1
|
Madhi SA, Ceballos A, Cousin L, Domachowske JB, Langley JM, Lu E, Puthanakit T, Rämet M, Tan A, Zaman K, Anspach B, Bueso A, Cinconze E, Colas JA, D'Andrea U, Dieussaert I, Englund JA, Gandhi S, Jose L, Kim JH, Klein NP, Laajalahti O, Mithani R, Ota MOC, Pinto M, Silas P, Stoszek SK, Tangsathapornpong A, Teeratakulpisarn J, Virta M, Cohen RA. Population Attributable Risk of Wheeze in 2-<6-Year-old Children, Following a Respiratory Syncytial Virus Lower Respiratory Tract Infection in The First 2 Years of Life. Pediatr Infect Dis J 2025; 44:379-386. [PMID: 38985986 DOI: 10.1097/inf.0000000000004447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND There is limited evidence regarding the proportion of wheeze in young children attributable to respiratory syncytial virus lower respiratory tract infections (RSV-LRTI) occurring early in life. This cohort study prospectively determined the population attributable risk (PAR) and risk percent (PAR%) of wheeze in 2-<6-year-old children previously surveilled in a primary study for RSV-LRTI from birth to their second birthday (RSV-LRTI<2Y). METHODS From 2013 to 2021, 2-year-old children from 8 countries were enrolled in this extension study (NCT01995175) and were followed through quarterly surveillance contacts until their sixth birthday for the occurrence of parent-reported wheeze, medically-attended wheeze or recurrent wheeze episodes (≥4 episodes/year). PAR% was calculated as PAR divided by the cumulative incidence of wheeze in all participants. RESULTS Of 1395 children included in the analyses, 126 had documented RSV-LRTI<2Y. Cumulative incidences were higher for reported (38.1% vs. 13.6%), medically-attended (30.2% vs. 11.8%) and recurrent wheeze outcomes (4.0% vs. 0.6%) in participants with RSV-LRTI<2Y than those without RSV-LRTI<2Y. The PARs for all episodes of reported, medically-attended and recurrent wheeze were 22.2, 16.6 and 3.1 per 1000 children, corresponding to PAR% of 14.1%, 12.3% and 35.9%. In univariate analyses, all 3 wheeze outcomes were strongly associated with RSV-LRTI<2Y (all global P < 0.01). Multivariable modeling for medically-attended wheeze showed a strong association with RSV-LRTI after adjustment for covariates (global P < 0.0001). CONCLUSIONS A substantial amount of wheeze from the second to sixth birthday is potentially attributable to RSV-LRTI<2Y. Prevention of RSV-LRTI<2Y could potentially reduce wheezing episodes in 2-<6-year-old children.
Collapse
Affiliation(s)
- Shabir A Madhi
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ana Ceballos
- Instituto Medico Rio Cuarto, Rio Cuarto, Còrdoba, Argentina
| | - Luis Cousin
- Centro de Investigacion DEMEDICA, San Pedro Sula, Honduras
| | - Joseph B Domachowske
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, New York
| | - Joanne M Langley
- Canadian Center for Vaccinology, IWK Health and Nova Scotia Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Thanyawee Puthanakit
- Division of Infectious Diseases, Department of Pediatrics, Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mika Rämet
- Faculty of Medicine and Health Technology, Tampere University, and FVR - Finnish Vaccine Research, Tampere, Finland
| | | | - Khalequ Zaman
- Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Agustin Bueso
- Centro de Investigacion DEMEDICA, San Pedro Sula, Honduras
| | | | - Jo Ann Colas
- Keyrus Life Sciences (c/o GSK), New York, New York
| | | | | | - Janet A Englund
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, Washington
| | - Sanjay Gandhi
- GSK India Global Services Private Limited, Mumbai, India
| | - Lisa Jose
- From the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Nicola P Klein
- Kaiser Permanente Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Outi Laajalahti
- Faculty of Medicine and Health Technology, Tampere University, and FVR - Finnish Vaccine Research, Tampere, Finland
| | | | | | - Mauricio Pinto
- Centro de Investigacion DEMEDICA, San Pedro Sula, Honduras
| | - Peter Silas
- Wee Care Pediatrics Syracuse, Syracuse, Utah
| | | | - Auchara Tangsathapornpong
- Division of Pediatric Infectious Disease, Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | - Miia Virta
- Faculty of Medicine and Health Technology, Tampere University, and FVR - Finnish Vaccine Research, Tampere, Finland
| | | |
Collapse
|
2
|
Averin A, Pelton SI, Weycker D, Huang L, Vietri J, Tort MJ, Arguedas Mohs AG, Cane A, Rozenbaum MH, Lapidot R. Early-life pneumonia and subsequent risk of respiratory disease among commercial-insured and medicaid-insured children with and without high-risk conditions. Respir Med 2025; 241:108050. [PMID: 40122404 DOI: 10.1016/j.rmed.2025.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Evidence suggests that early-life community-acquired pneumonia (CAP) among healthy children increases their risk of subsequent chronic respiratory disorders. This study extends prior research by including children with and without comorbidities and conducting analyses using two databases. METHODS Data were obtained from the Optum Electronic Health Record Database (commercial subset) and Merative Medicaid Multi-State Database. Study populations comprised children hospitalized for CAP before age 2 years ("CAP patients") as well as matched "comparison patients." Rates of study outcomes-including chronic respiratory disease (CRD), reactive airway disease (RAD), CAP hospitalization-from age 2-5 years were calculated for CAP/comparison patients in each study population, overall and by comorbidity profile. FINDINGS Rates of study outcomes from age 2-5 years were markedly higher among CAP (vs. comparison) patients in commercial-insured and Medicaid-insured populations, by: 1·9 and 1·5 for CRD; 2·5 and 2·0 for RAD; 6·4 and 7·3 for CAP hospitalization. CAP patients with (vs. without) comorbidities had numerically higher rates of outcomes, but relative rates of outcomes for CAP (vs. comparison) patients were largely comparable irrespective of comorbidity profile. INTERPRETATION CAP before age 2 years is associated with increased rates of CRD from age 2-5 years and the proportion of children with subsequent CRD is highest among those with comorbidities. These observations suggest a potential causative role for early-life CAP in subsequent CRD.
Collapse
Affiliation(s)
| | - Stephen I Pelton
- Boston Medical Center, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | - Rotem Lapidot
- Boston Medical Center, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Division of Pediatric Infectious Diseases, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Hartman RM, Atwell JE, Tso C, Becenti L, Brown LB, Karron RA, Kellywood K, Martin S, O'Brien KL, Weatherholtz RC, Hammitt LL. Impact of RSV Prevention in Infancy on Prevalence of Asthma Among 9-14-Year-old Native American Children in the Southwest United States. Pediatr Infect Dis J 2025:00006454-990000000-01279. [PMID: 40208934 DOI: 10.1097/inf.0000000000004818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
BACKGROUND The impact of respiratory syncytial virus (RSV) prevention on persistent childhood asthma is unknown. We revisited Native American children 9-14 years old who participated as infants in a phase III, randomized, placebo-controlled trial of an efficacious monoclonal antibody (motavizumab) for prevention of RSV to quantify asthma prevalence and investigate relationships between RSV prevention and subsequent asthma. METHODS Families that participated in the phase III RSV prevention trial were contacted. Following informed consent, data were collected by parental questionnaire and medical record review to assess respiratory health. Composite outcomes for asthma were defined using a combination of questionnaire and chart review data. Relative risk reductions (RRRs) for asthma-related outcomes were stratified by motavizumab and placebo recipients. RESULTS Of the 2127 original trial participants, 97% were eligible for enrollment in this follow-up study, of which 1773 (86%) were enrolled at a median age of 11 years (range: 9-14). The composite measure of asthma prevalence was 18.2% (95% confidence interval: 16.5, 20). The point estimate for persistent asthma was lower in motavizumab recipients [17.5% (15.4, 19.7)] compared with placebo recipients [19.7% (16.6, 23.1)], but this difference was not statistically significant [RRR: 11.1% (-9.1, 27.6)]. CONCLUSIONS Asthma-related outcomes occurred less frequently among children who received motavizumab compared with placebo in infancy; however, these findings were not statistically significant, related to insufficient study power. The potential for reduction in asthma related to the prevention of RSV should be further evaluated in larger studies, especially given the elevated asthma prevalence observed in Native American children in this study.
Collapse
Affiliation(s)
- Rachel M Hartman
- From the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hillson K, Saglani S, Custovic A. Preschool wheeze and asthma endotypes- implications for future therapy. Expert Rev Respir Med 2024; 18:1025-1039. [PMID: 39655566 DOI: 10.1080/17476348.2024.2440468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Preschool wheeze and school-aged asthma present a large healthcare burden. Both conditions are now recognized to be heterogeneous, with similar symptom presentation but likely different underlying lung pathology. AREAS COVERED Current treatment options for preschool wheeze are constrained by extrapolations from the management of school-aged children with asthma. While most cases of asthma at school age are caused by classical atopic, eosinophilic, Type-2 driven asthma, only a quarter of preschool children with wheeze fall into this category. Targeting treatment to specific underlying mechanisms resulting in preschool wheeze may alter the progression to school age asthma. Novel biologics have revolutionized the management of severe, treatment-resistant school age asthma, but a limited evidence base limits their use in young children. There are several potential future non-steroid-based treatment options in development, of which bacterial lysates show the most promise. EXPERT OPINION Effective treatment of preschool wheeze may preserve lung function into later life, which may alter the progression trajectory toward school age asthma. Endotype-driven management will enable more effective treatment of both preschool wheeze and school age asthma.
Collapse
Affiliation(s)
- Kushalinii Hillson
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
5
|
da Silva AL, Marinho AKBB, Santos ALF, Maia AF, Roteli-Martins CM, Fernandes CE, Fridman FZ, Lajos GJ, Ballalai I, Cunha J, Teixeira JC, de Medeiros MM, Gonçalves MAG, Levi M, Neves NA, Robial R, Kfouri RDÁ, Fialho SCAV, Magno V. Immunization in women's lives: present and future. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-FPS10. [PMID: 39530068 PMCID: PMC11554336 DOI: 10.61622/rbgo/2024fps10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
•The negative impact of infectious diseases and their immunoprevention during the different stages of a woman's life requires a broad approach including adolescence, adulthood, pregnancy and the postmenopausal phase. •Immunization of pregnant women should be a priority for the protection of the maternal-fetal dyad, especially in regions with high rates of infections preventable by immunization. •Brazil has one of the most comprehensive vaccination programs in the world - the National Immunization Program (Programa Nacional de Imunizações, PNI) - that serves all age groups: newborns, children, adolescents, adults, pregnant women and older adults, as well as groups with special needs, such as adolescents, pregnant and older adult women. •However, vaccination coverage remains below ideal for all available vaccines, especially among adolescents and pregnant women, and Febrasgo is committed to collaborating with the PNI to combat vaccine hesitancy. •The gynecologist/obstetrician is the reference physician for women, therefore the access to information and updates regarding all vaccines recommended for their patients is extremely important for this professional, aiming at the greatest possible protection. •The objective of this Febrasgo Position Statement is to bring an update to women's vaccination schedule, covering some vaccines that are available, including new approved vaccines and those in the commercialization phase. •This work is a compilation of the First Febrasgo Scientific Immunization Forum held in the city of São Paulo in October 2023 with the objective to update recommendations for vaccines in use and new innovative vaccines soon to be available.
Collapse
Affiliation(s)
- Agnaldo Lopes da Silva
- Universidade Federal de Minas Gerais Belo HorizonteMG Brazil -Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Karolina Barreto Berselli Marinho
- Hospital das Clínicas Faculdade de Medicina Universidade de São Paulo São PauloSP Brazil -Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Angelina Farias Maia
- Universidade Federal de Pernambuco RecifePE Brazil -Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - César Eduardo Fernandes
- Faculdade de Medicina do ABC Santo AndréSP Brazil -Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Giuliane Jesus Lajos
- Universidade Estadual de Campinas CampinasSP Brazil -Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Isabella Ballalai
- Sociedade Brazileira de Imunizações São PauloSP Brazil -Sociedade Brazileira de Imunizações, São Paulo, SP, Brazil
| | - Juarez Cunha
- Sociedade Brazileira de Imunizações São PauloSP Brazil -Sociedade Brazileira de Imunizações, São Paulo, SP, Brazil
| | - Julio Cesar Teixeira
- Universidade Estadual de Campinas CampinasSP Brazil -Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Márcia Marly de Medeiros
- Instituto Tropical de Medicina Reprodutiva CuiabáMT Brazil -Instituto Tropical de Medicina Reprodutiva, Cuiabá, MT, Brazil
| | - Manoel Afonso Guimarães Gonçalves
- Pontifícia Universidade Católica do Rio Grande do Sul Porto AlegreRS Brazil -Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Monica Levi
- Sociedade Brazileira de Imunizações São PauloSP Brazil -Sociedade Brazileira de Imunizações, São Paulo, SP, Brazil
| | - Nilma Antas Neves
- Universidade Federal da Bahia SalvadorBA Brazil -Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Robial
- Hospital das Clínicas Faculdade de Medicina Universidade de São Paulo São PauloSP Brazil -Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato de Ávila Kfouri
- Departamento de Imunizações Sociedade Brazileira de Pediatria São PauloSP Brazil -Departamento de Imunizações, Sociedade Brazileira de Pediatria, São Paulo, SP, Brazil
| | | | - Valentino Magno
- Universidade Federal do Rio Grande do Sul Porto AlegreRS Brazil -Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Liu X, Zhou J, Chen J, Li L, Yuan L, Li S, Sun X, Zhou X. Risk of Asthma and Allergies in Children Delivered by Cesarean Section: A Comprehensive Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2764-2773. [PMID: 38908434 DOI: 10.1016/j.jaip.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND It is unclear whether cesarean delivery increases the risk of allergic diseases in offspring. OBJECTIVE To investigate the association between cesarean delivery and the risk of allergic diseases in offspring. METHODS We searched PubMed, Embase, and the Cochrane Library for relevant studies up to October 12, 2023. Observational studies comparing the risk of allergic diseases in offspring delivered by cesarean section versus those delivered vaginally were included. Most-adjusted estimates from individual studies were synthesized by meta-analysis. RESULTS A total of 113 studies were included, 70 of which had a low risk of bias. Compared with offspring delivered vaginally, offspring delivered by cesarean section had significantly greater risks of asthma (odds ratio [OR] = 1.20; 95% CI, 1.16-1.25), allergic rhinitis or conjunctivitis (OR = 1.15' CI 1.09-1.22), atopic dermatitis or eczema (OR = 1.08; CI, 1.04-1.13), food allergies (OR = 1.35; CI, 1.18-1.54), and allergic sensitization (OR = 1.19; CI, 1.10-1.28). Cesarean delivery did not significantly increase urticaria risk. Sensitivity analyses including only studies with a low risk of bias, adjusted estimates, prospective data collection, large sample sizes, or outcomes from medical records generally supported these findings. Offspring age, study region latitude, economy type, and cesarean delivery rate accounted for some of the clinical heterogeneity. We found no data on allergic purpura. CONCLUSIONS Most-adjusted estimates suggest that cesarean delivery is associated with increased risks of asthma, allergic rhinitis or conjunctivitis, atopic dermatitis or eczema, food allergies, and allergic sensitization in offspring. The impact of cesarean delivery on urticaria and purpura remains uncertain.
Collapse
Affiliation(s)
- Xiaowu Liu
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China; Outcome Assessment Research Team in Chinese Medicine, Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jieyi Zhou
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center and Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lixia Yuan
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Shuqing Li
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Xin Sun
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China; Chinese Evidence-Based Medicine Center and Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xu Zhou
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China.
| |
Collapse
|
7
|
Rivera-Toledo E, Fernández-Rojas MA, Santiago-Olivares C, Cruz-Rivera M, Hernández-Bautista V, Ávila-Horta F, Flisser A, Mendlovic F. Transcriptome profiling of macrophages persistently infected with human respiratory syncytial virus and effect of recombinant Taenia solium calreticulin on immune-related genes. Front Microbiol 2024; 15:1402589. [PMID: 39296294 PMCID: PMC11408361 DOI: 10.3389/fmicb.2024.1402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Human respiratory syncytial virus (hRSV) is a main cause of bronchiolitis in infants and its persistence has been described in immunocompromised subjects. However, limited evidence has been reported on the gene expression triggered by the hRSV and the effect of recombinant Taenia solium-derived calreticulin (rTsCRT). Methods Using a comprehensive microarray approach, we analyzed the transcriptome profile of a macrophage cell line that has supported hRSV persistence for over 150 passages. We compared the gene expression of persistently infected and non-infected macrophages. We also evaluated the effect of rTsCRT on hRSV-infected macrophage gene transcription, as well as on cytokine production and number of copies of the persistent hRSV genome. Results Our analysis showed that hRSV long-term virus infection significantly alters mRNA expression of antiviral, inflammatory, as well as arginine and lipid metabolism-associated genes, revealing a transcriptional signature that suggests a mixed M1/M2 phenotype. The resulting host-virus equilibrium allows for the regulation of viral replication, while evading the antiviral and proinflammatory responses. Interestingly, rTsCRT stimulus upregulated Tnfα, Il6 and Nos2 mRNA. We found increased levels of both proinflammatory cytokines and nitrite levels in the conditioned media of persistent macrophages treated with rTsCRT. This increase was associated with a significant reduction in viral genome copies. Discussion hRSV persistently infected macrophages retain responsiveness to external stimuli and demonstrate that the profound changes induced by viral persistence are potentially reversible. Our observations contribute to the understanding of the mechanisms related to hRSV persistence in macrophages and have implications for the development of targeted therapies to eliminate persistent infections or reduce the negative effects related with chronic inflammatory diseases associated with hRSV infection.
Collapse
Affiliation(s)
- Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel A Fernández-Rojas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Vania Hernández-Bautista
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan de Degollado, Mexico
| |
Collapse
|
8
|
Berdnikovs S, Newcomb DC, Hartert TV. How early life respiratory viral infections impact airway epithelial development and may lead to asthma. Front Pediatr 2024; 12:1441293. [PMID: 39156016 PMCID: PMC11327159 DOI: 10.3389/fped.2024.1441293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Bender W, Zhang Y, Corbett A, Chu C, Grier A, Wang L, Qiu X, McCall MN, Topham DJ, Walsh EE, Mariani TJ, Scheuermann R, Caserta MT, Anderson CS. Association of disease severity and genetic variation during primary Respiratory Syncytial Virus infections. BMC Med Genomics 2024; 17:165. [PMID: 38898440 PMCID: PMC11188216 DOI: 10.1186/s12920-024-01930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) disease in young children ranges from mild cold symptoms to severe symptoms that require hospitalization and sometimes result in death. Studies have shown a statistical association between RSV subtype or phylogenic lineage and RSV disease severity, although these results have been inconsistent. Associations between variation within RSV gene coding regions or residues and RSV disease severity has been largely unexplored. METHODS Nasal swabs from children (< 8 months-old) infected with RSV in Rochester, NY between 1977-1998 clinically presenting with either mild or severe disease during their first cold-season were used. Whole-genome RSV sequences were obtained using overlapping PCR and next-generation sequencing. Both whole-genome phylogenetic and non-phylogenetic statistical approaches were performed to associate RSV genotype with disease severity. RESULTS The RSVB subtype was statistically associated with disease severity. A significant association between phylogenetic clustering of mild/severe traits and disease severity was also found. GA1 clade sequences were associated with severe disease while GB1 was significantly associated with mild disease. Both G and M2-2 gene variation was significantly associated with disease severity. We identified 16 residues in the G gene and 3 in the M2-2 RSV gene associated with disease severity. CONCLUSION These results suggest that phylogenetic lineage and the genetic variability in G or M2-2 genes of RSV may contribute to disease severity in young children undergoing their first infection.
Collapse
Affiliation(s)
- William Bender
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA
| | - Yun Zhang
- J. Craig Venter Institute, San Diego, CA, USA
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chinyi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward E Walsh
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Mary T Caserta
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher S Anderson
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
10
|
Alfano F, Bigoni T, Caggiano FP, Papi A. Respiratory Syncytial Virus Infection in Older Adults: An Update. Drugs Aging 2024; 41:487-505. [PMID: 38713299 PMCID: PMC11193699 DOI: 10.1007/s40266-024-01118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Respiratory syncytial virus (RSV) infection represents one of the most common infections during childhood, with significant morbidity and mortality in newborns and in the early years of life. RSV is a common infection throughout all age groups, largely undetected and underestimated in adults, with a disproportionately high impact in older individuals. RSV infection has a wide range of clinical presentations, from asymptomatic conditions to acute pneumonia and severe life-threatening respiratory distress, including exacerbations of underlying chronic conditions. Overall, the incidence of RSV infections requiring medical attention increases with age, and it is highest among persons ≥ 70 years of age. As a consequence of a combination of an aging population, immunosenescence, and the related increased burden of comorbidities, high-income countries are at risk of developing RSV epidemics. The standard of care for RSV-infected patients remains supportive, including fluids, antipyretics, and oxygen support when needed. There is an urgent need for antivirals and preventive strategies in this population, particularly in individuals at higher risk of severe outcomes following RSV infection. In this review, we describe prevention and treatment strategies for RSV illnesses, with a deep focus on the novel data on vaccination that has become available (Arexvy, GSK, and Abrysvo, Pfizer) for older adults.
Collapse
Affiliation(s)
- Franco Alfano
- Respiratory Unit, Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'Anna University Hospital, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Tommaso Bigoni
- Respiratory Unit, Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'Anna University Hospital, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Francesco Paolo Caggiano
- Respiratory Unit, Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'Anna University Hospital, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Alberto Papi
- Respiratory Unit, Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'Anna University Hospital, Via Aldo Moro, 8, 44124, Ferrara, Italy.
| |
Collapse
|
11
|
Malinczak CA, Fonseca W, Hrycaj SM, Morris SB, Rasky AJ, Yagi K, Wellik DM, Ziegler SF, Zemans RL, Lukacs NW. Early-life pulmonary viral infection leads to long-term functional and lower airway structural changes in the lungs. Am J Physiol Lung Cell Mol Physiol 2024; 326:L280-L291. [PMID: 38290164 PMCID: PMC11281791 DOI: 10.1152/ajplung.00300.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Early-life respiratory virus infections have been correlated with enhanced development of childhood asthma. In particular, significant numbers of respiratory syncytial virus (RSV)-hospitalized infants go on to develop lung disease. It has been suggested that early-life viral infections may lead to altered lung development or repair that negatively impacts lung function later in life. Our data demonstrate that early-life RSV infection modifies lung structure, leading to decreased lung function. At 5 wk postneonatal RSV infection, significant defects are observed in baseline pulmonary function test (PFT) parameters consistent with decreased lung function as well as enlarged alveolar spaces. Lung function changes in the early-life RSV-infected group continue at 3 mo of age. The altered PFT and structural changes induced by early-life RSV were mitigated in TSLPR-/- mice that have previously been shown to have reduced immune cell accumulation associated with a persistent Th2 environment. Importantly, long-term effects were demonstrated using a secondary RSV infection 3 mo following the initial early-life RSV infection and led to significant additional defects in lung function, with severe mucus deposition within the airways, and consolidation of the alveolar spaces. These studies suggest that early-life respiratory viral infection leads to alterations in lung structure/repair that predispose to diminished lung function later in life.NEW & NOTEWORTHY These studies outline a novel finding that early-life respiratory virus infection can alter lung structure and function long-term. Importantly, the data also indicate that there are critical links between inflammatory responses and subsequent events that produce a more severe pathogenic response later in life. The findings provide additional data to support that early-life infections during lung development can alter the trajectory of airway function.
Collapse
Affiliation(s)
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven M Hrycaj
- Department of Internal Medicine, Pulmonary, University of Michigan, Ann Arbor, Michigan, United States
| | - Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington, United States
| | - Rachel L Zemans
- Department of Internal Medicine, Pulmonary, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
12
|
Tian K, Dangarh P, Zhang H, Hines CL, Bush A, Pybus HJ, Harker JA, Lloyd CM, Tanaka RJ, Saglani S. Role of epithelial barrier function in inducing type 2 immunity following early-life viral infection. Clin Exp Allergy 2024; 54:109-119. [PMID: 38011856 DOI: 10.1111/cea.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Preschool wheeze attacks triggered by recurrent viral infections, including respiratory syncytial virus (RSV), are associated with an increased risk of childhood asthma. However, mechanisms that lead to asthma following early-life viral wheezing remain uncertain. METHODS To investigate a causal relationship between early-life RSV infections and onset of type 2 immunity, we developed a neonatal murine model of recurrent RSV infection, in vivo and in silico, and evaluated the dynamical changes of altered airway barrier function and downstream immune responses, including eosinophilia, mucus secretion and type 2 immunity. RESULTS RSV infection of neonatal BALB/c mice at 5 and 15 days of age induced robust airway eosinophilia, increased pulmonary CD4+ IL-13+ and CD4+ IL-5+ cells, elevated levels of IL-13 and IL-5 and increased airway mucus at 20 days of age. Increased bronchoalveolar lavage albumin levels, suggesting epithelial barrier damage, were present and persisted following the second RSV infection. Computational in silico simulations demonstrated that recurrent RSV infection resulted in severe damage of the airway barrier (epithelium), triggering the onset of type 2 immunity. The in silico results also demonstrated that recurrent infection is not always necessary for the development of type 2 immunity, which could also be triggered with single infection of high viral load or when the epithelial barrier repair is compromised. CONCLUSIONS The neonatal murine model demonstrated that recurrent RSV infection in early life alters airway barrier function and promotes type 2 immunity. A causal relationship between airway barrier function and type 2 immunity was suggested using in silico model simulations.
Collapse
Affiliation(s)
- Kunyuan Tian
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Prakrati Dangarh
- Department of Bioengineering, Imperial College London, London, UK
| | - Haina Zhang
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Hannah J Pybus
- Department of Bioengineering, Imperial College London, London, UK
| | - James A Harker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| |
Collapse
|
13
|
Anderson LJ, Jadhao SJ, Hussaini L, Ha B, McCracken CE, Gibson T, Yildirim I, Yi J, Stephens K, Korski C, Kao C, Sun H, Lee CY, Jaunarajs A, Rostad CA, Anderson EJ. Development and comparison of immunologic assays to detect primary RSV infections in infants. Front Immunol 2024; 14:1332772. [PMID: 38283339 PMCID: PMC10811012 DOI: 10.3389/fimmu.2023.1332772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Effective respiratory syncytial virus (RSV) vaccines have been developed and licensed for elderly adults and pregnant women but not yet for infants and young children. The RSV immune state of the young child, i.e., previously RSV infected or not, is important to the conduct and interpretation of epidemiology studies and vaccine clinical trials. To address the need for sensitive assays to detect immunologic evidence of past infection, we developed, characterized, and evaluated 7 assays including 4 IgG antibody enzyme immunoassays (EIAs), two neutralizing antibody assays, and an IFN-γ EliSpot (EliSpot) assay. The four IgG EIAs used a subgroup A plus subgroup B RSV-infected Hep-2 cell lysate antigen (Lysate), an expressed RSV F protein antigen (F), an expressed subgroup A G protein antigen (Ga), or an expressed subgroup B G protein (Gb) antigen. The two neutralizing antibody assays used either a subgroup A or a subgroup B RSV strain. The EliSpot assay used a sucrose cushion purified combination of subgroup A and subgroup B infected cell lysate. All seven assays had acceptable repeatability, signal against control antigen, lower limit of detection, and, for the antibody assays, effect of red cell lysis, lipemia and anticoagulation of sample on results. In 44 sera collected from children >6 months after an RSV positive illness, the lysate, F, Ga and Gb IgG EIAs, and the subgroup A and B neutralizing antibody assays, and the EliSpot assays were positive in 100%, 100%, 86%, 95%, 43%, and 57%, respectively. The Lysate and F EIAs were most sensitive for detecting RSV antibody in young children with a documented RSV infection. Unexpectedly, the EliSpot assay was positive in 9/15 (60%) of PBMC specimens from infants not exposed to an RSV season, possibly from maternal microchimerism. The Lysate and F EIAs provide good options to reliably detect RSV antibodies in young children for epidemiologic studies and vaccine trials.
Collapse
Affiliation(s)
- Larry J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Samadhan J. Jadhao
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Laila Hussaini
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Binh Ha
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Courtney E. McCracken
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Theda Gibson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Inci Yildirim
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jumi Yi
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathy Stephens
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Chelsea Korski
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Carol Kao
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Heying Sun
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Chun Yi Lee
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Christina A. Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
15
|
El-Atawi K, De Luca D, Ramanathan R, Sanchez Luna M, Alsaedi S, Abdul Wahab MG, Hamdi M, Saleh M. Efficacy and Safety of Palivizumab as a Prophylaxis for Respiratory Syncytial Virus (RSV) Disease: An Updated Systemic Review and Meta-Analysis. Cureus 2023; 15:e51375. [PMID: 38292946 PMCID: PMC10825387 DOI: 10.7759/cureus.51375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
This systematic review and meta-analysis aimed to summarize the current evidence regarding the efficacy and safety of palivizumab as a prophylaxis for respiratory syncytial virus (RSV) disease. We searched MEDLINE via PubMed, Scopus, Cochrane, Web of Science, Embase, and Science Direct from inception till November 2023. Studies that assessed the efficacy and safety of palivizumab in infants aged between 28 days and three months of age were included. We analyzed the data using Review Manager 5.4 software, with results pooled across studies and expressed as risk ratios (RR) with 95% confidence intervals (CI). A total of 10 studies were included. The effect estimates favored palivizumab over placebo regarding the hospitalization for RSV infection (RR=0.51, 95% CI: 0.40 to 0.65; P<0.00001) and ICU admission (RR=0.49, 95% CI: 0.30 to 0.81; P=0.005). On the other hand, the effect estimate showed no significant difference between palivizumab and placebo regarding all-cause mortality (RR=0.69, 95% CI: 0.42 to 1.15; P=0.16), lower respiratory tract infection (RR=0.42, 95% CI: 0.11 to 1.69; P=0.22), and need for mechanical ventilation (RR=0.75, 95% CI: 0.34 to 1.67; P=0.48). Palivizumab can be considered a prophylaxis for RSV disease in young children as it is safe, well-tolerated, and effective in reducing RSV hospitalizations. However, further research through high-quality randomized controlled trials is required to determine its efficacy as a therapeutic agent for established RSV infections.
Collapse
Affiliation(s)
- Khaled El-Atawi
- Department of Pediatrics, Latifa Women and Children Hospital, Dubai, ARE
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "Antoine Béclère" Hospital, Paris Saclay University Hospitals, APHP (Assistance Publique Hôpitaux de Paris), Paris, FRA
- Physiopathology and Therapeutic Innovation Unit, INSERM (Institut National de la Santé Et de la Recherche Médicale) U999, Paris Saclay University, Paris, FRA
| | - Ranagasamy Ramanathan
- Division of Neonatology, Department of Pediatrics, Los Angeles General Medical Center, Keck School of Medicine of USC (University of Southern California), Los Angeles, USA
| | - Manuel Sanchez Luna
- Department of Neonatology, University Hospital Gregorio Marañón, Madrid, ESP
| | - Saad Alsaedi
- Department of Pediatrics and Neonatology, King Faisal Specialist Hospital & Research Centre, Jeddah, SAU
| | | | - Moataz Hamdi
- Department of Pediatrics, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Maysa Saleh
- Department of Pediatrics and Child Health, Al Jalila Children's Speciality Hospital, Dubai, ARE
| |
Collapse
|
16
|
Yasaratne D, Idrose NS, Dharmage SC. Asthma in developing countries in the Asia-Pacific Region (APR). Respirology 2023; 28:992-1004. [PMID: 37702387 DOI: 10.1111/resp.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
There is growing interest in the epidemiology of asthma in developing countries, especially in the Asia-Pacific Region (APR). A number of reviews have been published in this field, but a comprehensive synthesis of overall data has not been reported. Here, we summarized the burden, risk factors and challenges of asthma management in developing countries with a specific emphasis on the APR by consolidating evidence from both systematic and narrative reviews published up until February 2023. We found that although asthma prevalence in low and low-middle-income countries (LMICs) is known to be generally lower compared to high-income countries, the burden is substantially greater. Studies conducted in APR LMIC have reported a range of risk factors, including pre- and post-natal factors, environmental considerations, lifestyle measures, individual features and genetics. The low and inequitable distribution of quality preventive and curative health care, a lack of advanced diagnostic measures, non-availability and non-affordability of novel therapeutics, cultural beliefs and practices, and diverse disease phenotypes make it challenging to achieve optimal asthma control in the region. Hence, we call for the development of a region-specific blueprint for action to mitigate this challenging situation, to help reduce the burden of asthma in APR LMIC.
Collapse
Affiliation(s)
- Duminda Yasaratne
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - N Sabrina Idrose
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Nguyen-Tran H, Thompson C, Butler M, Miller KR, Pyle L, Jung S, Rogers S, Ng TFF, Routh J, Dominguez SR, Messacar K. Duration of Enterovirus D68 RNA Shedding in the Upper Respiratory Tract and Transmission among Household Contacts, Colorado, USA. Emerg Infect Dis 2023; 29:2315-2324. [PMID: 37877582 PMCID: PMC10617331 DOI: 10.3201/eid2911.230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Enterovirus D68 (EV-D68) causes cyclical outbreaks of respiratory disease and acute flaccid myelitis. EV-D68 is primarily transmitted through the respiratory route, but the duration of shedding in the respiratory tract is unknown. We prospectively enrolled 9 hospitalized children with EV-D68 respiratory infection and 16 household contacts to determine EV-D68 RNA shedding dynamics in the upper respiratory tract through serial midturbinate specimen collections and daily symptom diaries. Five (31.3%) household contacts, including 3 adults, were EV-D68-positive. The median duration of EV-D68 RNA shedding in the upper respiratory tract was 12 (range 7-15) days from symptom onset. The most common symptoms were nasal congestion (100%), cough (92.9%), difficulty breathing (78.6%), and wheezing (57.1%). The median illness duration was 20 (range 11-24) days. Understanding the duration of RNA shedding can inform the expected rate and timing of EV-D68 detection in associated acute flaccid myelitis cases and help guide public health measures.
Collapse
|
18
|
Medeleanu MV, Qian YC, Moraes TJ, Subbarao P. Early-immune development in asthma: A review of the literature. Cell Immunol 2023; 393-394:104770. [PMID: 37837916 DOI: 10.1016/j.cellimm.2023.104770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023]
Abstract
This review presents a comprehensive examination of the various factors contributing to the immunopathogenesis of asthma from the prenatal to preschool period. We focus on the contributions of genetic and environmental components as well as the role of the nasal and gut microbiome on immune development. Predisposing genetic factors, including inherited genes associated with increased susceptibility to asthma, are discussed alongside environmental factors such as respiratory viruses and pollutant exposure, which can trigger or exacerbate asthma symptoms. Furthermore, the intricate interplay between the nasal and gut microbiome and the immune system is explored, emphasizing their influence on allergic immune development and response to environmental stimuli. This body of literature underscores the necessity of a comprehensive approach to comprehend and manage asthma, as it emphasizes the interactions of multiple factors in immune development and disease progression.
Collapse
Affiliation(s)
- Maria V Medeleanu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Yu Chen Qian
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Theo J Moraes
- Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Laboratory Medicine and Pathology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada
| | - Padmaja Subbarao
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada; Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Canada.
| |
Collapse
|
19
|
Fang LC, Wang JY, Yu HH, Wang LC, Chiang BL. Respiratory-syncytial virus immunoprophylaxis on asthma symptoms development in prematurity with bronchopulmonary dysplasia. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100161. [PMID: 37781666 PMCID: PMC10510012 DOI: 10.1016/j.jacig.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 10/03/2023]
Abstract
Background Infants with respiratory-syncytial virus bronchiolitis hospitalization are more likely to develop wheezing and subsequent asthma. Reportedly, palivizumab prophylaxis effectively prevents respiratory-syncytial virus hospitalization in high-risk children-such as premature infants or infants with bronchopulmonary dysplasia (BPD). Objective We sought to explore the effect of respiratory-syncytial virus immunoprophylaxis on the risk of asthma development in premature infants with BPD in subtropical areas. Methods This case-control study included preterm children with BPD born at Mackay Memorial Hospital, Taipei, Taiwan, from 1999 to 2015. Overall, medical records of 616 eligible participants were retrospectively collected from their birth to the time they attained an age of 5 to 20 years. The primary outcome was onset of active asthma. Results Overall, 576 consecutive cases met the inclusion criteria. Of these, 306 (53.2%) patients had palivizumab exposure and 191 (33.2%) were diagnosed with asthma. Patients with history of respiratory-syncytial virus bronchiolitis hospitalization had a higher risk of developing asthma in the future (adjusted odds ratio, 3.77; 95% CI, 2.30-6.20, P < .001; hazard ratio, 2.56; 95% CI, 1.81-3.62, P < .001). Palivizumab prophylaxis reduced future asthma development through the inhibition of respiratory-syncytial virus bronchiolitis hospitalization (coefficient, -0.021; 95% CI, -0.031 to -0.011, P = .027). Asthmatic children who received palivizumab immunoprophylaxis had a lesser active asthma duration than those who did not (P = .005). Conclusions Children with BPD with hospitalization for respiratory-syncytial virus bronchiolitis had higher risk of developing asthma compared with those without respiratory-syncytial virus infection. Prophylactic palivizumab might reduce later asthma development through inhibition of respiratory-syncytial virus bronchiolitis hospitalization. For those already developing asthma, palivizumab could reduce active asthma duration.
Collapse
Affiliation(s)
- Li-Ching Fang
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Yu Wang
- Department of Dermatology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Yarsky E, Banzon TM, Phipatanakul W. Effects of Allergen Exposure and Environmental Risk Factors in Schools on Childhood Asthma. Curr Allergy Asthma Rep 2023; 23:613-620. [PMID: 37651001 PMCID: PMC11262705 DOI: 10.1007/s11882-023-01108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW This review aims to assess the prevalence of common allergen exposures and environmental risk factors for asthma in schools, examine the underlying mechanisms of these environmental risk factors, and explore possible prevention strategies. RECENT FINDINGS Cockroach, mouse, dust mites, fungi, viral infections, ozone pollution, and cleaning products are common allergen exposures and environmental risk factors in schools which may affect asthma morbidity. Novel modifiable environmental risk factors in schools are also being investigated to identify potential associations with increased asthma morbidity. While several studies have investigated the benefit of environmental remediation strategies in schools and their impact on asthma morbidity, future studies are warranted to further define the effects of modifiable risk factors in schools and determine whether school mitigation strategies may help improve asthma symptoms in students with asthma.
Collapse
Affiliation(s)
- Eva Yarsky
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tina M Banzon
- Division of Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Miles MA, Liong S, Liong F, Coward-Smith M, Trollope GS, Oseghale O, Erlich JR, Brooks RD, Logan JM, Hickey S, Wang H, Bozinovski S, O’Leary JJ, Brooks DA, Selemidis S. TLR7 promotes chronic airway disease in RSV-infected mice. Front Immunol 2023; 14:1240552. [PMID: 37795093 PMCID: PMC10545951 DOI: 10.3389/fimmu.2023.1240552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Gemma S. Trollope
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jessica M. Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, Dublin, Ireland
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
22
|
Gao N, Raduka A, Rezaee F. Vitamin D 3 protects against respiratory syncytial virus-induced barrier dysfunction in airway epithelial cells via PKA signaling pathway. Eur J Cell Biol 2023; 102:151336. [PMID: 37354621 PMCID: PMC10773979 DOI: 10.1016/j.ejcb.2023.151336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection in infants and young children globally and is responsible for hospitalization and mortality in the elderly population. Virus-induced airway epithelial barrier damage is a critical step during RSV infection, and emerging studies suggest that RSV disrupts the tight junctions (TJs) and adherens junctions (AJs) between epithelial cells, increasing the permeability of the airway epithelial barrier. The lack of commercially available vaccines and effective antiviral drugs for RSV emphasizes the need for new management strategies. Vitamin D3 is a promising intervention for viral infection due to its critical role in modulating innate immune responses. However, there is limited evidence on the effect of vitamin D3 on RSV pathogenies. Here, we investigated the impact of vitamin D3 on RSV-induced epithelial barrier dysfunction and the underlying mechanisms. We found that pre-incubation with 1,25(OH)2D3, the active form of vitamin D3, alleviated RSV-induced epithelial barrier disruption in a dose-dependent manner without affecting viability in 16HBE cells. 1,25(OH)2D3 induced minor changes in the protein expression level of TJ/AJ proteins in RSV-infected cells. We observed increased CREB phosphorylation at Ser133 during 1,25(OH)2D3 exposure, indicating that vitamin D3 triggered protein kinase A (PKA) activity in 16HBE. PKA inhibitors modified the restoration of barrier function by 1,25(OH)2D3 in RSV-infected cells, implying that PKA signaling is responsible for the protective effects of vitamin D3 against RSV-induced barrier dysfunction in airway epithelial cells. Our findings suggest vitamin D3 as a prophylactic intervention to protect the respiratory epithelium during RSV infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.
| |
Collapse
|
23
|
Atwell J, Chico M, Vaca M, Arévalo‐Cortes A, Karron R, Cooper PJ. Effect of infant viral respiratory disease on childhood asthma in a non-industrialized setting. Clin Transl Allergy 2023; 13:e12291. [PMID: 37632244 PMCID: PMC10408584 DOI: 10.1002/clt2.12291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND There are limited data from non-industrialized settings on the effects of early life viral respiratory disease on childhood respiratory illness. We followed a birth cohort in tropical Ecuador to understand how early viral respiratory disease, in the context of exposures affecting airway inflammation including ascariasis, affect wheezing illness, asthma, and rhinoconjunctivitis in later childhood. METHODS A surveillance cohort nested within a birth cohort was monitored for respiratory infections during the first 2 years in rural Ecuador and followed for 8 years for the development of wheeze and rhinoconjunctivitis. Nasal swabs were examined for viruses by polymerase chain reaction and respiratory symptom data on recent wheeze and rhinoconjunctivitis were collected by periodic questionnaires at 3, 5, and 8 years. Stools from pregnant mothers and periodically from children aged 2 years were examined microscopically for soil-transmitted helminths. Atopy was measured by allergen skin prick testing at 2 years. Spirometry, fractional exhaled nitric oxide measurement, and nasal washes were performed at 8 years. Associations between clinically significant respiratory disease (CSRD) and wheezing or rhinoconjunctivitis at 3, 5, and 8 years were estimated using multivariable logistic regression. RESULTS Four hundred and twenty six children were followed of which 67.7% had at least one CSRD episode; 12% had respiratory syncytial virus (RSV)+CSRD and 36% had rhinovirus (RHV)+CSRD. All-cause CSRD was associated with increased wheeze at 3 (OR 2.33 [95% confidence intervals (CI) 1.23-4.40]) and 5 (OR: 2.12 [95% CI 1.12-4.01]) years. RHV+CSRD was more strongly associated with wheeze at 3 years in STH-infected (STH-infected [OR 13.41, 95% CI 1.56-115.64] vs. uninfected [OR 1.68, 95% CI 0.73-3.84]) and SPT+ (SPT+ [OR 9.42, 95% CI 1.88-47.15] versus SPT- [OR 1.92, 95% CI 0.84-4.38]) children. No associations were observed between CSRD and rhinoconjunctivitis. DISCUSSION CSRD was significantly associated with childhood wheeze with stronger associations observed for RHV+CSRD in SPT+ and STH-infected children.
Collapse
Affiliation(s)
- Jessica Atwell
- Johns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Martha Chico
- Fundacion Ecuatoriana Para la Investigacion en SaludQuitoEcuador
| | - Maritza Vaca
- Fundacion Ecuatoriana Para la Investigacion en SaludQuitoEcuador
| | | | - Ruth Karron
- Johns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Philip J. Cooper
- Fundacion Ecuatoriana Para la Investigacion en SaludQuitoEcuador
- Escuela de MedicinaUniversidad Internacional del EcuadorQuitoEcuador
- Institute of Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
24
|
Halasa N, Zambrano LD, Amarin JZ, Stewart LS, Newhams MM, Levy ER, Shein SL, Carroll CL, Fitzgerald JC, Michaels MG, Bline K, Cullimore ML, Loftis L, Montgomery VL, Jeyapalan AS, Pannaraj PS, Schwarz AJ, Cvijanovich NZ, Zinter MS, Maddux AB, Bembea MM, Irby K, Zerr DM, Kuebler JD, Babbitt CJ, Gaspers MG, Nofziger RA, Kong M, Coates BM, Schuster JE, Gertz SJ, Mack EH, White BR, Harvey H, Hobbs CV, Dapul H, Butler AD, Bradford TT, Rowan CM, Wellnitz K, Staat MA, Aguiar CL, Hymes SR, Randolph AG, Campbell AP. Infants Admitted to US Intensive Care Units for RSV Infection During the 2022 Seasonal Peak. JAMA Netw Open 2023; 6:e2328950. [PMID: 37581884 PMCID: PMC10427947 DOI: 10.1001/jamanetworkopen.2023.28950] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023] Open
Abstract
Importance Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections (LRTIs) and infant hospitalization worldwide. Objective To evaluate the characteristics and outcomes of RSV-related critical illness in US infants during peak 2022 RSV transmission. Design, Setting, and Participants This cross-sectional study used a public health prospective surveillance registry in 39 pediatric hospitals across 27 US states. Participants were infants admitted for 24 or more hours between October 17 and December 16, 2022, to a unit providing intensive care due to laboratory-confirmed RSV infection. Exposure Respiratory syncytial virus. Main Outcomes and Measures Data were captured on demographics, clinical characteristics, signs and symptoms, laboratory values, severity measures, and clinical outcomes, including receipt of noninvasive respiratory support, invasive mechanical ventilation, vasopressors or extracorporeal membrane oxygenation, and death. Mixed-effects multivariable log-binomial regression models were used to assess associations between intubation status and demographic factors, gestational age, and underlying conditions, including hospital as a random effect to account for between-site heterogeneity. Results The first 15 to 20 consecutive eligible infants from each site were included for a target sample size of 600. Among the 600 infants, the median (IQR) age was 2.6 (1.4-6.0) months; 361 (60.2%) were male, 169 (28.9%) were born prematurely, and 487 (81.2%) had no underlying medical conditions. Primary reasons for admission included LRTI (594 infants [99.0%]) and apnea or bradycardia (77 infants [12.8%]). Overall, 143 infants (23.8%) received invasive mechanical ventilation (median [IQR], 6.0 [4.0-10.0] days). The highest level of respiratory support for nonintubated infants was high-flow nasal cannula (243 infants [40.5%]), followed by bilevel positive airway pressure (150 infants [25.0%]) and continuous positive airway pressure (52 infants [8.7%]). Infants younger than 3 months, those born prematurely (gestational age <37 weeks), or those publicly insured were at higher risk for intubation. Four infants (0.7%) received extracorporeal membrane oxygenation, and 2 died. The median (IQR) length of hospitalization for survivors was 5 (4-10) days. Conclusions and Relevance In this cross-sectional study, most US infants who required intensive care for RSV LRTIs were young, healthy, and born at term. These findings highlight the need for RSV preventive interventions targeting all infants to reduce the burden of severe RSV illness.
Collapse
Affiliation(s)
- Natasha Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura D. Zambrano
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Justin Z. Amarin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura S. Stewart
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M. Newhams
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Emily R. Levy
- Divisions of Pediatric Infectious Diseases and Pediatric Critical Care Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steven L. Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| | | | - Julie C. Fitzgerald
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Marian G. Michaels
- Division of Infectious Diseases, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katherine Bline
- Division of Pediatric Critical Care Medicine, Nationwide Children’s Hospital, Columbus, Ohio
| | - Melissa L. Cullimore
- Division of Pediatric Critical Care, Department of Pediatrics, Children’s Hospital and Medical Center, Omaha, Nebraska
| | - Laura Loftis
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children’s Hospital, Houston
| | - Vicki L. Montgomery
- Department of Pediatrics, University of Louisville and Norton Children’s Hospital, Louisville, Kentucky
| | - Asumthia S. Jeyapalan
- Division of Pediatric Critical Care Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Children’s Hospital Los Angeles and Departments of Pediatrics and Molecular Microbiology and Immunology, University of Southern California, Los Angeles
| | - Adam J. Schwarz
- Division of Critical Care Medicine, Children’s Hospital Orange County, Orange, California
| | - Natalie Z. Cvijanovich
- Division of Critical Care, Department of Pediatrics, University of California, San Francisco Benioff Children’s Hospital Oakland, Oakland
| | - Matt S. Zinter
- Division of Critical Care, Department of Pediatrics, University of California, San Francisco Benioff Children’s Hospital San Francisco, San Francisco
| | - Aline B. Maddux
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora
| | - Melania M. Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katherine Irby
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children’s Hospital, Little Rock
| | - Danielle M. Zerr
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Seattle Children’s Hospital, Seattle, Washington
| | - Joseph D. Kuebler
- Division of Pediatric Critical Care, Department of Pediatrics, Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, New York
| | - Christopher J. Babbitt
- Division of Pediatric Critical Care, Miller Children’s and Women’s Hospital of Long Beach, Long Beach, California
| | - Mary Glas Gaspers
- Division of Critical Care, Department of Pediatrics, Banner Children’s at Diamond Children’s Medical Center, Tucson, Arizona
| | - Ryan A. Nofziger
- Division of Critical Care Medicine, Akron Children’s Hospital, Akron, Ohio
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham
| | - Bria M. Coates
- Division of Pediatric Critical Care Medicine, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer E. Schuster
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri
| | - Shira J. Gertz
- Division of Pediatric Critical Care, Department of Pediatrics, Cooperman Barnabas Medical Center, Livingston, New Jersey
| | - Elizabeth H. Mack
- Division of Pediatric Critical Care Medicine, Medical University of South Carolina, Charleston
| | - Benjamin R. White
- Division of Pediatric Critical Care, Department of Pediatrics, University of Utah, Salt Lake City
| | - Helen Harvey
- Division of Pediatric Critical Care, Rady Children’s Hospital-San Diego, San Diego, California
| | - Charlotte V. Hobbs
- Division of Infectious Diseases, Department of Pediatrics, University of Mississippi Medical Center, Jackson
| | - Heda Dapul
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, New York University Grossman School of Medicine, New York
| | - Andrew D. Butler
- Division of Pediatric Critical Care, St Christopher’s Hospital for Children, Philadelphia, Pennsylvania
| | - Tamara T. Bradford
- Division of Cardiology, Department of Pediatrics, Louisiana State University Health Sciences Center and Children’s Hospital of New Orleans, New Orleans
| | - Courtney M. Rowan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis
| | - Kari Wellnitz
- Division of Pediatric Critical Care, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City
| | - Mary Allen Staat
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Cassyanne L. Aguiar
- Division of Pediatric Rheumatology, Children’s Hospital of The King’s Daughters, Eastern Virginia Medical School, Norfolk
| | - Saul R. Hymes
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Bernard and Millie Duker Children’s Hospital, Albany Med Health System, Albany, New York
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Angela P. Campbell
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
25
|
Wrede D, Bordak M, Abraham Y, Mehedi M. Pulmonary Pathogen-Induced Epigenetic Modifications. EPIGENOMES 2023; 7:13. [PMID: 37489401 PMCID: PMC10366755 DOI: 10.3390/epigenomes7030013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Epigenetics generally involves genetic control by factors other than our own DNA sequence. Recent research has focused on delineating the mechanisms of two major epigenetic phenomena: DNA methylation and histone modification. As epigenetics involves many cellular processes, it is no surprise that it can also influence disease-associated gene expression. A direct link between respiratory infections, host cell epigenetic regulations, and chronic lung diseases is still unknown. Recent studies have revealed bacterium- or virus-induced epigenetic changes in the host cells. In this review, we focused on respiratory pathogens (viruses, bacteria, and fungi) induced epigenetic modulations (DNA methylation and histone modification) that may contribute to lung disease pathophysiology by promoting host defense or allowing pathogen persistence.
Collapse
Affiliation(s)
| | | | | | - Masfique Mehedi
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (D.W.); (M.B.); (Y.A.)
| |
Collapse
|
26
|
Campbell CD, Gleeson M, Sulaiman I. The role of the respiratory microbiome in asthma. FRONTIERS IN ALLERGY 2023; 4:1120999. [PMID: 37324782 PMCID: PMC10262749 DOI: 10.3389/falgy.2023.1120999] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
Asthma is a common airways disease and the human microbiome plays an increasingly recognised role in asthma pathogenesis. Furthermore, the respiratory microbiome varies with asthma phenotype, endotype and disease severity. Consequently, asthma therapies have a direct effect on the respiratory microbiome. Newer biological therapies have led to a significant paradigm shift in how we treat refractory Type 2 high asthma. While airway inflammation is the generally accepted mechanism of action of all asthma therapies, including both inhaled and systemic therapies, there is evidence to suggest that they may also alter the microbiome to create a more functionally balanced airway microenvironment while also influencing airway inflammation directly. This downregulated inflammatory cascade seen biochemically, and reflected in improved clinical outcomes, supports the hypothesis that biological therapies may in fact affect the microbiome-host immune system dynamic and thus represent a therapeutic target for exacerbations and disease control.
Collapse
Affiliation(s)
- Christina D. Campbell
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Margaret Gleeson
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Imran Sulaiman
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
27
|
Stein RT, Zar HJ. RSV through the COVID-19 pandemic: Burden, shifting epidemiology, and implications for the future. Pediatr Pulmonol 2023; 58:1631-1639. [PMID: 36811330 DOI: 10.1002/ppul.26370] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Respiratory syncytial virus (RSV) represents a major global healthcare burden, particularly in those under 5 years of age. There is no available vaccine, with treatment limited to supportive care or palivizumab for high-risk children. Additionally, although a causal relationship has not been established, RSV has been associated with the development of asthma or wheezing in some children. The COVID-19 pandemic and the introduction of nonpharmaceutical interventions (NPIs) have caused substantial changes to RSV seasonality and epidemiology. Many countries have experienced an absence of RSV during the time of a typical season, followed by an out-of-season surge upon relaxation of NPI use. These dynamics have disrupted traditional RSV disease patterns and assumptions, but also provide a unique opportunity to learn more about the transmission of RSV and other respiratory viruses, as well as inform future approaches to RSV preventive strategies. Here, we review the RSV burden and epidemiology through the COVID-19 pandemic and discuss how new data may affect future decisions regarding RSV prevention.
Collapse
Affiliation(s)
- Renato T Stein
- Infant Center, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heather J Zar
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,SA-MRC Unit for Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Virolainen SJ, VonHandorf A, Viel KCMF, Weirauch MT, Kottyan LC. Gene-environment interactions and their impact on human health. Genes Immun 2023; 24:1-11. [PMID: 36585519 PMCID: PMC9801363 DOI: 10.1038/s41435-022-00192-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
The molecular processes underlying human health and disease are highly complex. Often, genetic and environmental factors contribute to a given disease or phenotype in a non-additive manner, yielding a gene-environment (G × E) interaction. In this work, we broadly review current knowledge on the impact of gene-environment interactions on human health. We first explain the independent impact of genetic variation and the environment. We next detail well-established G × E interactions that impact human health involving environmental toxicants, pollution, viruses, and sex chromosome composition. We conclude with possibilities and challenges for studying G × E interactions.
Collapse
Affiliation(s)
- Samuel J Virolainen
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Kenyatta C M F Viel
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
| | - Leah C Kottyan
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 15012, Cincinnati, OH, 45229, USA.
| |
Collapse
|
29
|
Triasih R, Setyowireni D, Nurani N, Setyati A. Prevalence, Management, and Risk Factors of Asthma Among School-Age Children in Yogyakarta, Indonesia. J Asthma Allergy 2023; 16:23-32. [PMID: 36636706 PMCID: PMC9830052 DOI: 10.2147/jaa.s392733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Purpose Childhood asthma in developing countries has been increasing, but underdiagnosed and undertreated. We reported prevalence, management, and risk factors of asthma among school-age children in Yogyakarta, Indonesia. Patients and Methods We recruited children aged 6-7 years and 13-14 years attending schools in all districts in Yogyakarta, Indonesia. The schools were randomly selected via cluster random sampling. We used the Indonesian version of the Global Asthma Network (GAN) questionnaire, and the methodology employed by this study was in accordance with the GAN's protocol. Results A total of 2106 children aged 6-7 years and 3142 adolescents aged 13-14 years were eligible for analysis. The prevalence of current wheeze in children and adolescents was similar, which was 4.6%. Inhalation therapy was reported in <30% of those with asthma. Risk factors for current wheeze in children were wheezing in infancy period, ever had pneumonia, the house was passed by trucks every day, and fast-food consumption in the previous 12 months; whereas exclusive breastfeeding for more than 6 months decreased the risk of current wheeze. In adolescence, obesity, consumption of fast food once or twice a week, and paracetamol in the previous 12 months increased the risk of current wheeze. Conclusion The prevalence of current wheeze in children and adolescents in Indonesia was quite low. The use of inhalation therapy was limited. Respiratory problems during infancy, environmental, and nutritional factors play a role in the development of asthma.
Collapse
Affiliation(s)
- Rina Triasih
- Department of Pediatrics, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia,Correspondence: Rina Triasih, Department of Pediatrics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Dr. Sardjito Hospital, Jl. Kesehatan 1, Yogyakarta, 55284, Indonesia, Tel +62 81392764269, Fax +6274 583745, Email
| | - Dwikisworo Setyowireni
- Department of Pediatrics, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Neti Nurani
- Department of Pediatrics, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Amalia Setyati
- Department of Pediatrics, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
30
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
31
|
Hurme P, Komulainen M, Tulkki M, Leino A, Rückert B, Turunen R, Vuorinen T, Akdis M, Akdis CA, Jartti T. Cytokine expression in rhinovirus- vs. respiratory syncytial virus-induced first wheezing episode and its relation to clinical course. Front Immunol 2022; 13:1044621. [PMID: 36451824 PMCID: PMC9702984 DOI: 10.3389/fimmu.2022.1044621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 09/26/2023] Open
Abstract
Rhinovirus (RV) and respiratory syncytial virus (RSV) are common causes of bronchiolitis. Unlike an RSV etiology, an RV etiology is associated with a markedly increased risk of asthma. We investigated the cytokine profiles of RV- and RSV-induced first wheezing episode and their correlation with prognosis. We recruited 52 sole RV- and 11 sole RSV-affected children with a severe first wheezing episode. Peripheral blood mononuclear cells (PBMCs) were isolated during acute illness and 2 weeks later and stimulated in vitro with anti-CD3/anti-CD28. Culture medium samples were analyzed for 56 different cytokines by multiplex ELISA. Recurrences were prospectively followed for 4 years. In adjusted analyses, the cytokine response from PBMCs in the RV group was characterized by decreased expression of interleukin 1 receptor antagonist (IL-1RA), interleukin 1 beta (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) and increased expression of eosinophil chemotactic protein 2 (eotaxin-2), thymus- and activation-regulated chemokine (TARC), and epithelial-derived neutrophil-activating peptide 78 (ENA-78) in the acute phase and increased expression of fractalkine in the convalescent phase compared to those in the RSV group. An analysis of the change in cytokine expression between study points revealed an increased expression of fractalkine and IL-1β and decreased expression of I-309 (CCL1) and TARC in the RV group compared to those in the RSV group.. Considering hospitalization time, a significant non-adjusted group × cytokine interaction was observed in the levels of interferon gamma (IFN-γ), macrophage-derived chemokine (MDC), IL-1RA, and vascular endothelial growth factor (VEGF), indicating that a higher expression of cytokine was associated with shorter hospitalization time in the RSV group but not in the RV group. A significant interaction was also found in interleukin 6 (IL-6), but the cytokine response was not associated with hospitalization time in the RSV or RV group. In the RV group, increased expression of I-309 (CCL1) and TARC was associated with fewer relapses within 2 months, and decreased expression of interleukin 13 (IL-13) and increased expression of I-309 (CCL1) were associated with less relapses within 12 months. Differences in cytokine response from PBMCs were observed between RV- and RSV-induced first severe wheezing episode. Our findings also reveal new biomarkers for short- and medium-term prognosis in first-time wheezing children infected with RV or RSV.
Collapse
Affiliation(s)
- Pekka Hurme
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Miisa Komulainen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Marleena Tulkki
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Annamari Leino
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Riitta Turunen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
32
|
Klain A, Dinardo G, Salvatori A, Indolfi C, Contieri M, Brindisi G, Decimo F, Zicari AM, Miraglia del Giudice M. An Overview on the Primary Factors That Contribute to Non-Allergic Asthma in Children. J Clin Med 2022; 11:6567. [PMID: 36362795 PMCID: PMC9654665 DOI: 10.3390/jcm11216567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 04/13/2024] Open
Abstract
The prevalence of non-allergic asthma in childhood is low, peaking in late adulthood. It is triggered by factors other than allergens, like cold and dry air, respiratory infections, hormonal changes, smoke and air pollution. In the literature, there are few studies that describe non-allergic asthma in pediatric age. Even though it is a less common disorder in kids, it is crucial to identify the causes in order to keep asthma under control, particularly in patients not responding to conventional treatments. In this review, we discuss non-IgE-mediated forms of asthma, collecting the latest research on etiopathogenesis and treatment.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra Salvatori
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marcella Contieri
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulia Brindisi
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Decimo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Maria Zicari
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
33
|
Immunopathology of Differing Viral Infection in Allergic Asthma Disease. Immunol Allergy Clin North Am 2022; 42:715-726. [DOI: 10.1016/j.iac.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Manti S, Piedimonte G. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma. Front Pediatr 2022; 10:998296. [PMID: 36204661 PMCID: PMC9530042 DOI: 10.3389/fped.2022.998296] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is recognized as an important risk factor for wheezing and asthma, since it commonly affects babies during lung development. While the role of RSV in the onset of atopic asthma is widely recognized, its impact on the onset of non-atopic asthma, mediated via other and independent causal pathways, has long been also suspected, but the association is less clear. Following RSV infection, the release of local pro-inflammatory molecules, the dysfunction of neural pathways, and the compromised epithelial integrity can become chronic and influence airway development, leading to bronchial hyperreactivity and asthma, regardless of atopic status. After a brief review of the RSV structure and its interaction with the immune system and neuronal pathways, this review summarizes the current evidence about the RSV-mediated pathogenic pathways in predisposing and inducing airway dysfunction and non-allergic asthma development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Pediatric Unit, Department of Human Pathology of Adult and Childhood Gaetano Barresi, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
35
|
Reduced miR-146a-5p Is a Biomarker of Infant Respiratory Diseases Contributing to Immune Dysregulation in Small Airway Epithelial Cells. Cells 2022; 11:cells11172746. [PMID: 36078154 PMCID: PMC9454747 DOI: 10.3390/cells11172746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Respiratory diseases such as bronchiolitis, and those with wheezing episodes, are highly important during infancy due to their potential chronicity. Immune response dysregulation is critical in perpetuating lung damage. Epigenetic modifications including microRNA (miRNA) post-transcriptional regulation are among the factors involved in alleviating inflammation. We evaluated the expression of miR-146a-5p, a previously described negative regulator of immunity, in infants with respiratory diseases, in order to study epigenetic regulation of the immune response. Nasopharyngeal aspirate (NPA) was obtained from infants with bronchiolitis (ongoing and post-disease) or with wheezing episodes in addition to healthy controls. Virus presence was determined by nested PCR, while miRNA and gene expression were studied in cells from NPAs using qPCR. Healthy small airway epithelial cells (SAECs) were used as an in vitro model. We observe a reduction in miR-146a-5p expression in infants with either of the two diseases compared to controls, suggesting the potential of this miRNA as a disease biomarker. Post-bronchiolitis, miR-146a-5p expression increases, though without reaching levels of healthy controls. MiR-146a-5p expression correlates inversely with the immune-related gene PTGS2, while its expression correlates directly with TSLP. When heathy donor SAECs are stimulated by poly:IC, we observe an increase in miR-146a-5p, with wounds having a synergistic effect. In conclusion, infants with respiratory diseases present reduced miR-146a-5p expression, possibly affecting immune dysregulation.
Collapse
|
36
|
Glaser EL, Hariharan D, Bowser DM, Gervasio RM, Rowlands KR, Buckley L, Nelson CB, Shepard DS. Impact of Respiratory Syncytial Virus on Child, Caregiver, and Family Quality of Life in the United States: Systematic Literature Review and Analysis. J Infect Dis 2022; 226:S236-S245. [PMID: 35968873 PMCID: PMC9377042 DOI: 10.1093/infdis/jiac183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV), a leading cause of lower respiratory tract infection in US children, reduces quality of life (QOL) of children, their caregivers, and families. METHODS We conducted a systematic literature review in PubMed, EconLit, and other databases in the United States of articles published since 2000, derived utility lost per RSV episode from cohort studies, and performed a systematic analysis. RESULTS From 2262 unique citations, 35 received full-text review and 7 met the inclusion criteria (2 cohort studies, 4 modeling studies, and 1 synthesis). Pooled data from the 2 cohort studies (both containing only hospitalized premature infants) gave quality-adjusted life-year (QALY) losses per episode of 0.0173 at day 38. From the cohort study that also assessed caregivers' QOL, we calculated net QALYs lost directly attributable to RSV per nonfatal episode from onset to 60 days after onset for the child, caregiver, child-and-caregiver dyad of 0.0169 (167% over prematurity alone), 0.0031, and 0.0200, respectively. CONCLUSION Published data on QOL of children in the United States with RSV are scarce and consider only premature hospitalized infants, whereas most RSV episodes occur in children who were born at term and were otherwise healthy. QOL studies are needed beyond hospitalized premature infants.
Collapse
Affiliation(s)
- Elizabeth L Glaser
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Dhwani Hariharan
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Diana M Bowser
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Raíssa M Gervasio
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Katharine R Rowlands
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Lauren Buckley
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | | | - Donald S Shepard
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
37
|
Gao N, Raduka A, Rezaee F. Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. J Cell Sci 2022; 135:jcs259871. [PMID: 35848790 PMCID: PMC9481929 DOI: 10.1242/jcs.259871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 01/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the leading cause of acute lower respiratory tract infection in young children worldwide. Our group recently revealed that RSV infection disrupts the airway epithelial barrier in vitro and in vivo. However, the underlying molecular pathways were still elusive. Here, we report the critical roles of the filamentous actin (F-actin) network and actin-binding protein cortactin in RSV infection. We found that RSV infection causes F-actin depolymerization in 16HBE cells, and that stabilizing the F-actin network in infected cells reverses the epithelial barrier disruption. RSV infection also leads to significantly decreased cortactin in vitro and in vivo. Cortactin-knockout 16HBE cells presented barrier dysfunction, whereas overexpression of cortactin protected the epithelial barrier against RSV. The activity of Rap1 (which has Rap1A and Rap1B forms), one downstream target of cortactin, declined after RSV infection as well as in cortactin-knockout cells. Moreover, activating Rap1 attenuated RSV-induced epithelial barrier disruption. Our study proposes a key mechanism in which RSV disrupts the airway epithelial barrier via attenuating cortactin expression and destabilizing the F-actin network. The identified pathways will provide new targets for therapeutic intervention toward RSV-related disease. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio 44195, USA
| |
Collapse
|
38
|
Hartnett J, Donga P, Ispas G, Vandendijck Y, Anderson D, House S, Suner S. Risk factors and medical resource utilization in US adults hospitalized with influenza or respiratory syncytial virus in the Hospitalized Acute Respiratory Tract Infection study. Influenza Other Respir Viruses 2022; 16:906-915. [PMID: 35474419 PMCID: PMC9343339 DOI: 10.1111/irv.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Influenza and respiratory syncytial virus (RSV) are associated with substantial morbidity and mortality in the United States. We assessed risk factors for severe disease and medical resource utilization (MRU) among US adults hospitalized with influenza or RSV in the Hospitalized Acute Respiratory Tract Infection (HARTI) study. Methods HARTI was a prospective global (40 centers, 12 countries) epidemiological study of adults hospitalized with acute respiratory tract infections conducted across the 2017–2019 epidemic seasons. Patients with confirmed influenza or RSV were followed up to 3 months post‐discharge. Baseline characteristics, prevalence of core risk factors (CRFs) for severe disease (age ≥65 years, chronic heart or renal disease, chronic obstructive pulmonary disease, or asthma), and MRU were summarized descriptively. Results The US cohort included 280 influenza‐positive and 120 RSV‐positive patients. RSV patients were older (mean: 63.1 vs. 59.7 years) and a higher proportion had CRFs (87.5% vs. 81.4%). Among those with CRFs (influenza, n = 153; RSV, n = 99), RSV patients required longer hospitalizations (median length of stay: 4.5 days) and a greater proportion (79.8%) required oxygen supplementation during hospitalization compared with influenza patients (4.0 days and 59.5%, respectively). At 3 months post‐discharge, a greater proportion of RSV patients with CRFs reported use of antibiotics, antitussives, bronchodilators, and inhaled and systemic steroids versus those with influenza and CRFs. Many patients with CRFs reported hospital readmission at 3 months post‐discharge (RSV: 13.4%; influenza: 11.9%). Conclusions MRU during and post‐hospitalization due to RSV in adults is similar to or greater than that of influenza. Enhanced RSV surveillance and preventive and therapeutic interventions are needed.
Collapse
Affiliation(s)
| | - Prina Donga
- Janssen Scientific Affairs, LLC, Titusville, New Jersey, USA
| | | | | | - David Anderson
- Janssen Scientific Affairs, LLC, Titusville, New Jersey, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Selim Suner
- Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
39
|
van Wijhe M, Johannesen CK, Simonsen L, Jørgensen IM, Fischer TK. A retrospective cohort study on infant respiratory tract infection hospitalizations and recurrent wheeze and asthma risk: impact of respiratory syncytial virus. J Infect Dis 2022; 226:S55-S62. [DOI: 10.1093/infdis/jiac141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Aim
Infant respiratory syncytial virus infection (RSV) has been associated with asthma later in life. We explored the risk of recurrent wheeze or asthma in children with infant RSV-associated hospitalization compared to other respiratory infections.
Methods
We performed a retrospective cohort study using Danish national hospital discharge registers. Infants under 6 months, born between January 1995 and October 2018, and with a RSV hospital admission were compared to infants hospitalized for injuries, non-RSV acute upper respiratory tract infection (AURTI), pneumonia and other respiratory pathogens, non-pathogen coded lower respiratory tract infections (LRTI), pertussis, or non-specific respiratory infections. Infants were followed until recurrent wheeze or asthma diagnosis, death, migration, age 10 years, or study end. We estimated cumulative incidence rate ratios (CIRR) and hazard ratios (HR) adjusted for sex, age at inclusion, hospital length of stay (LOS), maternal smoking, 5 minute APGAR score (APGAR5), prematurity, and congenital risk factors (CRF).
Results
We included 68130 infants, of whom 20920 (30.7%) had RSV hospitalization. The cumulative incidence rate of recurrent wheeze or asthma was 16.6 per 1000 person-years after RSV hospitalization, higher than after injury (CIRR: 2.69; 95% CI: 2.48-2.92), AURTI (1.48; 1.34-1.58), or pertussis (2.32; 1.85-2.91), similar to pneumonia and other respiratory pathogens (1.15; 0.99-1.34) and LRTI (0.79; 0.60-1.04), but lower than non-specific respiratory infections (0.79; 0.73-0.87).
Adjusted HRs for recurrent wheeze or asthma after RSV hospitalization compared to injuries decreased from 2.37 (95% CI: 2.08-2.70) for 0 to <1 year to 1.23 (0.88-1.73) for 6 to <10 years for term-born children, and from 1.48 (1.09-2.00) to 0.60 (0.25-1.43) for preterm-born children. Sex, maternal smoking, LOS, CRF, and APGAR5 were independent risk factors.
Conclusions
Infant RSV hospitalization is associated with recurrent wheeze and asthma hospitalization, predominantly in preschool age. If causal, RSV-prophylaxis, including vaccines, may significantly reduce disease burden of wheeze and asthma.
Collapse
Affiliation(s)
- Maarten van Wijhe
- Statens Serum Institute, Denmark
- Department of Science and Environment, Roskilde University, Denmark
| | - Caroline Klint Johannesen
- Statens Serum Institute, Denmark
- Department of Clinical Research, Nordsjællands University Hospital, Hilleroed, Denmark
| | - Lone Simonsen
- Department of Science and Environment, Roskilde University, Denmark
| | | | - Thea K Fischer
- Statens Serum Institute, Denmark
- Department of Clinical Research, Nordsjællands University Hospital, Hilleroed, Denmark
- Department of Public Health, University of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
40
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
41
|
Teoh ST, Leimanis-Laurens ML, Comstock SS, Winters JW, Vandenbosch NL, Prokop JW, Bachmann AS, Lunt SY, Rajasekaran S. Combined Plasma and Urinary Metabolomics Uncover Metabolic Perturbations Associated with Severe Respiratory Syncytial Viral Infection and Future Development of Asthma in Infant Patients. Metabolites 2022; 12:metabo12020178. [PMID: 35208252 PMCID: PMC8875115 DOI: 10.3390/metabo12020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
A large percentage of infants develop viral bronchiolitis needing medical intervention and often develop further airway disease such as asthma. To characterize metabolic perturbations in acute respiratory syncytial viral (RSV) bronchiolitis, we compared metabolomic profiles of moderate and severe RSV patients versus sedation controls. RSV patients were classified as moderate or severe based on the need for invasive mechanical ventilation. Whole blood and urine samples were collected at two time points (baseline and 72 h). Plasma and urinary metabolites were extracted in cold methanol and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and data from the two biofluids were combined for multivariate data analysis. Metabolite profiles were clustered according to severity, characterized by unique metabolic changes in both plasma and urine. Plasma metabolites that correlated with severity included intermediates in the sialic acid biosynthesis, while urinary metabolites included citrate as well as multiple nucleotides. Furthermore, metabolomic profiles were predictive of future development of asthma, with urinary metabolites exhibiting higher predictive power than plasma. These metabolites may offer unique insights into the pathology of RSV bronchiolitis and may be useful in identifying patients at risk for developing asthma.
Collapse
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
| | - Mara L. Leimanis-Laurens
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - John W. Winters
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Nikita L. Vandenbosch
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.Y.L.); (S.R.)
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
- Correspondence: (S.Y.L.); (S.R.)
| |
Collapse
|
42
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Ceneviva ZJ, Norlander AE, Stokes Peebles R. Mouse Models of Respiratory Syncytial Virus Infection. Methods Mol Biol 2022; 2506:19-41. [PMID: 35771461 PMCID: PMC10164290 DOI: 10.1007/978-1-0716-2364-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Respiratory syncytial virus (RSV) infection causes considerable mortality and morbidity in infants and young children. RSV infection appears to elicit a mixed immune response characterized by both Th1-type cells and Th2-type cells. This immune response, along with clinical features such as bronchiolitis, wheezing, and respiratory distress caused by RSV infection, presents similarly to many features of asthma and has led to an investigation into the link between severe RSV infection and asthma. RSV infection in mice is a powerful and useful tool for eliciting a Th2-type-driven immune response, lending mechanistic insight into severe RSV infection. Here we present several materials and methods used for propagating and purifying RSV, infecting mice with RSV, and analyzing samples from RSV-infected mice.
Collapse
Affiliation(s)
- Zachary J Ceneviva
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- United States Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
44
|
Bowser DM, Rowlands KR, Hariharan D, Gervasio RM, Buckley L, Halasa-Rappel Y, Glaser EL, Nelson CB, Shepard DS. OUP accepted manuscript. J Infect Dis 2022; 226:S225-S235. [PMID: 35968875 PMCID: PMC9377037 DOI: 10.1093/infdis/jiac172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Limited data are available on the economic costs of respiratory syncytial virus (RSV) infections among infants and young children in the United States. Methods We performed a systematic literature review of 10 key databases to identify studies published between 1 January 2014 and 2 August 2021 that reported RSV-related costs in US children aged 0–59 months. Costs were extracted and a systematic analysis was performed. Results Seventeen studies were included. Although an RSV hospitalization (RSVH) of an extremely premature infant costs 5.6 times that of a full-term infant ($10 214), full-term infants accounted for 82% of RSVHs and 70% of RSVH costs. Medicaid-insured infants were 91% more likely than commercially insured infants to be hospitalized for RSV treatment in their first year of life. Medicaid financed 61% of infant RSVHs. Paying 32% less per hospitalization than commercial insurance, Medicaid paid 51% of infant RSVH costs. Infants’ RSV treatment costs $709.6 million annually, representing $187 per overall birth and $227 per publicly funded birth. Conclusions Public sources pay for more than half of infants’ RSV medical costs, constituting the highest rate of RSVHs and the highest expenditure per birth. Full-term infants are the predominant source of infant RSVHs and costs.
Collapse
Affiliation(s)
- Diana M Bowser
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Katharine R Rowlands
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Dhwani Hariharan
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Raíssa M Gervasio
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Lauren Buckley
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Yara Halasa-Rappel
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | - Elizabeth L Glaser
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, USA
| | | | - Donald S Shepard
- Correspondence: Donald S. Shepard, PhD, MPP, FASTMH, The Heller School for Social Policy and Management, Brandeis University, 415 South Street, Waltham, MA 02453 ()
| |
Collapse
|
45
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
46
|
Long C, Qi M, Wang J, Luo J, Qin X, Gao G, Xiang Y. Respiratory syncytial virus persistent infection causes acquired CFTR dysfunction in human bronchial epithelial cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:949-957. [PMID: 34707004 PMCID: PMC10930179 DOI: 10.11817/j.issn.1672-7347.2021.210210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Many studies have shown that respiratory syncytial virus persistent infection may be the main cause of chronic respiratory pathology.However, the mechanism is unclear. Cystic fibrosis transmembrane conduction regulator (CFTR) is an apical membrane chloride channel, which is very important for the regulation of epithelial fluid, chloride ion, and bicarbonate transport. CFTR dysfunction will lead to changes in bronchial secretions and impair mucus clearance, which is related to airway inflammation. In our previous study, we observed the down-regulation of CFTR in airway epithelial cells in respiratory syncytial virus (RSV) infected mouse model. In this study, we further investigated the expression and function of CFTR by constructing an airway epithelial cell model of RSV persistent infection. METHODS 16HBE14o- cells were infected with RSV at 0.01 multiplicity of infection (MOI). The expression of CFTR was detected by real-time RT-PCR, immunofluorescence, and Western blotting. The intracellular chloride concentration was measured by N-(ethoxycarbonylmethyl)-6-methoxyquinolium bromide (MQAE) and the chloride current was measured by whole-cell patch clamp recording. RESULTS 16HBE14o- cells infected with RSV were survived to successive passages of the third generation (G3), while the expression and function of CFTR was progressively decreased upon RSV infection from the first generation (G1) to G3. Exposure of 16HBE14o- cells to RSV led to the gradual increase of TGF-β1 as well as phosphorylation of Smad2 following progressive RSV infection. Disruption of TGF-β1 signaling by SB431542 prevented Smad2 phosphorylation and rescued the expression of CFTR. CONCLUSIONS RSV infection can lead to defective CFTR function in airway epithelial cells, which may be mediated via activation of TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Chunjiao Long
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013.
- Department of Nephrology Medicine, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Central Hospital/Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou Hunan 412007
| | - Jinmei Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Jinhua Luo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Ge Gao
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013.
| |
Collapse
|
47
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
48
|
Kim Y, Hou V, Huff RD, Aguiar JA, Revill S, Tiessen N, Cao Q, Miller MS, Inman MD, Ask K, Doxey AC, Hirota JA. Potentiation of long-acting β 2-agonist and glucocorticoid responses in human airway epithelial cells by modulation of intracellular cAMP. Respir Res 2021; 22:266. [PMID: 34666750 PMCID: PMC8527633 DOI: 10.1186/s12931-021-01862-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Over 300 million people in the world live with asthma, resulting in 500,000 annual global deaths with future increases expected. It is estimated that around 50–80% of asthma exacerbations are due to viral infections. Currently, a combination of long-acting beta agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma, however, it is still sub-optimal in 35–50% of moderate-severe asthmatics resulting in persistent lung inflammation, impairment of lung function, and risk of mortality. Mechanistically, LABA/GCS combination therapy results in synergistic efficacy mediated by intracellular cyclic adenosine monophosphate (cAMP). Hypothesis Increasing intracellular cAMP during LABA/GCS combination therapy via inhibiting phosphodiesterase 4 (PDE4) and/or blocking the export of cAMP by ATP Binding Cassette Transporter C4 (ABCC4), will potentiate anti-inflammatory responses of mainstay LABA/GCS therapy. Methods Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue from healthy subjects, while confirmatory transcript and protein expression analyses were performed in primary human airway epithelial cells and cell lines. Intervention experiments were performed on the human airway epithelial cell line, HBEC-6KT, by pre-treatment with combinations of LABA/GCS with PDE4 and/or ABCC4 inhibitors followed by Poly I:C or imiquimod challenge as a model for viral stimuli. Cytokine readouts for IL-6, IL-8, CXCL10/IP-10, and CCL5/RANTES were quantified by ELISA. Results Using archived human lung and human airway epithelial cells, ABCC4 gene and protein expression were confirmed in vitro and in situ. LABA/GCS attenuation of Poly I:C or imiquimod-induced IL-6 and IL-8 were potentiated with ABCC4 and PDE4 inhibition, which was greater when ABCC4 and PDE4 inhibition was combined. Modulation of cAMP levels had no impact on LABA/GCS modulation of Poly I:C-induced CXCL10/IP-10 or CCL5/RANTES. Conclusion Modulation of intracellular cAMP levels by PDE4 or ABCC4 inhibition potentiates LABA/GCS efficacy in human airway epithelial cells challenged with viral stimuli. The data suggest further exploration of the value of adding cAMP modulators to mainstay LABA/GCS therapy in asthma for potentiated anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Yechan Kim
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Vincent Hou
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z, Canada
| | - Jennifer A Aguiar
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Quynh Cao
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Matthew S Miller
- Department of Biochemistry, McMaster University, Hamilton, ON, L8S 4K1, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mark D Inman
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada.,Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada. .,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z, Canada. .,Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. .,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
49
|
Gómez-Acebo I, Lechosa-Muñiz C, Paz-Zulueta M, Sotos TD, Alonso-Molero J, Llorca J, Cabero-Perez MJ. Feeding in the first six months of life is associated with the probability of having bronchiolitis: a cohort study in Spain. Int Breastfeed J 2021; 16:82. [PMID: 34663376 PMCID: PMC8522099 DOI: 10.1186/s13006-021-00422-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Breastfeeding is associated with lower incidence and severity of lower respiratory tract disease. However, little is known about the relationship between feeding type and breastfeeding duration with bronchiolitis in a child’s first year. Methods A prospective cohort study of 969 newborn babies were followed-up for 12 months to determine breastfeeding duration, feeding type, feeding trajectory, and bronchiolitis episodes at Marqués de Valdecilla University Hospital, Spain in 2018. Type of feeding was recorded by interviewing mothers at the time of hospital discharge and at 2, 4, 6, 9 and 12 months of life, in three categories: breastfeeding, mixed feeding and infant formula. Type of feeding at hospital discharge refers to feeding from birth to discharge. In any other times studied, it refers to feeding in the last 24 h. The association between the feeding type and bronchiolitis was analysed using logistic regression. Poisson regression was used to evaluate the association between feeding type and the number of bronchiolitis episodes with Kaplan-Meier estimators presenting the cumulative probability of suffering bronchiolitis. The results were adjusted for mother and child characteristics. Results Our data shows exclusive breastfeeding and mixed breastfeeding reduce the number of episodes of bronchiolitis. Regarding feeding at 4 months, exclusive breastfeeding reduced by 41% the number of episodes of bronchiolitis (adjusted incidence Ratio (aIR) 0.59, 95% CI 0.46, 0.76) and mixed feeding by 37% (aIR 0.63, 95% CI 0.47, 0.86). Moreover, changing from exclusive breastfeeding to mixed feeding increased the incidence of bronchiolitis compared with continuing exclusive breastfeeding. An early swap to mixed breastfeeding before months 2 or 4, was associated with a reduced the number of episodes of bronchiolitis, (aIR 0.53, 95% CI 0.39, 0.73 if introduction of mixed breastfeeding before month 2, and aIR 0.61, 95% CI 0.45, 0.83 if introduction of mixed breastfeeding before month 4), when compared with infant formula alone. Conclusions Any breastfeeding was associated with lower incidence of bronchiolitis and number of episodes of bronchiolitis in the first year of life. Consequently, promoting programmes facilitating exclusive or mixed breastfeeding would be a relevant measure in the prevention of bronchiolitis.
Collapse
Affiliation(s)
- Inés Gómez-Acebo
- Universidad de Cantabria - IDIVAL, Santander, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | | | | | - Trinidad Dierssen Sotos
- Universidad de Cantabria - IDIVAL, Santander, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Javier Llorca
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Universidad de Cantabria, Santander, Spain
| | - María J Cabero-Perez
- Universidad de Cantabria - IDIVAL, Santander, Spain.,Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
50
|
Manini MB, Matsunaga NY, Gianfrancesco L, Oliveira MS, Carvalho MRVD, Ribeiro GLMT, Morais EDO, Ribeiro MAGO, Morcillo AM, Ribeiro JD, Toro AADC. Risk factors for recurrent wheezing in preterm infants who received prophylaxis with palivizumab. J Bras Pneumol 2021; 47:e20210157. [PMID: 34669834 PMCID: PMC9013528 DOI: 10.36416/1806-3756/e20210157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To determine the prevalence of recurrent wheezing (RW) in preterm infants who received prophylaxis against severe infection with respiratory syncytial virus (RSV) and to identify genetic susceptibility (atopy or asthma) and risk factors for RW. METHODS This was a cross-sectional study involving preterm infants who received prophylaxis with palivizumab at a referral center in Brazil during the first two years of age. A structured questionnaire was administered in a face-to-face interview with parents or legal guardians. RESULTS The study included 410 preterm infants (median age = 9 months [0-24 months]). In the sample as a whole, 111 children (27.1%; [95% CI, 22.9-31.5]) had RW. The univariate analysis between the groups with and without RW showed no differences regarding the following variables: sex, ethnicity, maternal level of education, gestational age, birth weight, breastfeeding, number of children in the household, day care center attendance, pets in the household, and smoking caregiver. The prevalence of RW was twice as high among children with bronchopulmonary dysplasia (adjusted OR = 2.08; 95% CI, 1.11-3.89; p = 0.022) and almost five times as high among those with a personal/family history of atopy (adjusted OR = 4.96; 95% CI, 2.62-9.39; p < 0.001) as among those without these conditions. CONCLUSIONS Preterm infants who received prophylaxis with palivizumab but have a personal/family history of atopy or bronchopulmonary dysplasia are more likely to have RW than do those without these conditions.
Collapse
Affiliation(s)
- Mariana Bueno Manini
- . Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | - Natasha Yumi Matsunaga
- . Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
- . Laboratório de Fisiologia Pulmonar, Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | - Lívea Gianfrancesco
- . Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
- . Laboratório de Fisiologia Pulmonar, Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | - Marina Simões Oliveira
- . Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
- . Laboratório de Fisiologia Pulmonar, Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | | | | | | | - Maria Angela Gonçalves O Ribeiro
- . Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | - André Moreno Morcillo
- . Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | - José Dirceu Ribeiro
- . Laboratório de Fisiologia Pulmonar, Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
- . Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| | - Adyléia Aparecida Dalbo Contrera Toro
- . Laboratório de Fisiologia Pulmonar, Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
- . Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP - Campinas (SP) Brasil
| |
Collapse
|