1
|
Bajželj M, Senjor E, Boštic N, Hladnik M, Sodin-Šemrl S, Perišić Nanut M, Kos J, Ihan A, Hočevar A, Kopitar AN, Lakota K. Exhausted natural killer cells in adult IgA vasculitis. Arthritis Res Ther 2025; 27:95. [PMID: 40269956 PMCID: PMC12016069 DOI: 10.1186/s13075-025-03559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
INTRODUCTION IgA vasculitis nephritis (IgAVN) manifests in up to 84% of adult patients with IgA vasculitis (IgAV) and is associated with an elevated risk of progression to chronic kidney failure. The underlying pathogenic mechanism of adult IgAVN in leukocytes remain largely uncharacterised. Although natural killer (NK) cells were investigated in paediatric IgAV, their specific role in the pathogenesis of adult IgAV has yet to be elucidated. METHODS RNA sequencing of leukocytes from adult IgAV patients and healthy controls (HC) was performed. NK cells' cytotoxicity was assessed using calcein-AM stained K562 cells, and exocytosis was measured by LAMP-1/CD107a expression. Intracellular perforin and granzyme B were analyzed via flow cytometry, and cytokine secretion was measured by Luminex xMAP. Interferon-induced genes were validated with qPCR. RESULTS Principal component analysis (PCA) of leukocyte gene expression profiles distinguished IgAV patients from HC. Pathway enrichment analysis showed differences in patients' subsets - Interferon signalling Reactome pathway was observed only in sample from patients with skin-limited IgAV (sl-IgAV) and was confirmed by increased expression of interferon-induced genes using qPCR. Only in samples from IgAVN patients enrichment of NK cell-mediated cytotoxicity KEGG pathway was found. NK cells from IgAVN patients showed significantly decreased cytotoxicity compared to samples from sl-IgAV patients (p = 2.53 × 10- 2). The % of CD107a+-NK cells significantly increased after stimulation in HC (p = 9.7 × 10- 3) and in sl-IgAV patient samples (p = 2.21 × 10- 2) while only a minor increase was observed in samples of IgAVN patients. IgAVN patients exhibited a decreased % of perforin+ NK cells compared to HC. Following phytohemagglutinin (PHA)/interleukin (IL)-2 stimulation, a significant reduction in intracellular perforin level was observed in HC (p = 2.53 × 10- 2), but not in IgAVN patients NK cells. Interferon (IFN)-ϒ and macrophage inflammatory protein (MIP)-1β were significantly decreased in NK cell culture supernatants from IgAVN patients (p = 2.64 × 10- 2 and p = 2.65 × 10- 2 respectively). CONCLUSION Patients with IgAVN exhibited impaired cytotoxic and immunomodulatory functions of NK cells, along with a marked absence of interferon signaling in PBMCs. Further studies are needed to confirm if discrimination of patient subsets based on leukocyte samples might be of clinical use and if deregulated NK function might contribute to the pathogenesis of nephritis in adult IgAV.
Collapse
Affiliation(s)
- Matija Bajželj
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Boštic
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | | | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia.
| |
Collapse
|
2
|
Mongiovi JM, Townsend MK, Vitonis AF, Harris HR, Doherty JA, Babic A, Hecht JL, Soong TR, Titus L, Conejo-Garcia JR, Fridley BL, Tworoger SS, Terry KL, Sasamoto N. Associations between Parity, History of Breastfeeding, and T-cell Profile of Ovarian Tumors. Cancer Epidemiol Biomarkers Prev 2025; 34:550-559. [PMID: 39912719 PMCID: PMC11968234 DOI: 10.1158/1055-9965.epi-24-1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/13/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Parity and breastfeeding are associated with systemic changes in maternal inflammation and reduced risk of ovarian cancer, but little is known about their impact on the ovarian tumor immune microenvironment. METHODS We evaluated the associations of self-reported parity and history of breastfeeding with tumor-infiltrating T cells among 1,706 ovarian carcinoma cases with tumor tissue collected across four studies. The abundance of tumor-infiltrating T cells was measured by multiplex immunofluorescence in tumor tissue microarrays. ORs and 95% confidence intervals (CI) for the positivity of tumor immune cells were calculated using beta-binomial models and stratified by histotype. RESULTS Compared with ovarian tumors in nulliparous women, there was no association between parity and ovarian tumor T-cell abundance among all histotypes combined but suggestion of increased cytotoxic T cells and T-cell exhaustion among parous women with clear-cell tumors. When restricted to parous women, history of breastfeeding was associated with increased odds for all T-cell types [i.e., total T, cytotoxic T, helper T (Th), regulatory T, and exhausted T cells], with ORs ranging from 1.11 to 1.42. For every 6 months of breastfeeding, we observed increased odds of activated Th-cell infiltration (CD3+CD4+CD69+; OR, 1.13, 95% CI, 0.99-1.29), with a similar association for high-grade serous tumors, but lower odds in clear-cell tumors (OR, 0.43, 95% CI, 0.21-0.87). CONCLUSIONS History of breastfeeding may alter the ovarian tumor immune microenvironment by modulating the abundance of tumor-infiltrating T cells. IMPACT Although replication is required, history of breastfeeding may play a role in the activation of the ovarian tumor immune response.
Collapse
Affiliation(s)
- Jennifer M Mongiovi
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mary K Townsend
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Allison F Vitonis
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Holly R Harris
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Jennifer A Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ana Babic
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Medical Oncology, Dana Farber Cancer Center, Boston, Massachusetts
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - T Rinda Soong
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Linda Titus
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire
| | - Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, North Carolina
| | - Brooke L Fridley
- Division of Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, Missouri
| | - Shelley S Tworoger
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Wang H, Ruan G, Li Y, Liu X. The Role and Potential Application of IL-12 in the Immune Regulation of Tuberculosis. Int J Mol Sci 2025; 26:3106. [PMID: 40243848 PMCID: PMC11988481 DOI: 10.3390/ijms26073106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, affecting millions annually and leading to substantial mortality, particularly in developing countries. The pathogen's ability to persist latently and evade host immunity, combined with the emergence of drug-resistant strains, underscores the need for innovative therapeutic strategies. This review highlights the crucial role of interleukin-12 (IL-12) in coordinating immune responses against TB, focusing on its potential as an immunotherapy target. IL-12, a key Th1 cytokine, enhances cellular immunity by promoting Th1 cell differentiation and IFN-γ production, vital for Mtb clearance. By stimulating cytotoxic T lymphocytes and establishing immune memory, IL-12 supports robust host defense mechanisms. However, the complexity of IL-12 biology, including its roles in pro-inflammatory and regulatory pathways, necessitates a nuanced understanding for effective therapeutic use. Recent studies have shown how IL-12 impacts T cell synapse formation, exosome-mediated bystander activation, and interactions with other cytokines in shaping T cell memory. Genetic defects in the IL-12/IFN-γ axis link to susceptibility to mycobacterial diseases, highlighting its importance in TB immunity. The review also addresses challenges like cytokine imbalances seen in TNF-α/IFN-γ synergy, which exacerbate inflammation, and the implications for IL-12-based interventions. Research into modulating IL-12, including its use as an adjuvant and in recombinant vaccines, promises improved TB treatment outcomes and vaccine efficacy. The review concludes by stressing the need for continued investigation into IL-12's molecular mechanisms towards precision immunotherapies to combat TB and its complications.
Collapse
Affiliation(s)
- Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Guiren Ruan
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Yuanchun Li
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing 100730, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Binici A, Hennes E, Koska S, Alexander Niemann J, Reich A, Pfaff C, Sievers S, Stefanie Kahnt A, Thomas D, Ziegler S, Watzl C, Waldmann H. Identification of Natural Killer Cell Enhancers Through Mimicking of the Tumor Microenvironment. Chemistry 2025; 31:e202404006. [PMID: 39932696 DOI: 10.1002/chem.202404006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
The tumor microenvironment (TME) is a pro-cancerous niche harboring immunosuppressive factors that are secreted by cancer cells and the surrounding cancer-supportive tissue, such as kynurenine, prostaglandin E2 and transforming growth factor β (TGFβ). These factors dampen the activity of cytotoxic lymphocytes like natural killer (NK) cells, allowing evasion of immune cell-mediated killing. To identify small molecules that counteract the immunosuppressive effect of the TME and restore NK cell-mediated cytotoxicity, we developed a phenotypic co-culture assay of cancer cells and primary lymphocytes suitable for medium-throughput screening. We discovered small molecules that restore NK cell-mediated cytotoxicity through diverse mechanisms. The potent TGFβ type I receptor (TGFβR-1) inhibitor, RepSox, stood out as superior to other TGFβR-1 inhibitors due to its ability to abolish the effects of both inhibitory factors used in our setup. This mode of action goes beyond TGFβR-1 inhibition and is related to the simultaneous abrogation of cyclooxygenase 1 (COX1) activity.
Collapse
Affiliation(s)
- Aylin Binici
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Sandra Koska
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Jens Alexander Niemann
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Alisa Reich
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Christiane Pfaff
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
- Compound Management and Screening Center, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
- Compound Management and Screening Center, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Astrid Stefanie Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Ricciardi G, Fiorentino V, Pierconti F, Giordano WG, Germanà E, Ieni A, Palermo G, Racioppi M, Rossanese M, Ficarra V, Pizzimenti C, Tuccari G, Gallo A, Cesarini V, Fadda G, Martini M. Roles for Androgen Receptor, ADAR2, and PD-L1 in Primary Urothelial Carcinoma In Situ of the Bladder Treated with Bacillus Calmette-Guérin Therapy. J Transl Med 2025; 105:104120. [PMID: 40010639 DOI: 10.1016/j.labinv.2025.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
In this retrospective observational multicenter study, we identified tumors and immune markers that are related to each other, which could help in selecting patients with bladder primary urothelial carcinoma in situ (CIS) who responded better to Bacillus Calmette-Guérin (BCG) therapy. Seventy-three patients with primary bladder CIS who were homogeneously treated with BCG were studied. Tumor-infiltrating lymphocytes (TILs) measured as CD4/CD8 ratio, androgen receptor (AR), adenosine deaminase acting on RNA 1 (ADAR1), adenosine deaminase acting on RNA 2 (ADAR2), and programmed death ligand 1 (PD-L1) expression were analyzed using immunohistochemistry, whereas miR-200a-3p and INF-γ were correlated with clinicopathological features and recurrence-free survival. High AR levels in CIS were significantly associated with higher ADAR1 expression, lower ADAR2 expression, higher PD-L1 TPS, higher CD4/CD8 ratio, and multifocality of CIS (P < .001). All patients with the above-mentioned characteristics had significantly worse recurrence-free survival (P < .0001). Multivariate and multiple regression analyses confirmed the predictive role of AR, ADAR2, and PD-L1, especially when all 3 parameters were combined. Additionally, we demonstrated that patients with lower AR and higher ADAR2 expressions had significantly higher levels of miR-200a-3p and INF-γ than those with higher AR and lower ADAR2 expression (P = .0011 and P = .0002, respectively). Our findings highlight the role of AR in the response to BCG therapy by modulating PD-L1 expression and TILs through the ADAR2, miR-200a-3p, and INF-γ pathways. Furthermore, our data provide valuable insights for optimizing BCG therapy in patients with CIS, paving the way for other possible combined treatment strategies.
Collapse
Affiliation(s)
- Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy; Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.p.a., Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Francesco Pierconti
- Department of Women, Children and Public Health Sciences, Division of Pathology, Catholic University of the Sacred Heart, "A. Gemelli" Hospital Foundation, IRCCS, Roma, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Giuseppe Palermo
- Department of Medical and Abdominal Surgery and Endocrine-Metabolic Science, Division of Urology, Catholic University of the Sacred Heart, "A. Gemelli" Hospital Foundation, IRCCS, Roma, Italy
| | - Marco Racioppi
- Department of Medical and Abdominal Surgery and Endocrine-Metabolic Science, Division of Urology, Catholic University of the Sacred Heart, "A. Gemelli" Hospital Foundation, IRCCS, Roma, Italy
| | - Marta Rossanese
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Urology, University of Messina, Italy
| | - Vincenzo Ficarra
- Department of Clinical and Experimental Medicine, Division of Urology, University of Messina, Italy
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Angela Gallo
- Department of Onco-hematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| | - Guido Fadda
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy.
| |
Collapse
|
6
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
7
|
Sel FA, Oğuz FS. Cancer and Secretomes: HLA-G and Cancer Puzzle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:165-179. [PMID: 39841384 DOI: 10.1007/5584_2024_843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease. It is important to study how HLA-Gs interact with secretome components, especially at the level of specific components, to develop treatment strategies that prevent cancer cells evading the immune system. Cancer cells may be recognized and targeted by the immune system by reducing the inhibitory effect of HLA-G on immune cells and by neutralizing tumor-promoting components of the secretome. This review focuses on the interaction of specific cancer cell secretomes and HLA-G. Here we also investigate the role of this interaction in tumor immune escape strategies.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Fatma Savran Oğuz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Huang N, Ye L, Li H, Peng J, Wei H. Developmental patterns of intestinal group 3 innate lymphoid cells in piglets and their response to enterotoxigenic Escherichia coli infection. Vet Res 2024; 55:159. [PMID: 39695888 DOI: 10.1186/s13567-024-01418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/22/2024] [Indexed: 12/20/2024] Open
Abstract
Diarrhoea and preweaning mortality in piglets are crucial factors impacting the economic sustainability of the swine industry. Pathogenic infections are among the main causes of diarrhea and mortality. Group 3 innate lymphoid cells (ILC3s) are crucial for safeguarding against pathogenic infections. However, knowledge regarding the development and function of ILC3s in suckling piglets is currently limited. Our findings demonstrate that the development of ILC3s in suckling piglets gradually progresses from day 1 to day 21, with a notable increase observed on day 28. Additionally, the development of NKp46+ILC3s and the production of interleukin (IL)-17A by ILC3s displayed consistent patterns with the changes observed in ILC3s. Notably, interferon (IFN)-γ levels significantly increased on day 14. Moreover, the production of IFN-γ by NKp46+ILC3s was greater than that by NKp46-ILC3s. Importantly, when piglets were subjected to a 4-h challenge with enterotoxigenic Escherichia coli, both the percentages of ILC3s significantly increased, accompanied by increased IL-22 production, highlighting their importance in maintaining intestinal health. The outcomes of this study provide valuable insights for future related research.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center of Cellular and Genetic Sciences, Henan Academy of Sciences, Zhengzhou, 450000, China
| | - Ling Ye
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
9
|
Jeroundi N, Roy C, Basset L, Pignon P, Preisser L, Blanchard S, Bocca C, Abadie C, Lalande J, Gueguen N, Mabilleau G, Lenaers G, Moreau A, Copin MC, Tcherkez G, Delneste Y, Couez D, Jeannin P. Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions. EMBO Rep 2024; 25:5383-5407. [PMID: 39424955 PMCID: PMC11624281 DOI: 10.1038/s44319-024-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and 13C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.
Collapse
Affiliation(s)
- Najia Jeroundi
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laetitia Basset
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Pignon
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laurence Preisser
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Simon Blanchard
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Cinzia Bocca
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Cyril Abadie
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julie Lalande
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Naïg Gueguen
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, Inserm, Oniris, RMeS, SFR ICAT, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guy Lenaers
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Aurélie Moreau
- Inserm, Nantes Université, University Hospital of Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Marie-Christine Copin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guillaume Tcherkez
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
- Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Yves Delneste
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Dominique Couez
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Jeannin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France.
- Immunology and Allergology laboratory, University Hospital, Angers, France.
| |
Collapse
|
10
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
11
|
Hou W, Huang L, Wang J, Luyten W, Lai J, Zhou Z, Kang S, Dai P, Wang Y, Huang H, Lan J. Cajaninstilbene Acid and Its Derivative as Multi-Therapeutic Agents: A Comprehensive Review. Molecules 2024; 29:5440. [PMID: 39598829 PMCID: PMC11597117 DOI: 10.3390/molecules29225440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Pigeon pea (Cajanus cajan (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties. Cajaninstilbene acid (CSA), a stilbene compound derived from pigeon pea leaves, has been extensively investigated since the 1980s. A thorough understanding of CSA's mechanisms of action and its therapeutic effects on various diseases is crucial for developing novel therapeutic approaches. This paper presents an overview of recent research advancements concerning the biological activities and mechanisms of CSA and its derivatives up to February 2024. The review encompasses discussions on the in vivo metabolism of CSA and its derivatives, including antipathogenic micro-organisms activity, anti-tumor activity, systematic and organ protection activity (such as bone protection, cardiovascular protection, neuroprotection), anti-inflammatory activity, antioxidant activity, immune regulation as well as action mechanism of CSA and its derivatives. The most studied activities are antipathogenic micro-organisms activities. Additionally, the structure-activity relationships of CSA and its derivatives as well as the total synthesis of CSA are explored, highlighting the potential for developing new pharmaceutical agents. This review aims to provide a foundation for future clinical applications of CSA and its derivatives.
Collapse
Affiliation(s)
- Wen Hou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Lejun Huang
- School of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Jinyang Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, 3000 Leuven, Belgium
| | - Jia Lai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Zhinuo Zhou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Sishuang Kang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Ping Dai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Yanzhu Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.)
| | - Jinxia Lan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
12
|
Rodenberg RR, Spadafora D, Fitzpatrick S, Daly G, Lausch R, Barrington RA. γδ T17 Cells Regulate the Acute Antiviral Response of NK Cells in HSV-1-Infected Corneas. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39504049 PMCID: PMC11549926 DOI: 10.1167/iovs.65.13.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024] Open
Abstract
Purpose To determine whether γδ T cells regulate natural killer (NK) cells in the herpes simplex virus 1 (HSV-1)-infected cornea. Methods CD57Bl/6 (wild-type [WT]), TCRδ-/-, and IFN-γ-/- mice were infected intracorneally with HSV-1. TCR-/- mice were treated with IL-17A at 24 hours post-infection (PI), and the WT mice received treatments of fingolimod (FTY720) and anti-IL-17A. At 48 hours PI, corneas were excised, and intracellular staining flow cytometry was performed, as well as multiplex analysis. Additionally, single-cell RNA sequencing (scRNAseq) was done to analyze the transcriptome of NK cells from WT and TCRδ-/- mice. Results In mice lacking γδ T cells, there were significantly fewer NK cells following ocular HSV-1 infection. This reduction of NK cells corresponded with lower levels of cytokines and chemokines associated with the antiviral response. Furthermore, NK cells from WT mice had enriched IL-17A signaling compared to those from TCRδ-/- mice. The NK cell response was partially rescued in TCRδ-/- mice by administration of IL-17A. Correspondingly, the NK cell response could be blunted in WT mice by administration of anti-IL-17A. Finally, IFN-γ-/- mice had significantly less IL-17A production compared to WT mice. Conclusions γδ T17 cells promote NK cell accumulation in HSV-1-infected corneas. In turn, NK cells secrete IFN-γ, which negatively regulates further IL-17A production by γδ T cells.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Cornea/virology
- Cornea/immunology
- Cornea/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Flow Cytometry
- Herpesvirus 1, Human/physiology
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Killer Cells, Natural/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
Collapse
Affiliation(s)
- Rachel R. Rodenberg
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| | - Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Grant Daly
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Robert A. Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
13
|
de la Fuente-Munoz E, Fernández-Arquero M, Subbhi-Issa N, Guevara-Hoyer K, Suárez LP, Laborda RG, Sánchez M, Ochoa-Grullón J, Guzmán-Fulgencio M, Villegas Á, Mansilla MD, Pérez N, Cornudella RS, Gastañaga-Holguera T, Urrutia MC, García IC, Sánchez-Ramón S. Recurrent reproductive failure and celiac genetic susceptibility, a leading role of gluten. Front Immunol 2024; 15:1451552. [PMID: 39512358 PMCID: PMC11540631 DOI: 10.3389/fimmu.2024.1451552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The prevalence of gluten-related disorders, mainly celiac disease (CD) and non-celiac gluten sensitivity (NCGS), varies between 0.6% and 13% in the general population. There is controversial evidence regarding the association of both CD and NCGS with extra-digestive manifestations, including recurrent reproductive failure (RRF), which may have clinical implications. Objective To study the prevalence of HLA susceptibility alleles for CD/NCGS in a cohort of female patients with RRF from a single reference center and to evaluate the effect of a gluten-free diet on reproductive success. Material and methods A retrospective study was conducted on 173 patients with RRF, consecutively attended at the Reproductive Immunology Unit of San Carlos University Clinical Hospital in Madrid. We collected and analyzed the clinical, analytical, and immunological profiles of RRF patients who presented HLA alleles associated with CD and NCGS (HLA DQ2.2, DQ2.5, DQ8, and DQ7.5). Results We observed a significantly higher prevalence of HLA alleles associated with CD and NCGS in our RRF cohort compared to the prevalence in the general population (69% vs. 35%-40%, p<0.0001). Only 2.3% of patients met the criteria for a CD diagnosis. In our RRF cohort, HLA-genetic susceptibility for CD/NCGS (HLA-risk group) was associated with a significantly higher rate of hypothyroidism compared to patients without these alleles (HLA-negative group) (48.7% vs. 26.92%, p=0.03). Patients with HLA-genetic susceptibility for CD/NCGS and thyroid disease had a significantly higher success rate in the subsequent pregnancy after management (55% vs. 30%, p=0.002). Two factors were found to be significant in this group: a gluten-free diet (p=0.019) and the use of levothyroxine (p=0.042). Conclusions In our cohort of RRF patients, we observed a significantly higher prevalence of HLA susceptibility genes for CD/NCGS compared to the general population, also associated with a higher incidence of thyroid alterations. A gluten-free diet and the use of levothyroxine in cases of thyroid pathology had significant beneficial effects on pregnancy outcomes. We suggest that HLA typing for CD/NCGS and a gluten-free diet, in the presence of risk alleles, can improve pregnancy outcomes in RRF patients.
Collapse
Affiliation(s)
- Eduardo de la Fuente-Munoz
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Nabil Subbhi-Issa
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Kissy Guevara-Hoyer
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
- Cancer Immunomonitoring and Immune-mediated Diseases Research Unit, Instituto de Investigación Sanitaria San Carlos (Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC)), Department of Clinical Immunology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Lydia Pilar Suárez
- Department of Obstetrics and Gynecology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Raquel Gil Laborda
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Marina Sánchez
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Juliana Ochoa-Grullón
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - María Guzmán-Fulgencio
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ángela Villegas
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - María Dolores Mansilla
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Noelia Pérez
- Department of Obstetrics and Gynecology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | | | - Marta Calvo Urrutia
- Department of Obstetrics and Gynecology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Ignacio Cristóbal García
- Department of Obstetrics and Gynecology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Instituto de Medicina de Laboratorio (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IDISCC), Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
14
|
Mastrogeorgiou M, Chatzikalil E, Theocharis S, Papoudou-Bai A, Péoc'h M, Mobarki M, Karpathiou G. The immune microenvironment of cancer of the uterine cervix. Histol Histopathol 2024; 39:1245-1271. [PMID: 38483012 DOI: 10.14670/hh-18-727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
While several treatment choices exist for cervical cancer, such as surgical therapy, chemotherapy, and radiotherapy, some patients will still show poor prognosis. HPV infection is a principal factor for cervical cancer development, from early inflammation to proliferation, angiogenesis, and neoplastic growth. While HPV T-cell responses exist, the tumor seems to evade the immune system upon its tolerance. The latter suggests the existence of a confluent tumor microenvironment responsible for the evasion tactics employed by the neoplasm. Therefore, novel biomarkers governing prognosis and treatment planning must be developed, with several studies tackling the significance of the tumor microenvironment in the genesis, development, proliferation, and overall response of cervical cancer during neoplastic processes. This review aims to analyze and contemplate the characteristics of the tumor microenvironment and its role in prognosis, progression, evasion, and invasion, including therapeutic outcome and overall survival.
Collapse
Affiliation(s)
- Michail Mastrogeorgiou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michel Péoc'h
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mousa Mobarki
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Georgia Karpathiou
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
15
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
17
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
18
|
Chen KC, Dhar T, Chen CR, Chen ECY, Peng CC. Nicotinamide phosphoribosyltransferase modulates PD-L1 in bladder cancer and enhances immunotherapeutic sensitivity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167106. [PMID: 38428685 DOI: 10.1016/j.bbadis.2024.167106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Bladder cancer (BLCA) is one of the most prevalent malignancies worldwide with a high mortality rate and poor response to immunotherapy in patients expressing lower programmed death ligand 1 (PD-L1) levels. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme responsible for the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from nicotinamide was reported to be overexpressed in various cancers; however, the role of NAMPT in BLCA is obscure. Immunohistochemistry of tissue microarrays, a real-time polymerase chain reaction, Western blotting, proliferation assay, NAD+ quantification, transwell-migration assay, and colony-formation assay were performed to measure NAMPT and PD-L1 expression levels in patients and the effect of NAMPT inhibition on T24 cells. Our study revealed that NAMPT expression was upregulated in BLCA patients with different grades and associated with poor T-cell infiltration. Notably, FK866-mediated NAMPT inhibition decreased cell viability by depleting NAD+, and reducing the migration ability and colony-formation ability of T24 cells. Interestingly, NAMPT negatively regulated PD-L1 under an interferon (IFN)-γ-mediated microenvironment. However, exogenous NAMPT activator has no effect on PD-L1. NAD+ supplementation also only increased PD-L1 in the absence of IFN-γ. Conclusively, NAMPT is crucial for BLCA tumorigenic properties, and it regulates expression of the PD-L1 immune checkpoint protein. NAMPT could be considered a target for modulating sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Taipei Medical University Shuang-Ho Hospital, Zhong-He District, New Taipei City 23561, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Trayee Dhar
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Rong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Eugene Chang-Yu Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
19
|
Parvini N, Akbari ME, Hamidieh AA, Fathi F, Amini AA, Ebrahimi M, Vahabzadeh Z. CTLA-4 Blockade of Natural Killer Cells Increases Cytotoxicity against Acute Lymphoid Leukaemia Cells Neda. CELL JOURNAL 2024; 26:150-157. [PMID: 38459732 PMCID: PMC10924838 DOI: 10.22074/cellj.2024.2015187.1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE There is interest in using cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy to treat blood cancers. Unfortunately, patients with acute lymphoblastic leukaemia (ALL) frequently exhibit resistance to treatment and natural killer (NK) cell exhaustion. This study aims to increase the cytotoxic potency of natural killer cells by using CTLA-4 to block the Nalm-6 leukaemia cell line. MATERIALS AND METHODS In this experimental study, NK cells were purified from the peripheral blood mononuclear cells (PBMCs) of 10 healthy people and assessed by flow cytometry for purity and viability. The purified cells were activated overnight at 37°C and 5% CO2 with interleukin-15 (IL-15, 10 ng/ml) followed by evaluation of expressions of CTLA-4, activating and inhibitory receptors, and the release of interferon gamma (IFN-γ) and granzyme B (GZM B). CTLA-4 expression on NK cells from recurrent ALL patients was also evaluated. Finally, the cytotoxic activity of NK cells was assessed after the CTLA-4 blockade. RESULTS The purity of the isolated cells was 96.58 ± 2.57%. Isolated NK cells activated with IL-15 resulted in significantly higher CTLA-4 expression (8.75%, P<0.05). Similarly, CTLA-4 expression on the surface of NK cells from patients with ALL was higher (7.46%) compared to healthy individuals (1.46%, P<0.05). IL-15 reduced NKG2A expression (P<0.01), and increased expressions of NKP30 (P<0.05) and NKP46 (P<0.01). The activated NK cells released more IFN-γ (P<0.5) and GZM B (P<0.01) compared to unactivated NK cells. Blockade of CTLA-4 enhanced the NK cell killing potential against Nalm-6 cells (56.3%, P<0.05); however, IFN-γ and GZM B levels were not statistically different between the blocked and non-blocked groups. CONCLUSION Our findings suggest that CTLA-4 blockage of Nalm-6 cells causes an increase in antitumour activity of NK cells against these cells. Our study also provides evidence for the potential of cancer immunotherapy treatment using blocking anti-CTLA-4 mAbs.
Collapse
Affiliation(s)
- Neda Parvini
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cells, ACECR, Tehran, Iran
| | | | - Amir Ali Hamidieh
- Paediatric Cell and Gene Therapy Research Centre, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ali Amini
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cells, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zakaria Vahabzadeh
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran .
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
20
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
22
|
Toledo-Stuardo K, Ribeiro CH, Campos I, Tello S, Latorre Y, Altamirano C, Dubois-Camacho K, Molina MC. Impact of MICA 3'UTR allelic variability on miRNA binding prediction, a bioinformatic approach. Front Genet 2023; 14:1273296. [PMID: 38146340 PMCID: PMC10749337 DOI: 10.3389/fgene.2023.1273296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate as powerful genetic regulators. MiRNAs can interfere with cellular processes by interacting with a broad spectrum of target genes under physiological and pathological states, including cancer development and progression. Major histocompatibility complex major histocompatibility complex class I-related chain A (MICA) belongs to a family of proteins that bind the natural-killer group 2, member D (NKG2D) receptor on Natural Killer cells and other cytotoxic lymphocytes. MICA plays a crucial role in the host's innate immune response to several disease settings, including cancer. MICA harbors various single nucleotide polymorphisms (SNPs) located in its 3'-untranslated region (3'UTR), a characteristic that increases the complexity of MICA regulation, favoring its post-transcriptional modulation by miRNAs under physiological and pathological conditions. Here, we conducted an in-depth analysis of MICA 3'UTR sequences according to each MICA allele described to date using NCBI database. We also systematically evaluated interactions between miRNAs and their putative targets on MICA 3'UTR containing SNPs using in silico analysis. Our in silico results showed that MICA SNPs rs9266829, rs 1880, and rs9266825, located in the target sequence of miRNAs hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-93, hsa-miR-1207.5p, and hsa-miR-711 could modify the binding free energy between -8.62 and -18.14 kcal/mol, which may affect the regulation of MICA expression. We believe that our results may provide a starting point for further exploration of miRNA regulatory effects depending on MICA allelic variability; they may also be a guide to conduct miRNA in silico analysis for other highly polymorphic genes.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Carolina H. Ribeiro
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Ivo Campos
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Yesenia Latorre
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karen Dubois-Camacho
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Gastroenterology and Hepatology Department, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Carmen Molina
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
24
|
Aderinto N, Abdulbasit MO, Tangmi ADE, Okesanya JO, Mubarak JM. Unveiling the growing significance of metabolism in modulating immune cell function: exploring mechanisms and implications; a review. Ann Med Surg (Lond) 2023; 85:5511-5522. [PMID: 37915697 PMCID: PMC10617839 DOI: 10.1097/ms9.0000000000001308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Immunometabolism has emerged as a rapidly growing field of research, holding significant promise for personalised medicine and precision immunotherapy. This review explores the intricate relationship between immune function and metabolic processes, emphasising their profound impact on various immune-related disorders. Understanding how metabolic dysregulation contributes to the pathogenesis of these disorders remains a critical research gap. Therefore, this review aims to bridge that gap by examining the key metabolic pathways involved and their specific implications in immune cell function. Key metabolic pathways, including glycolysis, mitochondrial metabolism, fatty acid metabolism, and amino acid metabolism, are discussed in the context of immune cell function. Dysregulation of these pathways can disrupt immune cell activation, differentiation, and overall function, contributing to disease pathogenesis. Understanding these metabolic alterations' molecular mechanisms is essential for developing targeted therapeutic interventions. The review also emphasises the importance of personalised medicine in immune-related disorders. The unique metabolic profiles of individuals can influence treatment outcomes, highlighting the need for tailored approaches. Integrating metabolic profiling into clinical practice can enhance treatment efficacy and improve patient outcomes. Investigating the clinical significance of immunometabolism in diverse disease contexts will facilitate the translation of research findings into clinical practice. Moreover, refining treatment strategies based on individual metabolic profiles will contribute to advancing precision immunotherapy.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | | | | | | |
Collapse
|
25
|
Chattopadhyay A, Jagdish S, Karhale AK, Ramteke NS, Zaib A, Nandi D. IFN-γ lowers tumor growth by increasing glycolysis and lactate production in a nitric oxide-dependent manner: implications for cancer immunotherapy. Front Immunol 2023; 14:1282653. [PMID: 37965321 PMCID: PMC10641808 DOI: 10.3389/fimmu.2023.1282653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Interferon-gamma (IFN-γ), the sole member of the type-II interferon family, is well known to protect the host from infectious diseases as well as mount anti-tumor responses. The amounts of IFN-γ in the tumor microenvironment determine the host responses against tumors; however, several tumors employ evasive strategies by responding to low IFN-γ signaling. Methods In this study, the response of various tumor cell lines to IFN-γ was studied in vitro. Results IFN-γ-activation increases glycolytic flux and reduces mitochondrial function in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner in the H6 hepatoma tumor cell line. The higher glycolysis further fueled NO and ROS production, indicating a reciprocal regulation. These processes are accompanied by Hypoxia inducing factor (HIF)-1α stabilization and HIF-1α-dependent augmentation of the glycolytic flux. The IFN-γ enhancement of lactate production also occurred in other NO-producing cell lines: RAW 264.7 monocyte/macrophage and Renca renal adenocarcinoma. However, two other tumor cell lines, CT26 colon carcinoma and B16F10 melanoma, did not produce NO and lactate upon IFN-γ-activation. HIF-1α stabilization upon IFN-γ-activation led to lower cell growth of B16F10 but not CT26 cells. Importantly, the IFN-γ-activation of both CT26 and B16F10 cells demonstrated significant cellular growth reduction upon metabolic rewiring by exogenous administration of potassium lactate. Discussion Clinical studies have shown the crucial roles of IFN-γ for successful cancer immunotherapies involving checkpoint inhibitors and chimeric antigen receptor T cells. The positive implications of this study on the metabolic modulation of IFN-γ activation on heterogeneous tumor cells are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Zeng X, Dong X, Ma Y, Yao J. Chemokine (C-X-C motif) ligand 1 maintains the immune surveillance function of natural killer cells via the PDK2/mTOR signaling pathway. Cell Biol Toxicol 2023; 39:2227-2241. [PMID: 35304656 DOI: 10.1007/s10565-022-09708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Chemokine (C-X-C motif) ligand 1 (CXCL1) is mainly expressed on neutrophils and macrophages and has neutrophil chemoattractant activity. However, natural killer (NK) cells also express CXCL1. We were curious about the role played by CXCL1 in NK cells. Knocking out CXCL1 in hematopoietic cells does not affect the occurrence of NK cells; however, it does hinder NK cell maturity. CXCL1 deletion enhances the expression of immature markers and decreases the expression of functional markers in NK cells, which may explain why it hinders the maturation of NK cells. Specific knockout of CXCL1 in NK cells (CXCL1flox/flox Ncr1-cre) leads to impaired IFN-γ production and degranulation of NK cells. The lack of CXCL1 may prevent IFN-γ production and degranulation of NK cells by inhibiting the phosphorylation of AKTS473 and S6. Therefore, we have discovered a new role for CXCL1 in regulating NK cell development and immune surveillance, providing a novel theoretical basis for immunotherapy based on NK cells and potential therapeutic targets for the clinical use of NK cells. 1. Knockout of CXCL1 in hematopoietic cells inhibits the maturation of NK cells. 2. Knockout of CXCL1 in NK cells inhibits the clearance of lymphoma by NK cells and reduces IFN-γ production and CD107 expression in NK cells. 3. CXCL1 activates the PKD2/mTOR signaling pathway, and promotes the production of IFN-γ and the expression of CD107a in NK cells.
Collapse
Affiliation(s)
- Xiaokang Zeng
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China.
| | - Xinhuai Dong
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China
| | - Yanning Ma
- Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Jie Yao
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China.
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528300, Guangdong, China.
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China.
| |
Collapse
|
27
|
Koutsogiannaki S, Kim S, Yuki K. Age-dependent transcriptomic profiles of leukocytes in pediatric population. Clin Immunol 2023; 255:109728. [PMID: 37562722 PMCID: PMC10543464 DOI: 10.1016/j.clim.2023.109728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Immunity at birth is considered immature. Following birth, our immune function is considered to grow and reach maturation over time. To obtain granular information of leukocyte functions and transcriptomic profiles in pediatric cohort, we examined leukocyte profiles in infants, preschool and school children using single cell RNA sequencing of their peripheral blood mononuclear cells (PBMCs). Monocytes and natural killer (NK) cells showed immaturity in infants. Their innate and adaptive immunity was developed by preschool age. Adaptive immune cells showed different maturation patterns. CD4, CD8 naïve T cells and plasma cells continued to mature untill school age. In CD8 naïve T cells, innate immunity was upregulated in infants, in support of our knowledge that they manifests more innate cell-like phenotype soon after birth. Many signaling pathways have been differentially up- and/or down-regulated in infants, preschool and school children. Their contribution to the development of the immune system needs to be delineated.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, 02115, United States; Broad Institute of MIT and Harvard, Cambridge, MA, 02141, United States
| | - Samuel Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, 02115, United States; Broad Institute of MIT and Harvard, Cambridge, MA, 02141, United States.
| |
Collapse
|
28
|
Moley CR, Chambers CA, Dadelahi AS, Ponzilacqua-Silva B, Abushahba MFN, Lacey CA, Franklin CL, Skyberg JA. Innate Lymphoid Cells and Interferons Limit Neurologic and Articular Complications of Brucellosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1170-1184. [PMID: 37263343 PMCID: PMC10477959 DOI: 10.1016/j.ajpath.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Brucellosis is a globally significant zoonotic disease. Human patients with brucellosis develop recurrent fever and focal complications, including arthritis and neurobrucellosis. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. After footpad infection, natural killer cells and ILC1 cells both limited joint colonization by Brucella. Mice lacking natural killer cells, and in particular mice lacking all ILCs, also developed marked arthritis after footpad infection. Following pulmonary infection, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Adaptive immune cells and ILCs both limited colonization of the brain by Brucella following pulmonary infection. Transcriptional analysis of Brucella-infected brains revealed marked up-regulation of genes associated with inflammation and interferon responses, as well as down-regulation of genes associated with neurologic function. Type II interferon deficiency resulted in colonization of the brain by Brucella, but mice lacking both type I and type II interferon signaling more rapidly developed clinical signs of neurobrucellosis, exhibited hippocampal neuronal loss, and had higher levels of Brucella in their brains than mice lacking type II interferon signaling alone. Collectively, these findings indicate ILCs and interferons play an important role in prevention of focal complications during Brucella infection, and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis.
Collapse
Affiliation(s)
- Charles R Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Catherine A Chambers
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Mostafa F N Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri; Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Craig L Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri.
| |
Collapse
|
29
|
Nakazawa T, Morimoto T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Ouji N, Yamada S, Nakagawa I, Park YS, Ito T, Nakase H, Tsujimura T. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma. J Exp Clin Cancer Res 2023; 42:205. [PMID: 37563692 PMCID: PMC10413513 DOI: 10.1186/s13046-023-02770-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor and has "immunologically cold" features. Changing GBM to an "immunologically hot" tumor requires a strong trigger that induces initial immune responses in GBM. Allogeneic natural killer cells (NKCs) have gained considerable attention as promising immunotherapeutic tools against cancer, where gene-edited NKCs would result in effective anti-cancer treatment. The present study focused on the immune checkpoint molecule cytokine-inducible SH2-containing protein (CISH, or CIS) as a critical negative regulator in NKCs. METHODS The GBM tumor environment featured with immunological aspect was analyzed with Cancer immunogram and GlioVis. We generated human primary CIS-deleted NKCs (NK dCIS) using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) with single guide RNA targeting genome sites on CIS coding exons. The genome-edited NKCs underwent microarray with differential expression analysis and gene set enrichment analysis (GSEA). The anti-GBM activity of the genome-edited NKCs was evaluated by apoptosis induction effects against allogeneic GBM cells and spheroids. We further detected in vivo antitumor effects using xenograft brain tumor mice. RESULTS We successfully induced human CIS-deleted NKCs (NK dCIS) by combining our specific human NKC expansion method available for clinical application and genome editing technology. CIS gene-specific guide RNA/Cas9 protein complex suppressed CIS expression in the expanded NKCs with high expansion efficacy. Comprehensive gene expression analysis demonstrated increased expression of 265 genes and decreased expression of 86 genes in the NK dCIS. Gene set enrichment analysis revealed that the enriched genes were involved in NKC effector functions. Functional analysis revealed that the NK dCIS had increased interferon (IFN)ɤ and tumor necrosis factor (TNF) production. CIS deletion enhanced NKC-mediated apoptosis induction against allogeneic GBM cells and spheroids. Intracranial administration of the allogeneic NKCs prolonged the overall survival of xenograft brain tumor mice. Furthermore, the NK dCIS extended the overall survival of the mice. CONCLUSION The findings demonstrated the successful induction of human primary NK dCIS with CRISPR/Cas9 with efficient expansion. CIS deletion enhanced the NKC-mediated anti-tumor effects in allogeneic GBM and could be a promising immunotherapeutic alternative for patients with GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Grandsoul Research Institute for Immunology, Inc, 8-1 Matsui, Uda, Nara, 634-8522, Japan.
- Clinic Grandsoul Nara, Uda, Nara, Japan.
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan.
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsutoshi Nakamura
- Clinic Grandsoul Nara, Uda, Nara, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Noriko Ouji
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Young Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc, 8-1 Matsui, Uda, Nara, 634-8522, Japan
- Clinic Grandsoul Nara, Uda, Nara, Japan
| |
Collapse
|
30
|
Garofalo S, Cocozza G, Mormino A, Bernardini G, Russo E, Ielpo D, Andolina D, Ventura R, Martinello K, Renzi M, Fucile S, Laffranchi M, Mortari EP, Carsetti R, Sciumè G, Sozzani S, Santoni A, Tremblay ME, Ransohoff RM, Limatola C. Natural killer cells and innate lymphoid cells 1 tune anxiety-like behavior and memory in mice via interferon-γ and acetylcholine. Nat Commun 2023; 14:3103. [PMID: 37248289 DOI: 10.1038/s41467-023-38899-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The mechanisms of communication between the brain and the immune cells are still largely unclear. Here, we characterize the populations of resident natural killer (NK) cells and innate lymphoid cells (ILC) 1 in the meningeal dura layer of adult mice. We describe that ILC1/NK cell-derived interferon-γ and acetylcholine can contribute to the modulation of brain homeostatic functions, shaping synaptic neuronal transmission and neurotransmitter levels with effects on mice behavior. In detail, the interferon-γ plays a role in the formation of non-spatial memory, tuning the frequency of GABAergic neurotransmission on cortical pyramidal neurons, while the acetylcholine is a mediator involved in the modulation of brain circuitries that regulate anxiety-like behavior. These findings disclose mechanisms of immune-to-brain communication that modulate brain functions under physiological conditions.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| | | | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- IRCCS Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- IRCCS Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marie-Eve Tremblay
- Centre de Recherche CHU de Quebec-Université Laval, Quebec City, QC, Canada
| | | | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy.
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Rome, Italy.
| |
Collapse
|
31
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
32
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
33
|
Yang B, Mukherjee T, Radhakrishnan R, Paidipally P, Ansari D, John S, Vankayalapati R, Tripathi D, Yi G. HIV-Differentiated Metabolite N-Acetyl-L-Alanine Dysregulates Human Natural Killer Cell Responses to Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:7267. [PMID: 37108430 PMCID: PMC10138430 DOI: 10.3390/ijms24087267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has latently infected over two billion people worldwide (LTBI) and caused ~1.6 million deaths in 2021. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared with HIV- LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Plasma samples collected from healthy and HIV-infected individuals were investigated using liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using the online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, and quantitative reverse-transcription PCR (qRT-PCR) were performed using standard procedures to determine the surface markers, cytokines, and other signaling molecule expressions. Seahorse extra-cellular flux assays were used to measure mitochondrial oxidative phosphorylation and glycolysis. Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared with healthy donors. One of the HIV-upregulated metabolites, N-acetyl-L-alanine (ALA), inhibits pro-inflammatory cytokine IFN-γ production by the NK cells of LTBI+ individuals. ALA inhibits the glycolysis of LTBI+ individuals' NK cells in response to Mtb. Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK-cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV-Mtb interaction and providing insights into the implication of nutrition intervention and therapy for HIV-Mtb co-infected patients.
Collapse
Affiliation(s)
- Baojun Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Rajesh Radhakrishnan
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Padmaja Paidipally
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Sahana John
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Deepak Tripathi
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
34
|
Shafiei M, Mozhgani SH. Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP. Mol Neurobiol 2023; 60:3839-3854. [PMID: 36947318 DOI: 10.1007/s12035-023-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Human T lymphotropic virus-associated myelopathy/tropical spastic paraparesis (HTLV/TSP), also known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and multiple sclerosis (MS) are chronic debilitating diseases of the central nervous system; although the etiology of which is different, similarities have been observed between these two demyelinating diseases, especially in clinical manifestation and immunopathogenesis. Exorbitant response of the immune system to the virus and neurons in CNS is the causative agent of HAM/TSP and MS, respectively. Helper T lymphocyte-17 cells (Th17s), a component of the immune system, which have a proven role in immunity and autoimmunity, mediate protection against bacterial/fungal infections. The role of these cells has been reviewed in several CNS diseases. A pivotal role for Th17s is presented in demyelination, even more axial than Th1s, during MS. The effect of Th17s is not well determined in HTLV-1-associated infections; however, the evidence that we have supplied in this review illustrates the attendance, also the role of Th17 cells during HAM/TSP. Furthermore, for better conception concerning the trace of these cells in HAM/TSP, a comparative characterization with MS, the resembling disease, has been applied here.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
35
|
Bao MY, Li M, Bu QR, Yang Y, Song H, Wang CZ, Wang TM, Li N. The effect of herbal medicine in innate immunity to Candida albicans. Front Immunol 2023; 14:1096383. [PMID: 37483621 PMCID: PMC10359817 DOI: 10.3389/fimmu.2023.1096383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/25/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogenic fungus that often causes mucosal and systemic infections. Several pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), have been implicated in the host recognition of C. albicans. These PRRs recognize the pathogen-associated molecular patterns (PAMPs) of C. albicans to activate innate immune cells, thereby rapidly inducing various inflammatory responses by activating intracellular signaling cascades. Herbal medicine and its active components deserve priority development due to their low toxicity and high antibacterial, antiviral and antifungal activities. This review discussed the activities of herbal compounds against C. albicans and their related mechanisms, especially their regulatory role on innate immune cells such as neutrophils, macrophages, and dendritic cells (DCs) implicated in C. albicans infections. Our work aims to find new therapeutic drugs and targets to prevent and treat diseases caused by C. albicans infection with the mechanisms by which this fungus interacts with the innate immune response.
Collapse
Affiliation(s)
- Meng-Yuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qing-Ru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chang-Zhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tian-Ming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Arianfar E, Khandoozi SR, Mohammadi S, Memarian A. Suppression of CD56 bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression. Clin Transl Oncol 2023; 25:841-851. [PMID: 36414921 DOI: 10.1007/s12094-022-02997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Natural killer (NK) cells, as professional cytotoxic cells, play a key role against cancer in the early and metastatic stages. Their functional defects are highly associated with the initiation or progression of breast cancer (BC). Here, we investigated the phenotypic characterization of NK cells in 26 newly diagnosed BC patients in comparison to 12 healthy counterparts. METHODS Expression of CXCR3 and PD-1, and also NKG2D, and TGF-βRII were studied on CD56dim and CD56bright NK cells from fresh peripheral blood (PB) samples using flow cytometry. The plasma levels of IFN-γ and soluble MIC-A levels were also assessed by ELISA. RESULTS Both CD56dim and CD56bright NK subtypes showed lower CXCR3 and NKG2D expression in BC patients than healthy subjects. Furthermore, patients' CD56bright NK cells significantly showed higher expression levels of TGF-βRII and PD-1. Interestingly, increased concentration of MIC-A level in plasma of BC patients was associated with the higher TGF-βRII and PD-1 expression in all NK cells, while the plasma level of IFN-γ was associated with the lower TGF-βRII expression on CD56bright NK cells in these patients. CONCLUSION Our results demonstrated phenotypically suppressed-NK cells, especially in the CD56bright subset of BC patients. It specifies their potential incompetence and outlines decrement of their anti-tumor activity, which could be interrelated with the tumor pathogenesis, TME immunosuppression, and so disease progression. The induction of compensatory mechanisms revives NK cells function and could be used in combination with the conventional treatments as a putative therapeutic approach for targeted immunotherapy.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran. .,Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
37
|
Yang B, Mukherjee T, Radhakrishnan R, Paidipally P, Ansari D, John S, Vankayalapati R, Tripathi D, Yi G. HIV-differentiated metabolite N-Acetyl-L-Alanine dysregulates human natural killer cell responses to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530445. [PMID: 36909560 PMCID: PMC10002710 DOI: 10.1101/2023.02.28.530445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Background Mycobacterium tuberculosis ( Mtb ) has latently infected over two billion people worldwide (LTBI) and causes 1.8 million deaths each year. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared to the HIV-LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Methods Plasma samples collected from healthy and HIV-infected individuals were investigated by liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using an online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, quantitative reverse transcription PCR (qRT-PCR) were performed by standard procedure to determine the surface markers, cytokines and other signaling molecule expression. Seahorse extra cellular flux assays were used to measure the mitochondrial oxidative phosphorylation and glycolysis. Results Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared to healthy donors. One of the HIV-upregulated metabolites, N-Acetyl-L-Alanine (ALA), inhibits pro-inflammatory cytokine IFN-□ production by NK cells of LTBI+ individuals. ALA inhibits glycolysis of LTBI+ individuals' NK cells in response to Mtb . Conclusions Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV- Mtb interaction and providing the implication of nutrition intervention and therapy for HIV- Mtb co-infected patients.
Collapse
|
38
|
Yu JL, Jang SRJ, Liu KY. Exploring the Interactions of Oncolytic Viral Therapy and Immunotherapy of Anti-CTLA-4 for Malignant Melanoma Mice Model. Cells 2023; 12:cells12030507. [PMID: 36766849 PMCID: PMC9914370 DOI: 10.3390/cells12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Oncolytic ability to direct target and lyse tumor cells makes oncolytic virus therapy (OVT) a promising approach to treating cancer. Despite its therapeutic potential to stimulate anti-tumor immune responses, it also has immunosuppressive effects. The efficacy of OVTs as monotherapies can be enhanced by appropriate adjuvant therapy such as anti-CTLA-4. In this paper, we propose a mathematical model to explore the interactions of combined therapy of oncolytic viruses and a checkpoint inhibitor, anti-CTLA-4. The model incorporates both the susceptible and infected tumor populations, natural killer cell population, virus population, tumor-specific immune populations, virus-specific immune populations, tumor suppressive cytokine IFN-g, and the effect of immune checkpoint inhibitor CTLA-4. In particular, we distinguish the tumor-specific immune abilities of CD8+ T, NK cells, and CD4+ T cells and describe the destructive ability of cytokine on tumor cells as well as the inhibitory capacity of CTLA-4 on various components. Our model is validated through the experimental results. We also investigate various dosing strategies to improve treatment outcomes. Our study reveals that tumor killing rate by cytokines, cytokine decay rate, and tumor growth rate play important roles on both the OVT monotherapy and the combination therapy. Moreover, parameters related to CD8+ T cell killing have a large impact on treatment outcomes with OVT alone, whereas parameters associated with IFN-g strongly influence treatment responses for the combined therapy. We also found that virus killing by NK cells may halt the desired spread of OVs and enhance the probability of tumor escape during the treatment. Our study reveals that it is the activation of host anti-tumor immune system responses rather than its direct destruction of the tumor cells plays a major biological function of the combined therapy.
Collapse
Affiliation(s)
- Jui-Ling Yu
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 43301, Taiwan
- Correspondence:
| | - Sophia R.-J. Jang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Kwei-Yan Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 53053, Taiwan
| |
Collapse
|
39
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
40
|
Deng Y, Shi S, Luo J, Zhang Y, Dong H, Wang X, Zhou J, Wei Z, Li J, Xu C, Xu S, Sun Y, Ni B, Wu Y, Yang D, Han C, Tian Y. Regulation of mRNA stability contributes to the function of innate lymphoid cells in various diseases. Front Immunol 2023; 14:1118483. [PMID: 36776864 PMCID: PMC9909350 DOI: 10.3389/fimmu.2023.1118483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Innate lymphoid cells (ILCs) are important subsets of innate immune cells that regulate mucosal immunity. ILCs include natural killer cells, innate lymphoid cells-1 (ILC1s), ILC2s, and ILC3s, which have extremely important roles in the immune system. In this review, we summarize the regulation of mRNA stability mediated through various factors in ILCs (e.g., cytokines, RNA-binding proteins, non-coding RNAs) and their roles in mediating functions in different ILC subsets. In addition, we discuss potential therapeutic targets for diseases such as chronic obstructive pulmonary disease, cancer, and pulmonary fibrosis by regulation of mRNA stability in ILCs, which may provide novel directions for future clinical research.
Collapse
Affiliation(s)
- Yuanyu Deng
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Saiyu Shi
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyuan Wei
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiahui Li
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Xu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuai Xu
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| |
Collapse
|
41
|
Metabolic regulation of NK cell function: implications for immunotherapy. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00020. [PMID: 36710923 PMCID: PMC9869966 DOI: 10.1097/in9.0000000000000020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes capable of rapidly responding to tumors and infection without prior sensitization. There is increasing interest and success in harnessing NK cell function for the treatment of disease, in particular cancers. NK cell activation is dependent on integration of signals through cytokine and germline-encoded activating and inhibitory receptors. The availability of metabolic fuels and pathways is required for NK effector functions including proliferation, killing, and production of interferon gamma (IFN-γ). An understanding of NK cell immunometabolism is thus essential for developing immunotherapy approaches that will allow for optimal effector functions in patients. Studies in mice and humans have demonstrated stimulation-dependent metabolic changes that are required for NK cell function. Here we review the most recent findings in NK cell immunometabolism relevant to disease models and translation to therapy of patients.
Collapse
|
42
|
Osuna-Espinoza KY, Rosas-Taraco AG. Metabolism of NK cells during viral infections. Front Immunol 2023; 14:1064101. [PMID: 36742317 PMCID: PMC9889541 DOI: 10.3389/fimmu.2023.1064101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Collapse
Affiliation(s)
- Kenia Y Osuna-Espinoza
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Adrián G Rosas-Taraco
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
43
|
Menees KB, Lee JK. New Insights and Implications of Natural Killer Cells in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S83-S92. [PMID: 35570499 PMCID: PMC9535577 DOI: 10.3233/jpd-223212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of dopaminergic neurons in the substantia nigra and the abnormal aggregation and accumulation of the alpha-synuclein (α-syn) protein into Lewy bodies. It is established that there is an association between inflammation and PD; however, the time course of the inflammatory process as well as the immune cells involved are still debated. Natural killer (NK) cells are innate lymphocytes with numerous functions including targeting and killing infected or malignant cells, antimicrobial defense, and resolving inflammation. NK cell subsets differ in their effector function capacities which are modulated by activating and inhibitory receptors expressed at the cell surface. Alterations in NK cell numbers and receptor expression have been reported in PD patients. Recently, NK cell numbers and frequency were shown to be altered in the periphery and in the central nervous system in a preclinical mouse model of PD. Moreover, NK cells have recently been shown to internalize and degrade α-syn aggregates and systemic NK cell depletion exacerbated synuclein pathology in a preclinical mouse model of PD, indicating a potential protective role of NK cells. Here, we review the inflammatory process in PD with a particular focus on alterations in NK cell numbers, phenotypes, and functions.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
44
|
Song H, Liu X, Gao X, Li J, Shang Y, Gao W, Li Y, Zhang Z. Transcriptome analysis of pre-immune state induced by interferon gamma inhibiting the replication of H 9N 2 avian influenza viruses in chicken embryo fibroblasts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105332. [PMID: 35811034 DOI: 10.1016/j.meegid.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Interferon (IFN), a critical antiviral cytokine produced by pathogens-induced cells, plays an important role in host innate immune system. In this study, to investigate the inhibition effect of IFN on avian influenza virus (AIV), Chicken Embryo Fibroblasts (CEFs) was infected by H9N2 AIV. The pre-immune state and transcriptome analysis have been observed and performed. The result showed chicken interferon gamma (chIFN-γ) have the most inhibitory effect on H9N2 virus among three types of chicken interferons (chIFNs). Inhibition of chIFN-γ on H9N2 virus was verified by indirect immunofluorescence, RT-qPCR and western blot. The possible signaling pathways induced by chIFN-γ with or without virus were analyzed by transcriptome. The transcriptome data were compared among H9N2-infected, chIFN-γ-treated, chIFN-γ + H9N2-treated, and Control groups. In summary, RNA-sequencing (RNA-seq) data suggested that H9N2 virus infection resulted in corresponding response of certain defensive, inflammatory and metabolism pathways to the virus replication in CEFs. Furthermore, while CEFs were treated with chIFN-γ, many immune-related signaling pathways in cells are affected and altered. Antiviral genes involved in these immune pathways such as interferon regulatory factors, chemokines, interferon-stimulated genes (ISGs) and transcription factors were significantly up-regulated, and showed significant antiviral responses. Compared with virus infected CEFs alone, pretreatment with IFN induced the expression of antiviral genes and activated related antiviral pathways, inhibited the viral replication as result. Our study provided functional annotations for antiviral genes and the basis for studying the mechanism of chIFN-γ mediated response against H9N2 AIV.
Collapse
Affiliation(s)
- Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weisong Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
45
|
Characterization of peripheral T helper 17 (Th17) cells phenotype in postmenopausal women with estrogen insufficiency. Blood Cells Mol Dis 2022; 98:102702. [DOI: 10.1016/j.bcmd.2022.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
|
46
|
Yu Q, Newsome RC, Beveridge M, Hernandez MC, Gharaibeh RZ, Jobin C, Thomas RM. Intestinal microbiota modulates pancreatic carcinogenesis through intratumoral natural killer cells. Gut Microbes 2022; 14:2112881. [PMID: 35980869 PMCID: PMC9397420 DOI: 10.1080/19490976.2022.2112881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Preclinical data demonstrate that the gut microbiota can promote pancreatic ductal adenocarcinoma (PDAC), but mechanisms remain unclear. We hypothesized that intestinal microbiota alters anti-tumor innate immunity response to facilitate PDAC progression. Human PDAC L3.6pl cells were heterotopically implanted into Rag1-/- mice after microbiota depletion with antibiotics, while syngeneic murine PDAC Pan02 cells were implanted intrapancreatic into germ-free (GF) C57BL/6 J mice. Natural killer (NK) cells and their IFNγ expression were quantitated by flow cytometry. NK cells were depleted in vivo using anti-Asialo GM1 antibody to confirm the role of NK cells. Bacteria-free supernatant from SPF and GF mice feces was used to test its effect on NK-92MI cell anti-tumor response in vitro. SPF and ex-GF mice (reconstituted with SPF microbiota) developed larger PDAC tumors with decreased NK cell tumor infiltration and IFNγ expression versus GF-Rag1-/-. Microbiota-induced PDAC tumorigenesis was attenuated by antibiotic exposure, a process reversed following NK cell depletion in both Rag1-/- and C57BL/6 J mice. Compared to GF, SPF-Rag1-/- abiotic stool culture supernatant inhibited NK-92MI cytotoxicity, migration, and anti-cancer related gene expression. Gut microbiota promotes PDAC tumor progression through modulation of the intratumoral infiltration and activity of NK cells.
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel C. Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA,Christian Jobin Department of Medicine, University of Florida, 2033 Mowry Rd, 461, Gainesville, Florida32610, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,CONTACT Ryan M. Thomas Department of Surgery, University of Florida, PO Box 100109, Gainesville, Florida32610, USA
| |
Collapse
|
47
|
Cluff E, Magdaleno CC, Fernandez E, House T, Swaminathan S, Varadaraj A, Rajasekaran N. Hypoxia-inducible factor-1 alpha expression is induced by IL-2 via the PI3K/mTOR pathway in hypoxic NK cells and supports effector functions in NKL cells and ex vivo expanded NK cells. Cancer Immunol Immunother 2022; 71:1989-2005. [PMID: 34999917 PMCID: PMC9294031 DOI: 10.1007/s00262-021-03126-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that are specialized to kill tumor cells. NK cells are responsive to the primary cytokine IL-2 in the tumor microenvironment (TME), to activate its effector functions against tumors. Despite their inherent ability to kill tumor cells, dysfunctional NK cells observed within advanced solid tumors are associated with poor patient survival. Hypoxia in the TME is a major contributor to immune evasion in solid tumors that could contribute to impaired NK cell function. HIF-1α is a nodal regulator of hypoxia in driving the adaptive cellular responses to changes in oxygen concentrations. Whether HIF-1α is expressed in hypoxic NK cells in the context of IL-2 and whether its expression regulates NK cell effector function are unclear. Here, we report that freshly isolated NK cells from human peripheral blood in hypoxia could not stabilize HIF-1α protein coincident with impaired anti-tumor cytotoxicity. However, ex vivo expansion of these cells restored HIF-1α levels in hypoxia to promote antitumor cytotoxic functions. Similarly, the human NK cell line NKL expressed HIF-1α upon IL-2 stimulation in hypoxia and exhibited improved anti-tumor cytotoxicity and IFN-γ secretion. We found that ex vivo expanded human NK cells and NKL cells required the concerted activation of PI3K/mTOR pathway initiated by IL-2 signaling in combination with hypoxia for HIF-1α stabilization. These findings highlight that HIF-1α stabilization in hypoxia maximizes NK cell effector function and raises the prospect of NK cells as ideal therapeutic candidates for solid tumors.
Collapse
Affiliation(s)
- Emily Cluff
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Carina C Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Emyly Fernandez
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Trenton House
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Narendiran Rajasekaran
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA.
| |
Collapse
|
48
|
Jung YJ, Kim HS, Jaygal G, Cho HR, Lee KB, Song IB, Kim JH, Kwak MS, Han KH, Bae MJ, Sung MH. Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation. J Microbiol Biotechnol 2022; 32:612-620. [PMID: 35283424 PMCID: PMC9628878 DOI: 10.4014/jmb.2111.11027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stress-induced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.
Collapse
Affiliation(s)
- Ye-Jin Jung
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Hyun-Seok Kim
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Gunn Jaygal
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Hye-Rin Cho
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea
| | - Kyung bae Lee
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea
| | - In-bong Song
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea,Osstem Implant Co., Ltd., Bio R&D Center, Seoul 07789, Republic of Korea
| | - Jong-Hoon Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Mi-Sun Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyung-Ho Han
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Min-Jung Bae
- Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea, Iksan 54576, Republic of Korea,
M.J. Bae Phone: +82- 63-720-0540 E-mail:
| | - Moon-Hee Sung
- Department of R&D Research Center, KookminBio Corporation, Seoul 02826, Republic of Korea,Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea,Corresponding authors M.H. Sung Phone: +82-2-910-4808 Fax: +82-22-910-5739 E-mail:
| |
Collapse
|
49
|
Jin M, Cao W, Chen B, Xiong M, Cao G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:808859. [PMID: 35646923 PMCID: PMC9136137 DOI: 10.3389/fcell.2022.808859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen. Tumor tissues excrete a large amount of lactate into the extracellular microenvironment in response to TME’s hypoxic or semi-hypoxic state. High lactate concentrations in tumor biopsies have been linked to metastasis and poor clinical outcome. This indicates that the metabolite may play a role in carcinogenesis and lead to immune escape in TME. Lactate is now recognized as an essential carbon source for cellular metabolism and as a signaling molecule in TME, forming an active niche that influences tumor progression. This review summarized the advanced literature demonstrating the functional role of lactate in TME remodeling, elucidating how lactate shapes the behavior and the phenotype of both tumor cells and tumor-associated cells. We also concluded the intriguing interactions of multiple immune cells in TME. Additionally, we demonstrated how lactate functioned as a novel function factor by being used in a new histone modification, histone lysine lactylation, and to regulate gene expression in TME. Ultimately, because lactate created a favorable niche for tumor progression, we summarized potential anti-tumor strategies targeting lactate metabolism and signaling to investigate better cancer treatment.
Collapse
Affiliation(s)
| | | | - Bo Chen
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Maoming Xiong
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Guodong Cao
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| |
Collapse
|
50
|
Majie Cataplasm Promotes Th1 Response to Fight against Asthmatic Th2 Inflammation through NKs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6745420. [PMID: 35600943 PMCID: PMC9119792 DOI: 10.1155/2022/6745420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022]
Abstract
Background Immune cells are tightly bound up with the pathogenesis of asthma. Besides T cells, B cells, macrophages, and mast cells, the mechanism of innate lymphoid cells (ILCs) in asthma is gradually explicit. As a kind of traditional Chinese medicine, Majie cataplasm realizes its potential in the clinical setting as an adjuvant for asthma. In our previous experiments, Majie cataplasm inhibits the increasing Th1 and Th2 in allergic asthma inflammation and reshapes a balance between Th1 and Th2. As ILCs are the reflection of Th cells in lung tissues, we will figure out whether Majie cataplasm could have similar effects on ILCs or not. Methods A total of 40 female C57/BL6 mice were randomly divided into the control group (n = 10), the asthma model group (n = 10), the dexamethasone group (n = 10), and the Majie cataplasm group (n = 10). Except for the control group, mice were sensitized with ovalbumin (OVA) and excited to establish mice models of asthma. Lung tissue and splenic tissue were collected at 24 h after the last challenge with OVA, and the cell suspension of the lungs and spleen was prepared. The number of ILC1s, ILC2s, ILC3s, and NKs cells in the lungs and Tregs and B10s in the spleen were detected by flow cytometry (FCM). This was followed by simultaneous quantitative detection of 40 inflammatory cytokines and chemokines in the lung by a protein microarray. Results The dexamethasone and Majie cataplasm could restore the number of ILC1s, ILC2s, and ILC3s in lung tissue. Compared with the control group, these cells remained unchanged in the asthma model group, while ILC1s (P < 0.001, P < 0.01), ILC2s (P < 0.001, P < 0.01), and ILC3s (P < 0.01, P < 0.05) were restored after the intervention of dexamethasone and Majie cataplasm. The number of NKs was low among the control group, the asthma model group, and the dexamethasone group, while the number of NKs rocketed in the Majie cataplasm group (P < 0.0001). For splenic Tregs and B10s, Majie cataplasm could curb the increasing numbers of them in the asthma model group (P < 0.0001, P < 0.01), while only Tregs were suppressed by the dexamethasone (P < 0.0001). For the inflammatory cytokines in the lung, the contents of TNF-α, TNFR2, CXCL-9, CCL-12, CCL-9, CCL-2, and CCL-5 in the asthma model group were higher than those in the control group, while the contents of GM-CSF and IL-1α were decreased. Comparing the asthma model group to the dexamethasone group, the levels of G-CSF, CCL-9, CCL-5, and TNFR2 in the former group were higher. The levels of TNF-α, TNFR2, and CCL-9 in the asthma model group increase, while the levels of IFN-γ, IL-1α, ICAM-1, and IL-4 increased in the Majie cataplasm group, especially IFN-γ and IL-1α. Conclusion Both the dexamethasone and Majie cataplasm could control the asthmatic inflammation by reducing the inflammatory factors, inhibiting the adaptive inflammation reaction in the latter stage of inflammation and furtherly reversing the inhibition of ILC2s, ILC2s, and ILC3s. In addition, Majie cataplasm can promote the quantity of NKs and the content of IL-1α and IFN-γ, induce IFN-γ+NKs to shut down the Th2 response, and tend to elicit the Th1 response.
Collapse
|