Fan
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, 310022, PR China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongyang Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, 310022, PR China.
| |
Collapse
|
39
|
Stuart WD, Fink-Baldauf IM, Tomoshige K, Guo M, Maeda Y. CRISPRi-mediated functional analysis of NKX2-1-binding sites in the lung. Commun Biol 2021; 4:568. [PMID: 33980985 PMCID: PMC8115294 DOI: 10.1038/s42003-021-02083-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/08/2021] [Indexed: 11/11/2022] Open
Abstract
The transcription factor NKX2-1/TTF-1 is involved in lung pathophysiology, including breathing, innate defense and tumorigenesis. To understand the mechanism by which NKX2-1 regulates genes involved in such pathophysiology, we have previously performed ChIP-seq and identified genome-wide NKX2-1-binding sites, which revealed that NKX2-1 binds to not only proximal promoter regions but also multiple intra- and inter-genic regions of the genes regulated by NKX2-1. However, the roles of such regions, especially non-proximal ones, bound by NKX2-1 have not yet been determined. Here, using CRISPRi (CRISPR/dCas9-KRAB), we scrutinize the functional roles of 19 regions/sites bound by NKX2-1, which are located in genes involved in breathing and innate defense (SFTPB, LAMP3, SFTPA1, SFTPA2) and lung tumorigenesis (MYBPH, LMO3, CD274/PD-L1). Notably, the CRISPRi approach reveals that a portion of NKX2-1-binding sites are functionally indispensable while the rest are dispensable for the expression of the genes, indicating that functional roles of NKX2-1-binding sites are unequally yoked.
Collapse
Affiliation(s)
- William D Stuart
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Iris M Fink-Baldauf
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Koichi Tomoshige
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA.
| |
Collapse
|
40
|
Tomoshige K, Tomoshi T, Keitaro M, Miyazaki T, Doi R, Machino R, Mizoguchi S, Matumoto T, Maeda Y, Nagayasu T. Primary mucinous adenocarcinoma of the thymus; a rare type of thymic carcinoma. Case Report. SN COMPREHENSIVE CLINICAL MEDICINE 2021; 3:1233-1237. [PMID: 34151190 PMCID: PMC8211018 DOI: 10.1007/s42399-021-00839-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Mucinous adenocarcinoma of the thymus is a particularly rare type among thymic carcinomas. Here, we report a patient who underwent complete surgical resection of the primary mucinous adenocarcinoma of the thymus. She was 74 years old and presented with a 60-mm multilocular cystic tumor in her right anterior mediastinum. We performed extended thymo-thymectomy with partial resection of the right upper lobe and pathologically diagnosed the patient with Masaoka stage II mucinous adenocarcinoma of the thymus. Immunohistochemistry showed the absence of PD-L1, suggesting that immune check point inhibitors targeting PD-1/PD-L1 might not be effective in this case. The increased preoperative serum levels of CA19-9 decreased after the operation. CA19-9 is a biomarker for disease status. Future reports should help elucidate the pathogenesis of this disease.
Collapse
Affiliation(s)
- Koichi Tomoshige
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tsuchiya Tomoshi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Matsumoto Keitaro
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Ryusuke Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Satoshi Mizoguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takamune Matumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Yutaka Maeda
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
41
|
Ueda D, Ito M, Tsutani Y, Giménez-Capitán A, Román-Lladó R, Pérez-Rosado A, Aguado C, Kushitani K, Miyata Y, Arihiro K, Molina-Vila MA, Rosell R, Takeshima Y, Okada M. Comprehensive analysis of the clinicopathological features, targetable profile, and prognosis of mucinous adenocarcinoma of the lung. J Cancer Res Clin Oncol 2021; 147:3709-3718. [PMID: 33796913 DOI: 10.1007/s00432-021-03609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/17/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The clinicopathological or genetic features related to the prognosis of mucinous adenocarcinoma are unknown because of its rarity. The clinicopathological or targetable features were investigated for better management of patients with mucinous adenocarcinoma of the lung. METHODS We comprehensively evaluated the clinicopathological and genetic features of 60 completely resected mucinous lung adenocarcinomas. Targetable genetic variants were explored using nCounter and polymerase chain reaction, PD-L1 and TTF-1 expression were evaluated using immunohistochemistry. We analyzed the prognostic impact using the Kaplan-Meier method and log-rank test. RESULTS Of the 60 enrolled patients, 13 (21.7%) had adenocarcinoma in situ/minimally invasive adenocarcinoma, and 47 (78.3%) had invasive mucinous adenocarcinoma (IMA). Fifteen patients (25%) showed a pneumonic appearance on computed tomography (CT). CD74-NRG1 fusion, EGFR mutations, and BRAF mutation were detected in three (5%), four (6.7%), and one (1.7%) patient(s), respectively. KRAS mutations were detected in 31 patients (51.7%). Two patients (3.5%) showed immunoreactivity for PD-L1. No in situ or minimally invasive cases recurred. IMA patients with pneumonic appearance had significantly worse recurrence-free survival (RFS) and overall survival (OS) (p < 0.001). Furthermore, IMA patients harboring KRAS mutations had worse RFS (p = 0.211). Multivariate analysis revealed that radiological pneumonic appearance was significantly associated with lower RFS (p < 0.003) and OS (p = 0.012). KRAS mutations served as an unfavorable status for RFS (p = 0.043). CONCLUSION Mucinous adenocarcinoma had a low frequency of targetable genetic variants and PD-L1 immunoreactivity; however, KRAS mutations were frequent. Pneumonic appearance on CT imaging and KRAS mutations were clinicopathological features associated with a worse prognosis.
Collapse
Affiliation(s)
- Daisuke Ueda
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.,Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Ana Giménez-Capitán
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Ruth Román-Lladó
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Ana Pérez-Rosado
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Cristina Aguado
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Kei Kushitani
- Department of Pathology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Rafael Rosell
- Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias I Pujol (IGTP), Badalona, Spain.,Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
42
|
Nakamura S, Sugimoto H, Negoro K, Tanaka R. Invasive Mucinous Adenocarcinoma of the Lung Presenting With Multiple Cavities. Cureus 2021; 13:e13795. [PMID: 33842168 PMCID: PMC8027958 DOI: 10.7759/cureus.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A 78-year-old woman presented to our hospital with a two-week history of productive cough. Chest computed tomography (CT) showed bilateral multiple pulmonary nodules with cavities. Although the cytology of her sputum revealed adenocarcinoma, she refused any treatment. Following supportive care, 30 months later, she presented to our hospital with dyspnea and fever. Chest CT showed progression of multiple pulmonary nodules and cavities. Despite treatment with antibiotics and palliative care, she died on the 10th day of hospitalization. Pathological autopsy confirmed the diagnosis of pulmonary invasive mucinous adenocarcinoma (IMA). The typical CT findings of IMA include multiple consolidations or ground-glass opacities mimicking pneumonia; rarely, cavitary lesions are also observed. Clinicians should consider IMA as a differential diagnosis for lung cavities.
Collapse
Affiliation(s)
- Shunsuke Nakamura
- Department of Respiratory Medicine, Kobe Red Cross Hospital, Kobe, JPN
| | - Hiroshi Sugimoto
- Department of Respiratory Medicine, Kobe Red Cross Hospital, Kobe, JPN
| | - Kazuki Negoro
- Department of Respiratory Medicine, Kobe Red Cross Hospital, Kobe, JPN
| | - Ryuichiro Tanaka
- Department of Respiratory Medicine, Kobe Red Cross Hospital, Kobe, JPN
| |
Collapse
|
43
|
Tong X, Chen Y, Zhu X, Ye Y, Xue Y, Wang R, Gao Y, Zhang W, Gao W, Xiao L, Chen H, Zhang P, Ji H. Nanog maintains stemness of Lkb1-deficient lung adenocarcinoma and prevents gastric differentiation. EMBO Mol Med 2021; 13:e12627. [PMID: 33439550 PMCID: PMC7933951 DOI: 10.15252/emmm.202012627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence supports that LKB1-deficient KRAS-driven lung tumors represent a unique therapeutic challenge, displaying strong cancer plasticity that promotes lineage conversion and drug resistance. Here we find that murine lung tumors from the KrasLSL-G12D/+ ; Lkb1flox/flox (KL) model show strong plasticity, which associates with up-regulation of stem cell pluripotency genes such as Nanog. Deletion of Nanog in KL model initiates a gastric differentiation program and promotes mucinous lung tumor growth. We find that NANOG is not expressed at a meaningful level in human lung adenocarcinoma (ADC), as well as in human lung invasive mucinous adenocarcinoma (IMA). Gastric differentiation involves activation of Notch signaling, and perturbation of Notch pathway by the γ-secretase inhibitor LY-411575 remarkably impairs mucinous tumor formation. In contrast to non-mucinous tumors, mucinous tumors are resistant to phenformin treatment. Such therapeutic resistance could be overcome through combined treatments with LY-411575 and phenformin. Overall, we uncover a previously unappreciated plasticity of LKB1-deficient tumors and identify the Nanog-Notch axis in regulating gastric differentiation, which holds important therapeutic implication for the treatment of mucinous lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Yueqing Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinsheng Zhu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yi Ye
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yun Xue
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Wang
- Department of Thoracic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yijun Gao
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Wenjing Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Weiqiang Gao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Lei Xiao
- College of Animal Science and Zhejiang University School of MedicineZhejiang UniversityHangzhouChina
| | - Haiquan Chen
- Department of Thoracic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Peng Zhang
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Hongbin Ji
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| |
Collapse
|
44
|
Wang Y, Liu J, Huang C, Zeng Y, Liu Y, Du J. Development and validation of a nomogram for predicting survival of pulmonary invasive mucinous adenocarcinoma based on surveillance, epidemiology, and end results (SEER) database. BMC Cancer 2021; 21:148. [PMID: 33568091 PMCID: PMC7877040 DOI: 10.1186/s12885-021-07811-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Background Lung cancer remains the leading cause of cancer death globally. In 2015, the cancer classification guidelines of the World Health Organization were updated. The term “invasive mucinous adenocarcinoma (IMA)” aroused people’s attention, while the clinicopathological factors that may influence survival were unclear. Methods Data of IMA patients was downloaded from SEER database. Kaplan-Meier methods and log-rank tests were used to compare the differences in OS and LCSS. The nomogram was developed based on the result of the multivariable analysis. The discrimination and accuracy were tested by Harrell’s concordance index (C-index), receiver operating characteristic (ROC) curve, calibration curve and decision curve analyses (DCA). Integrated discrimination improvement (IDI) index was used to evaluate the clinical efficacy. Results According to multivariate analysis, the prognosis of IMAs was associated with age, differentiation grade, TNM stage and treatments. Surgery might be the only way that would improve survival. Area under the curve (AUC) of the training cohort was 0.834and 0.830 for3-and 5-year OS, respectively. AUC for 3-and 5-year LCSS were separately 0.839 and 0.839. The new model was then evaluated by calibration curve, DCA and IDI index. Conclusion Based on this study, prognosis of IMAs was systematically reviewed, and a new nomogram was developed and validated. This model helps us understand IMA in depth and provides new ideas for IMA treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07811-x.
Collapse
Affiliation(s)
- Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jichang Liu
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, 250021, PR China
| | - Cuicui Huang
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China. .,Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, 250021, PR China.
| |
Collapse
|
45
|
Singh A, Daemen A, Nickles D, Jeon SM, Foreman O, Sudini K, Gnad F, Lajoie S, Gour N, Mitzner W, Chatterjee S, Choi EJ, Ravishankar B, Rappaport A, Patil N, McCleland M, Johnson L, Acquaah-Mensah G, Gabrielson E, Biswal S, Hatzivassiliou G. NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clin Cancer Res 2021; 27:877-888. [PMID: 33077574 PMCID: PMC10867786 DOI: 10.1158/1078-0432.ccr-20-1985] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Stabilization of the transcription factor NRF2 through genomic alterations in KEAP1 and NFE2L2 occurs in a quarter of patients with lung adenocarcinoma and a third of patients with lung squamous cell carcinoma. In lung adenocarcinoma, KEAP1 loss often co-occurs with STK11 loss and KRAS-activating alterations. Despite its prevalence, the impact of NRF2 activation on tumor progression and patient outcomes is not fully defined. EXPERIMENTAL DESIGN We model NRF2 activation, STK11 loss, and KRAS activation in vivo using novel genetically engineered mouse models. Furthermore, we derive a NRF2 activation signature from human non-small cell lung tumors that we use to dissect how these genomic events impact outcomes and immune contexture of participants in the OAK and IMpower131 immunotherapy trials. RESULTS Our in vivo data reveal roles for NRF2 activation in (i) promoting rapid-onset, multifocal intrabronchiolar carcinomas, leading to lethal pulmonary dysfunction, and (ii) decreasing elevated redox stress in KRAS-mutant, STK11-null tumors. In patients with nonsquamous tumors, the NRF2 signature is negatively prognostic independently of STK11 loss. Patients with lung squamous cell carcinoma with low NRF2 signature survive longer when receiving anti-PD-L1 treatment. CONCLUSIONS Our in vivo modeling establishes NRF2 activation as a critical oncogenic driver, cooperating with STK11 loss and KRAS activation to promote aggressive lung adenocarcinoma. In patients, oncogenic events alter the tumor immune contexture, possibly having an impact on treatment responses. Importantly, patients with NRF2-activated nonsquamous or squamous tumors have poor prognosis and show limited response to anti-PD-L1 treatment.
Collapse
Affiliation(s)
- Anju Singh
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Anneleen Daemen
- Oncology Bioinformatics, Genentech Inc., South San Francisco, California.
| | - Dorothee Nickles
- Oncology Bioinformatics, Genentech Inc., South San Francisco, California.
| | - Sang-Min Jeon
- Translational Oncology, Genentech Inc., South San Francisco, California
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Oded Foreman
- Pathology, Genentech Inc., South San Francisco, California
| | - Kuladeep Sudini
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Florian Gnad
- Oncology Bioinformatics, Genentech Inc., South San Francisco, California
| | - Stephane Lajoie
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Naina Gour
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Wayne Mitzner
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Samit Chatterjee
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Eun-Ji Choi
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | | | - Amy Rappaport
- Discovery Oncology, Genentech Inc., South San Francisco, California
| | - Namrata Patil
- Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Mark McCleland
- Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Leisa Johnson
- Discovery Oncology, Genentech Inc., South San Francisco, California
| | - George Acquaah-Mensah
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts
| | - Edward Gabrielson
- Department of Pathology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Shyam Biswal
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | | |
Collapse
|
46
|
Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight 2021; 6:144294. [PMID: 33320836 PMCID: PMC7934873 DOI: 10.1172/jci.insight.144294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this –3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the –3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA
| | | | - Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Olivier B Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA.,Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Sean P Colgan
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA.,Molecular, Cellular and Developmental Biology, and.,Computer Science, CU Boulder, Boulder, Colorado, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
47
|
Qiu MJ, Zhang L, Fang XF, Li QT, Zhu LS, Zhang B, Yang SL, Xiong ZF. Research on the circadian clock gene HNF4a in different malignant tumors. Int J Med Sci 2021; 18:1339-1347. [PMID: 33628089 PMCID: PMC7893568 DOI: 10.7150/ijms.49997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The circadian rhythm is produced by multiple feedback loops formed by the core clock genes after transcription and translation, thus regulating various metabolic and physiological functions of the human body. We have shown previously that the abnormal expression of 14 clock genes is related closely to the occurrence and development of different malignant tumors, and these genes may play an anti-cancer or pro-cancer role in different tumors. HNF4a has many typical properties of clock proteins involved in the clock gene negative feedback loop regulation process. We need to explore the function of HNF4a as a circadian clock gene in malignant tumors further. Methods: We used The Cancer Genome Atlas (TCGA) database to download the clinicopathological information of twenty malignant tumors and the corresponding RNA-seq data. The HNF4a RNA-seq data standardized by R language and clinical information were integrated to reveal the relationship between HNF4a and prognosis of patients. Results: Analysis of TCGA data showed that the prognosis of HNF4a was significantly different in BLCA, KIRC, LUSC, and READ. High HNF4a expression is correlated with good prognosis in BLCA, KIRC, and READ but poor prognosis in LUSC. However, HNF4a was associated with the stages, T stages, and lymph node status only in BLCA. Conclusions: HNF4a plays different roles in different malignancies, and the abnormal expression of HNF4a has a great correlation with the biological characteristics of BLCA. The low expression of HNF4a could be a reference index for the metastasis, recurrence, and prognosis of BLCA.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Li Zhang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Xie-Fan Fang
- Charles River Laboratories, Inc., 6995 Longley Lane, Reno NV 89511
| | - Qiu-Ting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Li-Sheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
48
|
Song P, Song B, Liu J, Wang X, Nan X, Wang J. Blockage of PAK1 alleviates the proliferation and invasion of NSCLC cells via inhibiting ERK and AKT signaling activity. Clin Transl Oncol 2020; 23:892-901. [PMID: 32974862 DOI: 10.1007/s12094-020-02486-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE P21-activated kinase 1 (PAK1), a serine/threonine protein kinase which functions downstream of RAC and CDC42 GTPase, is activated by a variety of stimuli, including RAS and other growth signaling factors. The extracellular signal kinase (ERK) and protein kinase B (AKT) signal pathways have been implicated in the pathogenesis of cancers. Whether PAK1 is sensitive to KRAS mutation signals and plays a role through ERK and AKT signaling pathways in NSCLC needs to be studied. METHODS The expression of PAK1, ERK and AKT was detected in both lung cancer cell lines and clinical samples. PAK1 RNA interference and specific inhibitor of PAK1(IPA-3) were applied to lung cancer cell lines and mouse xenograft tumors. Cell growth was measured by MTT and colony formation assays. Cell migration and invasion were detected by wound healing and transwell assays. RAS mutation was detected by Taqman probe method. Correlation between KRAS, PAK1, ERK and AKT activities was analyzed in lung cancer patients. RESULTS PAK1 was highly expressed not only in RAS mutant but also in RAS wild-type lung cancer cells. Using specific inhibitor of PAK1, IPA-3 and PAK1 RNA interference, cell proliferation, migration and invasion of lung cancer cells were reduced significantly, accompanied by decreased activities of ERK and AKT. Dual inhibition of ERK and AKT suppressed these cellular processes to levels comparable to those achieved by reduction in PAK1 expression. In NSCLC patients, PAK1 was not correlated with KRAS mutation but was significantly positively correlated with pERK and pAKT. CONCLUSION PAK1 played roles in NSCLC proliferation and invasion via ERK and AKT signaling and suggested a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- P Song
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - B Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jjinan, China.
| | - J Liu
- Department of Respiratory Internal, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - X Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jjinan, China
| | - X Nan
- Department of Respiratory Internal, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - J Wang
- Department of Respiratory Internal, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
49
|
Ning Y, Zheng H, Zhan Y, Liu S, Yang Y, Zang H, Luo J, Wen Q, Fan S. Comprehensive analysis of the mechanism and treatment significance of Mucins in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:162. [PMID: 32807223 PMCID: PMC7433199 DOI: 10.1186/s13046-020-01662-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Aberrant expression of mucin proteins has played a complex and essential role in cancer development and metastasis. Members of the mucin family have been intimately implicated in lung cancer progression, metastasis, survival and chemo-resistance. During the progression of lung cancer, mucin proteins have involved all of the procession of lung cancer, which is interacted with many receptor tyrosine kinases signal pathways and mediated cell signals for tumor cell growth and survival. Mucins thus have been considerable as the indicator of negative prognosis and desirable therapeutic targets of lung cancers. In this review, we comprehensively analyzed the role of each member of the mucin family in lung cancer by combining open-accessed database analysis and assembling cutting-edge information about these molecules.
Collapse
Affiliation(s)
- Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
50
|
Feng T, Zhang Q, Li Q, Zhu T, Lv W, Yu H, Qian B. LUAD transcriptomic profile analysis of d-limonene and potential lncRNA chemopreventive target. Food Funct 2020; 11:7255-7265. [PMID: 32776051 DOI: 10.1039/d0fo00809e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
d-Limonene, a type of natural extract obtained from citrus oils, was reported to have anti-cancer effects and be well-tolerated by cancer patients. Despite arousing interest as a cancer chemopreventive substance, the transcriptomic profile of d-limonene in humans is poorly understood. Based on the results of the transcriptomic profiling, a lncRNA named protein disulfide isomerase family A member three pseudogene (PDIA3P1) was found to be regulated by d-limonene. PDIA3P1 is an oncogene verified by three lung adenocarcinoma (LUAD) datasets. The knockdown of PDIA3P1 with siRNA decreased the viability, invasion, migration, and proliferation of LUAD cells. Based on The Cancer Genome Atlas (TCGA) LUAD datasets, PDIA3P1 regulates functions and pathways mainly including lipid metabolism, immunity, and the change of the chromosome structure. This study comprehensively performs the transcriptomic analysis of the d-limonene regulation on LUAD, and reveals that PDIA3P1 may be the mediator in helping d-limonene to prevent and suppress LUAD via lipid metabolism, immunity pathway, and the change in the chromosome structure.
Collapse
Affiliation(s)
- Tienan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | | | | | | | | | | | | |
Collapse
|