1
|
Favaretto F, Matsumura EE, Ferriol I, Chitarra W, Nerva L. The four Ws of viruses: Where, Which, What and Why - A deep dive into viral evolution. Virology 2025; 606:110476. [PMID: 40073500 DOI: 10.1016/j.virol.2025.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
For centuries, humanity has been captivated by evolution, seeking to unravel the origins of life and identify past patterns with future applications. Viruses, despite their obligate parasitic nature, are the most adaptable biological entities, surpassing cellular life in their variability and adaptability. While many theories about viral evolution exist, a consensus on their origins remains elusive. The quasispecies theory, however, has emerged as a leading framework for understanding viral evolution and, indirectly, their variability and adaptability. This theory illuminates how viruses regulate behaviours such as host range and their symbiotic or antagonistic interactions with hosts. This review delves into the most substantiated theories of viral evolution, addressing four fundamental questions relevant to virus ecology: Where did viruses originate? What factors drive viral evolution? What determines the virus host range? And why do viruses adopt pathogenic or mutualistic strategies? We will provide a comprehensive and up-to-date analysis that integrates diverse theoretical perspectives with empirical data, providing a holistic view of viral evolution and its implications for viral behaviour.
Collapse
Affiliation(s)
- Francesco Favaretto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell'Università 16, 35020, Legnaro, Pd, Italy
| | - Emilyn E Matsumura
- Laboratory of Virology, Wageningen University and Research, 6700 AA 8 Wageningen, the Netherlands
| | - Inmaculada Ferriol
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Calle Serrano 115 apdo, 28006, Madrid, Spain
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy.
| |
Collapse
|
2
|
Andrews T, Duffy S. Complete genomes of common bacterial hosts of RNA bacteriophage Φ6. Microbiol Resour Announc 2025; 14:e0100024. [PMID: 39655919 PMCID: PMC11737137 DOI: 10.1128/mra.01000-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025] Open
Abstract
Bacterial plant pathogens Pseudomonas savastanoi pv. phaseolicola, P. syringae pv. tomato, P. syringae pv. atrofaciens, and P. oleovorans East River isolate A serve as common laboratory hosts for bacteriophage Φ6, a widely used model organism for enveloped viruses. Here, we report complete genome sequences for strains of these bacterial hosts.
Collapse
Affiliation(s)
- Taylor Andrews
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Kabengele K, Turner WC, Turner PE, Ogbunugafor CB. A meta-analysis highlights the idiosyncratic nature of tradeoffs in laboratory models of virus evolution. Virus Evol 2024; 10:veae105. [PMID: 39717708 PMCID: PMC11665823 DOI: 10.1093/ve/veae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Different theoretical frameworks have been invoked to guide the study of virus evolution. Three of the more prominent ones are (i) the evolution of virulence, (ii) life history theory, and (iii) the generalism-specialism dichotomy. All involve purported tradeoffs between traits that define the evolvability and constraint of virus-associated phenotypes. However, as popular as these frameworks are, there is a surprising paucity of direct laboratory tests of the frameworks that support their utility as broadly applicable theoretical pillars that can guide our understanding of disease evolution. In this study, we conduct a meta-analysis of direct experimental evidence for these three frameworks across several widely studied virus-host systems: plant viruses, fungal viruses, animal viruses, and bacteriophages. We extracted 60 datasets from 28 studies and found a range of relationships between traits in different analysis categories (e.g., frameworks, virus-host systems). Our work demonstrates that direct evidence for relationships between traits is highly idiosyncratic and specific to the host-virus system and theoretical framework. Consequently, scientists researching viral pathogens from different taxonomic groups might reconsider their allegiance to these canons as the basis for expectation, explanation, or prediction. Future efforts could benefit from consistent definitions, and from developing frameworks that are compatible with the evidence and apply to particular biological and ecological contexts.
Collapse
Affiliation(s)
- Ketty Kabengele
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
| | - Wendy C Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
- Microbiology Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
- Public Health Modeling Unit, Yale School of Public Health 60 College Street , New Haven CT 06510, United States
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States
| |
Collapse
|
4
|
Pauciullo S, Zulian V, La Frazia S, Paci P, Garbuglia AR. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms 2024; 12:2191. [PMID: 39597581 PMCID: PMC11596118 DOI: 10.3390/microorganisms12112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Viral spillover represents the transmission of pathogen viruses from one species to another that can give rise to an outbreak. It is a critical concept that has gained increasing attention, particularly after the SARS-CoV-2 pandemic. However, the term is often used inaccurately to describe events that do not meet the true definition of spillover. This review aims to clarify the proper use of the term and provides a detailed analysis of the mechanisms driving zoonotic spillover, with a focus on the genetic and environmental factors that enable viruses to adapt to new hosts. Key topics include viral genetic variability in reservoir species, biological barriers to cross-species transmission, and the factors that influence viral adaptation and spread in novel hosts. The review also examines the role of evolutionary processes such as mutation and epistasis, alongside ecological conditions that facilitate the emergence of new pathogens. Ultimately, it underscores the need for more accurate predictive models and improved surveillance to better anticipate and mitigate future spillover events.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Paola Paci
- Department of Computer, Control, and Management Engineering “A. Ruberti” (DIAG), Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| |
Collapse
|
5
|
Bonachela JA. Viral plasticity facilitates host diversity in challenging environments. Nat Commun 2024; 15:7473. [PMID: 39209841 PMCID: PMC11362530 DOI: 10.1038/s41467-024-51344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The antagonistic coevolution of microbes and viruses influences fundamentally the diversity of microbial communities. Information on how environmental variables interact with emergent defense-counterdefense strategies and community composition is, however, still scarce. Following biological intuition, diversity should increase with improved growth conditions, which offset evolutionary costs; however, laboratory and regional data suggest that microbial diversity decreases in nutrient-rich conditions. Moreover, global oceanic data show that microbial and viral diversity decline for high latitudes, although the underlying mechanisms are unknown. This article addresses these gaps by introducing an eco-evolutionary model for bacteria-virus antagonistic coevolution. The theory presented here harmonizes the observations above and identifies negative density dependence and viral plasticity (dependence of virus performance on host physiological state) as key drivers: environmental conditions selecting for slow host growth also limit viral performance, facilitating the survival of a diverse host community; host diversity, in turn, enables viral portfolio effects and bet-hedging strategies that sustain viral diversity. From marine microbes to phage therapy against antibiotic-resistant bacteria or cancer cells, the ubiquity of antagonistic coevolution highlights the need to consider eco-evolutionary interactions across a gradient of growth conditions.
Collapse
Affiliation(s)
- Juan A Bonachela
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
6
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
7
|
Singhal S, Balitactac AK, Nayagam AG, Pour Bahrami P, Nayeem S, Turner PE. Experimental Evolution Studies in Φ6 Cystovirus. Viruses 2024; 16:977. [PMID: 38932268 PMCID: PMC11209170 DOI: 10.3390/v16060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Experimental evolution studies, in which biological populations are evolved in a specific environment over time, can address questions about the nature of spontaneous mutations, responses to selection, and the origins and maintenance of novel traits. Here, we review more than 30 years of experimental evolution studies using the bacteriophage (phage) Φ6 cystovirus. Similar to many lab-studied bacteriophages, Φ6 has a high mutation rate, large population size, fast generation time, and can be genetically engineered or cryogenically frozen, which facilitates its rapid evolution in the laboratory and the subsequent characterization of the effects of its mutations. Moreover, its segmented RNA genome, outer membrane, and capacity for multiple phages to coinfect a single host cell make Φ6 a good non-pathogenic model for investigating the evolution of RNA viruses that infect humans. We describe experiments that used Φ6 to address the fitness effects of spontaneous mutations, the consequences of evolution in the presence of coinfection, the evolution of host ranges, and mechanisms and consequences of the evolution of thermostability. We highlight open areas of inquiry where further experimentation on Φ6 could inform predictions for pathogenic viruses.
Collapse
Affiliation(s)
- Sonia Singhal
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Akiko K. Balitactac
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Aruna G. Nayagam
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Parnian Pour Bahrami
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Sara Nayeem
- Department of Biological Sciences, San José State University, San José, CA 95192, USA; (A.K.B.); (A.G.N.); (P.P.B.); (S.N.)
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Venkataraman P, Nagendra P, Ahlawat N, Brajesh RG, Saini S. Convergent genetic adaptation of Escherichia coli in minimal media leads to pleiotropic divergence. Front Mol Biosci 2024; 11:1286824. [PMID: 38660375 PMCID: PMC11039892 DOI: 10.3389/fmolb.2024.1286824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
Adaptation in an environment can either be beneficial, neutral or disadvantageous in another. To test the genetic basis of pleiotropic behaviour, we evolved six lines of E. coli independently in environments where glucose and galactose were the sole carbon sources, for 300 generations. All six lines in each environment exhibit convergent adaptation in the environment in which they were evolved. However, pleiotropic behaviour was observed in several environmental contexts, including other carbon environments. Genome sequencing reveals that mutations in global regulators rpoB and rpoC cause this pleiotropy. We report three new alleles of the rpoB gene, and one new allele of the rpoC gene. The novel rpoB alleles confer resistance to Rifampicin, and alter motility. Our results show how single nucleotide changes in the process of adaptation in minimal media can lead to wide-scale pleiotropy, resulting in changes in traits that are not under direct selection.
Collapse
Affiliation(s)
| | | | | | | | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Teklemariam AD, Al Hindi R, Qadri I, Alharbi MG, Hashem AM, Alrefaei AA, Basamad NA, Haque S, Alamri T, Harakeh S. Phage cocktails - an emerging approach for the control of bacterial infection with major emphasis on foodborne pathogens. Biotechnol Genet Eng Rev 2024; 40:36-64. [PMID: 36927397 DOI: 10.1080/02648725.2023.2178870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/24/2023] [Indexed: 03/18/2023]
Abstract
Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rashad Al Hindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G Alharbi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccine and Immunotherapy Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Abdullah A Alrefaei
- Molecular Virology Department, King Fahad General Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Najlaa A Basamad
- Parasitology Department, King Fahad General Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese, American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Turki Alamri
- Family and community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Bisesi AT, Möbius W, Nadell CD, Hansen EG, Bowden SD, Harcombe WR. Bacteriophage specificity is impacted by interactions between bacteria. mSystems 2024; 9:e0117723. [PMID: 38376179 PMCID: PMC11237722 DOI: 10.1128/msystems.01177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.
Collapse
Affiliation(s)
- Ave T. Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Wolfram Möbius
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Eleanore G. Hansen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven D. Bowden
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
11
|
Ogbunugafor CB, Guerrero RF, Miller-Dickson MD, Shakhnovich EI, Shoulders MD. Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance. Phys Rev E 2023; 108:054408. [PMID: 38115433 PMCID: PMC10935598 DOI: 10.1103/physreve.108.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 12/21/2023]
Abstract
Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few mentions of protein space consider how protein phenotypes can be described in terms of their biophysical components, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these components. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [k_{cat}, K_{M}, K_{i}, and T_{m} (melting temperature)]. We then examine how combinations of three mutations (eight alleles in total) display pleiotropy, or unique effects on individual subspace traits. We examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that future applications to bioengineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.
Collapse
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Rafael F. Guerrero
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Lee SC, Liou MR, Hsu YH, Wang IN, Lin NS. Trade-off between local replication and long-distance dissemination during experimental evolution of a satellite RNA. Front Microbiol 2023; 14:1139447. [PMID: 37601360 PMCID: PMC10436602 DOI: 10.3389/fmicb.2023.1139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Satellite RNAs (satRNAs) are molecular parasites that depend on their non-homologous helper viruses (HVs) for essential biological functions. While there are multiple molecular and phylogenetic studies on satRNAs, there is no experimental evolution study on how satRNAs may evolve in common infection conditions. In this study, we serially passaged the Bamboo mosaic virus (BaMV) associated-satRNA (satBaMV) under conditions in which satBaMV either coinfects an uninfected host plant, Nicotiana benthamiana, with BaMV or superinfects a transgenic N. benthamiana expressing the full-length BaMV genome. Single-nucleotide polymorphisms (SNPs) of satBaMV populations were analyzed by deep sequencing. Forty-eight SNPs were identified across four different experimental treatments. Most SNPs are treatment-specific, and some are also ephemeral. However, mutations at positions 30, 34, 63, and 82, all located at the 5' untranslated region (UTR), are universal in all treatments. These universal SNPs are configured into several haplotypes and follow different population dynamics. We constructed isogenic satBaMV strains only differing at positions 30 and 82 and conducted competition experiments in protoplasts and host plants. We found that the haplotype that reached high frequency in protoplasts and inoculation leaves also exhibited poor dissemination to systemic leaves and vice versa, thus suggesting an apparent trade-off between local replication and long-distance dissemination. We posit that the trade-off is likely caused by antagonistic pleiotropy at the 5' UTR. Our findings revealed a hitherto under-explored connection between satRNA genome replication and movement within a host plant. The significance of such a connection during satRNA evolution warrants a more thorough investigation.
Collapse
Affiliation(s)
- Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ing-Nang Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Hitchcock NM, Devequi Gomes Nunes D, Shiach J, Valeria Saraiva Hodel K, Dantas Viana Barbosa J, Alencar Pereira Rodrigues L, Coler BS, Botelho Pereira Soares M, Badaró R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023; 15:1020. [PMID: 37113000 PMCID: PMC10146840 DOI: 10.3390/v15041020] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
In response to the global spread of antimicrobial resistance, there is an increased demand for novel and innovative antimicrobials. Bacteriophages have been known for their potential clinical utility in lysing bacteria for almost a century. Social pressures and the concomitant introduction of antibiotics in the mid-1900s hindered the widespread adoption of these naturally occurring bactericides. Recently, however, phage therapy has re-emerged as a promising strategy for combatting antimicrobial resistance. A unique mechanism of action and cost-effective production promotes phages as an ideal solution for addressing antibiotic-resistant bacterial infections, particularly in lower- and middle-income countries. As the number of phage-related research labs worldwide continues to grow, it will be increasingly important to encourage the expansion of well-developed clinical trials, the standardization of the production and storage of phage cocktails, and the advancement of international collaboration. In this review, we discuss the history, benefits, and limitations of bacteriophage research and its current role in the setting of addressing antimicrobial resistance with a specific focus on active clinical trials and case reports of phage therapy administration.
Collapse
Affiliation(s)
| | - Danielle Devequi Gomes Nunes
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40291-710, BA, Brazil
| | - Job Shiach
- School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Katharine Valeria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Josiane Dantas Viana Barbosa
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | | | - Brahm Seymour Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40291-710, BA, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| |
Collapse
|
15
|
Ogbunugafor CB, Guerrero RF, Shakhnovich EI, Shoulders MD. Epistasis meets pleiotropy in shaping biophysical protein subspaces associated with antimicrobial resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.535490. [PMID: 37066177 PMCID: PMC10104174 DOI: 10.1101/2023.04.09.535490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few framings of protein space consider how higher-level protein phenotypes can be described in terms of their biophysical dimensions, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these dimensions. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [(kcat, KM, Ki, and Tm (melting temperature)]. We then examine how three mutations (eight alleles in total) display pleiotropy in their interactions across these subspaces. We extend this approach to examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that the process of protein evolution and engineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.
Collapse
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- Santa Fe Institute, Santa Fe, NM
| | - Rafael F. Guerrero
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | | | |
Collapse
|
16
|
McGee LW, Barhoush Y, Shima R, Hennessy M. Phage-resistant mutations impact bacteria susceptibility to future phage infections and antibiotic response. Ecol Evol 2023; 13:e9712. [PMID: 36620417 PMCID: PMC9817185 DOI: 10.1002/ece3.9712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Bacteriophage (phage) therapy in combination with antibiotic treatment serves as a potential strategy to overcome the continued rise in antibiotic resistance across bacterial pathogens. Understanding the impacts of evolutionary and ecological processes to the phage-antibiotic-resistance dynamic could advance the development of such combinatorial therapy. We tested whether the acquisition of mutations conferring phage resistance may have antagonistically pleiotropic consequences for antibiotic resistance. First, to determine the robustness of phage resistance across different phage strains, we infected resistant Escherichia coli cultures with phage that were not previously encountered. We found that phage-resistant E. coli mutants that gained resistance to a single phage strain maintain resistance to other phages with overlapping adsorption methods. Mutations underlying the phage-resistant phenotype affects lipopolysaccharide (LPS) structure and/or synthesis. Because LPS is implicated in both phage infection and antibiotic response, we then determined whether phage-resistant trade-offs exist when challenged with different classes of antibiotics. We found that only 1 out of the 4 phage-resistant E. coli mutants yielded trade-offs between phage and antibiotic resistance. Surprisingly, when challenged with novobiocin, we uncovered evidence of synergistic pleiotropy for some mutants allowing for greater antibiotic resistance, even though antibiotic resistance was never selected for. Our results highlight the importance of understanding the role of selective pressures and pleiotropic interactions in the bacterial response to phage-antibiotic combinatorial therapy.
Collapse
Affiliation(s)
| | - Yazid Barhoush
- Biology DepartmentEarlham CollegeRichmondIndianaUSA
- Department of Epidemiology and BiostatisticsDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Rafaella Shima
- Biology DepartmentEarlham CollegeRichmondIndianaUSA
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
17
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
19
|
Pennings PS, Ogbunugafor CB, Hershberg R. Reversion is most likely under high mutation supply when compensatory mutations do not fully restore fitness costs. G3 (BETHESDA, MD.) 2022; 12:jkac190. [PMID: 35920784 PMCID: PMC9434179 DOI: 10.1093/g3journal/jkac190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/02/2021] [Indexed: 06/15/2023]
Abstract
The dynamics of adaptation, reversion, and compensation have been central topics in microbial evolution, and several studies have attempted to resolve the population genetics underlying how these dynamics occur. However, questions remain regarding how certain features-the evolution of mutators and whether compensatory mutations alleviate costs fully or partially-may influence the evolutionary dynamics of compensation and reversion. In this study, we attempt to explain findings from experimental evolution by utilizing computational and theoretical approaches toward a more refined understanding of how mutation rate and the fitness effects of compensatory mutations influence adaptive dynamics. We find that high mutation rates increase the probability of reversion toward the wild type when compensation is only partial. However, the existence of even a single fully compensatory mutation is associated with a dramatically decreased probability of reversion to the wild type. These findings help to explain specific results from experimental evolution, where compensation was observed in nonmutator strains, but reversion (sometimes with compensation) was observed in mutator strains, indicating that real-world compensatory mutations are often unable to fully alleviate the costs associated with adaptation. Our findings emphasize the potential role of the supply and quality of mutations in crafting the dynamics of adaptation and reversal, with implications for theoretical population genetics and for biomedical contexts like the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Pleuni S Pennings
- Corresponding author: Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | | | | |
Collapse
|
20
|
Páez DJ, McKenney D, Purcell MK, Naish KA, Kurath G. Variation in within-host replication kinetics among virus genotypes provides evidence of specialist and generalist infection strategies across three salmonid host species. Virus Evol 2022; 8:veac079. [PMID: 36101884 PMCID: PMC9463992 DOI: 10.1093/ve/veac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 02/12/2024] Open
Abstract
Theory of the evolution of pathogen specialization suggests that a specialist pathogen gains high fitness in one host, but this comes with fitness loss in other hosts. By contrast, a generalist pathogen does not achieve high fitness in any host, but gains ecological fitness by exploiting different hosts, and has higher fitness than specialists in nonspecialized hosts. As a result, specialist pathogens are predicted to have greater variation in fitness across hosts, and generalists would have lower fitness variation across hosts. We test these hypotheses by measuring pathogen replicative fitness as within-host viral loads from the onset of infection to the beginning of virus clearance, using the rhabdovirus infectious hematopoietic necrosis virus (IHNV) in salmonid fish. Based on field prevalence and virulence studies, the IHNV subgroups UP, MD, and L are specialists, causing infection and mortality in sockeye salmon, steelhead, and Chinook salmon juveniles, respectively. The UC subgroup evolved naturally from a UP ancestor and is a generalist infecting all three host species but without causing severe disease. We show that the specialist subgroups had the highest peak and mean viral loads in the hosts in which they are specialized, and they had low viral loads in nonspecialized hosts, resulting in large variation in viral load across hosts. Viral kinetics show that the mechanisms of specialization involve the ability to both maximize early virus replication and avoid clearance at later times, with different mechanisms of specialization evident in different host-virus combinations. Additional nuances in the data included different fitness levels for nonspecialist interactions, reflecting different trade-offs for specialist viruses in other hosts. The generalist UC subgroup reached intermediate viral loads in all hosts and showed the smallest variation in fitness across hosts. The evolution of the UC generalist from an ancestral UP sockeye specialist was associated with fitness increases in steelhead and Chinook salmon, but only slight decreases in fitness in sockeye salmon, consistent with low- or no-cost generalism. Our results support major elements of the specialist-generalist theory, providing evidence of a specialist-generalist continuum in a vertebrate pathogen. These results also quantify within-host replicative fitness trade-offs resulting from the natural evolution of specialist and generalist virus lineages in multi-host ecosystems.
Collapse
Affiliation(s)
- David J Páez
- School of Aquatic and Fishery Sciences, The University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98195, USA
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Douglas McKenney
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, The University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98195, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| |
Collapse
|
21
|
Khokhlova IS, van der Mescht L, Warburton EM, Stavtseva NA, Krasnov BR. Adaptation to a novel host and performance trade-off in host-generalist and host-specific insect ectoparasites. INSECT SCIENCE 2022; 29:567-580. [PMID: 34048132 DOI: 10.1111/1744-7917.12929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
We investigated the performance trade-offs of fleas (Siphonaptera) while adapting to a novel host using two host generalists (Xenopsylla conformis and Xenopsylla ramesis) and one host specialist (Parapulex chephrenis) maintained on their principal hosts (Meriones crassus for Xenopsylla and Acomys cahirinus for P. chephrenis). We asked whether, over generations, (i) a host generalist may become a specialist by evolving the ability to exploit a novel host and losing the ability to exploit an original host and (ii) a host specialist can become a generalist by evolving the ability to exploit a novel host without losing the ability to exploit an original host. We established an experimental line of each species on a novel host (Acomys russatus for Xenopsylla and M. crassus for P. chephrenis) and maintained this line on this host during 23 generations. We compared reproductive performance of progenitors of each line and their descendants when they exploited either original or novel host in terms of egg number and size, hatching success, offspring production, and offspring size. We found changes in performance over generations in female offspring size only. Xenopsylla conformis demonstrated a tendency to become a host specialist (increased performance on the novel host with a concomitant decreased performance on the original host), whereas P. chephrenis demonstrated a tendency to become a host generalist (increased performance on the novel host without a concomitant decreased performance on the original host). We conclude that the probability of generalist to specialist transition, and vice versa, is context-dependent and varies between species.
Collapse
Affiliation(s)
- Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Luther van der Mescht
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Present affiliation and address of Luther van der Mescht: Clinvet International, Uitzich Road, Bainsvlei, 9338 Bloemfontein, Free State, South Africa
| | - Elizabeth M Warburton
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Present affiliation and address of Elizabeth M. Warburton: Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, 203 D.W. Brooks Dr., Athens, GA, 30602, USA
| | - Nadezhda A Stavtseva
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
22
|
Molina F, Menor-Flores M, Fernández L, Vega-Rodríguez MA, García P. Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails. Sci Rep 2022; 12:2458. [PMID: 35165352 PMCID: PMC8844382 DOI: 10.1038/s41598-022-06422-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
The application of bacteriophages as antibacterial agents has many benefits in the “post-antibiotic age”. To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the other hand, coinfection (simultaneous infection of one host cell by several phages) might reduce the potential for bacteria to evolve phage resistance, but some antagonistic interactions amongst phages might be detrimental for the outcome of phage cocktail application. With this in mind, we introduce here a new method, which considers the host range and each individual phage-host interaction, to design the phage mixtures that best suppress the target bacteria while minimizing the number of phages to restrict manufacturing costs. Additionally, putative phage-phage interactions in cocktails and phage-bacteria networks are compared as the understanding of the complex interactions amongst bacteriophages could be critical in the development of realistic phage therapy models in the future.
Collapse
|
23
|
Amicone M, Gordo I. Molecular signatures of resource competition: Clonal interference favors ecological diversification and can lead to incipient speciation. Evolution 2021; 75:2641-2657. [PMID: 34341983 PMCID: PMC9292366 DOI: 10.1111/evo.14315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Microbial ecosystems harbor an astonishing diversity that can persist for long times. To understand how such diversity is structured and maintained, ecological and evolutionary processes need to be integrated at similar timescales. Here, we study a model of resource competition that allows for evolution via de novo mutation, and focus on rapidly adapting asexual populations with large mutational inputs, as typical of many bacteria species. We characterize the adaptation and diversification of an initially maladapted population and show how the eco-evolutionary dynamics are shaped by the interaction between simultaneously emerging lineages - clonal interference. We find that in large populations, more intense clonal interference can foster diversification under sympatry, increasing the probability that phenotypically and genetically distinct clusters coexist. In smaller populations, the accumulation of deleterious and compensatory mutations can push further the diversification process and kick-start speciation. Our findings have implications beyond microbial populations, providing novel insights about the interplay between ecology and evolution in clonal populations.
Collapse
Affiliation(s)
- Massimo Amicone
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| | - Isabel Gordo
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| |
Collapse
|
24
|
Bono LM, Mao S, Done RE, Okamoto KW, Chan BK, Turner PE. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv Virus Res 2021; 111:63-110. [PMID: 34663499 DOI: 10.1016/bs.aivir.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phages are viruses that specifically infect bacteria, and their biodiversity contributes to historical and current development of phage therapy to treat myriad bacterial infections. Phage therapy holds promise as an alternative to failing chemical antibiotics, but there are benefits and costs of this technology. Here, we review the rich history of phage therapy, highlighting reasons (often political) why it was widely rejected by Western medicine until recently. One longstanding idea involves mixing different phages together in cocktails, to increase the probability of killing target pathogenic bacteria without pre-screening for phage susceptibility. By challenging 30 lytic phages to infect 14 strains of the bacteria Pseudomonas aeruginosa, we showed that some phages were "generalists" with broad host-ranges, emphasizing that extreme host-specificity of phages was not necessarily a liability. Using a "greedy algorithm" analysis, we identified the best cocktail mixture of phages to achieve broad bacteria killing. Additionally, we review how virus host-range can evolve and connect lessons learned from virus emergence-including contributions of elevated virus mutation rates in promoting emergence and virus evolutionary transitions from specialized to generalized host-use-as cautionary tales for avoiding risk of "off-target" phage emergence on commensal bacteria in microbiomes. Throughout, we highlight how fundamental understanding of virus ecology and evolution is vital for developing phage therapy; heeding these principles should help in designing therapeutic strategies that do not recapitulate consequences of virus selection to emerge on novel hosts.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Biology, Emory University, Atlanta, GA, United States.
| | - Stephanie Mao
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel E Done
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Kenichi W Okamoto
- Department of Biology, University of St. Thomas, St. Paul, MN, United States
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Microbiology Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Mauro AA, Torres-Dowdall J, Marshall CA, Ghalambor CK. A genetically based ecological trade-off contributes to setting a geographic range limit. Ecol Lett 2021; 24:2739-2749. [PMID: 34636129 DOI: 10.1111/ele.13900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Understanding the ecological factors that shape geographic range limits and the evolutionary constraints that prevent populations from adaptively evolving beyond these limits is an unresolved question. Here, we investigated why the euryhaline fish, Poecila reticulata, is confined to freshwater within its native range, despite being tolerant of brackish water. We hypothesised that competitive interactions with a close relative, Poecilia picta, in brackish water prevents P. reticulata from colonising brackish water. Using a combination of field transplant, common garden breeding, and laboratory behaviour experiments, we find support for this hypothesis, as P. reticulata are behaviourally subordinate and have lower survival in brackish water with P. picta. We also found a negative genetic correlation between P. reticulata growth in brackish water versus freshwater in the presence of P. picta, suggesting a genetically based trade-off between salinity tolerance and competitive ability could constrain adaptive evolution at the range limit.
Collapse
Affiliation(s)
- Alexander A Mauro
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Craig A Marshall
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
26
|
Bakerlee CW, Phillips AM, Nguyen Ba AN, Desai MM. Dynamics and variability in the pleiotropic effects of adaptation in laboratory budding yeast populations. eLife 2021; 10:e70918. [PMID: 34596043 PMCID: PMC8579951 DOI: 10.7554/elife.70918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time.
Collapse
Affiliation(s)
- Christopher W Bakerlee
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard University, CambridgeCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard University, CambridgeCambridgeUnited States
| |
Collapse
|
27
|
Sandaa RA, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, Steen IH, Grimsley N, Edvardsen B, Ogata H, Lawrence J. Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biol Rev Camb Philos Soc 2021; 97:179-194. [PMID: 34514703 DOI: 10.1111/brv.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Collectively known as phytoplankton, photosynthetic microbes form the base of the marine food web, and account for up to half of the primary production on Earth. Haptophytes are key components of this phytoplankton community, playing important roles both as primary producers and as mixotrophs that graze on bacteria and protists. Viruses influence the ecology and diversity of phytoplankton in the ocean, with the majority of microalgae-virus interactions described as 'boom and bust' dynamics, which are characteristic of acute virus-host systems. Most haptophytes are, however, part of highly diverse communities and occur at low densities, decreasing their chance of being infected by viruses with high host specificity. Viruses infecting these microalgae have been isolated in the laboratory, and there are several characteristics that distinguish them from acute viruses infecting bloom-forming haptophytes. Herein we synthesise what is known of viruses infecting haptophyte hosts in the ocean, discuss the adaptive evolution of haptophyte-infecting viruses -from those that cause acute infections to those that stably coexist with their host - and identify traits of importance for successful survival in the ocean.
Collapse
Affiliation(s)
- Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Marius R Saltvedt
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Haina Wang
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Université Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, Postbox 1066, N-0316, Oslo, Norway
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Janice Lawrence
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
28
|
Singhal S, Turner PE. Effects of historical co-infection on host shift abilities of exploitative and competitive viruses. Evolution 2021; 75:1878-1888. [PMID: 33969482 PMCID: PMC12058955 DOI: 10.1111/evo.14263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
Rapid evolution contributes to frequent emergence of RNA viral pathogens on novel hosts. However, accurately predicting which viral genotypes will emerge has been elusive. Prior work with lytic RNA bacteriophage ɸ6 (family Cystoviridae) suggested that evolution under low multiplicity of infection (MOI; proportion of viruses to susceptible cells) selected for greater host exploitation, while evolution under high MOI selected for better intracellular competition against co-infecting viruses. We predicted that phage genotypes that had experienced 300 generations of low MOI ecological history would be relatively advantaged in initial growth on two novel hosts. We inferred viral growth through changes in host population density, specifically by analyzing five attributes of growth curves of infected bacteria. Despite equivalent growth of evolved viruses on the original host, low MOI evolved clones were generally advantaged relative to high MOI clones in exploiting novel hosts. However, the specific attributes of growth curves that supported their advantage differed by host, indicating interactions between both viral and host genotype. Although there will be host specificity in viral growth, we suggest based on infectivity differences of viruses from high versus low MOI histories that prior MOI selection can later affect emergence potential.
Collapse
Affiliation(s)
- Sonia Singhal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA
- Current affiliation: Department of Biological Sciences, San José Sate University, San José, California 95192, USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
29
|
Butković A, González R, Rivarez MPS, Elena SF. A genome-wide association study identifies Arabidopsis thaliana genes that contribute to differences in the outcome of infection with two Turnip mosaic potyvirus strains that differ in their evolutionary history and degree of host specialization. Virus Evol 2021; 7:veab063. [PMID: 34532063 PMCID: PMC8438913 DOI: 10.1093/ve/veab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses lie in a continuum between generalism and specialism depending on their ability to infect more or less hosts. While generalists are able to successfully infect a wide variety of hosts, specialists are limited to one or a few. Even though generalists seem to gain an advantage due to their wide host range, they usually pay a pleiotropic fitness cost within each host. On the contrary, a specialist has maximal fitness within its own host. A relevant yet poorly explored question is whether viruses differ in the way they interact with their hosts' gene expression depending on their degree of specialization. Using a genome-wide association study approach, we have identified host genes whose expression depends on whether hosts were infected with more or less specialized viral strains. Four hundred fifty natural accessions of Arabidopsis thaliana were inoculated with Turnip mosaic potyvirus strains with different past evolutionary histories and that shown different degrees of specialization. Three disease-related traits were measured and associated with different sets of host genes for each strain. The genetic architectures of these traits differed among viral strains and, in the case of the more specialized virus, also varied along the duration of infection. While most of the mapped loci were strain specific, one shared locus was mapped for both strains, a disease-resistance TIR-NBS-LRR class protein. Likewise, only putative cysteine-rich receptor-like protein kinases were involved in all three traits. The impact on disease progress of 10 selected genes was validated by studying the infection phenotypes of loss-of-function mutant plants. Nine of these mutants have altered the disease progress and/or symptoms intensity between both strains. Compared to wild-type plants six had an effect on both viral strains, three had an effect only on the more specialized, and two were significant during infection with the less specialized.
Collapse
|
30
|
Makalatia K, Kakabadze E, Bakuradze N, Grdzelishvili N, Stamp B, Herman E, Tapinos A, Coffey A, Lee D, Papadopoulos NG, Robertson DL, Chanishvili N, Megremis S. Investigation of Salmonella Phage-Bacteria Infection Profiles: Network Structure Reveals a Gradient of Target-Range from Generalist to Specialist Phage Clones in Nested Subsets. Viruses 2021; 13:1261. [PMID: 34203492 PMCID: PMC8310288 DOI: 10.3390/v13071261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages that lyse Salmonella enterica are potential tools to target and control Salmonella infections. Investigating the host range of Salmonella phages is a key to understand their impact on bacterial ecology, coevolution and inform their use in intervention strategies. Virus-host infection networks have been used to characterize the "predator-prey" interactions between phages and bacteria and provide insights into host range and specificity. Here, we characterize the target-range and infection profiles of 13 Salmonella phage clones against a diverse set of 141 Salmonella strains. The environmental source and taxonomy contributed to the observed infection profiles, and genetically proximal phages shared similar infection profiles. Using in vitro infection data, we analyzed the structure of the Salmonella phage-bacteria infection network. The network has a non-random nested organization and weak modularity suggesting a gradient of target-range from generalist to specialist species with nested subsets, which are also observed within and across the different phage infection profile groups. Our results have implications for our understanding of the coevolutionary mechanisms shaping the ecological interactions between Salmonella phages and their bacterial hosts and can inform strategies for targeting Salmonella enterica with specific phage preparations.
Collapse
Affiliation(s)
- Khatuna Makalatia
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| | - Elene Kakabadze
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Nata Bakuradze
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Nino Grdzelishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Ben Stamp
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (B.S.); (D.L.R.)
| | - Ezra Herman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
| | - Avraam Tapinos
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M13 9GB, UK;
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (A.C.); (D.L.)
| | - David Lee
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (A.C.); (D.L.)
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester M13 9PL, UK;
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (B.S.); (D.L.R.)
| | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M13 9GB, UK;
| |
Collapse
|
31
|
Interaction dynamics and virus-host range for estuarine actinophages captured by epicPCR. Nat Microbiol 2021; 6:630-642. [PMID: 33633401 DOI: 10.1038/s41564-021-00873-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Viruses impact microbial diversity, gene flow and function through virus-host interactions. Although metagenomics surveys are rapidly cataloguing viral diversity, methods are needed to capture specific virus-host interactions in situ. Here, we leveraged metagenomics and repurposed emulsion paired isolation-concatenation PCR (epicPCR) to investigate viral diversity and virus-host interactions in situ over time in an estuarine environment. The method fuses a phage marker, the ribonucleotide reductase gene, with the host 16S rRNA gene of infected bacterial cells within emulsion droplets providing single-cell resolution for dozens of samples. EpicPCR captured in situ virus-host interactions for viral clades with no closely related database representatives. Abundant freshwater Actinobacteria lineages, in particular Rhodoluna sp., were the most common hosts for these poorly characterized viruses, with interactions correlated with environmental factors. Multiple methods used to identify virus-host interactions, including epicPCR, identified different and largely non-overlapping interactions within the vast virus-host interaction space. Tracking virus-host interaction dynamics also revealed that multi-host viruses had significantly longer periods with observed virus-host interactions, whereas single-host viruses were observed interacting with hosts at lower minimum abundances, suggesting more efficient interactions. Capturing in situ interactions with epicPCR revealed environmental and ecological factors shaping virus-host interactions, highlighting epicPCR as a valuable technique in viral ecology.
Collapse
|
32
|
Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 2021; 12:564532. [PMID: 33664712 PMCID: PMC7920989 DOI: 10.3389/fmicb.2021.564532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes' feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward's method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.
Collapse
Affiliation(s)
- Felipe Molina
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Microbiology, Department of Biomedical Sciences, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
33
|
Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat Ecol Evol 2021; 5:350-359. [PMID: 33432132 DOI: 10.1038/s41559-020-01364-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/12/2020] [Indexed: 01/28/2023]
Abstract
Most viruses can infect multiple hosts, yet the selective mechanisms that maintain multi-host generalists over single-host specialists remain an open question. Here we propagate populations of the newly identified bacteriophage øJB01 in coculture with many host genotypes and find that while phage can adapt to infect any of the new hosts, increasing the number of hosts slows the rate of adaptation. We quantify trade-offs in the capacity for individual phage to infect different hosts and find that phage from evolved populations with more hosts are more likely to be generalists. Sequencing of evolved phage reveals strong selection and the genetic basis of adaptation, supporting a model that shows how the addition of more potential hosts to a community can select for low-fitness generalists over high-fitness specialists. Our results show how evolution with multiple hosts alters the rate of viral adaptation and provides empirical support for an evolutionary mechanism that promotes generalists over specialists.
Collapse
|
34
|
Kumar M, Bharti R, Ranjan T. The Evolutionary Significance of Generalist Viruses with Special Emphasis on Plant Viruses and their Hosts. Open Virol J 2020. [DOI: 10.2174/1874357902014010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The host range of a virus is defined as the number of species a virus potentially infects. The specialist virus infects one or few related species while the generalist virus infects several different species, possibly in different families. Origin of generalist viruses from their specialist nature and the expansion of the host range of the generalist virus occur with the host shift event in which the virus encounters and adapts to a new host. Host shift events have resulted in the majority of the newly emerging viral diseases. This review discusses the advantages and disadvantages of generalist over specialist viruses and the unique features of plant viruses and their hosts that result in a higher incidence of generalist viruses in plants.
Collapse
|
35
|
Ruark-Seward CL, Bonville B, Kennedy G, Rasmussen DA. Evolutionary dynamics of Tomato spotted wilt virus within and between alternate plant hosts and thrips. Sci Rep 2020; 10:15797. [PMID: 32978446 PMCID: PMC7519039 DOI: 10.1038/s41598-020-72691-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is a generalist pathogen with one of the broadest known host ranges among RNA viruses. To understand how TSWV adapts to different hosts, we experimentally passaged viral populations between two alternate hosts, Emilia sochifolia and Datura stramonium, and an obligate vector in which it also replicates, western flower thrips (Frankliniella occidentalis). Deep sequencing viral populations at multiple time points allowed us to track the evolutionary dynamics of viral populations within and between hosts. High levels of viral genetic diversity were maintained in both plants and thrips between transmission events. Rapid fluctuations in the frequency of amino acid variants indicated strong host-specific selection pressures on proteins involved in viral movement (NSm) and replication (RdRp). While several genetic variants showed opposing fitness effects in different hosts, fitness effects were generally positively correlated between hosts indicating that positive rather than antagonistic pleiotropy is pervasive. These results suggest that high levels of genetic diversity together with the positive pleiotropic effects of mutations have allowed TSWV to rapidly adapt to new hosts and expand its host range.
Collapse
Affiliation(s)
- Casey L Ruark-Seward
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - Brian Bonville
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA. .,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
36
|
Gomez LM, Meszaros VA, Turner WC, Ogbunugafor CB. The Epidemiological Signature of Pathogen Populations That Vary in the Relationship between Free-Living Parasite Survival and Virulence. Viruses 2020; 12:E1055. [PMID: 32971954 PMCID: PMC7551987 DOI: 10.3390/v12091055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The relationship between parasite virulence and transmission is a pillar of evolutionary theory that has implications for public health. Part of this canon involves the idea that virulence and free-living survival (a key component of transmission) may have different relationships in different host-parasite systems. Most examinations of the evolution of virulence-transmission relationships-Theoretical or empirical in nature-Tend to focus on the evolution of virulence, with transmission being a secondary consideration. Even within transmission studies, the focus on free-living survival is a smaller subset, though recent studies have examined its importance in the ecology of infectious diseases. Few studies have examined the epidemic-scale consequences of variation in survival across different virulence-survival relationships. In this study, we utilize a mathematical model motivated by aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) natural history to investigate how evolutionary changes in survival may influence several aspects of disease dynamics at the epidemiological scale. Across virulence-survival relationships (where these traits are either positively or negatively correlated), we found that small changes (5% above and below the nominal value) in survival can have a meaningful effect on certain outbreak features, including R0, and on the size of the infectious peak in the population. These results highlight the importance of properly understanding the mechanistic relationship between virulence and parasite survival, as the evolution of increased survival across different relationships with virulence may have considerably different epidemiological signatures.
Collapse
Affiliation(s)
- Lourdes M. Gomez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA;
| | - Victor A. Meszaros
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA;
| | - Wendy C. Turner
- Department of Biological Sciences, University at Albany–State University of New York, Albany, NY 12222, USA;
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
37
|
Scanlan PD. Resistance May Be Futile: Gut Spatial Heterogeneity Supports Bacteria-Phage Co-existence. Cell Host Microbe 2020; 28:356-358. [PMID: 32910917 DOI: 10.1016/j.chom.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
How do we explain the co-existence of bacteria and bacteriophages in complex environments? In this issue of Cell Host & Microbe, Lourenço et al. highlight the importance of spatial structure in facilitating the persistence of sensitive bacterial hosts and their virulent bacteriophages in the mammalian gut.
Collapse
Affiliation(s)
- Pauline Deirdre Scanlan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
38
|
Variation Profile of the Orthotospovirus Genome. Pathogens 2020; 9:pathogens9070521. [PMID: 32610472 PMCID: PMC7400459 DOI: 10.3390/pathogens9070521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Orthotospoviruses are plant-infecting members of the family Tospoviridae (order Bunyavirales), have a broad host range and are vectored by polyphagous thrips in a circulative-propagative manner. Because diverse hosts and vectors impose heterogeneous selection constraints on viral genomes, the evolutionary arms races between hosts and their pathogens might be manifested as selection for rapid changes in key genes. These observations suggest that orthotospoviruses contain key genetic components that rapidly mutate to mediate host adaptation and vector transmission. Using complete genome sequences, we profiled genomic variation in orthotospoviruses. Results show that the three genomic segments contain hypervariable areas at homologous locations across species. Remarkably, the highest nucleotide variation mapped to the intergenic region of RNA segments S and M, which fold into a hairpin. Secondary structure analyses showed that the hairpin is a dynamic structure with multiple functional shapes formed by stems and loops, contains sites under positive selection and covariable sites. Accumulation and tolerance of mutations in the intergenic region is a general feature of orthotospoviruses and might mediate adaptation to host plants and insect vectors.
Collapse
|
39
|
Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat Ecol Evol 2020; 4:601-611. [PMID: 32152531 PMCID: PMC8063891 DOI: 10.1038/s41559-020-1128-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations that a population accumulates during evolution in one 'home' environment may cause fitness gains or losses in other environments. Such pleiotropic fitness effects determine the evolutionary fate of the population in variable environments and can lead to ecological specialization. It is unclear how the pleiotropic outcomes of evolution are shaped by the intrinsic randomness of the evolutionary process and by the deterministic variation in selection pressures across environments. Here, to address this question, we evolved 20 replicate populations of the yeast Saccharomyces cerevisiae in 11 laboratory environments and measured their fitness across multiple conditions. We found that evolution led to diverse pleiotropic fitness gains and losses, driven by multiple types of mutations. Approximately 60% of this variation is explained by the home environment of a clone and the most common parallel genetic changes, whereas about 40% is attributed to the stochastic accumulation of mutations whose pleiotropic effects are unpredictable. Although populations are typically specialized to their home environment, generalists also evolved in almost all of the conditions. Our results suggest that the mutations that accumulate during evolution incur a variety of pleiotropic costs and benefits with different probabilities. Thus, whether a population evolves towards a specialist or a generalist phenotype is heavily influenced by chance.
Collapse
|
40
|
Okamoto KW, Amarasekare P, Post DM, Vasseur DA, Turner PE. The interplay between host community structure and pathogen life‐history constraints in driving the evolution of host‐range shifts. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kenichi W. Okamoto
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Department of Biology University of St. Thomas St. Paul MN USA
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - David M. Post
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - David A. Vasseur
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
41
|
Bono LM, Draghi JA, Turner PE. Evolvability Costs of Niche Expansion. Trends Genet 2019; 36:14-23. [PMID: 31699305 DOI: 10.1016/j.tig.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023]
Abstract
What prevents generalists from displacing specialists, despite obvious competitive advantages of utilizing a broad niche? The classic genetic explanation is antagonistic pleiotropy: genes underlying the generalism produce 'jacks-of-all-trades' that are masters of none. However, experiments challenge this assumption that mutations enabling niche expansion must reduce fitness in other environments. Theory suggests an alternative cost of generalism: decreased evolvability, or the reduced capacity to adapt. Generalists using multiple environments experience relaxed selection in any one environment, producing greater relative lag load. Additionally, mutations fixed by generalist lineages early during their evolution that avoid or compensate for antagonistic pleiotropy may limit access to certain future evolutionary trajectories. Hypothesized evolvability costs of generalism warrant further exploration, and we suggest outstanding questions meriting attention.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Ecology, Evolution, and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jeremy A Draghi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA; Program in Ecology, Evolutionary Biology and Behavior, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Paul E Turner
- Microbiology Program, Yale School of Medicine, New Haven, CT 06510, USA; Yale University, Department of Ecology and Evolutionary Biology, New Haven, CT 06511, USA.
| |
Collapse
|
42
|
Card KJ, LaBar T, Gomez JB, Lenski RE. Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol 2019; 17:e3000397. [PMID: 31644535 PMCID: PMC6827916 DOI: 10.1371/journal.pbio.3000397] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/04/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Populations often encounter changed environments that remove selection for the maintenance of particular phenotypic traits. The resulting genetic decay of those traits under relaxed selection reduces an organism's fitness in its prior environment. However, whether and how such decay alters the subsequent evolvability of a population upon restoration of selection for a previously diminished trait is not well understood. We addressed this question using Escherichia coli strains from the long-term evolution experiment (LTEE) that independently evolved for multiple decades in the absence of antibiotics. We first confirmed that these derived strains are typically more sensitive to various antibiotics than their common ancestor. We then subjected the ancestral and derived strains to various concentrations of these drugs to examine their potential to evolve increased resistance. We found that evolvability was idiosyncratic with respect to initial genotype; that is, the derived strains did not generally compensate for their greater susceptibility by "catching up" to the resistance level of the ancestor. Instead, the capacity to evolve increased resistance was constrained in some backgrounds, implying that evolvability depended upon prior mutations in a historically contingent fashion. We further subjected a time series of clones from one LTEE population to tetracycline and determined that an evolutionary constraint arose early in that population, corroborating the role of contingency. In summary, relaxed selection not only can drive populations to increased antibiotic susceptibility, but it can also affect the subsequent evolvability of antibiotic resistance in an unpredictable manner. This conclusion has potential implications for public health, and it underscores the need to consider the genetic context of pathogens when designing drug-treatment strategies.
Collapse
Affiliation(s)
- Kyle J. Card
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas LaBar
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jasper B. Gomez
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Biomedical Laboratory Diagnostics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard E. Lenski
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
43
|
Fernández L, Gutiérrez D, García P, Rodríguez A. The Perfect Bacteriophage for Therapeutic Applications-A Quick Guide. Antibiotics (Basel) 2019; 8:E126. [PMID: 31443585 PMCID: PMC6783975 DOI: 10.3390/antibiotics8030126] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
The alarming spread of multiresistant infections has kick-started the quest for alternative antimicrobials. In a way, given the steady increase in untreatable infectious diseases, success in this endeavor has become a matter of life and death. Perhaps we should stop searching for an antibacterial panacea and explore a multifaceted strategy in which a wide range of compounds are available on demand depending on the specific situation. In the context of this novel tailor-made approach to combating bacterial pathogens, the once forgotten phage therapy is undergoing a revival. Indeed, the compassionate use of bacteriophages against seemingly incurable infections has been attracting a lot of media attention lately. However, in order to take full advantage of this strategy, bacteria's natural predators must be taken from their environment and then carefully selected to suit our needs. In this review, we have explored the vast literature regarding phage isolation and characterization for therapeutic purposes, paying special attention to the most recent studies, in search of findings that hint at the most efficient strategies to identify suitable candidates. From this information, we will list and discuss the traits that, at the moment, are considered particularly valuable in phages destined for antimicrobial therapy applications. Due to the growing importance given to biofilms in the context of bacterial infections, we will dedicate a specific section to those characteristics that indicate the suitability of a bacteriophage as an antibiofilm agent. Overall, the objective is not just to have a large collection of phages, but to have the best possible candidates to guarantee elimination of the target pathogens.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), (DairySafe Group), Paseo Río Linares s/n -Villaviciosa, 33300 Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
| | - Diana Gutiérrez
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), (DairySafe Group), Paseo Río Linares s/n -Villaviciosa, 33300 Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), (DairySafe Group), Paseo Río Linares s/n -Villaviciosa, 33300 Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
44
|
Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc Natl Acad Sci U S A 2019; 116:16899-16908. [PMID: 31383764 PMCID: PMC6708340 DOI: 10.1073/pnas.1906897116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term coexistence between unicellular cyanobacteria and their lytic viruses (cyanophages) in the oceans is thought to be due to the presence of sensitive cells in which cyanophages reproduce, ultimately killing the cell, while other cyanobacteria survive due to resistance to infection. Here, we investigated resistance in marine cyanobacteria from the genera Synechococcus and Prochlorococcus and compared modes of resistance against specialist and generalist cyanophages belonging to the T7-like and T4-like cyanophage families. Resistance was extracellular in most interactions against specialist cyanophages irrespective of the phage family, preventing entry into the cell. In contrast, resistance was intracellular in practically all interactions against generalist T4-like cyanophages. The stage of intracellular arrest was interaction-specific, halting at various stages of the infection cycle. Incomplete infection cycles proceeded to various degrees of phage genome transcription and translation as well as phage genome replication in numerous interactions. In a particularly intriguing case, intracellular capsid assembly was observed, but the phage genome was not packaged. The cyanobacteria survived the encounter despite late-stage infection and partial genome degradation. We hypothesize that this is tolerated due to genome polyploidy, which we found for certain strains of both Synechococcus and Prochlorococcus Our findings unveil a heavy cost of promiscuous entry of generalist phages into nonhost cells that is rarely paid by specialist phages and suggests the presence of unknown mechanisms of intracellular resistance in the marine unicellular cyanobacteria. Furthermore, these findings indicate that the range for virus-mediated horizontal gene transfer extends beyond hosts to nonhost cyanobacterial cells.
Collapse
|
45
|
Zhao L, Duffy S. Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution. Virus Evol 2019; 5:vez019. [PMID: 31275611 PMCID: PMC6599687 DOI: 10.1093/ve/vez019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| |
Collapse
|
46
|
Warsi O, Lundin E, Lustig U, Näsvall J, Andersson DI. Selection for novel metabolic capabilities in Salmonella enterica. Evolution 2019; 73:990-1000. [PMID: 30848832 PMCID: PMC6593847 DOI: 10.1111/evo.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 11/29/2022]
Abstract
Bacteria are known to display extensive metabolic diversity and many studies have shown that they can use an extensive repertoire of small molecules as carbon‐ and energy sources. However, it is less clear to what extent a bacterium can expand its existing metabolic capabilities by acquiring mutations that, for example, rewire its metabolic pathways. To investigate this capability and potential for evolution of novel phenotypes, we sampled large populations of mutagenized Salmonella enterica to select very rare mutants that can grow on minimal media containing 124 low molecular weight compounds as sole carbon sources. We found mutants growing on 18 of these novel carbon sources, and identified the causal mutations that allowed growth for four of them. Mutations that relieve physiological constraints or increase expression of existing pathways were found to be important contributors to the novel phenotypes. For the remaining 14 novel phenotypes, whole genome sequencing of independent mutants and genetic analysis suggested that these novel metabolic phenotypes result from a combination of multiple mutations. This work, by virtue of identifying the genetic and mechanistic basis for new metabolic capabilities, sheds light on the properties of adaptive landscapes underlying the evolution of novel phenotypes.
Collapse
Affiliation(s)
- Omar Warsi
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Erik Lundin
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, S-751 23, Uppsala, Sweden
| |
Collapse
|
47
|
Existing Host Range Mutations Constrain Further Emergence of RNA Viruses. J Virol 2019; 93:JVI.01385-18. [PMID: 30463962 DOI: 10.1128/jvi.01385-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
RNA viruses are capable of rapid host shifting, typically due to a point mutation that confers expanded host range. As additional point mutations are necessary for further expansions, epistasis among host range mutations can potentially affect the mutational neighborhood and frequency of niche expansion. We mapped the mutational neighborhood of host range expansion using three genotypes of the double-stranded RNA (dsRNA) bacteriophage φ6 (wild type and two isogenic host range mutants) on the novel host Pseudomonas syringae pv. atrofaciens. Both Sanger sequencing of 50 P. syringae pv. atrofaciens mutant clones for each genotype and population Illumina sequencing revealed the same high-frequency mutations allowing infection of P. syringae pv. atrofaciens. Wild-type φ6 had at least nine different ways of mutating to enter the novel host, eight of which are in p3 (host attachment protein gene), and 13/50 clones had unchanged p3 genes. However, the two isogenic mutants had dramatically restricted neighborhoods: only one or two mutations, all in p3. Deep sequencing revealed that wild-type clones without mutations in p3 likely had changes in p12 (morphogenic protein), a region that was not polymorphic for the two isogenic host range mutants. Sanger sequencing confirmed that 10/13 of the wild-type φ6 clones had nonsynonymous mutations in p12, and 2 others had point mutations in p9 and p5. None of these genes had previously been associated with host range expansion in φ6. We demonstrate, for the first time, epistatic constraint in an RNA virus due to host range mutations themselves, which has implications for models of serial host range expansion.IMPORTANCE RNA viruses mutate rapidly and frequently expand their host ranges to infect novel hosts, leading to serial host shifts. Using an RNA bacteriophage model system (Pseudomonas phage φ6), we studied the impact of preexisting host range mutations on another host range expansion. Results from both clonal Sanger and Illumina sequencing show that extant host range mutations dramatically narrow the neighborhood of potential host range mutations compared to that of wild-type φ6. This research suggests that serial host-shifting viruses may follow a small number of molecular paths to enter additional novel hosts. We also identified new genes involved in φ6 host range expansion, expanding our knowledge of this important model system in experimental evolution.
Collapse
|
48
|
Recessive Host Range Mutants and Unsusceptible Cells That Inactivate Virions without Genome Penetration: Ecological and Technical Implications. J Virol 2019; 93:JVI.01767-18. [PMID: 30429341 DOI: 10.1128/jvi.01767-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Although microviruses do not possess a visible tail structure, one vertex rearranges after interacting with host lipopolysaccharides. Most examinations of host range, eclipse, and penetration were conducted before this "host-induced" unique vertex was discovered and before DNA sequencing became routine. Consequently, structure-function relationships dictating host range remain undefined. Biochemical and genetic analyses were conducted with two closely related microviruses, α3 and ST-1. Despite ∼90% amino acid identity, the natural host of α3 is Escherichia coli C, whereas ST-1 is a K-12-specific phage. Virions attached and eclipsed to both native and unsusceptible hosts; however, they breached only the native host's cell wall. This suggests that unsusceptible host-phage interactions promote off-pathway reactions that can inactivate viruses without penetration. This phenomenon may have broader ecological implications. To determine which structural proteins conferred host range specificity, chimeric virions were generated by individually interchanging the coat, spike, or DNA pilot proteins. Interchanging the coat protein switched host range. However, host range expansion could be conferred by single point mutations in the coat protein. The expansion phenotype was recessive: genetically mutant progeny from coinfected cells did not display the phenotype. Thus, mutant isolation required populations generated in environments with low multiplicities of infection (MOI), a phenomenon that may have impacted past host range studies in both prokaryotic and eukaryotic systems. The resulting genetic and structural data were consistent enough that host range expansion could be predicted, broadening the classical definition of antireceptors to include interfaces between protein complexes within the capsid.IMPORTANCE To expand host range, viruses must interact with unsusceptible host cell surfaces, which could be detrimental. As observed in this study, virions were inactivated without genome penetration. This may be advantageous to potential new hosts, culling the viral population from which an expanded host range mutant could emerge. When identified, altered host range mutations were recessive. Accordingly, isolation required populations generated in low-MOI environments. However, in laboratory settings, viral propagation includes high-MOI conditions. Typically, infected cultures incubate until all cells produce progeny. Thus, coinfections dominate later replication cycles, masking recessive host range expansion phenotypes. This may have impacted similar studies with other viruses. Last, structural and genetic data could be used to predict site-directed mutant phenotypes, which may broaden the classic antireceptor definition to include interfaces between capsid complexes.
Collapse
|
49
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Cross-resistance is modular in bacteria-phage interactions. PLoS Biol 2018; 16:e2006057. [PMID: 30281587 PMCID: PMC6188897 DOI: 10.1371/journal.pbio.2006057] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/15/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023] Open
Abstract
Phages shape the structure of natural bacterial communities and can be effective therapeutic agents. Bacterial resistance to phage infection, however, limits the usefulness of phage therapies and could destabilise community structures, especially if individual resistance mutations provide cross-resistance against multiple phages. We currently understand very little about the evolution of cross-resistance in bacteria–phage interactions. Here we show that the network structure of cross-resistance among spontaneous resistance mutants of Pseudomonas aeruginosa evolved against each of 27 phages is highly modular. The cross-resistance network contained both symmetric (reciprocal) and asymmetric (nonreciprocal) cross-resistance, forming two cross-resistance modules defined by high within- but low between-module cross-resistance. Mutations conferring cross-resistance within modules targeted either lipopolysaccharide or type IV pilus biosynthesis, suggesting that the modularity of cross-resistance was structured by distinct phage receptors. In contrast, between-module cross-resistance was provided by mutations affecting the alternative sigma factor, RpoN, which controls many lifestyle-associated functions, including motility, biofilm formation, and quorum sensing. Broader cross-resistance range was not associated with higher fitness costs or weaker resistance against the focal phage used to select resistance. However, mutations in rpoN, providing between-module cross-resistance, were associated with higher fitness costs than mutations associated with within-module cross-resistance, i.e., in genes encoding either lipopolysaccharide or type IV pilus biosynthesis. The observed structure of cross-resistance predicted both the frequency of resistance mutations and the ability of phage combinations to suppress bacterial growth. These findings suggest that the evolution of cross-resistance is common, is likely to play an important role in the dynamic structure of bacteria–phage communities, and could inform the design principles for phage therapy treatments. Phage therapy is a promising alternative to antibiotics for treating bacterial infections. Yet as with antibiotics, bacteria readily evolve resistance to phage attack, including cross-resistance that protects against multiple phages at once and so limits the usefulness of phage cocktails. Here we show, using laboratory experimental evolution of resistance against 27 phages in P. aeruginosa, that cross-resistance is common and determines the ability of phage combinations to suppress bacterial growth. Using whole-genome sequencing, we show that cross-resistance is most common against multiple phages that use the same receptor but that global regulator mutations provide generalist resistance, probably by simultaneously affecting the expression of multiple different phage receptors. Future trials should test if these features of cross-resistance evolution translate to more complex in vivo environments and can therefore be exploited to design more effective phage therapies for the clinic.
Collapse
Affiliation(s)
- Rosanna C. T. Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A. Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|