1
|
Li C, Yan X, Yang Y, Nou X, Sun Z, Lillehoj HS, Lu M, Harlow K, Rivera I. In vitro and genomic mining studies of anti-Clostridium perfringens Compounds Derived from Bacillus amyloliquefaciens. Poult Sci 2024; 103:103871. [PMID: 38848632 PMCID: PMC11214307 DOI: 10.1016/j.psj.2024.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Clostridium perfringens is an important opportunistic microorganism in commercial poultry production that is implicated in necrotic enteritis (NE) outbreaks. This disease poses a severe financial burden on the global poultry industry, causing estimated annual losses of $6 billion globally. The ban on in-feed antibiotic growth promoters has spurred investigations into approaches of alternatives to antibiotics, among which Bacillus probiotics have demonstrated varying degrees of effectiveness against NE. However, the precise mechanisms underlying Bacillus-mediated beneficial effects on host responses in NE remain to be further elucidated. In this manuscript, we conducted in vitro and genomic mining analysis to investigate anti-C. perfringens activity observed in the supernatants derived from 2 Bacillus amyloliquefaciens strains (FS1092 and BaD747). Both strains demonstrated potent anti-C. perfringens activities in in vitro studies. An analysis of genomes from 15 B. amyloliquefaciens, 11 B. velezensis, and 2 B. subtilis strains has revealed an intriguing clustering pattern among strains known to possess anti-C. perfringens activities. Furthermore, our investigation has identified 7 potential antimicrobial compounds, predicted as secondary metabolites through antiSMASH genomic mining within the published genomes of B. amyloliquefaciens species. Based on in vitro analysis, BaD747 may have the potential as a probiotic in the control of NE. These findings not only enhance our understanding of B. amyloliquefaciens's action against C. perfringens but also provide a scientific rationale for the development of novel antimicrobial therapeutic agents against NE.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA.
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Yishan Yang
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - KaLynn Harlow
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Israel Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Deslauriers N, Maduro L, Lepp D, Gong J, Abdul-Careem MF, Boulianne M. Determination of the virulence status of Clostridium perfringens strains using a chicken intestinal ligated loop model is important for understanding the pathogenesis of necrotic. Poult Sci 2024; 103:103433. [PMID: 38232618 PMCID: PMC10827602 DOI: 10.1016/j.psj.2024.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Necrotic enteritis (NE) is a poultry intestinal disease caused by virulent strains of the bacterium Clostridium perfringens (C. perfringens). This anaerobic bacterium produces a wide range of enzymes and toxins in the gut which leads to NE development. It is generally accepted by the poultry veterinarians that netB-positive C. perfringens strains are virulent and netB-negative strains do not cause NE. However, NE pathogenesis remains unclear as contradictory results have been reported. The use of experimental in vivo models is a valuable tool to understand the pathogenesis of a disease. In this study, a chicken ligated loop model was used to determine the virulence status of 79 C. perfringens strains from various geographical locations, sources, and genotype profiles. According to our model and based on histologic lesion scoring, 9 C. perfringens strains were classified as commensal, 35 as virulent, and 34 as highly virulent. The virulence of only 1 C. perfringens strain could not be classified as its lesion score was variable (from <10 to >15). In general, NE lesions were more severe in intestinal loops inoculated with netB-positive C. perfringens strains than those inoculated with netB-negative strains. The prevalence of netB among strains classified as commensal, virulent, and highly virulent was 56% (5/9), 54%, (19/35), and 59% (20/34). These results suggest that NetB is not required to cause NE lesions and that other factors are also involved. The classification of the virulence status of C. perfringens strains should not be based solely on the presence or absence of this toxin. Therefore, the use of an in vivo model is essential to distinguish commensal from virulent strains of C. perfringens.
Collapse
Affiliation(s)
- Nicolas Deslauriers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Lila Maduro
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C58, Calgary, Alberta, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.
| |
Collapse
|
3
|
Goo D, Park I, Nam H, Lee Y, Sawall J, Smith AH, Rehberger TG, Li C, Lillehoj HS. Collagen adhesin protein and necrotic enteritis B-like toxin as biomarkers for early diagnosis of necrotic enteritis in commercial broiler chickens. Poult Sci 2023; 102:102647. [PMID: 37060834 PMCID: PMC10139936 DOI: 10.1016/j.psj.2023.102647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Mouse monoclonal antibodies (mAbs) reactive with Clostridium perfringens collagen adhesin protein (CNA) and necrotic enteritis B-like toxin (NetB) were developed. The best capture/detection mAb pairs for CNA and NetB were selected based on their affinity and specificity to develop sandwich enzyme-linked immunosorbent assays (ELISAs) to detect CNA and NetB proteins, respectively, in jejunal digesta samples from commercial broiler farms in the United States. Prior to the analysis of samples from commercial broiler flocks, the specificity and sensitivity of the CNA and NetB ELISAs were validated using sera, jejunal digesta, and fecal samples from chickens coinfected with Eimeria maxima and CNA+/NetB+C. perfringens in an animal model of necrotic enteritis (NE). Subsequently, a total of 251 field samples were collected from 74 commercial poultry farms. Among these, 18 samples were from 6 broiler farms that used certified organics (CO), and 155 samples were from 42 farms with nonantibiotics (NA). In jejunal digesta samples, CNA levels ranged from 0.02 to 0.59 ng/mL and NetB levels ranged from 0.09 to 1.91 ng/mL. CNA and NetB levels showed a positive correlation with each other (Pearson correlation coefficient r = 0.772, P < 0.001). CNA and NetB levels in jejunal digesta were significantly decreased in CO farms compared with those from NA farms (P < 0.001). In conclusion, these new C. perfringens antigen-specific sandwich ELISAs offer a sensitive and specific means to detect C. perfringens CNA and NetB proteins as biomarkers of early NE occurrence in field samples from commercial broiler chickens.
Collapse
Affiliation(s)
- D Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA; Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - I Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - H Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Y Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - J Sawall
- Arm & Hammer Animal and Food Production, Waukesha, WI, USA
| | - A H Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI, USA
| | - T G Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI, USA
| | - C Li
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - H S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA.
| |
Collapse
|
4
|
Sun Z, Lu M, Lillehoj H, Lee Y, Goo D, Yuan B, Yan X, Li C. Characterization of Collagen Binding Activity of Clostridium perfringens Strains Isolated from Broiler Chickens. Pathogens 2023; 12:778. [PMID: 37375468 DOI: 10.3390/pathogens12060778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridium perfringens is the etiological agent for necrotic enteritis (NE) in broiler chickens, which causes a substantial economic loss of an estimated USD 6 billion annually in the global poultry industry. Collagen adhesion is involved in the NE pathogenesis in poultry. In this study, the binding capabilities of chicken C. perfringens isolates of various genetic backgrounds (netB-tpeL-, netB+tpeL-, netB+tpeL+) to collagen types I-V and gelatin were examined, and the putative adhesin protein cnaA gene was investigated at the genomic level. In total, 28 C. perfringens strains from healthy and NE-inflicted sick chickens were examined. The results on collagen adhesin-encoding gene cnaA by the quantitative-PCR results indicated that netB-tpeL- isolates had much lower copies of the detectable cnaA gene than netB+ isolates (10 netB+tpeL- isolates, 5 netB+tpeL+ isolates). Most of the virulent C. perfringens isolates demonstrated collagen-binding abilities to types I-II and IV-V, while some strains showed weak or no binding to collagen type III and gelatin. However, the netB+tpeL+ isolates showed significantly higher binding capabilities to collagen III than netB-tpeL- and netB+tpeL- isolates. The data in this study suggest that the collagen-binding capability of clinical C. perfringens isolates correlates well with their NE pathogenicity levels, especially for C. perfringens isolates carrying genes encoding crucial virulence factors and virulence-associated factors such as netB, cnaA, and tpeL. These results indicate that the presence of the cnaA gene may be correlated with C. perfringens virulence (particularly for netB+ isolates).
Collapse
Affiliation(s)
- Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Baohong Yuan
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Xianghe Yan
- Environment Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
Tian R, Xu S, Li P, Li M, Liu Y, Wang K, Liu G, Li Y, Dai L, Zhang W. Characterization of G-type Clostridium perfringens bacteriophages and their disinfection effect on chicken meat. Anaerobe 2023; 81:102736. [PMID: 37196842 DOI: 10.1016/j.anaerobe.2023.102736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Clostridium perfringens is one of most important bacterial pathogens in the poultry industry and mainly causes necrotizing enteritis (NE). This pathogen and its toxins can cause foodborne diseases in humans through the food chain. In China, with the rise of antibiotic resistance and the banning of antibiotic growth promoters (AGPs) in poultry farming, food contamination and NE are becoming more prevalent. Bacteriophages are a viable technique to control C. perfringens as an alternative to antibiotics. We isolated Clostridium phage from the environment, providing a new method for the prevention of NE and C. perfringens contamination in meat. METHODS In this study, we selected C. perfringens strains from various regions and animal sources in China for phage isolation. The biological characteristics of Clostridium phage were studied in terms of host range, MOI, one-step curve, temperature and pH stability. We sequenced and annotated the genome of the Clostridium phage and performed phylogenetic and pangenomic analyses. Finally, we studied its antibacterial activity against bacterial culture and its disinfection effect against C. perfringens in meat. RESULTS A Clostridium phage, named ZWPH-P21 (P21), was isolated from chicken farm sewage in Jiangsu, China. P21 has been shown to specifically lyse C. perfringens type G. Further analysis of basic biological characteristics showed that P21 was stable under the conditions of pH 4-11 and temperature 4-60 °C, and the optimal multiple severity of infection (MOI) was 0.1. In addition, P21 could form a "halo" on agar plates, suggesting that the phage may encode depolymerase. Genome sequence analysis showed that P21 was the most closely related to Clostridium phage CPAS-15 belonging to the Myoviridae family, with a recognition rate of 97.24% and a query coverage rate of 98%. No virulence factors or drug resistance genes were found in P21. P21 showed promising antibacterial activity in vitro and in chicken disinfection experiments. In conclusion, P21 has the potential to be used for preventing and controlling C. perfringens in chicken food production.
Collapse
Affiliation(s)
- Rui Tian
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Sixiang Xu
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Pei Li
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Mengxuan Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, Jinan, 250100, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, Jinan, 250100, China
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province, China
| | - Guangjin Liu
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, 16 Xingdan Road, Haikou, China.
| | - Wei Zhang
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing City, 210095, China.
| |
Collapse
|
6
|
Mohiuddin M, Song Z, Liao S, Qi N, Li J, Lv M, Lin X, Cai H, Hu J, Liu S, Zhang J, Gu Y, Sun M. Animal Model Studies, Antibiotic Resistance and Toxin Gene Profile of NE Reproducing Clostridium perfringens Type A and Type G Strains Isolated from Commercial Poultry Farms in China. Microorganisms 2023; 11:microorganisms11030622. [PMID: 36985195 PMCID: PMC10059142 DOI: 10.3390/microorganisms11030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Poultry necrotic enteritis (NE) is a complex and multifactorial disease caused by Clostridium perfringens types. Earlier, the disease was prevented and/or controlled through the addition of in-feed antibiotics and antimicrobial growth promoters (AGPs). The ban on the use of these agents as feed additives has been a major reason for re-emergence of this disease leading to huge economic losses to the world poultry industry. Understanding the pathogenesis of NE by developing an effective experimental model remains challenging and lacks consistency owing to the involvement of several critical factors involved in causing lesions of disease in the field. In this study, locally characterized C. perfringens types, i.e., ACP (toxinotype A), and GCP (toxinotype G), obtained from NE outbreaks on commercial farms in China (2020–2022), were used to experimentally induce NE in Specific-Pathogen-Free (SPF) chicks. The lesion scores observed on day 20 were 1.9 ± 1.10 (GCP strain) and 1.5 ± 1.08 (ACP strain), and both had significant difference as compared to the control group. The inclusion of fishmeal in addition to oral clostridial dose, i.e., fishmeal (day 7 onward) + Clostridia (7.5 × 108 cfu/mL consecutively for 04 days) induced a lesion score of 2.0 ± 1.15 in respective groups. Use of coccidia (Eimeria necatrix) on day 9 followed by clostridia challenge enhanced the lesion scores to 2.5 ± 1.08 and 2.2 ± 1.23 for type G and type A strains, respectively. When both predisposing factors (coccidia + fish meal) were given together, i.e., fishmeal (day 7 onward) and coccidia (day 9) along with clostridia, the lesion scores were 3.2 ± 1.22 (GCP + coccidia + fish meal) and 3.0 ± 1.15 (ACP + coccidia + fish meal). These results were significantly different from group 1 (ACP) and 2 (GCP), in which only C. perfringens was used to induce NE. The clinical signs as well as histopathological lesions in experimentally induced groups were found similar as reported in the literature. The two type G strains identified in this study were also used for susceptibility testing against various drugs. Both strains were found to be resistant to amikacin, doxycycline, metronidazole, neomycin, nystatin, polymyxin B, streptomycin, and tetracycline. Variable susceptibility was seen against ceftriaxone, florfenicol, gentamicin, and kanamycin drugs. Amoxicillin, ampicillin, cefotaxime, ciprofloxacin, enrofloxacin, ofloxacin, and penicillin were effective drugs based upon their low level of resistance and therefore they might be preferred over other antimicrobial agents for proper treatment/prophylaxis of NE infections. Further studies are needed to study the pathogenesis of NE in detail in experimentally induced models along with continuous monitoring of the resistance pattern of C. perfringens strains in the field.
Collapse
Affiliation(s)
- Mudassar Mohiuddin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhongfeng Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaobing Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Youfang Gu
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
- Correspondence: (Y.G.); (M.S.)
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (Y.G.); (M.S.)
| |
Collapse
|
7
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022; 10:1958. [PMID: 36296234 PMCID: PMC9610872 DOI: 10.3390/microorganisms10101958] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, β-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | | | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Yuan B, Sun Z, Lu M, Lillehoj H, Lee Y, Liu L, Yan X, Yang DA, Li C. Immunization with Pooled Antigens for Clostridium perfringens Conferred Partial Protection against Experimental Necrotic Enteritis in Broiler Chickens. Vaccines (Basel) 2022; 10:vaccines10060979. [PMID: 35746587 PMCID: PMC9229587 DOI: 10.3390/vaccines10060979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Necrotic enteritis (NE) is a multifactorial and important enteric infectious disease etiologically caused by pathogenic C. perfringens infection, accounting for the estimated loss of around USD 6 billion in the global poultry industry. The increasing incidence of NE was found to be associated with the voluntary reduction or withdrawal of antibiotic growth promoters from animal feed during recent years. Therefore, the development of effective vaccines specific to NE assumes a priority for the poultry industry. This study aimed to identify the potential C. perfringens proteins as vaccine targets for NE. Three recombinant C. perfringens proteins targeting five antigens were prepared: two chimeric proteins (alpha-toxin and NetB, fructose-1,6-bisphosphate aldolase (FBA) and a zinc metalloprotease (Zm)), and one single collagen adhesion protein (Cna). Their protection efficacies were evaluated with a potent challenge model of Eimeria maxima/C. perfringens dual infections using a netB+tpeL+ C. perfringens strain. Young chicks were immunized twice subcutaneously with adjuvanted C. perfringens proteins on Days 4 and 15. At six days after the second immunization, the chickens immunized with Cna, FBA, and Zm antigens, and alpha-toxin had much higher serum antibody titers than unvaccinated controls prior to the challenge. Following the challenge, the pooled antigen-immunized group demonstrated no mortality and the least lesion scores against virulent challenge. The results indicate that the immunization with multicomponent antigens, including C. perfringens housekeeping protein Cna, may confer partial protection.
Collapse
Affiliation(s)
- Baohong Yuan
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
- School of Basic Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Liheng Liu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA;
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
- Correspondence:
| |
Collapse
|
9
|
Lee KW, Lillehoj HS. Role of Clostridium perfringens Necrotic Enteritis B-like Toxin in Disease Pathogenesis. Vaccines (Basel) 2021; 10:vaccines10010061. [PMID: 35062722 PMCID: PMC8780507 DOI: 10.3390/vaccines10010061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type A/G that impacts the global poultry industry by compromising the performance, health, and welfare of chickens. Coccidiosis is a major contributing factor to NE. Although NE pathogenesis was believed to be facilitated by α-toxin, a chromosome-encoded phospholipase C enzyme, recent studies have indicated that NE B-like (NetB) toxin, a plasmid-encoded pore-forming heptameric protein, is the primary virulence factor. Since the discovery of NetB toxin, the occurrence of NetB+ C. perfringens strains has been increasingly reported in NE-afflicted poultry flocks globally. It is generally accepted that NetB toxin is the primary virulent factor in NE pathogenesis although scientific evidence is emerging that suggests other toxins contribute to NE. Because of the complex nature of the host-pathogen interaction in NE pathogenesis, the interaction of NetB with other potential virulent factors of C. perfringens needs better characterization. This short review will summarize the primary virulence factors involved in NE pathogenesis with an emphasis on NetB toxin, and a new detection method for large-scale field screening of NetB toxin in biological samples from NE-afflicted commercial broiler flocks.
Collapse
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0495
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
| |
Collapse
|
10
|
Mohiuddin M, Yuan W, Song Z, Liao S, Qi N, Li J, Lv M, Wu C, Lin X, Hu J, Cai H, Sun M. Experimental induction of necrotic enteritis with or without predisposing factors using netB positive Clostridium perfringens strains. Gut Pathog 2021; 13:68. [PMID: 34789342 PMCID: PMC8596908 DOI: 10.1186/s13099-021-00463-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background Poultry necrotic enteritis (NE) is an economically important disease caused by C. perfringens. The disease causing ability of this bacterium is linked with the production of a wide variety of toxins. Among them, necrotic enteritis B-like (NetB) toxin is reported to be involved in the pathogenesis of NE; in addition there is some circumstantial evidence that tpeL toxin may enhance virulence, but this is yet to be definitely shown. The situation becomes more complicated in the presence of a number of predisposing factors like co-infection with coccidia, type of diet and use of high protein diet. These co-factors alter the intestinal environment, thereby favoring the production of more toxins, leading to a more severe disease. The objective of this study was to develop a successful animal model that would induce clinical signs and lesions of NE using C. perfringens type G strains obtained from field outbreaks. A separate trial was simultaneously considered to establish the role of dietary factor with coccidial co-infection in NE. Results The results have shown that use of net-B positive C. perfringens without predisposing factors induce moderate to severe NE (Av. Lesion score 1.79 ± 1.50). In a separate trial, addition of fish meal to a feed of C. perfringens challenged birds produced higher number of NE cases (Av. Lesion score 2.17 ± 1.28). However, use of less virulent E. necatrix strain along with fish meal in conjunction with net-B positive strain did not alter the severity of NE lesions in specific pathogen free chicken (Av. Lesion score 2.21 ± 1.13). Conclusions This study suggests that virulent C. perfringens type G strains can induce NE lesions in the absence of other predisposing factors. Birds in the clostridia challenged group showed moderate to severe NE lesions. Use of less virulent coccidia strain contributed to a lesser extent in increasing the severity of disease. Maize based diet along with fishmeal (1:1) increased the severity of lesions but statistically it was non-significant. The NE lesions in all experimental groups were found to be present more frequently in the duodenum. In this way, this study provided an effective model for in vivo production of NE in poultry birds.
Collapse
Affiliation(s)
- Mudassar Mohiuddin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Weikang Yuan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongfeng Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Caiyan Wu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Liu L, Yan X, Lillehoj H, Sun Z, Zhao H, Xianyu Z, Lee Y, Melville S, Gu C, Wang Y, Lu M, Li C. Comparison of the Pathogenicity of Five Clostridium perfringens Isolates Using an Eimeria maxima Coinfection Necrotic Enteritis Disease Model in Commercial Broiler Chickens. Avian Dis 2021; 64:386-392. [PMID: 33205165 DOI: 10.1637/aviandiseases-d-19-00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2020] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens (CP) is the etiologic agent of necrotic enteritis (NE) in broiler chickens that is responsible for massive economic losses in the poultry industry in response to voluntary reduction and withdrawal of antibiotic growth promoters. Large variations exist in the CP isolates in inducing intestinal NE lesions. However, limited information is available on CP isolate genetics in inducing NE with other predisposing factors. This study investigated the ability of five CP isolates from different sources to influence NE pathogenesis by using an Eimeria maxima (EM) coinfection NE model: Str.13 (from soil), LLY_N11 (healthy chicken intestine), SM101 (food poisoning), Del1 (netB+tpeL-) and LLY_Tpel17 (netB+tpeL+) for NE-afflicted chickens. The 2-wk-old broiler chickens were preinfected with EM (5 × 103 oocysts) followed by CP infection (around 1 × 109 colony-forming units per chicken). The group of the LLY_Tpel17 isolate with EM coinfection had 25% mortality. No mortality was observed in the groups infected with EM alone, all CP alone, or dual infections of EM/other CP isolates. In this model of EM/CP coinfections, the relative percentages of body weight gain showed statistically significant decreases in all EM/CP groups except the EM/SM101 group when compared with the sham control group. Evident gut lesions were only observed in the three groups of EM/LLY_N11, EM/Del1, and EM/LLY_Tpel17, all of which possessed an essential NE pathogenesis locus in their genomes. Our studies indicate that LLY_Tpel17 is highly pathogenic to induce severe gut lesions and would be a good CP challenge strain for studies investigating pathogenesis and evaluating the protection efficacy for antibiotic alternative approaches.
Collapse
Affiliation(s)
- Liheng Liu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, ARS/USDA, Beltsville, MD 20705
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Hongyan Zhao
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhezi Xianyu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Stephen Melville
- Department of Biological Sciences, Virginia Polytech and State University, Blacksburg, VA 24061
| | - Changqin Gu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfei Wang
- Biostatistics Center, Duke Human Vaccine Institute, Durham, NC 27710
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| |
Collapse
|
12
|
Sun Y, Ni A, Jiang Y, Li Y, Huang Z, Shi L, Xu H, Chen C, Li D, Han Y, Chen J. Effects of Replacing In-feed Antibiotics with Synergistic Organic Acids on Growth Performance, Health, Carcass, and Immune and Oxidative Statuses of Broiler Chickens Under Clostridium perfringens Type A Challenge. Avian Dis 2021; 64:393-400. [PMID: 33205169 DOI: 10.1637/aviandiseases-d-19-00101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/06/2020] [Indexed: 11/05/2022]
Abstract
This study was conducted to investigate the effects of replacing in-feed antibiotics with synergistic organic acids on growth performance, health, carcass, and immune and oxidative statuses of broiler chickens under Clostridium perfringens (CP) type A challenge. Two organic acid products were tested: organic acid 1 (OA1), consisting of butyrate, medium-chain fatty acids, organic acids, and phenolics; and organic acid 2 (OA2), consisting of buffered short-chain fatty acids. Six hundred 1-day-old male Arbor Acres broiler chicks were randomly assigned to one of five treatments: Control 1, basal diet, nonchallenged birds; Control 2, basal diet, with CP challenge; antimicrobial growth promoters (AGP), basal diet supplemented with Aureomycin (chlortetracycline), with CP challenge; OA1, basal diet supplemented with OA1, with CP challenge; and OA1OA2, basal diet supplemented with OA1 and OA2, with CP challenge. Each treatment had eight replicate pens of 15 birds. The experiments lasted for 29 days. The disease challenge was performed on days 15-17, with an oral gavage of 0.5 mL of CP culture (2.0 × 108 colony-forming units [CFU]/mL) for each bird. Body weights (BWs), intestinal lesion scores, immune organ indices, and serum malondialdehyde (MDA) concentrations were measured on days 19, 22, and 29, respectively, in three birds per pen. Carcass characteristics were determined on day 29. No treatment-related differences in mortality were noted before (P = 0.28) or after (P = 0.64) challenge or over the whole study period (days 0-28; P = 0.66). On day 19, the BW of Control 2 was lower than other treatments (P < 0.0001). On day 22, AGP, OA1, and OA1OA2 had higher BW than Control 2 (P = 0.001). The breast muscle yield of OA1 and OA1OA2 was higher than AGP (P < 0.05). The abdominal fat yield of OA1OA2 was lower than AGP and Control 2 (P < 0.05). On day 22, the birds fed OA1OA2 showed lower intestinal lesion scores than OA1 (P < 0.05). No treatment-related differences in immune organ (spleen, thymus, and bursa) indices were noted (P > 0.05). On day 29, the MDA concentration of OA1 and OA1OA2 was lower than those of Control 1 and AGP (P < 0.05). In conclusion, the addition of organic acids may protect broiler chickens from severe intestinal lesions and oxidative stress and may help reduce abdominal fat mass deposition. There is potential for organic acid-based products as alternatives for AGP in preventing necrotic enteritis in broilers.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Ying Jiang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yunlei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Ziyan Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Lei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Hong Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Chao Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Dongli Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yanming Han
- Trouw Nutrition R & D, Stationsstraat 77, 3811 MH, Amersfoort, the Netherlands
| | - Jilan Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
13
|
Lu M, Panebra A, Kim WH, Lillehoj HS. Characterization of immunological properties of chicken chemokine CC motif ligand 5 using new monoclonal antibodies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104023. [PMID: 33497732 DOI: 10.1016/j.dci.2021.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
CCL5 (formerly RANTES) belongs to the CC (or β) chemokine family and is associated with a plethora of inflammatory disorders and pathologic states. CCL5 is mainly produced and secreted by T cells, macrophages, epithelial cells, and fibroblasts and acts as a chemoattractant to recruit effector cells to the inflammation sites. Chicken CCL5 (chCCL5) protein is closely related to avian CCL5 orthologs but distinct from mammalian orthologs, and its modulatory roles in the immune response are largely unknown. The present work was undertaken to characterize the immunological properties of chCCL5 using the new sets of anti-chCCL5 mouse monoclonal antibodies (mAbs). Eight different mAbs (6E11, 6H1, 8H11, 11G1, 11G11, 12H1, 13D1, and 13G3) were characterized for their specificity and binding ability toward chCCL5. Two (13G3 and 6E11) of them were selected to detect native chCCL5 in chCCL5-specific antigen-capture ELISA. Using 13G3 and 6E11 as capture and detection antibodies, respectively, the ELISA system detected serum chCCL5 secretions in Clostridium perfringens- and Eimeria-infected chickens. The intracellular expressions of chCCL5 in primary cells or cell lines derived from chickens were validated in immunocytochemistry and flow cytometry assays using both 13G3 and 6E11 mAbs. Furthermore, 6E11, but not 13G3, neutralized chCCL5-induced chemotaxis in vitro using chicken PBMCs. These molecular characteristics of chCCL5 demonstrate the potential application of anti-chCCL5 mAbs and CCL5-specific antigen-capture detection ELISA for detecting native chCCL5 in biological samples. The availability of these new immunological tools will be valuable for fundamental and applied studies in avian species.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
14
|
Van Damme L, Cox N, Callens C, Dargatz M, Flügel M, Hark S, Thiemann F, Pelzer S, Haesebrouck F, Ducatelle R, Van Immerseel F, Goossens E. Protein Truncating Variants of colA in Clostridium perfringens Type G Strains. Front Cell Infect Microbiol 2021; 11:645248. [PMID: 33996628 PMCID: PMC8117337 DOI: 10.3389/fcimb.2021.645248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) degrading enzymes produced by Clostridium perfringens may play an important role during the initial phases of avian necrotic enteritis by facilitating toxin entry in the intestinal mucosa and destruction of the tissue. C. perfringens is known to produce several ECM-degrading proteases, such as kappa toxin, an extracellular collagenase that is encoded by the colA gene. In this study, the colA gene sequence of a collection of 48 C. perfringens strains, including pathogenic (i.e. toxinotype G) and commensal (i.e. toxinotype A) chicken derived strains and strains originating from other host species, was analyzed. Although the colA gene showed a high level of conservation (>96% nucleotide sequence identity), several gene variants carrying different nonsense mutations in the colA gene were identified, leading to the definition of four truncated collagenase variant types (I-IV). Collagenase variant types I, III and IV have a (nearly) complete collagenase unit but lack parts of the C-terminal recruitment domains, whereas collagenase variant types II misses the N-terminal part of collagenase unit. Gene fragments encoding a truncated collagenase were mainly linked with necrotic enteritis associated C. perfringens type G strains with collagenase variant types I and II being the most prevalent types. Gelatin zymography revealed that both recombinant full-length and variant type I collagenase have active auto-cleavage products. Moreover, both recombinant fragments were capable of degrading type I as well as type IV collagen, although variant type I collagenase showed a higher relative activity against collagen type IV as compared to full-length collagenase. Consequently, these smaller truncated collagenases might be able to break down collagen type IV in the epithelial basement membrane of the intestinal villi and so contribute to the initiation of the pathological process leading to necrotic enteritis.
Collapse
Affiliation(s)
- Lore Van Damme
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Natasja Cox
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chana Callens
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michelle Dargatz
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Monika Flügel
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Sarah Hark
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Frank Thiemann
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Stefan Pelzer
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Freddy Haesebrouck
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
15
|
Lee KW, Lillehoj HS, Kim W, Park I, Li C, Lu M, Hofacre CL. Research Note: First report on the detection of necrotic enteritis (NE) B-like toxin in biological samples from NE-afflicted chickens using capture enzyme-linked immunosorbent assay. Poult Sci 2021; 100:101190. [PMID: 34087701 PMCID: PMC8182422 DOI: 10.1016/j.psj.2021.101190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type G. One of the pore-forming toxins, NE B-like (NetB) toxin, secreted by pathogenic C. perfringens type G, has been proposed to be the main virulent factor in NE pathogenesis. The present study aimed to detect the presence of NetB toxin in biological samples of NE-afflicted chickens using NetB-specific monoclonal-based enzyme-linked immunosorbent assay (ELISA). Biological samples, including serum, digesta, and fecal droppings, were obtained from three previous NE studies (designated as Trials 1 to 3). In Trials 1 and 2, broiler chicks were infected with Eimeria maxima strain 41A on day 1 and followed by the netB-positive C. perfringens on day 18. Serum samples were obtained at 20 d post-hatch (i.e., 2 d post C. perfringens infection). In addition, various samples, including serum, gut digesta, and fecal droppings, that had been collected 0, 6, 24, and 30 h post C. perfringens infection were obtained. In Trial 3, broiler chicks were indirectly infected with litter-contaminated E. maxima on d 14 and followed by netB-positive C. perfringens via drinking water on days 18, 19, and 20. Serum samples and fecal droppings were obtained 21 d post-hatch (i.e., 1 d post last C. perfringens infection). The results showed that NetB toxin was not detected in serum samples in Trials 1 and 3. No NetB toxin was detected in all samples obtained before C. perfringens infection in Trial 2. Low but detectable amounts of NetB toxin were found in the serum samples obtained 6 h post C. perfringens infection in Trial 2. While NetB toxin in digesta and fecal droppings was detected 6 h post C. perfringens infection, its level plateaued 24 and 30 h post C. perfringens infection. In Trial 3, NetB toxin was detected in fecal droppings from the NE group, and its concentration ranged from 2.9 to 3.1 ng/g of wet feces. In Trial 2, NE-specific lesions were not seen 0 and 6 h post C. perfringens infection but exhibited lesions were moderate to severe 24 h post infection, leading to a moderate association (r = +0.527) between NE lesions and NetB toxin in the gut digesta. This is the first study to use NetB-specific monoclonal-based capture ELISA to determine and report the presence of native NetB toxin in biological samples from NE-induced chickens.
Collapse
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Ave, Bldg. 1043, BARC-East, Beltsville, MD 20705, USA; Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Ave, Bldg. 1043, BARC-East, Beltsville, MD 20705, USA.
| | - Woohyun Kim
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Ave, Bldg. 1043, BARC-East, Beltsville, MD 20705, USA
| | - Inkyung Park
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Ave, Bldg. 1043, BARC-East, Beltsville, MD 20705, USA
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Ave, Bldg. 1043, BARC-East, Beltsville, MD 20705, USA
| | - Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Ave, Bldg. 1043, BARC-East, Beltsville, MD 20705, USA
| | - Charles L Hofacre
- Southern Poultry Research Group, Inc., 1061 Hale Road, Watkinsville, GA 30677, USA
| |
Collapse
|
16
|
Zhang X, Zhao Q, Ci X, Chen S, Xie Z, Li H, Zhang H, Chen F, Xie Q. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poult Sci 2020; 99:6606-6618. [PMID: 33248576 PMCID: PMC7810911 DOI: 10.1016/j.psj.2020.09.082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of the study was testing the effects of chlorogenic acid (CA) supplementation on small intestine healthiness, growth performance, oxidative stress, inflammatory response, and blood biochemical indices in specific-pathogen-free (SPF) chickens after infection with Clostridium perfringens (CP) type A. In this study, 324 1-day-old male SPF chickens were randomly distributed into 6 groups: control group; CA group; CP infection group; CA + CP group; antibiotic group; antibiotic + CP group. All 1-day-old chickens were fed with CA or antibiotic in corresponding treatment group for 13 d. On the 14 d, the chickens in corresponding infection group were challenged with CP type A for 3 d. Samples in each group were collected when the chickens were 17 and 21 d old. This study proves for the first time that CA, a Chinese herbal medicine, can effectively improve growth performance, inhibit small intestine structural damage, improve antioxidant capacity, inhibit damage to ileal mucosal layer construction and tight junctions, inhibit inflammatory cytokines, and ameliorate blood biochemical indices. Therefore, this study provides data for CA being able to effectively alleviate small intestine damage caused by CP type A infection in chickens.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Qiqi Zhao
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Xiaotong Ci
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Hongxin Li
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA, Agriculture Research Service, East Lansing, MI 48823, USA
| | - Feng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China.
| |
Collapse
|
17
|
Gharieb R, Saad M, Abdallah K, Khedr M, Farag E, Abd El-Fattah A. Insights on toxin genotyping, virulence, antibiogram profiling, biofilm formation and efficacy of disinfectants on biofilms of Clostridium perfringens isolated from poultry, animals and humans. J Appl Microbiol 2020; 130:819-831. [PMID: 32881183 DOI: 10.1111/jam.14838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/24/2023]
Abstract
AIMS This study aimed to determine the toxin genotypes, virulence determinants and antibiogram of Clostridium perfringens isolated from poultry, animals and humans. Biofilm formation and the efficacy of disinfectants on C. perfringens biofilms were studied. METHODS AND RESULTS Thirty C. perfringens isolates (20 clinical and 10 from chicken carcasses) were genotyped by PCR and all isolates were genotype A (cpa+). The overall prevalence of cpe, cpb2, netB and tpeL virulence genes was 6·7, 56·7, 56·7 and 36·7% respectively. Twenty-one isolates (70%) were multidrug-resistant, 8 (26·7%) were extensive drug-resistant and one isolate (3·3%) was pan drug-resistant. The average multiple antibiotic resistance index was 0·7. Biofilms were produced by 63·3% of C. perfringens isolates and categorized as weak (36·7%), moderate (16·7%) and strong (10%). Sodium hypochlorite caused significant reduction in C. perfringens biofilms (P < 0·0001). CONCLUSIONS All C. perfringens strains in this study were type A, resistant to multiple antibiotics and most of them were biofilm producers. Sodium hypochlorite showed higher efficacy in reducing C. perfringens biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This study reported the efficacy of disinfectants in reducing C. perfringens biofilms of economic and public health concern and recommends application on surfaces in farms, food processing plants and slaughterhouses.
Collapse
Affiliation(s)
- R Gharieb
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Saad
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - K Abdallah
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Khedr
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - E Farag
- Department of Bacteriology, Animal Health Research Institute, Cairo, Egypt
| | - A Abd El-Fattah
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Lu M, Kim WH, Lillehoj HS, Li C. Development and characterization of novel mouse monoclonal antibodies against chicken chemokine CC motif ligand 4. Vet Immunol Immunopathol 2020; 227:110091. [PMID: 32682170 DOI: 10.1016/j.vetimm.2020.110091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
Chemokine (C-C motif) ligand (CCL) 4 is a CC chemokine subfamily member defined by the sequential positioning of conserved cysteine residues. Upon the binding of G-protein-coupled receptors on the cell surface, CCL4 mediates a diverse set of biological processes including chemotaxis, tumorigenesis, homeostasis and thymopoiesis. Although the physiological roles of mammalian CCL4s were elucidated >20 years ago, there is limited information on the biological activities of chicken CCL4 (chCCL4). In the present study, we developed and characterized mouse monoclonal antibodies (mAbs) against chCCL4 to characterize better the immunological properties of chCCL4. Out of initial screening of >400 clones, two mAbs detecting chCCL4, 1A12 and 15D9, were identified and characterized using western blotting and chCCL4-specific antigen-capture enzyme-linked immunosorbent assay, and their neutralizing activity was validated by chCCL4-induced peripheral blood mononuclear cell chemotaxis assay. Furthermore, the intracellular expression of chCCL4 in various chicken cells by immunocytochemistry and flow cytometry was confirmed using 1A12 and 15D9 mAbs. These results collectively indicate that 1A12 and 15D9 mAbs specifically detect chicken CCL4 and they will be valuable immune reagents for basic and applied studies in avian immunology.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| |
Collapse
|
19
|
Zhu Y, Ma Y, Zhang J, Li M, Yan L, Zhao G, Liu Y, Zhang Y. The inhibitory effects of spice essential oils and rapidly prediction on the growth of Clostridium perfringens in cooked chicken breast. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Lee KW, Kim WH, Li C, Lillehoj HS. Detection of Necrotic Enteritis B–like Toxin Secreted by Clostridium perfringens Using Capture Enzyme-Linked Immunosorbent Assay. Avian Dis 2020; 64:490-495. [DOI: 10.1637/0005-2086-64.4.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Woo H. Kim
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705
| |
Collapse
|
21
|
Lu M, Li RW, Zhao H, Yan X, Lillehoj HS, Sun Z, Oh S, Wang Y, Li C. Effects of Eimeria maxima and Clostridium perfringens infections on cecal microbial composition and the possible correlation with body weight gain in broiler chickens. Res Vet Sci 2020; 132:142-149. [PMID: 32575030 DOI: 10.1016/j.rvsc.2020.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/19/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
With the voluntary and regulatory withdrawal of antibiotic growth promoters from animal feed, coccidiosis and necrotic enteritis (NE) emerge as the top two enteric poultry infectious diseases responsible for major economic loss worldwide. The objective of this study was to investigate the correlation between the cecal microbiota compositions with the growth trait after coccidiosis and NE. In this study, the effects of Eimeria maxima and/or Clostridium perfringens infections on the microbial composition and potential correlation with the body weight gain were investigated in broiler chickens using 16S rRNA gene sequencing. E. maxima and C. perfringens coinfection successfully induced NE with its typical gut lesions and significant reductions in the percentage of relative body weight gain (RBWG%). The NE challenge model did not affect cecal microbial diversity, but influenced the cecal microbial composition. KEGG enzymes in microbiota were significantly altered in abundance following dual infections. Furthermore, significant correlations between cecal microbiota modules and RBWG% were identified in the sham control, E. maxima or C. perfringens infected groups. Understanding of host-microbiota interaction in NE would enhance the development of antibiotics-independent strategies to reduce the harmful effect of NE on the gut microbiota structure, and improve the gut health and poultry production.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - Robert W Li
- Animal Genomics & Improvement Laboratory, ARS, USDA, Beltsville, MD, USA
| | - Hongyan Zhao
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xianghe Yan
- Environment Microbial and Food Safety Laboratory, ARS, USDA, Beltsville, MD, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - SungTak Oh
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - Yueying Wang
- Animal Genomics & Improvement Laboratory, ARS, USDA, Beltsville, MD, USA; College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA.
| |
Collapse
|
22
|
Gu C, Lillehoj HS, Sun Z, Lee Y, Zhao H, Xianyu Z, Yan X, Wang Y, Lin S, Liu L, Li C. Characterization of Virulent netB+/tpeL+ Clostridium perfringens Strains from Necrotic Enteritis-Affected Broiler Chicken Farms. Avian Dis 2020; 63:461-467. [PMID: 31967429 DOI: 10.1637/11973-092018-reg.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/06/2019] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens (CP) type A and newly created type G strains are the key etiological factors in the induction of necrotic enteritis (NE), an important enteric disease that is responsible for the annual loss of $6 billion in the worldwide poultry industry. Several CP toxin genes were found to be critical in NE pathogenesis in chickens, but limited information is available on the CP lethal toxin tpeL gene. In this study, 19 CP strains isolated from NE-affected chicken farms were characterized microbiologically and molecularly and evaluated for their pathogenicity in commercial broiler chickens. Toxin typing by PCR revealed that all strains tested were positive for the netB toxin gene, but only five strains were positive for the tpeL toxin gene (LLY-TpeL 13, -TpeL 15, -TpeL 17, -TpeL 18, and -TpeL 19, simplified as TpeL 13, TpeL 15, TpeL 17, TpeL 18, and TpeL 19). High levels of TpeL proteins were detected in the concentrated culture supernatant from strains TpeL 13, 15, 17, and 19 by western blotting. Quantitative PCR showed that strains TpeL 13, 15, 17, 18, and 19 harbored a high number of copies of tpeL genes, while TpeL 18 had the highest number of copies of the tpeL gene among all CP strains tested when normalized with copy numbers of 16S rRNA gene as a housekeeping gene marker. The in vivo NE challenge test using multiple oral CP inoculations combined with a high-protein diet showed that TpeL 17 was the most virulent in inducing typical NE lesions, followed by TpeL 19 as the next most virulent, when tested in commercial broiler chickens. Infection with TpeL 17 reduced the growth rate significantly, as shown by reduced relative body weight gain percentage at day 5 postinfection. Availability of the virulent netB+tpeL+ CP strains is essential for the development of a CP-alone NE challenge model that could provide significant tools for understanding CP pathogenesis and for development of alternative to antibiotics.
Collapse
Affiliation(s)
- Changqin Gu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Hongyan Zhao
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhezi Xianyu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Xianghe Yan
- Environment Microbial and Food Safety Laboratory, BARC, ARS, USDA, Beltsville, MD 20705
| | - Yunfei Wang
- Biostatistics Center, Duke Human Vaccine Institute, Durham, NC 27708
| | - Shudai Lin
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705
| | - Liheng Liu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Beltsville, MD 20705,
| |
Collapse
|
23
|
Yang WY, Lee YJ, Lu HY, Branton SL, Chou CH, Wang C. The netB-positive Clostridium perfringens in the experimental induction of necrotic enteritis with or without predisposing factors. Poult Sci 2020; 98:5297-5306. [PMID: 31222251 DOI: 10.3382/ps/pez311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
The netB-positive Clostridium perfringens has been considered as the requisite to consistently induce necrotic enteritis (NE). However, use of a netB-positive strain did not guarantee consistent NE reproduction unless high protein diets or Eimeria, conceived as 2 major predisposing factors, was incorporated. To establish a refined model, the roles of dietary fishmeal inclusion, Eimeria inoculation, and netB-positive C. perfringens challenge in NE induction and the confounding effects of Eimeria infection on NE were examined. The results showed that the use of netB-positive C. perfringens without a predisposing factor failed to induce NE. Fishmeal incorporation promoted the occurrence of NE but did not significantly affect the incidence of the disease in conjunction with challenge of netB-positive C. perfringens. However, the additional participation of Eimeria infection in the same induction procedure produced significantly higher numbers of NE cases and promoted more severe lesions in chickens (P < 0.05). Inoculation of Eimeria resulted in a significant higher incidence of NE compared to the non-Eimeria treated group (P < 0.05). The results demonstrated that both netB-positive C. perfringens and predisposing factors were required for the reproduction of disease. Mild-to-moderate coccidial infection (coccidial lesion score ≤ 2) was noted in NE cases in this model but severe coccidial infection did not correlate with the occurrence of NE, indicating mild coccidial infection may be beneficial for the development of NE. If multiple species infection of Eimeria precedes the challenge of C. perfringens, days 19 to 21 (1 to 3 D after the last clostridial challenge) was the time period favorable for observations of NE lesions. The time after this period may be subject to bias of severity, incidence, or mortality of NE owing to the profound coccidial lesions in the intestinal region. This study demonstrated that the co-infection with netB-positive C. perfringens and Eimeria species under fishmeal incorporation produced a desirable NE model, being of value in studying the effectiveness of novel feed additives and alternative mitigation strategies to prevent NE.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Yue-Jia Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Hsin-Yi Lu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Scott L Branton
- USDA-ARS Poultry Research Unit, Mississippi State, MS 39762-5367
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, 106, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
24
|
Profeta F, Di Francesco CE, Di Provvido A, Scacchia M, Alessiani A, Di Giannatale E, Marruchella G, Orsini M, Toscani T, Marsilio F. Prevalence of netB-positive Clostridium perfringens in Italian poultry flocks by environmental sampling. J Vet Diagn Invest 2019; 32:252-258. [PMID: 31650911 DOI: 10.1177/1040638719885841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens type G is one of the pathogens involved in enteric diseases in poultry. NetB, a pore-forming toxin, is considered the main virulence factor responsible for necrotic enteritis during C. perfringens infection. We carried out a field study involving 14 farms to evaluate the occurrence of netB-positive C. perfringens and the impact of infection in Italian poultry flocks. Environmental samples (n = 117) and 50 carcasses were screened by microbiologic and molecular methods. Microbiologic investigations yielded 82 C. perfringens isolates. DNA was extracted from all samples and screened for α-toxin and NetB encoding genes by real-time PCR. The C. perfringens α-toxin gene was detected in 151 of 167 extracts (90.4%), and 31 of 151 (20.5%) were netB gene positive also. Sixteen isolates from a turkey flock with mild enteric disorders were also netB positive, demonstrating their occurrence not only in broiler but also in turkey flocks. A pulsed-field gel electrophoresis protocol was optimized to evaluate the diversity among isolates and revealed high genetic heterogeneity. The complete NetB toxin-coding gene of 2 C. perfringens isolates from turkey and broiler flocks were analyzed and showed very high relatedness with analogous sequences worldwide.
Collapse
Affiliation(s)
- Francesca Profeta
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Cristina E Di Francesco
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Andrea Di Provvido
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Massimo Scacchia
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Alessandra Alessiani
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Elisabetta Di Giannatale
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Giuseppe Marruchella
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Massimiliano Orsini
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Tonino Toscani
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| |
Collapse
|
25
|
Kiu R, Brown J, Bedwell H, Leclaire C, Caim S, Pickard D, Dougan G, Dixon RA, Hall LJ. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim Microbiome 2019; 1:12. [PMID: 32021965 PMCID: PMC7000242 DOI: 10.1186/s42523-019-0015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Clostridium perfringens is a key pathogen in poultry-associated necrotic enteritis (NE). To date there are limited Whole Genome Sequencing based studies describing broiler-associated C. perfringens in healthy and diseased birds. Moreover, changes in the caecal microbiome during NE is currently not well characterised. Thus, the aim of this present study was to investigate C. perfringens virulence factors linked to health and diseased chickens, including identifying putative caecal microbiota signatures associated with NE. Results We analysed 88 broiler chicken C. perfringens genomes (representing 66 publicly available genomes and 22 newly sequenced genomes) using different phylogenomics approaches and identified a potential hypervirulent and globally-distributed clone spanning 20-year time-frame (1993-2013). These isolates harbored a greater number of virulence genes (including toxin and collagen adhesin genes) when compared to other isolates. Further genomic analysis indicated exclusive and overabundant presence of important NE-linked toxin genes including netB and tpeL in NE-associated broiler isolates. Secondary virulence genes including pfoA, cpb2, and collagen adhesin genes cna, cnaA and cnaD were also enriched in the NE-linked C. perfringens genomes. Moreover, an environmental isolate obtained from farm animal feeds was found to encode netB, suggesting potential reservoirs of NetB-positive C. perfringens strains (toxinotype G). We also analysed caecal samples from a small sub-set of 11 diseased and healthy broilers for exploratory microbiome investigation using 16S rRNA amplicon sequencing, which indicated a significant and positive correlation in genus Clostridium within the wider microbiota of those broilers diagnosed with NE, alongside reductions in beneficial microbiota members. Conclusions These data indicate a positive association of virulence genes including netB, pfoA, cpb2, tpeL and cna variants linked to NE-linked isolates. Potential global dissemination of specific hypervirulent lineage, coupled with distinctive microbiome profiles, highlights the need for further investigations, which will require a large worldwide sample collection from healthy and NE-associated birds.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Harley Bedwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Shabhonam Caim
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Derek Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Lindsay J Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
26
|
Long J, Xu Y, Ou L, Yang H, Xi Y, Chen S, Duan G. Diversity of CRISPR/Cas system in Clostridium perfringens. Mol Genet Genomics 2019; 294:1263-1275. [PMID: 31134321 DOI: 10.1007/s00438-019-01579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
Clostridium perfringens is an important pathogen of human and livestock infections, posing a threat to health. The horizontal gene transfer (HGT) of plasmids that carry toxin-related genes is involved in C. perfringens pathogenicity. The CRISPR/Cas system, which has been identified in a wide range of prokaryotes, provides acquired immunity against HGT. However, information about the CRISPR/Cas system in Clostridium perfringens is still limited. In this study, 111 C. perfringens strains with publicly available genomes were used to analyze the occurrence and diversity of CRISPR/Cas system and evaluate the potential of CRISPR-based genotyping in this multi-host pathogen. A total of 59 out of the 111 genomes harbored at least one confirmed CRISPR array. Four CRISPR/Cas system subtypes, including subtypes IB, IIA, IIC, and IIID systems, were identified in 32 strains. Subtype IB system was the most prevalent in this species, which was subdivided into four subgroups displaying subgroup specificity in terms of cas gene content, repeat sequence content, and PAM. We showed that the CRISPR spacer polymorphism can be used for evolutionary studies, and that it can provide discriminatory power for typing strains. Nevertheless, the application of this approach was largely limited to strains that contain the CRISPR/Cas system. Spacer origin analysis revealed that approximately one-fifth of spacers showed significant matches to plasmids and phages, thereby suggesting the implication of CRISPR/Cas systems in controlling HGT. Collectively, our results provide new insights into the diversity and evolution of CRISPR/Cas system in C. perfringens.
Collapse
Affiliation(s)
- Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yake Xu
- School Hospital, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Liuyang Ou
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
27
|
Li C, Yan X, Lillehoj HS, Oh S, Liu L, Sun Z, Gu C, Lee Y, Xianyu Z, Zhao H. Eimeria maxima-induced transcriptional changes in the cecal mucosa of broiler chickens. Parasit Vectors 2019; 12:285. [PMID: 31164143 PMCID: PMC6549307 DOI: 10.1186/s13071-019-3534-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Apicomplexan protozoans of the genus Eimeria cause coccidiosis, one of the most economically relevant parasitic diseases in chickens. The lack of a complete understanding of molecular mechanisms in the host-parasite interaction limits the development of effective control measures. In the present study, RNA sequencing (RNA-Seq) was applied to investigate the host mRNA profiles of the cecal mucosa collected at day 5 post-infection with Eimeria maxima (EM). Results Total RNA from cecal samples of the uninfected naïve control and the EM groups was used to make libraries, generating 354,924,372 and 356,229,250 usable reads, respectively, which were assembled into a total of 386,088 high-quality unigenes (transcripts) in Trinity software. RNA-Seq analysis of cecal samples in the two groups revealed 332 upregulated and 363 downregulated genes with significant differences (P ≤ 0.05), including several significant immune-related gene families, such as the major histocompatibility complex (MHC) class I alpha chain, granzyme A and immunoglobulin subtype genes among upregulated differentially expressed genes. In addition, a total of 60 clusters of differentiation (CD) molecular genes and 570 novel genes were found. The completeness of the assembled transcriptome was further assessed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Gene ontology (GO), eggNOG and CAZy for gene annotation. The broad gene categories represented by the highly differentiated host genes suggested enrichment in immune responses, and downregulation in the metabolic pathway, MARK signaling pathway, vascular smooth muscle contraction, and proteins processing in endoplasmic reticulum after EM infection. Conclusions Eimeria maxima induced statistically significant differences in the cecal mucosal gene expression of infected chickens. These findings provide new insights into the host-parasite interaction and enhance our understanding of the molecular mechanism of avian coccidiosis. Electronic supplementary material The online version of this article (10.1186/s13071-019-3534-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sungtaek Oh
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Liheng Liu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Changqin Gu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Zhezi Xianyu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hongyan Zhao
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Yang WY, Lee Y, Lu H, Chou CH, Wang C. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS One 2019; 14:e0205784. [PMID: 31150394 PMCID: PMC6544216 DOI: 10.1371/journal.pone.0205784] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Gut microbiota has been demonstrated to be involved in intestinal nutrition, defense, and immunity, as well as participating in disease progression. This study was to investigate gut microbiota changes in chickens challenged with netB-positive Clostridium perfringens strain (CP1) and/or the predisposing Eimeria species (Eimeria) and fed diets with fishmeal supplementation. In addition, the effects of lauric acid, a medium-chain fatty acid (MCFA), on necrotic enteritis (NE) reduction and modulation of microbiota were evaluated. The results demonstrated that microbial communities in the jejunum were distinct from those in the cecum, and the microbial community change was more significant in jejunum. Challenge of CP1 in conjunction with Eimeria significantly reduced species diversity in jejunal microbiota, but cecal microbiota remained stable. In the jejunum, CP1 challenge increased the abundance of the genera of Clostridium sensu stricto 1, Escherichia Shigella, and Weissella, but significantly decreased the population of Lactobacillus. Eimeria infection on its own was unable to promote NE, demonstrating decrements of Clostridium sensu stricto 1 and Lactobacillus. Co-infection with CP1 and Eimeria reproduced the majority of NE lesions with significant increment of Clostridium sensu stricto 1 and reduction in Lactobacillus. The advance of changes on these two taxa increased the severity of NE lesions. Further analyses of metagenomeSeq, STAMP, and LEfSe consistently showed significant overgrowth of Clostridium sensu stricto 1 was associated with NE. The supplementation of lauric acid did not reduce NE incidence and severity but decreased the relative abundance of Escherichia Shigella. In conclusion, significant overgrowth of C. perfringens as well as other Clostridium species in Clostridium sensu stricto 1 with the decrement of Lactobacillus in the jejunum is the featured microbiota correlated with NE. Controlling proliferation of Clostridium sensu stricto 1 and manipulation of Lactobacillus in the jejunum should be the strategy to prevent NE.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Yuejia Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Hsinyi Lu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lee Y, Kim WH, Lee SJ, Lillehoj HS. Detection of chicken interleukin-10 production in intestinal epithelial cells and necrotic enteritis induced by Clostridium perfringens using capture ELISA. Vet Immunol Immunopathol 2018; 204:52-58. [DOI: 10.1016/j.vetimm.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
30
|
Neethirajan S, Ragavan K, Weng X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Li C, Yan X, Lillehoj HS. Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis. Gut Pathog 2017; 9:69. [PMID: 29201151 PMCID: PMC5699181 DOI: 10.1186/s13099-017-0217-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Clostridium perfringens is ubiquitous in nature. It is a normal inhabitant in the intestinal tract of animals and humans. As the primary etiological agent of gas gangrene, necrosis and bacteremia, C. perfringens causes food poisoning, necrotic enteritis (NE), and even death. Epidemiology research has indicated that the increasing incidence of NE in poultry is associated with the withdrawal of in-feed antibiotic growth promoters in poultry production in response to government regulations. The recent omics studies have indicated that bacterial virulence is typically linked to highly efficient conjugative transfer of toxins, or plasmids carrying antibiotic-resistance traits. Currently, there is limited information on understanding of host-pathogen interaction in NE caused by virulent strains of C. perfringens. Elucidating such pathogenesis has practical impacts on fighting infectious diseases through adopting strategies of prophylactic or therapeutic interventions. In this report, we sequenced and analyzed the genome of C. perfringens Del1 strain using the hybrid of PacBio and Illumina sequencing technologies. RESULTS Sequence analysis indicated that Del1 strain comprised a single circular chromosome with a complete 3,559,163 bp and 4 plasmids: pDel1_1 (82,596 bp), pDel1_2 (69,827 bp), pDel1_3 (49,582 bp), and pDel1_4 (49,728 bp). The genome had 3361 predicted coding DNA sequences, harbored numerous genes for pathogenesis and virulence factors, including 6 for antibiotic and antimicrobial resistance, and 3 phage-encoded genes. Phylogenetic analysis revealed that Del1 strain had similar genome and plasmid sequences to the CP4 strain. CONCLUSION Complete chromosomal and plasmid sequences of Del1 strain are presented in this report. Since Del1 was isolated from a field disease outbreak, this strain is a good source to identify virulent genes that cause many damaging effects of Clostridial infections in chicken gut. Genome sequencing of the chicken pathogenic isolates from commercial farms provides valuable insights into the molecular pathogenesis of C. perfringens as a gastrointestinal pathogen in food animals. The detailed information on gene sequencing of this important field strain will benefit the development of novel vaccines specific for C. perfringens-induced NE in chickens.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, 10300 Baltimore Avenue, MD 20705 USA
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, 10300 Baltimore Avenue, MD 20705 USA
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, 10300 Baltimore Avenue, MD 20705 USA
| |
Collapse
|
32
|
Complete Genome Sequence of Clostridium perfringens LLY_N11, a Necrotic Enteritis-Inducing Strain Isolated from a Healthy Chicken Intestine. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01225-17. [PMID: 29097469 PMCID: PMC5668545 DOI: 10.1128/genomea.01225-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clostridium perfringens strain LLY_N11, a commensal bacterium, which previously induced necrotic enteritis in an experimental study, was isolated from the intestine of a young healthy chicken. Here, we present the complete genome sequence of this strain, which may provide a better understanding of the molecular mechanisms involved in necrotic enteritis pathogenesis.
Collapse
|