1
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Gulyamov S, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application. Arch Microbiol 2025; 207:74. [PMID: 40025302 DOI: 10.1007/s00203-025-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Surat Gulyamov
- Department of Dentistry and Pediatric Dentistry, Tashkent Pediatric Medical Institute, Bogishamol Street 223, 100140, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Shi H, Zhang X, Ge P, Meliopoulos V, Freiden P, Livingston B, Schultz-Cherry S, Ross TM. Inactivated influenza virus vaccines expressing COBRA hemagglutinin elicited broadly reactive, long-lived protective antibodies. Hum Vaccin Immunother 2024; 20:2356269. [PMID: 38826029 PMCID: PMC11152115 DOI: 10.1080/21645515.2024.2356269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024] Open
Abstract
The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Victoria Meliopoulos
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Pam Freiden
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Brandi Livingston
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Chan C, Conway JM. Comparative analysis of within-host dynamics of acute infection and viral rebound dynamics in postnatally SHIV-infected ART-treated infant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595130. [PMID: 38826467 PMCID: PMC11142125 DOI: 10.1101/2024.05.21.595130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral dynamics of acute HIV infection and HIV rebound following suspension of antiretroviral therapy may be qualitatively similar but must differ given, for one, development of adaptive immune responses. Understanding the differences of acute HIV infection and viral rebound dynamics in pediatric populations may provide insights into the mechanisms of viral control with potential implications for vaccine design and the development of effective targeted therapeutics for infants and children. Mathematical models have been a crucial tool to elucidate the complex processes driving viral infections within the host. Traditionally, acute HIV infection has been modeled with a standard model of viral dynamics initially developed to explore viral decay during treatment, while viral rebound has necessitated extensions of that standard model to incorporate explicit immune responses. Previous efforts to fit these models to viral load data have underscored differences between the two infection stages, such as increased viral clearance rate and increased death rate of infected cells during rebound. However, these findings have been predicated on viral load measurements from disparate adult individuals. In this study, we aim to bridge this gap, in infants, by comparing the dynamics of acute infection and viral rebound within the same individuals by leveraging an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Ten infant Rhesus macaques (RMs) orally challenged with SHIV.C.CH505 375H dCT and given ART at 8 weeks post-infection. These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We use the HIV standard viral dynamics model fitted to viral load measurements in a nonlinear mixed effects framework. We find that the primary difference between acute infection and rebound is the increased death rate of infected cells during rebound. We use these findings to generate hypotheses on the effects of adaptive immune responses. We leverage these findings to formulate hypotheses to elucidate the observed results and provide arguments to support the notion that delayed viral rebound is characterized by a stronger CD8+ T cell response.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Matuszczak M, Kiljańczyk A, Marciniak W, Derkacz R, Stempa K, Baszuk P, Bryśkiewicz M, Sun P, Cheriyan A, Cybulski C, Dębniak T, Gronwald J, Huzarski T, Lener MR, Jakubowska A, Szwiec M, Stawicka-Niełacna M, Godlewski D, Prusaczyk A, Jasiewicz A, Kluz T, Tomiczek-Szwiec J, Kilar-Kobierzycka E, Siołek M, Wiśniowski R, Posmyk R, Jarkiewicz-Tretyn J, Scott RJ, Narod SA, Lubiński J. Zinc and Its Antioxidant Properties: The Potential Use of Blood Zinc Levels as a Marker of Cancer Risk in BRCA1 Mutation Carriers. Antioxidants (Basel) 2024; 13:609. [PMID: 38790714 PMCID: PMC11118047 DOI: 10.3390/antiox13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BRCA1 mutations predispose women to breast and ovarian cancer. The anticancer effect of zinc is typically linked to its antioxidant abilities and protecting cells against oxidative stress. Zinc regulates key processes in cancer development, including DNA repair, gene expression, and apoptosis. We took a blood sample from 989 female BRCA1 mutation carriers who were initially unaffected by cancer and followed them for a mean of 7.5 years thereafter. There were 172 incident cases of cancer, including 121 cases of breast cancer, 29 cases of ovarian cancers, and 22 cancers at other sites. A zinc level in the lowest tertile was associated with a modestly higher risk of ovarian cancer compared to women with zinc levels in the upper two tertiles (HR = 1.65; 95% CI 0.80 to 3.44; p = 0.18), but this was not significant. Among those women with zinc levels in the lowest tertile, the 10-year cumulative risk of ovarian cancer was 6.1%. Among those in the top two tertiles of zinc level, the ten-year cumulative risk of ovarian cancer was 4.7%. There was no significant association between zinc level and breast cancer risk. Our preliminary study does not support an association between serum zinc level and cancer risk in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Klaudia Stempa
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Ping Sun
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON M5G 1N8, Canada; (P.S.); (A.C.)
| | - Angela Cheriyan
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON M5G 1N8, Canada; (P.S.); (A.C.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Marcin R. Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Małgorzata Stawicka-Niełacna
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | | | | | - Andrzej Jasiewicz
- Genetic Counseling Center, Subcarpatian Oncological Hospital, 18 Bielawskiego St., 36-200 Brzozów, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College, Rzeszow University, Rejtana 16c, 35-959 Rzeszow, Poland
| | - Joanna Tomiczek-Szwiec
- Department of Histology, Department of Biology and Genetics, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Ewa Kilar-Kobierzycka
- Department of Oncology, District Specialist Hospital, Leśna 27-29 St., 58-100 Świdnica, Poland;
| | - Monika Siołek
- Holycross Cancer Center, Artwińskiego 3 St., 25-734 Kielce, Poland;
| | - Rafał Wiśniowski
- Regional Oncology Hospital, Wyzwolenia 18 St., 43-300 Bielsko Biała, Poland;
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University of Bialystok, 15-089 Białystok, Poland;
| | | | - Rodney J. Scott
- Medical Genetics, Hunter Medical Research Institute, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Pathology North, John Hunter Hospital, King and Auckland Streets, Newcastle, NSW 2300, Australia;
| | - Steven A. Narod
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON M5G 1N8, Canada; (P.S.); (A.C.)
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
5
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
7
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
8
|
Devarajan P, Vong AM, Castonguay CH, Silverstein NJ, Kugler-Umana O, Bautista BL, Kelly KA, Luban J, Swain SL. Cytotoxic CD4 development requires CD4 effectors to concurrently recognize local antigen and encounter type I IFN-induced IL-15. Cell Rep 2023; 42:113182. [PMID: 37776519 PMCID: PMC10842051 DOI: 10.1016/j.celrep.2023.113182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II+ cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs. Both dendritic cells and B cells are sufficient as APCs, but CD28 co-stimulation is not needed. Optimal generation of ThCTLs requires signals induced by the ongoing infection independent of antigen presentation. Infection-elicited type I interferon (IFN) induces interleukin-15 (IL-15), which, in turn, supports CD4 effector differentiation into ThCTLs. We suggest that these multiple spatial, temporal, and cellular requirements prevent excessive lung ThCTL responses when virus is already cleared but ensure their development when infection persists. This supports a model where continuing infection drives the development of multiple, more differentiated subsets of CD4 effectors by distinct pathways.
Collapse
Affiliation(s)
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Noah J Silverstein
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bianca L Bautista
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen A Kelly
- Department of Animal Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Boeren M, Meysman P, Laukens K, Ponsaerts P, Ogunjimi B, Delputte P. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol 2023; 31:51-61. [PMID: 35987880 DOI: 10.1016/j.tim.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Herpesviruses hijack the MHC class I (MHC I) and class II (MHC II) antigen-presentation pathways to manipulate immune recognition by T cells. First, we illustrate herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV) MHC immune evasion strategies. Next, we describe MHC-T cell interactions in HSV-1- and VZV- infected neural ganglia. Although studies on the topic are scarce, and use different models, most reports indicate that neuronal HSV-1 infection is mainly controlled by CD8+ T cells through noncytolytic mechanisms, whereas VZV seems to be largely controlled through CD4+ T cell-specific immune responses. Autologous human stem-cell-derived in vitro models could substantially aid in elucidating these neuroimmune interactions and are fit for studies on both herpesviruses.
Collapse
Affiliation(s)
- Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Infla-med, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Rabacal W, Schweitzer F, Kling HM, Buzzelli L, Rayens E, Norris KA. A therapeutic vaccine strategy to prevent Pneumocystis pneumonia in an immunocompromised host in a non-human primate model of HIV and Pneumocystis co-infection. Front Immunol 2022; 13:1036658. [PMID: 36561749 PMCID: PMC9763597 DOI: 10.3389/fimmu.2022.1036658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Pneumocystis is a ubiquitous fungal pathogen that causes pneumonia (PCP) and pulmonary sequelae in HIV-infected individuals and other immunocompromised populations. With the success of anti-retroviral therapy for HIV-infected individuals the frequency of PCP in that population has decreased, however, PCP remains a significant cause of morbidity and mortality in individuals with hematologic and solid malignancies, and in individuals treated with immunosuppressive therapies for autoimmune diseases, and following bone marrow and solid organ transplantation. Despite the clinical need, there is no approved vaccine to prevent PCP in vulnerable populations. The ultimate goal of the field is to develop an effective vaccine that can overcome immune deficits in at risk populations and induce long-lasting protective immunity to Pneumocystis. Toward this goal, our laboratory has established a model of PCP co-infection in simian immunodeficiency virus (SIV)-infected non-human primates (NHP) and identified a recombinant protein sub-unit vaccine, KEX1, that induces robust anti-Pneumocystis immunity in immune-competent macaques that is durable and prevents PCP following simian immunodeficiency virus (SIV)-induced immunosuppression. Type I, or invariant natural killer T (iNKT) cells have the potential to provide B cell help under conditions of reduced CD4+ T cell help. Methods In the present study, we used the SIV model of HIV infection to address whether therapeutic vaccination with the iNKT cell-activating adjuvant α-galactosylceramide (α-GC) and KEX1 (α-GC+KEX1) can effectively boost anti-Pneumocystis humoral immunity following virus-induced immunosuppression. Results Immunization of antigen-experienced NHPs with α-GC+KEX1 during the early chronic phase of SIV-infection significantly boosted anti-Pneumocystis humoral immunity by increasing memory B cells and antibody titers, and enhanced titer durability during SIV-induced immunosuppression. This therapeutic vaccination strategy boosted anti-Pneumocystis immune responses during SIV-infection and contributed to protection against Pneumocystis co-infection in KEX1-vaccinated macaques. Conclusion These studies present a novel strategy for stimulating durable anti-Pneumocystis humoral immunity in the context of complex, chronic SIV-induced immunosuppression and may be further applied to immunization of other immunosuppressed populations, and toward other common recall antigens.
Collapse
Affiliation(s)
- Whitney Rabacal
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Finja Schweitzer
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Heather M. Kling
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lizabeth Buzzelli
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Emily Rayens
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Karen A. Norris
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
11
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
12
|
Wanjalla CN, Temu TM, Mashayekhi M, Warren CM, Shepherd BE, Gangula R, Fuseini H, Bailin S, Gabriel CL, Gangula P, Madhur MS, Kalams S, Mallal SA, Harrison DG, Beckman JA, Koethe JR. Interleukin-17A is associated with flow-mediated dilation and interleukin-4 with carotid plaque in persons with HIV. AIDS 2022; 36:963-973. [PMID: 35165215 PMCID: PMC9167243 DOI: 10.1097/qad.0000000000003196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chronic inflammation contributes to the high burden of cardiovascular disease (CVD) in persons with HIV (PWH). HIV has broad effects on innate and adaptive immune cells, including innate lymphoid cells (ILCs) and CD4+ T-helper cells. At present, the relationship between CVD and plasma cytokines reflecting ILC/T-helper responses in PWH is not well defined. We investigated relationships between plasma cytokines and subclinical atherosclerosis. DESIGN A cross-sectional study. METHODS We recruited 70 PWH on a single antiretroviral regimen (efavirenz, teno- fovir, and emtricitabine) with at least 12 months of suppressed viremia and 30 HIVnegative controls. We quantified plasma cytokines and chemokines, including inter- feron-g, interleukin (IL)-4, IL-13, and IL-17A, markers of macrophage activation, and markers of endothelial activation using multiplex assays and ELISA. Cytokines were grouped using Ward's hierarchical clustering. Brachial artery flow-mediated dilation (FMD) and carotid plaque burden were determined using ultrasound. Multivariable linear regression and negative binomial regression analyses were used to assess the relationships of plasma biomarkers and endpoints adjusted for CVD risk factors. RESULTS We identified three distinct clusters in PWH, one containing Th1/Th2/ILC1/ ILC2 type cytokines, one with Th17/ILC3/macrophage-related cytokines, and a less specific third cluster. Lower FMD was associated with higher plasma IL-17A and macrophage inflammatory protein-1 a. In contrast, IL-4, a Th2/ILC2 type cytokine, was associated with carotid plaque. When HIV-negative controls were added to the models clustering was more diffuse, and these associations were attenuated or absent. CONCLUSION Th17/ILC3 and Th2/ILC2-mediated immune mechanisms may have distinct roles in endothelial dysfunction and atherosclerotic plaque formation, respectively, in PWH.
Collapse
Affiliation(s)
- Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla M. Temu
- Departments of Global Health, University of Washington, Seattle, WA USA
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian M. Warren
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bryan E. Shepherd
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hubaida Fuseini
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L. Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pandu Gangula
- Department of Medicine & Dentistry, Meharry Medical College, TN, USA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spyros Kalams
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua A. Beckman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
13
|
Zeng X, Zheng M, Liu T, Bahabayi A, Song S, Alimu X, Kang R, Lu S, Song Y, Liu C. Cytotoxic T Lymphocytes Expressing GPR56 are Up-regulated in the Peripheral Blood of Patients with Active Rheumatoid Arthritis and Reflect Disease Progression. Immunol Invest 2022; 51:1804-1819. [PMID: 35404706 DOI: 10.1080/08820139.2022.2058403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study aims to elucidate the changes in the percentage of GPR56 and/or granzyme B (GZMB) positive cells in rheumatoid arthritis (RA) CD4 and CD8 T lymphocytes, and to explore their clinical value in diagnosing and reflecting the progression of RA. METHODS The percentages of GPR56 and/or GZMB positive cells were analyzed in peripheral blood (PB) and spleen T cells in a collagen-induced arthritis (CIA) model established in DBA/1 mice. The percentages of GPR56+ and/or GZMB+ cells were further analyzed in PBs from RA patients and healthy controls. Correlation analysis was performed between clinical indicators and GPR56+, GZMB+, and GPR56+ GZMB+ T cells. Receiver operating characteristic (ROC) curves were used to evaluate the value of GPR56 and GZMB in differentiating active and stable remitting RA. RESULTS GPR56+ levels were increased in CD4 and CD8 T cells in the PB of CIA mice. The percentages of GPR56+ and GZMB+ cells were increased in both CD4 and CD8 T cell subsets in patients with active RA. GPR56+, GZMB+, and GPR56+ GZMB+ cells were positively correlated with rheumatoid factor and DAS28. ROC analysis revealed that AUCs for GPR56+, GZMB+, and GPR56+ GZMB+ cell percentages to distinguish active RA from stable remission RA were 0.7106, 0.6941, 0.7024, with cut-off values of 16.35, 16.40, 14.80 in CD4 + T cells, and 0.8031, 0.8086, 0.8196 with cut-off values 60.25, 62.15, 40.15 in CD8 + T cells, respectively. CONCLUSIONS GPR56+ and/or GZMB+ T cells are up-regulated in patients with active RA and reflect their condition. The detection of GPR56 and GZMB is helpful for RA disease assessment.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shi Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ying Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
14
|
Affiliation(s)
- Paul Munson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
16
|
Cheng J, Myers TG, Levinger C, Kumar P, Kumar J, Goshu BA, Bosque A, Catalfamo M. IL-27 induces IFN/STAT1-dependent genes and enhances function of TIGIT + HIVGag-specific T cells. iScience 2022; 25:103588. [PMID: 35005538 PMCID: PMC8717455 DOI: 10.1016/j.isci.2021.103588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-specific T cells have diminished effector function and fail to control/eliminate the virus. IL-27, a member of the IL-6/IL-12 cytokine superfamily has been shown to inhibit HIV replication. However, whether or not IL-27 can enhance HIV-specific T cell function is largely unknown. In the present manuscript, we investigated the role of IL-27 signaling in human T cells by evaluating the global transcriptional changes related to the function of HIV-specific T cells. We found that T cells from people living with HIV (PLWH), expressed higher levels of STAT1 leading to enhanced STAT1 activation upon IL-27 stimulation. Observed IL-27 induced transcriptional changes were associated with IFN/STAT1-dependent pathways in CD4 and CD8 T cells. Importantly, IL-27 dependent modulation of T-bet expression promoted IFNγ secretion by TIGIT+HIVGag-specific T cells. This new immunomodulatory effect of IL-27 on HIV-specific T cell function suggests its potential therapeutic use in cure strategies.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Princy Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jai Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Bruktawit A. Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| |
Collapse
|
17
|
Omokanye A, Ong LC, Lebrero-Fernandez C, Bernasconi V, Schön K, Strömberg A, Bemark M, Saelens X, Czarnewski P, Lycke N. Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol 2022; 15:717-729. [PMID: 35260804 PMCID: PMC8903128 DOI: 10.1038/s41385-022-00497-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively restricted virus replication as determined by CD4 T cell depletion studies. Single-cell RNAseq transcriptomic and TCR VDJ-analysis of M2e-tetramer-sorted CD4 T cells on day 3 and 8 post infection revealed complete Th17-lineage dominance (no Th1 or Tregs) with extensive functional diversity and expression of gene markers signifying mature resident Trm cells (Cd69, Nfkbid, Brd2, FosB). Unexpectedly, the same TCR clonotype hosted cells with different Th17 subcluster functions (IL-17, IL-22), regulatory and cytotoxic cells, suggesting a tissue and context-dependent differentiation of reactivated Th17 Trm cells. A gene set enrichment analysis demonstrated up-regulation of regulatory genes (Lag3, Tigit, Ctla4, Pdcd1) in M2e-specific Trm cells on day 8, indicating a tissue damage preventing function. Thus, contrary to current thinking, lung M2e-specific Th17 Trm cells are sufficient for controlling infection and for protecting against tissue injury. These findings will have strong implications for vaccine development against respiratory virus infections and influenza virus infections, in particular.
Collapse
Affiliation(s)
- Ajibola Omokanye
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Li Ching Ong
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Bemark
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paulo Czarnewski
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Yeh AC, Varelias A, Reddy A, Barone SM, Olver SD, Chilson K, Onstad LE, Ensbey KS, Henden AS, Samson L, Jaeger CA, Bi T, Dahlman KB, Kim TK, Zhang P, Degli-Esposti MA, Newell EW, Jagasia MH, Irish JM, Lee SJ, Hill GR. CMV exposure drives long-term CD57+ CD4 memory T-cell inflation following allogeneic stem cell transplant. Blood 2021; 138:2874-2885. [PMID: 34115118 PMCID: PMC8718626 DOI: 10.1182/blood.2020009492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/22/2021] [Indexed: 01/01/2023] Open
Abstract
Donor and recipient cytomegalovirus (CMV) serostatus correlate with transplant-related mortality that is associated with reduced survival following allogeneic stem cell transplant (SCT). Prior epidemiologic studies have suggested that CMV seronegative recipients (R-) receiving a CMV-seropositive graft (D+) experience inferior outcomes compared with other serostatus combinations, an observation that appears independent of viral reactivation. We therefore investigated the hypothesis that prior donor CMV exposure irreversibly modifies immunologic function after SCT. We identified a CD4+/CD57+/CD27- T-cell subset that was differentially expressed between D+ and D- transplants and validated results with 120 patient samples. This T-cell subset represents an average of 2.9% (D-/R-), 18% (D-/R+), 12% (D+/R-), and 19.6% (D+/R+) (P < .0001) of the total CD4+ T-cell compartment and stably persists for at least several years post-SCT. Even in the absence of CMV reactivation post-SCT, D+/R- transplants displayed a significant enrichment of these cells compared with D-/R- transplants (P = .0078). These are effector memory cells (CCR7-/CD45RA+/-) that express T-bet, Eomesodermin, granzyme B, secrete Th1 cytokines, and are enriched in CMV-specific T cells. These cells are associated with decreased T-cell receptor diversity (P < .0001) and reduced proportions of major histocompatibility class (MHC) II expressing classical monocytes (P < .0001), myeloid (P = .024), and plasmacytoid dendritic cells (P = .0014). These data describe a highly expanded CD4+ T-cell population and putative mechanisms by which prior donor or recipient CMV exposure may create a lasting immunologic imprint following SCT, providing a rationale for using D- grafts for R- transplant recipients.
Collapse
Affiliation(s)
- Albert C Yeh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Facuty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sierra M Barone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kate Chilson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lynn E Onstad
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen S Ensbey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Andrea S Henden
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Luke Samson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Carla A Jaeger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Timothy Bi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kimberly B Dahlman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and
| | - Ping Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Madan H Jagasia
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Acheampong DO, Adu P, Ampomah P, Duedu KO, Aninagyei E. Immunological, haematological, and clinical attributes of rural and urban malaria: a case-control study in Ghana. J Parasit Dis 2021; 45:806-816. [PMID: 34475663 DOI: 10.1007/s12639-021-01363-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022] Open
Abstract
To compare clinical presentations, haematological and immunological parameters in urban and rural malaria patients. Clinically suspected malaria patients, resident in either rural or urban communities, were selected from seven health facilities in the Greater Accra region of Ghana. For each suspected malaria patient, parasites were detected microscopically and quantified subsequently. In each study site, an equal number of cases and age-matched controls were selected. In both cases and controls, clinical presentations, nutritional status, haematological, and immunological parameters were profiled. A total of 149 malaria patients and 149 nonmalaria controls were selected. Compared to rural dwellers with malaria, parasitaemia was significantly higher in both males and females and in the various age groups in urban dwellers with malaria. Additionally, mean lymphocytes, haemoglobin, haematocrit, mean cell haemoglobin, platelets, and mean platelet volume levels were significantly lower in urban dwellers with malaria. However, TNF-α, IL-6, and IL-12 levels in urban dwellers with malaria were significantly higher, while IL-10, CD4+, CD3+, CD8+ T-cells levels and CD4+/ CD3+ ratio were significantly lower in urban dwellers with malaria. Furthermore, chills, diarrhoea, fever, and pallor were significantly associated with urban dwellers with malaria. This study concluded that urban dwellers are more prone to severe malaria while rural dwellers tend to have more measured immune response against malaria infection, and therefore experienced better controlled inflammatory processes associated with mild form of the disease.
Collapse
Affiliation(s)
- Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Patrick Adu
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Paulina Ampomah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Volta Region, PMB 31, Ho, Ghana
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Volta Region, PMB 31, Ho, Ghana
| |
Collapse
|
20
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
21
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
22
|
Maehara T, Kaneko N, Perugino CA, Mattoo H, Kers, J, Allard-Chamard H, Mahajan VS, Liu H, Murphy SJ, Ghebremichael M, Fox D, Payne AS, Lafyatis R, Stone JH, Khanna D, Pillai S. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest 2020; 130:2451-2464. [PMID: 31990684 PMCID: PMC7190971 DOI: 10.1172/jci131700] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease whose pathogenesis is poorly understood and lacks effective therapies. We undertook quantitative analyses of T cell infiltrates in the skin of 35 untreated patients with early diffuse SSc and here show that CD4+ cytotoxic T cells and CD8+ T cells contribute prominently to these infiltrates. We also observed an accumulation of apoptotic cells in SSc tissues, suggesting that recurring cell death may contribute to tissue damage and remodeling in this fibrotic disease. HLA-DR-expressing endothelial cells were frequent targets of apoptosis in SSc, consistent with the prominent vasculopathy seen in patients with this disease. A circulating effector population of cytotoxic CD4+ T cells, which exhibited signatures of enhanced metabolic activity, was clonally expanded in patients with systemic sclerosis. These data suggest that cytotoxic T cells may induce the apoptotic death of endothelial and other cells in systemic sclerosis. Cell loss driven by immune cells may be followed by overly exuberant tissue repair processes that lead to fibrosis and tissue dysfunction.
Collapse
Affiliation(s)
- Takashi Maehara
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoki Kaneko
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Cory A. Perugino
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hamid Mattoo
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge Massachusetts, USA
| | - Jesper Kers,
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Amsterdam Infection & Immunity Institute (AI&II) and
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, and
- Van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Hugues Allard-Chamard
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada
| | - Vinay S. Mahajan
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Hang Liu
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, First Affiliated Hospital of China, Shenyang, China
| | - Samuel J.H. Murphy
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - Musie Ghebremichael
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - David Fox
- Division of Rheumatology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Aimee S. Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John H. Stone
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dinesh Khanna
- Division of Rheumatology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Ebelt ND, Zuniga E, Johnson BL, Diamond DJ, Manuel ER. 5-Azacytidine Potentiates Anti-tumor Immunity in a Model of Pancreatic Ductal Adenocarcinoma. Front Immunol 2020; 11:538. [PMID: 32296439 PMCID: PMC7136411 DOI: 10.3389/fimmu.2020.00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
Tumors evolve a variety of mechanisms to escape immune detection while expressing tumor-promoting molecules that can be immunogenic. Here, we show that transposable elements (TE) and gene encoded, tumor-associated antigens (TAA), which can be both highly immunogenic and tumor-promoting, are significantly upregulated during the transition from pre-malignancy to malignancy in an inducible model of pancreatic ductal adenocarcinoma (PDAC). Coincident with the increased presence of TEs and TAAs was the downregulation of gene transcripts associated with antigen presentation, T cell recruitment and intrinsic anti-viral responses, suggesting a unique strategy employed by PDAC to possibly augment tumorigenesis while escaping detection by the immune system. In vitro treatment of mouse and human PDAC cell lines with the DNA methyltransferase inhibitor 5-azacytidine (Aza) resulted in augmented expression of transcripts for antigen presentation machinery and T cell chemokines. When immunocompetent mice implanted with PDAC were therapeutically treated with Aza, we observed significant tumor regression that was not observed in immunocompromised mice, implicating anti-tumor immunity as the principal mechanism of tumor growth control. Analysis of PDAC tumors, immediately following Aza treatment in immunocompetent mice, revealed a significantly greater infiltration of T cells and various innate immune subsets compared to control treatment, suggesting that Aza treatment enhances tumor immunogenicity. Thus, augmenting antigen presentation and T cell chemokine expression using DNA methyltransferase inhibitors could be leveraged to potentiate adaptive anti-tumor immune responses against PDAC.
Collapse
Affiliation(s)
- Nancy D. Ebelt
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Edith Zuniga
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Benjamin L. Johnson
- Department of Hematology and Hematopoietic Stem Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Stem Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
24
|
Sanchez-Martinez A, Perdomo-Celis F, Acevedo-Saenz L, Rugeles MT, Velilla PA. Cytotoxic CD4 + T-cells during HIV infection: Targets or weapons? J Clin Virol 2019; 119:17-23. [PMID: 31445411 DOI: 10.1016/j.jcv.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Classically, CD4+ T-cells have been referred as cytokine-producing cells and important players in immune responses by providing soluble factors that potentiate several effector immune functions. However, it is now evident that CD4+ T-cells can also elaborate cytotoxic responses, inducing apoptosis of target cells. Cytotoxic CD4+ T cells (CD4+ CTLs), exhibit cytolytic functions that resemble those of CD8+ T-cells; in fact, there is evidence suggesting that they may have a role in the control of viral infections. In this article, we discuss the role of CD4+ CTLs during HIV infection, where CD4+ CTLs have been associated with viral control and slow disease progression. In addition, we address the implication of CD4+ CTLs in the context of antiretroviral therapy and the partial reconstitution of CD8+ T-cells effector function.
Collapse
Affiliation(s)
| | - Federico Perdomo-Celis
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Liliana Acevedo-Saenz
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia; Grupo de Investigación Enfermería-CES, Facultad de Enfermería, Universidad CES, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Paula A Velilla
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
25
|
Nyanhete TE, Frisbee AL, Bradley T, Faison WJ, Robins E, Payne T, Freel SA, Sawant S, Weinhold KJ, Wiehe K, Haynes BF, Ferrari G, Li QJ, Moody MA, Tomaras GD. HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers. Sci Rep 2019; 9:10165. [PMID: 31308388 PMCID: PMC6629643 DOI: 10.1038/s41598-019-46462-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
A paradigm shifting study demonstrated that induction of MHC class E and II-restricted CD8+ T cells was associated with the clearance of SIV infection in rhesus macaques. Another recent study highlighted the presence of HIV-1-specific class II-restricted CD8+ T cells in HIV-1 patients who naturally control infection (virus controllers; VCs). However, questions regarding class II-restricted CD8+ T cells ontogeny, distribution across different HIV-1 disease states and their role in viral control remain unclear. In this study, we investigated the distribution and anti-viral properties of HLA-DRB1*0701 and DQB1*0501 class II-restricted CD8+ T cells in different HIV-1 patient cohorts; and whether class II-restricted CD8+ T cells represent a unique T cell subset. We show that memory class II-restricted CD8+ T cell responses were more often detectable in VCs than in chronically infected patients, but not in healthy seronegative donors. We also demonstrate that VC CD8+ T cells inhibit virus replication in both a class I- and class II-dependent manner, and that in two VC patients the class II-restricted CD8+ T cells with an anti-viral gene signature expressed both CD4+ and CD8+ T cell lineage-specific genes. These data demonstrated that anti-viral memory class II-restricted CD8+ T cells with hybrid CD4+ and CD8+ features are present during natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E Nyanhete
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alyse L Frisbee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,University of Virginia Department of Microbiology, Immunology and Cancer Biology, 345 Crispell Drive, University of Virginia Health System, Charlottesville, Virginia, 22908, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William J Faison
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elizabeth Robins
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tamika Payne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Stephanie A Freel
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kent J Weinhold
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Khanna M, Jackson RJ, Alcantara S, Amarasena TH, Li Z, Kelleher AD, Kent SJ, Ranasinghe C. Mucosal and systemic SIV-specific cytotoxic CD4 + T cell hierarchy in protection following intranasal/intramuscular recombinant pox-viral vaccination of pigtail macaques. Sci Rep 2019; 9:5661. [PMID: 30952887 PMCID: PMC6450945 DOI: 10.1038/s41598-019-41506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
Collapse
Affiliation(s)
- Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia.
| |
Collapse
|
27
|
Çomakli S, Özdemir S. Comparative Evaluation of the Immune Responses in Cattle Mammary Tissues Naturally Infected with Bovine Parainfluenza Virus Type 3 and Bovine Alphaherpesvirus-1. Pathogens 2019; 8:pathogens8010026. [PMID: 30823555 PMCID: PMC6470764 DOI: 10.3390/pathogens8010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine parainfluenza virus type 3 (BPIV-3) and Bovine alphaherpesvirus-1 (BoHV-1) lead to severe diseases in domesticated animals, such as Bovine, sheep, and goats. One of these diseases is mastitis, whose signs may not be observable in cases of viral infection due to the dominance of other clinical symptoms. This may lead to failure to predict viral agents in subclinical Bovine cases. Since viral infections have not been substantially investigated in mastitis studies, information about immune response to BPIV-3 and BoHV-1 infected Bovine mammary tissues may be inadequate. The present study aimed to determine the presence and prevalence of BPIV-3 and BoHV-1 agents in Bovine mammary tissues, and the immune response of such tissues against BPIV-3 and BoHV-1 infection. For this purpose, we first detected these viruses with qRT-PCR in mammary tissues. Then, we determined the expression profiles of interferon-γ (IFN-γ), CD4, and CD8 genes with qRT-PCR. Lastly, we performed immunohistochemistry staining to identify the presence of IFN-γ, CD4, and CD8 proteins in the mammary tissues. We found that 26, 16, and five of the 120 samples were BPI3-, BoHV1-, and BPIV-3 + BoHV-1 infected, respectively. Moreover, the gene expression levels of IFN-γ and CD4 were strongly up-regulated in the virus-infected tissues, whereas the CD8 gene expression level was only moderately up-regulated. Immunohistochemistry staining results were consistent with qRT-PCR results. Overall, our findings showed a high prevalence of BPIV-3 and BoHV-1 and indicated that cell-mediated immune response plays an important role against BPIV-3 and BoHV-1 infection in Bovine mammary tissues. Meanwhile, IFN-γ is an important cytokine for antiviral immunity against such infection.
Collapse
Affiliation(s)
- Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye 25240, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye 25240, Erzurum, Turkey.
| |
Collapse
|
28
|
Yamada K, Mizushima I, Kawano M. New insights into the pathophysiology of IgG4-related disease and markers of disease activity. Expert Rev Clin Immunol 2018; 15:231-239. [PMID: 30557078 DOI: 10.1080/1744666x.2019.1560268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Recently, IgG4-related disease (IgG4-RD) has become a well-recognized clinical entity, although its causes are still not well understood. The pathophysiology of IgG4-RD has been reported from a variety of aspects. Areas covered: In this review, we outline a number of recent advances in our understanding of the pathogenesis of IgG4-RD, divided according to acquired immunology and innate immunology and other topics. Furthermore, we also focus on some proposed markers of disease activity of IgG4-RD. Expert commentary: One striking advance made recently is the identification of novel autoantigens of IgG4-RD. At the onset of IgG4-RD, various T cell side factors such as Tfh, Th2 cells are at work, in addition to B cell side factors like plasmablasts and plasma cells, and innate immunology via TLR and M2 macrophages. The efficacy of B cell depletion therapy using rituximab has been reported, with the establishment of steroid-sparing therapies targeting other molecules also anticipated.
Collapse
Affiliation(s)
- Kazunori Yamada
- a Division of Rheumatology, Department of Internal Medicine , Kanazawa University Graduate School of Medicine , Kanazawa , Japan.,b Department of Advanced Research in Community Medicine , Kanazawa University Graduate School of Medical Sciences , Kanazawa , Japan
| | - Ichiro Mizushima
- a Division of Rheumatology, Department of Internal Medicine , Kanazawa University Graduate School of Medicine , Kanazawa , Japan
| | - Mitsuhiro Kawano
- a Division of Rheumatology, Department of Internal Medicine , Kanazawa University Graduate School of Medicine , Kanazawa , Japan
| |
Collapse
|
29
|
Papa I, Vinuesa CG. Synaptic Interactions in Germinal Centers. Front Immunol 2018; 9:1858. [PMID: 30150988 PMCID: PMC6099157 DOI: 10.3389/fimmu.2018.01858] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
The germinal center (GC) is a complex, highly dynamic microanatomical niche that allows the generation of high-affinity antibody-producing plasma cells and memory B cells. These cells constitute the basis of long-lived highly protective antibody responses. For affinity maturation to occur, B cells undergo multiple rounds of proliferation and mutation of the genes that encode the immunoglobulin V region followed by selection by specialized T cells called follicular helper T (TFH) cells. In order to achieve this result, the GC requires spatially and temporally coordinated interactions between the different cell types, including B and T lymphocytes and follicular dendritic cells. Cognate interactions between TFH and GC B cells resemble cellular connections and synaptic communication within the nervous system, which allow signals to be transduced rapidly and effectively across the synaptic cleft. Such immunological synapses are particularly critical in the GC where the speed of T–B cell interactions is faster and their duration shorter than at other sites. In addition, the antigen-based specificity of cognate interactions in GCs is critical for affinity-based selection in which B cells compete for T cell help so that rapid modulation of the signaling threshold determines the outcome of the interaction. In the context of GCs, which contain large numbers of cells in a highly compacted structure, focused delivery of signals across the interacting cells becomes particularly important. Promiscuous or bystander delivery of positive selection signals could potentially lead to the appearance of long-lived self-reactive B cell clones. Cytokines, cytotoxic granules, and more recently neurotransmitters have been shown to be transferred from TFH to B cells upon cognate interactions. This review describes the current knowledge on immunological synapses occurring during GC responses including the type of granules, their content, and function in TFH-mediated help to B cells.
Collapse
Affiliation(s)
- Ilenia Papa
- John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Carola G Vinuesa
- John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| |
Collapse
|
30
|
Arens K, Filippis C, Kleinfelder H, Goetzee A, Reichmann G, Crauwels P, Waibler Z, Bagola K, van Zandbergen G. Anti-Tumor Necrosis Factor α Therapeutics Differentially Affect Leishmania Infection of Human Macrophages. Front Immunol 2018; 9:1772. [PMID: 30108591 PMCID: PMC6079256 DOI: 10.3389/fimmu.2018.01772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 01/18/2023] Open
Abstract
Tumor necrosis factor α (TNFα) drives the pathophysiology of human autoimmune diseases and consequently, neutralizing antibodies (Abs) or Ab-derived molecules directed against TNFα are essential therapeutics. As treatment with several TNFα blockers has been reported to entail a higher risk of infectious diseases such as leishmaniasis, we established an in vitro model based on Leishmania-infected human macrophages, co-cultured with autologous T-cells, for the analysis and comparison of anti-TNFα therapeutics. We demonstrate that neutralization of soluble TNFα (sTNFα) by the anti-TNFα Abs Humira®, Remicade®, and its biosimilar Remsima® negatively affects infection as treatment with these agents significantly reduces Leishmania-induced T-cell proliferation and increases the number of infected macrophages. By contrast, we show that blockade of sTNFα by Cimzia® does not affect T-cell proliferation and infection rates. Moreover, compared to Remicade®, treatment with Cimzia® does not impair the expression of cytolytic effector proteins in proliferating T-cells. Our data demonstrate that Cimzia® supports parasite control through its conjugated polyethylene glycol (PEG) moiety as PEGylation of Remicade® improves the clearance of intracellular Leishmania. This effect can be linked to complement activation, with levels of complement component C5a being increased upon treatment with Cimzia® or a PEGylated form of Remicade®. Taken together, we provide an in vitro model of human leishmaniasis that allows direct comparison of different anti-TNFα agents. Our results enhance the understanding of the efficacy and adverse effects of TNFα blockers and they contribute to evaluate anti-TNFα therapy for patients living in countries with a high prevalence of leishmaniasis.
Collapse
Affiliation(s)
- Katharina Arens
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | - Arthur Goetzee
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Peter Crauwels
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Zoe Waibler
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Katrin Bagola
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany.,Institute of Immunology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
31
|
Petkov S, Starodubova E, Latanova A, Kilpeläinen A, Latyshev O, Svirskis S, Wahren B, Chiodi F, Gordeychuk I, Isaguliants M. DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response. PLoS One 2018; 13:e0197902. [PMID: 29864114 PMCID: PMC5986124 DOI: 10.1371/journal.pone.0197902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Optimization of DNA vaccine delivery improves the potency of the immune response and is crucial to clinical success. Here, we inquired how such optimization impacts the magnitude of the response, its specificity and type. BALB/c mice were DNA-immunized with two model immunogens, HIV-1 protease and reverse transcriptase by intramuscular or intradermal injections with electroporation. DNA immunogens were co-delivered with DNA encoding luciferase. Delivery and expression were monitored by in vivo bioluminescence imaging (BLI). The endpoint immune responses were assessed by IFN-γ/IL-2 FluoroSpot, multiparametric flow cytometry and antibody ELISA. Expression and immunogenicity were compared in relation to the delivery route. Regardless of the route, protease generated mainly IFN-γ, and reverse transcriptase, IL-2 and antibody response. BLI of mice immunized with protease- or reverse transcriptase/reporter plasmid mixtures, demonstrated significant loss of luminescence over time. The rate of decline of luminescence strongly correlated with the magnitude of immunogen-specific response, and depended on the immunogenicity profile and the immunization route. In vitro and in vivo BLI-based assays demonstrated that intradermal delivery strongly improved the immunogenicity of protease, and to a lesser extent, of reverse transcriptase. Immune response polarization and epitope hierarchy were not affected. Thus, by changing delivery/immunogen expression sites, it is possible to modulate the magnitude, but not the type or fine specificity of the induced immune response.
Collapse
Affiliation(s)
- Stefan Petkov
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Latanova
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Athina Kilpeläinen
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Oleg Latyshev
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | - Britta Wahren
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Francesca Chiodi
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Isaguliants
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
- Riga Stradins University, Riga, Latvia
| |
Collapse
|
32
|
Donnarumma T, Young GR, Merkenschlager J, Eksmond U, Bongard N, Nutt SL, Boyer C, Dittmer U, Le-Trilling VTK, Trilling M, Bayer W, Kassiotis G. Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus. Cell Rep 2017; 17:1571-1583. [PMID: 27806296 PMCID: PMC5149578 DOI: 10.1016/j.celrep.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions. Adenoviruses prime CD4 T cells with CTL potential, but retroviruses do not CD4 CTLs are transcriptionally distinguishable from other Th cells The CD4 CTL program is the direct opposite of the Tfh program CD4 CTLs are restrained by the TCF-1-Bcl6 nexus and by PD-1 and LAG3
Collapse
Affiliation(s)
- Tiziano Donnarumma
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George R Young
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Retrovirus-Host Interactions, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nadine Bongard
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille 13288, France
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
33
|
Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection. J Virol 2017; 91:JVI.01263-17. [PMID: 28904197 DOI: 10.1128/jvi.01263-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 has shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with, gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially affected cytokine production by cells in response to staphylococcal enterotoxin B stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, interleukin-2 (IL-2), and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together, these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cells being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important for limiting damage by the immune system during acute infections. In chronic infections, however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their influence on CD4 T cells remains unclear. We assessed the expression of inhibitory receptors on HIV-specific CD4 T cells and their relationship with T cell functionality. We uncovered differences in inhibitory receptor expression depending on the CD4 T cell function. We also found differences in functionality of CD4 T cells following blocking of different inhibitory receptors, and we confirmed our results in a Friend virus retroviral model of infection in mice. Our results show that inhibitory receptor expression on CD4 T cells is linked to CD4 T cell functionality and could be sculpted by blockade of specific inhibitory receptors. These data reveal exciting possibilities for the development of novel treatments and immunotherapeutics.
Collapse
|
34
|
Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, Liu Z, Dong M, Hu X, Ouyang W, Peng J, Zhang Z. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 2017. [PMID: 28622514 DOI: 10.1016/j.cell.2017.05.035] [Citation(s) in RCA: 1469] [Impact Index Per Article: 183.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 single T cells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8+ T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8+ T cells and Tregs and represses the CD8+ T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers.
Collapse
Affiliation(s)
- Chunhong Zheng
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Liangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jae-Kwang Yoo
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Huahu Guo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China; School of Oncology, Capital Medical University, Beijing 100038, China
| | - Yuanyuan Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinyi Guo
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Boxi Kang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruozhen Hu
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Julie Y Huang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Qiming Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhouzerui Liu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Minghui Dong
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA.
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China; School of Oncology, Capital Medical University, Beijing 100038, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Yong YK, Tan HY, Saeidi A, Rosmawati M, Atiya N, Ansari AW, Rajarajeswaran J, Vadivelu J, Velu V, Larsson M, Shankar EM. Decrease of CD69 levels on TCR Vα7.2 +CD4 + innate-like lymphocytes is associated with impaired cytotoxic functions in chronic hepatitis B virus-infected patients. Innate Immun 2017; 23:459-467. [PMID: 28606013 DOI: 10.1177/1753425917714854] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic liver disease that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses represent the key determinants of HBV clearance or persistence. Here, we investigated the role of the early activation marker, CD69 and effector cytokines, granzyme B (GrB) and IFN-γ in the exhaustion of innate-like TCR Vα7.2+CD4+T cells, in 15 individuals with chronic HBV (CHB) infection where six were HBV DNA+ and nine were HBV DNA-. The percentage of cytokine-producing T cells and MAIT cells were significantly perturbed in HBV patients relative to healthy controls (HCs). The intracellular expression of GrB and IFN-γ was significantly reduced in MAIT cells derived from HBV-infected patients as compared to HCs, and the levels correlated with the percentage and levels [mean fluorescence intensity (MFI)] of CD69 expression. The total expression of CD69 (iMFI) was lower in CHB patients as compared to HCs. The frequency of CD69+ cells correlated with the levels of cytokine expression (MFI), particularly in CHB patients as compared to HCs. In summary, the polyfunctionality of peripheral T cells was significantly reduced among CHB patients, especially in the TCR Vα7.2+CD4+T cells, and the levels of cytokine expression correlated with functional cytokine levels.
Collapse
Affiliation(s)
- Yean K Yong
- 1 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hong Y Tan
- 1 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Alireza Saeidi
- 1 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamed Rosmawati
- 3 Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Nadia Atiya
- 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdul W Ansari
- 1 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- 4 Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- 5 Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, USA
| | - Marie Larsson
- 6 Division of Molecular Virology, Department of Clinical & Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki M Shankar
- 1 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,7 Division of Infection Biology, Department of Life Sciences, School of Basic & Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, Tamil Nadu, India
| |
Collapse
|
36
|
Kyaw T, Tipping P, Toh BH, Bobik A. Killer cells in atherosclerosis. Eur J Pharmacol 2017; 816:67-75. [PMID: 28483458 DOI: 10.1016/j.ejphar.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023]
Abstract
Cytotoxic lymphocytes (killer cells) play a critical role in host defence mechanisms, protecting against infections and in tumour surveillance. They can also exert detrimental effects in chronic inflammatory disorders and in autoimmune diseases. Tissue cell death and necrosis are prominent features of advanced atherosclerotic lesions including vulnerable/unstable lesions which are largely responsible for most heart attacks and strokes. Evidence for accumulation of killer cells in both human and mouse lesions together with their cytotoxic potential strongly suggest that these cells contribute to cell death and necrosis in lesions leading to vulnerable plaque development and potentially plaque rupture. Killer cells can be divided into two groups, adaptive and innate immune cells depending on whether they require antigen presentation for activation. Activated killer cells detect damaged or stressed cells and kill by cytotoxic mechanisms that include perforin, granzymes, TRAIL or FasL and in some cases TNF-α. In this review, we examine current knowledge on killer cells in atherosclerosis, including CD8 T cells, CD28- CD4 T cells, natural killer cells and γδ-T cells, mechanisms responsible for their activation, their migration to developing lesions and effector functions. We also discuss pharmacological strategies to prevent their deleterious vascular effects by preventing/limiting their cytotoxic effects within atherosclerotic lesions as well as potential immunomodulatory therapies that might better target lesion-resident killer cells, to minimise any compromise of the immune system, which could result in increased susceptibility to infections and reductions in tumour surveillance.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Australia; Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia.
| | - Peter Tipping
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
37
|
Laher F, Ranasinghe S, Porichis F, Mewalal N, Pretorius K, Ismail N, Buus S, Stryhn A, Carrington M, Walker BD, Ndung'u T, Ndhlovu ZM. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer + Gag-Specific CD4 + T Cells in Chronic Clade C HIV-1 Infection. J Virol 2017; 91:e02477-16. [PMID: 28077659 PMCID: PMC5355603 DOI: 10.1128/jvi.02477-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections.IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4+ T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4+ T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4+ T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections.
Collapse
Affiliation(s)
- Faatima Laher
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Srinika Ranasinghe
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Filippos Porichis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Nikoshia Mewalal
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Karyn Pretorius
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Zaza M Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Abstract
OBJECTIVE To review the recent literatures related to the factors associated with the size of the HIV reservoir and their clinical significance. DATA SOURCES Literatures related to the size of HIV DNA was collected from PubMed published from 1999 to June 2016. STUDY SELECTION All relevant articles on the HIV DNA and reservoir were collected and reviewed, with no limitation of study design. RESULTS The composition and development of the HIV-1 DNA reservoir in either treated or untreated patients is determined by integrated mechanism comprising viral characteristics, immune system, and treatment strategies. The HIV DNA reservoir is a combination of latency and activity. The residual viremia from the stochastic activation of the reservoir acts as the fuse, continuing to stimulate the immune system to maintain the activated microenvironment for the rebound of competent virus once treatment with antiretroviral therapy is discontinued. CONCLUSION The size of the HIV-1 DNA pool and its composition has great significance in clinical treatment and disease progression.
Collapse
Affiliation(s)
- Ni-Dan Wang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tai-Sheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
39
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Fierro N, Gonzalez-Aldaco K, Roman S, Panduro A. The Immune System and Viral Hepatitis. LIVER PATHOPHYSIOLOGY 2017:129-139. [DOI: 10.1016/b978-0-12-804274-8.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Lewis GM, Wehrens EJ, Labarta-Bajo L, Streeck H, Zuniga EI. TGF-β receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest 2016; 126:3799-3813. [PMID: 27599295 PMCID: PMC5096797 DOI: 10.1172/jci87041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Suppression of CD8 and CD4 T cells is a hallmark in chronic viral infections, including hepatitis C and HIV. While multiple pathways are known to inhibit CD8 T cells, the host molecules that restrict CD4 T cell responses are less understood. Here, we used inducible and CD4 T cell-specific deletion of the gene encoding the TGF-β receptor during chronic lymphocytic choriomeningitis virus infection in mice, and determined that TGF-β signaling restricted proliferation and terminal differentiation of antiviral CD4 T cells. TGF-β signaling also inhibited a cytotoxic program that includes granzymes and perforin expression at both early and late stages of infection in vivo and repressed the transcription factor eomesodermin. Overexpression of eomesodermin was sufficient to recapitulate in great part the phenotype of TGF-β receptor-deficient CD4 T cells, while SMAD4 was necessary for CD4 T cell accumulation and differentiation. TGF-β signaling also restricted accumulation and differentiation of CD4 T cells and reduced the expression of cytotoxic molecules in mice and humans infected with other persistent viruses. These data uncovered an eomesodermin-driven CD4 T cell program that is continuously suppressed by TGF-β signaling. During chronic viral infection, this program limits CD4 T cell responses while maintaining CD4 T helper cell identity.
Collapse
Affiliation(s)
- Gavin M. Lewis
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| | - Ellen J. Wehrens
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| | | | - Hendrik Streeck
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Elina I. Zuniga
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| |
Collapse
|
42
|
Burel JG, Apte SH, Groves PL, Klein K, McCarthy JS, Doolan DL. Reduced Plasmodium Parasite Burden Associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-γ Production. PLoS Pathog 2016; 12:e1005839. [PMID: 27662621 PMCID: PMC5035011 DOI: 10.1371/journal.ppat.1005839] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/02/2016] [Indexed: 11/19/2022] Open
Abstract
Using a unique resource of samples from a controlled human malaria infection (CHMI) study, we identified a novel population of CD4+ T cells whose frequency in the peripheral blood was inversely correlated with parasite burden following P. falciparum infection. These CD4+ T cells expressed the multifunctional ectoenzyme CD38 and had unique features that distinguished them from other CD4+ T cells. Specifically, their phenotype was associated with proliferation, activation and cytotoxic potential as well as significantly impaired production of IFN-γ and other cytokines and reduced basal levels of activated STAT1. A CD38+ CD4+ T cell population with similar features was identified in healthy uninfected individuals, at lower frequency. CD38+ CD4+ T cells could be generated in vitro from CD38- CD4+ T cells after antigenic or mitogenic stimulation. This is the first report of a population of CD38+ CD4+ T cells with a cytotoxic phenotype and markedly impaired IFN-γ capacity in humans. The expansion of this CD38+ CD4+ T population following infection and its significant association with reduced blood-stage parasite burden is consistent with an important functional role for these cells in protective immunity to malaria in humans. Their ubiquitous presence in humans suggests that they may have a broad role in host-pathogen defense. TRIAL REGISTRATION ClinicalTrials.gov clinical trial numbers ACTRN12612000814875, ACTRN12613000565741 and ACTRN12613001040752.
Collapse
Affiliation(s)
- Julie G. Burel
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, School of Medicine, Brisbane, Australia
| | - Simon H. Apte
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Penny L. Groves
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerenaftali Klein
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James S. McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Denise L. Doolan
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, School of Medicine, Brisbane, Australia
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail:
| |
Collapse
|
43
|
CD8 T Cell-Independent Antitumor Response and Its Potential for Treatment of Malignant Gliomas. Cancers (Basel) 2016; 8:cancers8080071. [PMID: 27472363 PMCID: PMC4999780 DOI: 10.3390/cancers8080071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/30/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Malignant brain tumors continue to represent a devastating diagnosis with no real chance for cure. Despite an increasing list of potential salvage therapies, standard-of-care for these patients has not changed in over a decade. Immunotherapy has been seen as an exciting option, with the potential to offer specific and long lasting tumor clearance. The “gold standard” in immunotherapy has been the development of a tumor-specific CD8 T cell response to potentiate tumor clearance and immunological memory. While many advances have been made in the field of immunotherapy, few therapies have seen true success. Many of the same principles used to develop immunotherapy in tumors of the peripheral organs have been applied to brain tumor immunotherapy. The immune-specialized nature of the brain should call into question whether this approach is appropriate. Recent results from our own experiments require a rethinking of current dogma. Perhaps a CD8 T cell response is not sufficient for an organ as immunologically unique as the brain. Examination of previously elucidated principles of the brain’s immune-specialized status and known immunological preferences should generate discussion and experimentation to address the failure of current therapies.
Collapse
|
44
|
Esmagambetov IB, Alekseeva SV, Sayadyan KS, Shmarov MM. CURRENT APPROACHES TO UNIVERSAL VACCINE AGAINST INFLUENZA VIRUS. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2016. [DOI: 10.15789/2220-7619-2016-2-117-132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus. PLoS One 2016; 11:e0157903. [PMID: 27315117 PMCID: PMC4912066 DOI: 10.1371/journal.pone.0157903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection.
Collapse
|
46
|
Ayala VI, Trivett MT, Coren LV, Jain S, Bohn PS, Wiseman RW, O'Connor DH, Ohlen C, Ott DE. A novel SIV gag-specific CD4(+)T-cell clone suppresses SIVmac239 replication in CD4(+)T cells revealing the interplay between antiviral effector cells and their infected targets. Virology 2016; 493:100-12. [PMID: 27017056 PMCID: PMC4860118 DOI: 10.1016/j.virol.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Lori V Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Patrick S Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA.
| |
Collapse
|
47
|
Kling HM, Norris KA. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection. J Infect Dis 2016; 213:1586-95. [PMID: 26823337 PMCID: PMC4837913 DOI: 10.1093/infdis/jiw032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/20/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ubiquitous opportunistic pathogen Pneumocystis jirovecii causes pneumonia in immunocompromised individuals, including human immunodeficiency virus (HIV)-infected individuals, and pulmonary colonization with P. jirovecii is believed to be a cofactor in the development of chronic obstructive pulmonary disease. There is no vaccine for P. jirovecii; however, most adults are seropositive, indicating natural immune priming to this pathogen. We have shown that humoral response to a recombinant subunit of the P. jirovecii protease kexin (KEX1) correlates with protection from P. jirovecii colonization and pneumonia. METHODS Here we evaluated the immunogenicity and protective capacity of the recombinant KEX1 peptide vaccine in a preclinical, nonhuman primate model of HIV-induced immunosuppression and Pneumocystis coinfection. RESULTS Immunization with KEX1 induced a robust humoral response remained at protective levels despite chronic simian immunodeficiency virus/HIV-induced immunosuppression. KEX1-immunized macaques were protected from Pneumocystis pneumonia, compared with mock-immunized animals (P= .047), following immunosuppression and subsequent natural, airborne exposure to Pneumocystis CONCLUSIONS These data support the concept that stimulation of preexisting immunological memory to Pneumocystis with a recombinant KEX1 vaccine prior to immunosuppression induces durable memory responses and protection in the context of chronic, complex immunosuppression.
Collapse
Affiliation(s)
- Heather M Kling
- Department of Immunology, University of Pittsburgh, Pennsylvania
| | - Karen A Norris
- Department of Immunology, University of Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Mattoo H, Mahajan VS, Maehara T, Deshpande V, Della-Torre E, Wallace ZS, Kulikova M, Drijvers JM, Daccache J, Carruthers MN, Castelino FV, Stone JR, Stone JH, Pillai S. Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease. J Allergy Clin Immunol 2016; 138:825-838. [PMID: 26971690 DOI: 10.1016/j.jaci.2015.12.1330] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions with dense lymphoplasmacytic infiltrates. CD4(+) T cells constitute the major inflammatory cell population in IgG4-RD lesions. OBJECTIVE We used an unbiased approach to characterize CD4(+) T-cell subsets in patients with IgG4-RD based on their clonal expansion and ability to infiltrate affected tissue sites. METHODS We used flow cytometry to identify CD4(+) effector/memory T cells in a cohort of 101 patients with IgG4-RD. These expanded cells were characterized by means of gene expression analysis and flow cytometry. Next-generation sequencing of the T-cell receptor β chain gene was performed on CD4(+)SLAMF7(+) cytotoxic T lymphocytes (CTLs) and CD4(+)GATA3(+) TH2 cells in a subset of patients to identify their clonality. Tissue infiltration by specific T cells was examined by using quantitative multicolor imaging. RESULTS CD4(+) effector/memory T cells with a cytolytic phenotype were expanded in patients with IgG4-RD. Next-generation sequencing revealed prominent clonal expansions of these CD4(+) CTLs but not CD4(+)GATA3(+) memory TH2 cells in patients with IgG4-RD. The dominant T cells infiltrating a range of inflamed IgG4-RD tissue sites were clonally expanded CD4(+) CTLs that expressed SLAMF7, granzyme A, IL-1β, and TGF-β1. Clinical remission induced by rituximab-mediated B-cell depletion was associated with a reduction in numbers of disease-associated CD4(+) CTLs. CONCLUSIONS IgG4-RD is prominently linked to clonally expanded IL-1β- and TGF-β1-secreting CD4(+) CTLs in both peripheral blood and inflammatory tissue lesions. These active, terminally differentiated, cytokine-secreting effector CD4(+) T cells are now linked to a human disease characterized by chronic inflammation and fibrosis.
Collapse
Affiliation(s)
- Hamid Mattoo
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Vinay S Mahajan
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Takashi Maehara
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Vikram Deshpande
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | | | - Zachary S Wallace
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maria Kulikova
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jefte M Drijvers
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Joe Daccache
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | | | | | - James R Stone
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - John H Stone
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Shiv Pillai
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
49
|
Brown DM, Lampe AT, Workman AM. The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection. Front Immunol 2016; 7:93. [PMID: 27014272 PMCID: PMC4783394 DOI: 10.3389/fimmu.2016.00093] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells that recognize peptide antigen in the context of class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL) play a role in chronic as well as acute infections, such as influenza A virus (IAV) infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections, such as human immunodeficiency virus, mouse pox, murine gamma herpes virus, cytomegalovirus, Epstein-Barr virus, and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and antitumor immunity through their ability to acquire perforin-mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin-mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other antiviral and antitumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell-mediated immune protection against heterosubtypic IAV infection.
Collapse
Affiliation(s)
- Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aspen M Workman
- Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| |
Collapse
|
50
|
Dinges W, Girard PM, Podzamczer D, Brockmeyer NH, García F, Harrer T, Lelievre JD, Frank I, Colin De Verdière N, Yeni GP, Ortega Gonzalez E, Rubio R, Clotet Sala B, DeJesus E, Pérez-Elias MJ, Launay O, Pialoux G, Slim J, Weiss L, Bouchaud O, Felizarta F, Meurer A, Raffi F, Esser S, Katlama C, Koletar SL, Mounzer K, Swindells S, Baxter JD, Schneider S, Chas J, Molina JM, Koutsoukos M, Collard A, Bourguignon P, Roman F. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults: A Randomized Controlled Trial. Medicine (Baltimore) 2016; 95:e2673. [PMID: 26871794 PMCID: PMC4753889 DOI: 10.1097/md.0000000000002673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.
Collapse
Affiliation(s)
- Warren Dinges
- From the Seattle Travel and Preventive Medicine, Seattle Infectious Disease Clinic, Seattle, WA, USA (WD); Service des Maladies Infectieuses, Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris; and INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France (P-MG); HIV Unit, Infectious Disease Service, Hospital Universitari de Bellvitge, L'Hospitalet, 08907 Barcelona, Spain (DP); Department of Dermatology, Venerology, and Allergology, St. Josef-Hospital, Ruhr-Universität Bochum, Bochum, Germany (NHB); Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain (FG); Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (TH); Service d'Immunologie Clinique, Hôpital Henri Mondor, Créteil, France (J-DL); University of Pennsylvania, Philadelphia, PA, USA (IF); Service des Maladies Infectieuses et Tropicales, Hôpital Saint Louis, University of Paris Diderot Paris 7, Sorbonne Paris Cité and INSERM U941 (NCDV, J-MM); Hôpital Bichat Claude Bernard, Service des Maladies Infectieuses et Tropicales A, Paris, France (G-PY); Servicio de Enfermedades Infecciosas, Hospital General Universitario de Valencia, Valencia (EOG); Servicio de Enfermedades Infecciosas, Hospital 12 De Octubre, Madrid, Spain (RR); IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Uvic-UCC, Barcelona, Spain (BCS); Orlando Immunology Center, Orlando, FL, USA (EDS); Servicio de Enfermedades Infecciosas, Hospital Ramón Y Cajal, IRYCIS Madrid, Spain (MJPE); Université Paris Descartes, Sorbonne Paris Cité, Inserm, CIC 1417 and F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC); and Assistance Publique Hôpitaux de Paris, Hôpital Cochin (OL); Maladies Infectieuses et Tropicales Co-infections, Hôpital Tenon, Paris, France (GP, JC); Saint Michael's Medical Center, Newark, NJ, USA (JS); Service d'immunologie Clinique, Hôpital Européen Georges Pompidou, Paris, France (LW); Service des Maladie Infectieuses et Tropicales, Hôpital Avicenne, Bobigny, France (OB); Private practice, Bakersfield, CA, USA (FF); Zentrum für Innere Medizin und Infektiologie, Praxis, München, Germany (AM); CMIT, 46 Rue Henri Huchard, Paris, France (FR); HIV Ambulanz, Klinik für Dermatologie, Uniklinikum Essen, Essen, Germany (SE); Service des Maladies Infectieuses et Tropicales, Hôpital de la Pitié-Salpêtrière, Paris, France (CK); The Ohio State University, Division of Infectious Diseases, Columbus, OH (SLK); Philadelphia FIGHT, Philadelphia, PA (KM); University of Nebraska Medical Center, Omaha, NE (SS); Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ (JDB); Living Hope Clinical Foundation, Long Beach, CA, USA (SS); and GSK Vaccines, Wavre/Rixensart, Belgium (MK, AC, PB, FR)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|