1
|
Scott J, Morris A, Hawley J, Scorza AV, Henriksen M, Lappin M. Evaluating the significance of Toxoplasma gondii sporozoite antibodies in cats: a pilot study. Parasit Vectors 2024; 17:497. [PMID: 39623473 PMCID: PMC11610286 DOI: 10.1186/s13071-024-06553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND People can acquire Toxoplasma gondii infection by ingestion of sporulated oocysts passed in cat feces; whether this route is common in cats is unknown. The primary objectives of this study were to (a) adapt a commercially available enzyme-linked immunosorbent assay (ELISA) for the detection of T. gondii tachyzoite IgG antibodies in feline sera to detect T. gondii sporozoite IgG antibodies, (b) utilize the ELISA to confirm that exposed cats can mount an antibody response to sporozoites, (c) estimate the prevalence of sporozoite antibodies in naturally exposed cats, and (d) evaluate associations between the serologic status of naturally exposed cats and clinical signs that could be caused by toxoplasmosis. METHODS To generate positive control sera, three male cats were orally inoculated with approximately 100,000 sporulated oocysts of the ME49 strain of T. gondii. A human antisporozoite antibody ELISA was then adapted for use with cat sera. Detectable levels of antisporozoite IgG were found in two of the three experimentally inoculated cats. The sera of 100 healthy cats and 295 clinically ill cats were assessed in the prototype sporozoite ELISA and a commercially available tachyzoite ELISA. RESULTS The ELISA estimated that prevalence of antisporozoite IgG was 2% in healthy cats and 3.1% in clinically ill cats; in contrast, the overall estimated prevalence of antitachyzoite IgG was 15%. Only two of 395 cats (0.5%) had both antisporozoite and antitachyzoite IgG. CONCLUSIONS While experimentally infected and naturally exposed cats developed antisporozoite antibodies, the low prevalence did not allow for the evaluation of associations among clinical signs.
Collapse
Affiliation(s)
- Janelle Scott
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Arianne Morris
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Hawley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Andrea Valeria Scorza
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michala Henriksen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael Lappin
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Hassanein F, Fadel HH, Shehata AI, Hamdy NA, Masoud IM. In silico study to explore the mechanism of Toxoplasma-induced inflammation and target therapy based on sero and salivary Toxoplasma. Sci Rep 2024; 14:13600. [PMID: 38866852 PMCID: PMC11169245 DOI: 10.1038/s41598-024-63735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.
Collapse
Affiliation(s)
- Faika Hassanein
- Department of Microbiology & Immunology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Hewida H Fadel
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany I Shehata
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Noha Alaa Hamdy
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
3
|
López-Ureña NM, Calero-Bernal R, Koudela B, Cherchi S, Possenti A, Tosini F, Klein S, San Juan-Casero C, Jara-Herrera S, Jokelainen P, Regidor-Cerrillo J, Ortega-Mora LM, Spano F, Seeber F, Álvarez-García G. Limited value of current and new in silico predicted oocyst-specific proteins of Toxoplasma gondii for source-attributing serology. FRONTIERS IN PARASITOLOGY 2023; 2:1292322. [PMID: 39816825 PMCID: PMC11731929 DOI: 10.3389/fpara.2023.1292322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 01/18/2025]
Abstract
Toxoplasma gondii is a zoonotic parasite infecting all warm-blooded animals, including humans. The contribution of environmental contamination by T. gondii oocysts to infections is understudied. The aim of the current work was to explore T. gondii serology as a means of attributing the source of infection using a robust stepwise approach. We identified in silico thirty-two promising oocyst-specific antigens from T. gondii ´omics data, recombinantly expressed and purified them and validated whether serology based on these proteins could discriminate oocyst- from tissue cyst-driven experimental infections. For this, three well-characterized serum panels, sampled from 0 to 6 weeks post-infection, from pigs and sheep experimentally infected with T. gondii oocysts or tissue cysts, were used. Candidate proteins were initially screened by Western blot with sera from pigs or sheep, infected for different times, either with oocysts or tissue cysts, as well as non-infected animals. Only the recombinant proteins TgCCp5A and TgSR1 provoked seroconversion upon infection and appeared to discriminate between oocyst- and tissue cyst-driven infections with pig sera. They were subsequently used to develop an enzyme-linked immunosorbent assay test for pigs. Based on this assay and Western blot analyses, a lack of stage specificity and low antigenicity was observed with all pig sera. The same was true for proteins TgERP, TgSporoSAG, TgOWP1 and TgOWP8, previously described as source-attributing antigens, when analyzed using the whole panels of sera. We conclude that there is currently no antigen that allows the discrimination of T. gondii infections acquired from either oocysts or tissue cysts by serological tests. This work provides robust new knowledge that can inform further research and development toward source-attributing T. gondii serology.
Collapse
Affiliation(s)
- Nadia-María López-Ureña
- Salud Veterinaria y Zoonosis (SALUVET), Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Rafael Calero-Bernal
- Salud Veterinaria y Zoonosis (SALUVET), Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Bretislav Koudela
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czechia
- Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czechia
- Veterinary Research Institute, Brno, Czechia
| | - Simona Cherchi
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Possenti
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Tosini
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Klein
- FG16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Carmen San Juan-Casero
- Salud Veterinaria y Zoonosis (SALUVET), Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Silvia Jara-Herrera
- Salud Veterinaria y Zoonosis (SALUVET), Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | | | - Luis-Miguel Ortega-Mora
- Salud Veterinaria y Zoonosis (SALUVET), Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Furio Spano
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Frank Seeber
- FG16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Gema Álvarez-García
- Salud Veterinaria y Zoonosis (SALUVET), Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Dini F, Morselli S, Marangoni A, Taddei R, Maioli G, Roncarati G, Balboni A, Dondi F, Lunetta F, Galuppi R. Spread of Toxoplasma gondii among animals and humans in Northern Italy: A retrospective analysis in a One-Health framework. Food Waterborne Parasitol 2023; 32:e00197. [PMID: 37333686 PMCID: PMC10273278 DOI: 10.1016/j.fawpar.2023.e00197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023] Open
Abstract
Toxoplasmosis occurs worldwide and is considered one of the most important food-borne parasitic zoonoses. The consumption of undercooked meat containing viable tissue cysts and ingestion of environmental oocyst are the most important sources of infection. The aim of this retrospective study was to evaluate the spread of Toxoplasma gondii in the province of Bologna (Emilia-Romagna region) in northern Italy, with a One Health approach, comparing seropositivity rates in different animal species and in humans over the last 19 and 4 years respectively. Analyses were performed on serological data collected over different periods at three separate locations: Istituto Zooprofilattico Sperimentale della Lombardia e della Emilia-Romagna (IZSLER); Veterinary University Hospital Clinical Pathology Service, Department of Veterinary Medical Sciences, University of Bologna; and Unit of Microbiology, St. Orsola Hospital, Bologna. Most relevant seropositivity rates observed in animals were 15.5% (wild boar), 25% (roe deer), 18.7% (goat), 29.9% (sheep), 9.7% (pigs), 42.9% and 21.8% in cat and dog, respectively. A comprehensive screening was conducted on a population of 36,814 individuals, revealing a prevalence of 20.4%. Among pregnant women, a frequence of 0.39% for active toxoplasmosis was observed. Despite certain limitations, this study provided valuable insights into the extensive distribution of this parasitic infection among diverse animal species and human populations in the province of Bologna. These findings underscore the importance of implementing consistent and proactive toxoplasmosis screening protocols during pregnancy, while emphasizing the critical need for adopting a One Health approach for effective control of this parasitic disease.
Collapse
Affiliation(s)
- F.M. Dini
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - S. Morselli
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - A. Marangoni
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - R. Taddei
- Istituto Zooprofilattico Sperimentale Della Lombardia e della Emilia-Romagna, Italy
| | - G. Maioli
- Istituto Zooprofilattico Sperimentale Della Lombardia e della Emilia-Romagna, Italy
| | - G. Roncarati
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - A. Balboni
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - F. Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - F. Lunetta
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - R. Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| |
Collapse
|
5
|
Rosa BA, Zarlenga DS, Fournet VM, Beshah E, Hill DE, Zarlenga A, Yee A, Liang X, Shandling AD, Oberai A, Urban JF, Mitreva M. Identification of broadly-conserved parasitic nematode proteins that activate immunity. FRONTIERS IN PARASITOLOGY 2023; 2:1223942. [PMID: 39816844 PMCID: PMC11731683 DOI: 10.3389/fpara.2023.1223942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/20/2023] [Indexed: 01/18/2025]
Abstract
Introduction Soil transmitted nematodes are impediments to human health and agricultural production. Poor anthelmintic efficiencies, the emergence of resistant strains, and the persistence of infective stages highlight the need for more effective control strategies. Parasitic nematodes elicit a Th2-type immune response that most often is not protective. Vaccination has thus far been unsuccessful due to unrealized antigenic characters and unknown mechanisms that nematodes use to circumvent host immunity. Methods Here, we used a genomics/proteomics approach (including immunoblot experiments from pigs infected with T. suis) to prioritize putative immunogenic excretory/secretory (E/S) proteins conserved across and specific to several gastrointestinal (GI) parasitic nematode species. A cocktail of five recombinant proteins optimized for conserved GI nematode targets was used immunize pigs and test for active antibody responses in both the serum and intestinal ileal fluid of immunized pigs. An antibody-protein array of putative immunogenic proteins was developed from a combined bioinformatic, experimental, and literature-based prioritization of homologous parasite proteins. Results Screening the array with sera and ileal fluid samples from immunized pigs suggested cross-reactivity among homologous proteins and a general activation of immunity. PCA clustering showed that the overall immune responses were altered by immunization, but no substantial changes were observed following direct worm challenge with either Ascaris suum or Trichuris suis. Discussion Proteins that activated immunity are potential antigens for immunization and the multi-omics phylum-spanning prioritization database that was created is a valuable resource for identifying target proteins in a wide array of different parasitic nematodes. This research strongly supports future studies using a computational, comparative genomics/proteomics approach to produce an effective parasite vaccine.
Collapse
Affiliation(s)
- Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Dante S. Zarlenga
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Valsin M. Fournet
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Ethiopia Beshah
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Dolores E. Hill
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Alexander Zarlenga
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Angela Yee
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Xiaowu Liang
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Adam D. Shandling
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Amit Oberai
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Joseph F. Urban
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Milne GC, Webster JP, Walker M. Is the incidence of congenital toxoplasmosis declining? Trends Parasitol 2023; 39:26-37. [PMID: 36400672 DOI: 10.1016/j.pt.2022.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Prenatal infection with the protozoan parasite Toxoplasma gondii can cause congenital toxoplasmosis (CT), an often fatal or lifelong-disabling condition. Several studies of human populations have reported temporal decreases in seroprevalence, suggesting declining CT incidence. However, the consistency of this trend among diverse populations remains unclear, as does its implication for prenatal screening programmes, the major intervention against CT. Using temporally resolved data on the seroprevalence of T. gondii in various countries, we discuss how the parasite's changing epidemiology may affect trends in CT incidence in varying and counterintuitive ways. We argue that parasite stage-specific serology could be helpful for understanding underlying causes of secular changes in seroprevalence. Furthermore, we highlight the importance of updating cost-effectiveness estimates of screening programmes, accounting for neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Gregory Colin Milne
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, London, UK.
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, London, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, London, UK
| |
Collapse
|
8
|
Foodborne Parasites and Their Complex Life Cycles Challenging Food Safety in Different Food Chains. Foods 2022; 12:foods12010142. [PMID: 36613359 PMCID: PMC9818752 DOI: 10.3390/foods12010142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Zoonotic foodborne parasites often represent complex, multi host life cycles with parasite stages in the hosts, but also in the environment. This manuscript aims to provide an overview of important zoonotic foodborne parasites, with a focus on the different food chains in which parasite stages may occur. We have chosen some examples of meat-borne parasites occurring in livestock (Taenia spp., Trichinella spp. and Toxoplasma gondii), as well as Fasciola spp., an example of a zoonotic parasite of livestock, but transmitted to humans via contaminated vegetables or water, covering the 'farm to fork' food chain; and meat-borne parasites occurring in wildlife (Trichinella spp., Toxoplasma gondii), covering the 'forest to fork' food chain. Moreover, fish-borne parasites (Clonorchis spp., Opisthorchis spp. and Anisakidae) covering the 'pond/ocean/freshwater to fork' food chain are reviewed. The increased popularity of consumption of raw and ready-to-eat meat, fish and vegetables may pose a risk for consumers, since most post-harvest processing measures do not always guarantee the complete removal of parasite stages or their effective inactivation. We also highlight the impact of increasing contact between wildlife, livestock and humans on food safety. Risk based approaches, and diagnostics and control/prevention tackled from an integrated, multipathogen and multidisciplinary point of view should be considered as well.
Collapse
|
9
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, et alFelín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Holfels E, Frim D, McLone D, Penn R, Cohen W, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview. CURRENT PEDIATRICS REPORTS 2022; 10:57-92. [PMID: 36034212 PMCID: PMC9395898 DOI: 10.1007/s40124-022-00269-w] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose of Review Review building of programs to eliminate Toxoplasma infections. Recent Findings Morbidity and mortality from toxoplasmosis led to programs in USA, Panama, and Colombia to facilitate understanding, treatment, prevention, and regional resources, incorporating student work. Summary Studies foundational for building recent, regional approaches/programs are reviewed. Introduction provides an overview/review of programs in Panamá, the United States, and other countries. High prevalence/risk of exposure led to laws mandating testing in gestation, reporting, and development of broad-based teaching materials about Toxoplasma. These were tested for efficacy as learning tools for high-school students, pregnant women, medical students, physicians, scientists, public health officials and general public. Digitized, free, smart phone application effectively taught pregnant women about toxoplasmosis prevention. Perinatal infection care programs, identifying true regional risk factors, and point-of-care gestational screening facilitate prevention and care. When implemented fully across all demographics, such programs present opportunities to save lives, sight, and cognition with considerable spillover benefits for individuals and societies. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00269-w.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Academia Interamericana de Panamá, Ciudad de Panamá, Panamá
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
| | - Kristen Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Arturo Rebellon
- Sanofi Aventis de Panamá S.A., University of South Florida, Ciudad de Panamá, Panamá
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | | | | | | | | | | | | | - Dan L. Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, D.C. USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Eduardo Ortega-Barria
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
- GSK Vaccines, Panamá, Panamá
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Michael Grigg
- Molecular Parasitology, NIAID, NIH, Bethesda, MD USA
| | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, IL USA
| |
Collapse
|
10
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, et alFelín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, Holfels E, Frim D, McLone D, Penn R, Cohen W, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances "Take a Village". CURRENT PEDIATRICS REPORTS 2022; 10:125-154. [PMID: 35991908 PMCID: PMC9379243 DOI: 10.1007/s40124-022-00268-x] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Purpose of Review Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings Multiple countries' efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00268-x.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Academia Interamericana de Panama, Ciudad de Panama, Panama
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Hospital San Miguel Arcángel, Ciudad de Panama, Panama
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Arturo Rebellon
- Sanofi Aventis de Panama S.A., University of South Florida, Ciudad de Panama, Panama
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | - Dan L Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, DC USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Eduardo Ortega-Barria
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
- GSK Vaccines, Panama, Panama
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL USA
| |
Collapse
|
11
|
Arranz-Solís D, Saeij JPJ. New Avenues to Design Toxoplasma Vaccines Based on Oocysts and Cysts. Front Immunol 2022; 13:910961. [PMID: 35734184 PMCID: PMC9207213 DOI: 10.3389/fimmu.2022.910961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Toxoplasmosis is a worldwide disease affecting all warm-blooded animals, including humans. Vaccination strategies aimed at inducing an efficient immune response while preventing transmission have been attempted in the past. While many different approaches can partially protect immunized animals against subsequent infections, full and lasting protection is rarely attained and only with live-attenuated vaccines. In addition, vaccines based on mutant strains that are deficient in forming the chronic phase of the parasite (such as Toxovax™) cannot be extensively used due to their zoonotic potential and the possibility of reversion to virulent phenotypes. An increasing number of studies using emerging genetic-engineering tools have been conducted to design novel vaccines based on recombinant proteins, DNA or delivery systems such as nanoparticles. However, these are usually less efficient due to their antigenic simplicity. In this perspective article we discuss potential target genes and novel strategies to generate live-attenuated long-lasting vaccines based on tissue cysts and oocysts, which are the environmentally resistant chronic forms of Toxoplasma. By selectively disrupting genes important for parasite dissemination, cyst formation and/or sporozoite invasion, alone or in combination, a vaccine based on a live-attenuated strain that elicits a protective immune response while preventing the transmission of Toxoplasma could be created. Finally, further improvements of protocols to generate Toxoplasma sexual stages in vitro might lead to the production of oocysts from such a strain without the need for using mice or cats.
Collapse
Affiliation(s)
| | - Jeroen P. J. Saeij
- Pathology, Microbiology and Immunology department, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
12
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
13
|
Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology-Current Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9112346. [PMID: 34835471 PMCID: PMC8618849 DOI: 10.3390/microorganisms9112346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various 'omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.
Collapse
|
14
|
Saito T, Kitamura Y, Tanaka E, Ishigami I, Taniguchi Y, Moribe J, Kitoh K, Takashima Y. Spatial distribution of anti-Toxoplasma gondii antibody-positive wild boars in Gifu Prefecture, Japan. Sci Rep 2021; 11:17207. [PMID: 34446779 PMCID: PMC8390498 DOI: 10.1038/s41598-021-96758-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
Toxoplasma gondii is a globally wide-spread parasite that infects almost all species of mammals and birds, including humans. We studied the spatial distribution of individual T. gondii-seropositive wild boar in Gifu Prefecture (10,621 km2), Japan. Altogether, 744 wild boars were captured at 663 points around human settlements in Gifu Prefecture. Serum samples were collected after recording the exact capture locations, along with each wild boar’s body length and sex. We then used a commercial enzyme-linked immunosorbent assay kit for swine to measure anti-T. gondii antibodies in these animals. Among the 744 wild boars, 169 tested positive for T. gondii (22.7%). No significant difference in T. gondii seroprevalence was observed between the mountainous northern region with high winter snow cover and the mild-wintered geographical plain of the southern part of the prefecture. In contrast, 8 of the 11 wild boars that were captured in a public park surrounded by residential areas showed T. gondii seropositivity (72.7%), a value significantly higher than those of the wild boar populations in the other prefecture areas. This in-depth analysis, which spans the big city suburbs and rural areas of a whole prefecture, explains the seroprevalence of zoonotic T. gondii in wild boar and has public health implications.
Collapse
Affiliation(s)
- Taizo Saito
- Department of Clinical Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuko Kitamura
- Gifu Prefectural Chuo Livestock Hygiene Service Center, 1-1 Yanagido, Gifu, 501-1112, Japan.,Department of Applied Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eiji Tanaka
- Gifu Prefectural Chuo Livestock Hygiene Service Center, 1-1 Yanagido, Gifu, 501-1112, Japan
| | - Itsuki Ishigami
- Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuji Taniguchi
- Department of Clinical Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Junji Moribe
- School of Social System Management, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Laboratory of Wildlife Resources, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Katsuya Kitoh
- Department of Clinical Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasuhiro Takashima
- Department of Clinical Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,Department of Veterinary Parasitology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
15
|
Milne G, Webster JP, Walker M. Toward Improving Interventions Against Toxoplasmosis by Identifying Routes of Transmission Using Sporozoite-specific Serological Tools. Clin Infect Dis 2021; 71:e686-e693. [PMID: 32280956 PMCID: PMC7744992 DOI: 10.1093/cid/ciaa428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/10/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Horizontal transmission of Toxoplasma gondii occurs primarily via ingestion of environmental oocysts or consumption of undercooked/raw meat containing cyst-stage bradyzoites. The relative importance of these 2 transmission routes remains unclear. Oocyst infection can be distinguished from bradyzoite infection by identification of immunoglobulin G (IgG) antibodies against T. gondii embryogenesis-related protein (TgERP). These antibodies are, however, thought to persist for only 6-8 months in human sera, limiting the use of TgERP serology to only those patients recently exposed to T. gondii. Yet recent serological survey data indicate a more sustained persistence of anti-TgERP antibodies. Elucidating the duration of anti-TgERP IgG will help to determine whether TgERP serology has epidemiological utility for quantifying the relative importance of different routes of T. gondii transmission. METHODS We developed a serocatalytic mathematical model to capture the change in seroprevalence of non-stage-specific IgG and anti-TgERP IgG antibodies with human age. The model was fitted to published datasets collected in an endemic region of Brazil to estimate the duration of anti-TgERP IgG antibodies, accounting for variable age-force of infection profiles and uncertainty in the diagnostic performance of TgERP serology. RESULTS We found that anti-TgERP IgG persists for substantially longer than previously recognized, with estimates ranging from 8.3 to 41.1 years. The Brazilian datasets were consistent with oocysts being the predominant transmission route in these settings. CONCLUSIONS The longer than previously recognized duration of anti-TgERP antibodies indicates that anti-TgERP serology could be a useful tool for delineating T. gondii transmission routes in human populations. TgERP serology may therefore be an important epidemiological tool for informing the design of tailored, setting-specific public health information campaigns and interventions.
Collapse
Affiliation(s)
- Gregory Milne
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, United Kingdom
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, United Kingdom
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, St Mary's Hospital Campus, London, United Kingdom
| |
Collapse
|
16
|
Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay. mSphere 2021; 6:6/2/e01341-20. [PMID: 33789945 PMCID: PMC8546727 DOI: 10.1128/msphere.01341-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The environmental stage of the apicomplexan Toxoplasma gondii oocyst is vital to its life cycle but largely understudied. Because oocysts are excreted only by infected felids, their availability for research is limited. We report the adaptation of an agarose-based method to immobilize minute amounts of oocysts to perform immunofluorescence assays. Agarose embedding allows high-resolution confocal microscopy imaging of antibodies binding to the oocyst surface as well as unprecedented imaging of intracellular sporocyst structures with Maclura pomifera agglutinin after on-slide permeabilization of the immobilized oocysts. To identify new possible molecules binding to the oocyst surface, we used this method to screen a library of C-type lectin receptor (CLR)-human IgG constant region fusion proteins from the group of related CLRs called the Dectin-1 cluster against oocysts. In addition to CLEC7A that was previously reported to decorate T. gondii oocysts, we present experimental evidence for specific binding of three additional CLRs to the surface of this stage. We discuss how these CLRs, known to be expressed on neutrophils, dendritic cells, or macrophages, could be involved in the early immune response by the host, such as oocyst antigen uptake in the intestine. In conclusion, we present a modified immunofluorescence assay technique that allows material-saving immunofluorescence microscopy with T. gondii oocysts in a higher resolution than previously published, which allowed us to describe three additional CLRs binding specifically to the oocyst surface. IMPORTANCE Knowledge of oocyst biology of Toxoplasma gondii is limited, not the least due to its limited availability. We describe a method that permits us to process minute amounts of oocysts for immunofluorescence microscopy without compromising their structural properties. This method allowed us to visualize internal structures of sporocysts by confocal microscopy in unprecedented quality. Moreover, the method can be used as a low- to medium-throughput method to screen for molecules interacting with oocysts, such as antibodies, or compounds causing structural damage to oocysts (i.e., disinfectants). Using this method, we screened a small library of C-type lectin receptors (CLRs) present on certain immune cells and found three CLRs able to decorate the oocyst wall of T. gondii and which were not known before to bind to oocysts. These tools will allow further study into oocyst wall composition and could also provoke experiments regarding immunological recognition of oocysts.
Collapse
|
17
|
Seers T, Myneni J, Chaudhry NL, Ugarte M. Bilateral ocular toxoplasmosis in a returning traveller: age and route of infection as potential risk factors. BMJ Case Rep 2021; 14:14/1/e237068. [PMID: 33509864 PMCID: PMC7845719 DOI: 10.1136/bcr-2020-237068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the case of a 69-year-old man, who presented in the UK with a short history of deteriorating vision and clinical features of bilateral atypical retinochoroiditis, after travelling to South America. Vitreous samples demonstrated Toxoplasma gondii DNA by PCR. Serology tests demonstrated recent acquired Toxoplasma gondii infection with IgM antibodies. He responded well to treatment with trimethoprim-sulfamethoxazole, azithromycin and oral steroids. This case is a reminder of the global importance of Toxoplasma related eye disease, and its uncommon bilateral severe presentation in a returning traveller, where the risk factors were age and the route of infection likely to be a virulent parasite oocyst from vegetables or water rather than undercooked meat or direct contact with cats.
Collapse
Affiliation(s)
- Tim Seers
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jayavani Myneni
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nadia L Chaudhry
- Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport, UK
| | - Marta Ugarte
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK .,Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Postolache TT, Wadhawan A, Rujescu D, Hoisington AJ, Dagdag A, Baca-Garcia E, Lowry CA, Okusaga OO, Brenner LA. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front Psychiatry 2021; 12:665682. [PMID: 34177652 PMCID: PMC8226025 DOI: 10.3389/fpsyt.2021.665682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents. This paper is a detailed review of the associations between T. gondii serology and suicidal behavior, a field of study that started 15 years ago with our publication of associations between T. gondii IgG serology and suicidal behavior in persons with mood disorders. This "legacy" article presents, chronologically, our primary studies in individuals with mood disorders and schizophrenia in Germany, recent attempters in Sweden, and in a large cohort of mothers in Denmark. Then, it reviews findings from all three meta-analyses published to date, confirming our reported associations and overall consistent in effect size [ranging between 39 and 57% elevation of odds of suicide attempt in T. gondii immunoglobulin (IgG) positives]. Finally, the article introduces certain links between T. gondii and biomarkers previously associated with suicidal behavior (kynurenines, phenylalanine/tyrosine), intermediate phenotypes of suicidal behavior (impulsivity, aggression) and state-dependent suicide risk factors (hopelessness/dysphoria, sleep impairment). In sum, an abundance of evidence supports a positive link between suicide attempts (but not suicidal ideation) and T. gondii IgG (but not IgM) seropositivity and serointensity. Trait impulsivity and aggression, endophenotypes of suicidal behavior have also been positively associated with T. gondii seropositivity in both the psychiatrically healthy as well as in patients with Intermittent Explosive Disorder. Yet, causality has not been demonstrated. Thus, randomized interventional studies are necessary to advance causal inferences and, if causality is confirmed, to provide hope that an etiological treatment for a distinct subgroup of individuals at an increased risk for suicide could emerge.
Collapse
Affiliation(s)
- Teodor T Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, United States
| | - Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Psychiatry, Saint Elizabeth's Hospital, Washington, DC, United States
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle, Halle, Germany
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Systems Engineering and Management, Air Force Institute of Technology, Dayton, OH, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Enrique Baca-Garcia
- Department of Psychiatry, Jimenez Diaz Foundation Hospital, Madrid, Spain.,Department of Psychiatry, Madrid Autonomous University, Madrid, Spain.,Department of Psychiatry, Rey Juan Carlos University Hospital, Móstoles, Spain.,Department of Psychiatry, General Hospital of Villalba, Madrid, Spain.,Department of Psychiatry, Infanta Elena University Hospital, Valdemoro, Spain.,Universidad Catolica del Maule, Talca, Chile.,Department of Psychiatry, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Olaoluwa O Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E DeBakey VA Medical Center, Houston, TX, United States
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Psychiatry & Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
20
|
Abstract
Toxoplasma gondii (T. gondii) is an important human disease-causing parasite. In the USA, T. gondii infects >10% of the population, accrues economic losses of US$3.6 billion/year, and ranks as the second leading culprit of foodborne illness-related fatalities. We assessed toxoplasmosis risk among the Old Order Amish, a mostly homogenous population with a high prevalence of T. gondii seropositivity, using a questionnaire focusing on food consumption/preparation behaviours and environmental risk factors. Analyses were conducted using multiple logistic regression. Consuming raw meat, rare meat, or unpasteurised cow or goat milk products was associated with increased odds of seropositivity (unadjusted Odds Ratios: 2.192, 1.613, and 1.718 , respectively). In separate models by sex, consuming raw meat, or consuming unpasteurised cow or goat milk products, was associated with increased odds of seropositivity among women; washing hands after touching meat with decreased odds of seropositivity among women (adjusted OR (AOR): 0.462); and cleaning cat litterbox with increased odds of seropositivity among men (AOR: 5.241). This is the first study to assess associations between behavioural and environmental risk factors and T. gondii seropositivity in a US population with high seroprevalence for T. gondii. Our study emphasises the importance of proper food safety behaviours to avoid the risk of infection.
Collapse
|
21
|
Ammar S, Hoggard N, Wood L, Su C, Gerhold R. Toxoplasma gondii Strain and Dose Effects on Feed Conversion Rate, Body Weight, Serum Antibodies Response, and Systemic Distribution in Intraperitoneally Infected Domestic Turkey Poults. Avian Dis 2020; 65:138-148. [PMID: 34339133 DOI: 10.1637/aviandiseases-d-20-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 11/05/2022]
Abstract
Toxoplasmosis, caused by the protozoan parasite Toxoplasma gondii, is an important foodborne zoonosis affecting a wide range of hosts, including birds. This study investigated the seroconversion, feed conversion rate, weight gain, and parasite tissue tropism as a function of parasite dose and virulence in turkeys. Twenty-five 4-wk-old female domestic turkeys (Meleagris gallapavo) were intraperitoneally infected with two different strains and two doses (105 and 108 tachyzoites/ml) of T. gondii tachyzoites, resulting in four treatment groups. A fifth group of 10 additional birds was intraperitoneally injected with sterile phosphate-buffered saline as a negative control. All birds remained subclinical except for three birds in the two high-dose groups (108 tachyzoites/ml). Survival rate was 88% (22/25). A 92% seroconversion rate was detected in T. gondii-infected birds using a modified agglutination test. Antibody titers as well as weight gain were related to the dose and strain of T. gondii used. Feed conversion rate was higher in the high-dose groups compared with low-dose and control groups, while weight gain was significantly lower at 14 days postinfection in the group infected with 108 tachyzoites/ml of virulent T. gondii strain. Gross lesions were detected in the pancreas and lungs of only one bird, and histopathologic findings varied depending on strain and dose. The organs that most frequently contained T. gondii DNA as detected by quantitative PCR were the brain and the heart, followed by the bursa of Fabricius and the lungs. This study confirmed that turkeys can be infected with T. gondii, and turkeys can show signs of infection when exposed to high doses. Given the increased practice of outdoor-raised livestock and wildlife consumption, continual experimental infection of T. gondii in wild and domestic animals should be pursued.
Collapse
Affiliation(s)
- Sawsan Ammar
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996.,Department of Clinical Pathology, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Menofia, Egypt 32511
| | - Nathan Hoggard
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996
| | - Liberty Wood
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996
| | - Richard Gerhold
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996,
| |
Collapse
|
22
|
Velasco-Velásquez S, Celis-Giraldo D, Botero Hincapié A, Alejandro Hincapie Erira D, Sofia Cordero López S, Marulanda Orozco N, Enrique Gómez-Marín J. Clinical, Socio-economic and Environmental Factors Related with Recurrences in Ocular Toxoplasmosis in Quindío, Colombia. Ophthalmic Epidemiol 2020; 28:258-264. [PMID: 33115293 DOI: 10.1080/09286586.2020.1839509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To identify the sociodemographic, clinical, and environmental factors associated with recurrences in ocular toxoplasmosis (OT). METHODS Retrospective analysis of clinical records of patients who consulted in the Health Centre at Universidad del Quindío between 2004 and 2017. Patients with retinochoroiditis due to Toxoplasma gondii infection and follow up >12 months were included. Comparisons were made with a recurrence index adjusted for months of follow up. For the statistical analysis, the Kruskal-Wallis test and analysis of variance (ANOVA) tests were performed in Epi Info 7.2 and SPSS 14.0. A statistical significance is shown if p ≤ 0.05. RESULTS A total of 58 patients were included, with median age of 28 years (range 1-61) and 55.1% were women. The median of recurrences was 1.4 (range 0.6-16.6). High recurrence index was present in 43.1% of the patients. A higher size of lesions was observed in low socioeconomic groups (p = .016) and patients with congenital infection had more bilateral compromise (p = .002). Intake of boiled water was related to a lower recurrence index (p = .04). CONCLUSIONS Low socioeconomic level was associated with bigger lesions and congenital infection was related with higher frequency of bilateral OT. Finally, intake of boiled water is related to a lower recurrence index of OT.
Collapse
Affiliation(s)
- Stefany Velasco-Velásquez
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Daniel Celis-Giraldo
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Andrea Botero Hincapié
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Diego Alejandro Hincapie Erira
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Sara Sofia Cordero López
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Nathalia Marulanda Orozco
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Jorge Enrique Gómez-Marín
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| |
Collapse
|
23
|
Odeniran PO, Omolabi KF, Ademola IO. Risk factors associated with seropositivity for Toxoplasma gondii in population-based studies among immunocompromised patients (pregnant women, HIV patients and children) in West African countries, Cameroon and Gabon: a meta-analysis. Acta Trop 2020; 209:105544. [PMID: 32461111 DOI: 10.1016/j.actatropica.2020.105544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Toxoplasmosis in immunocompromised individuals can be life threatening. The information needed for proper control and management strategies in endemic West African countries is lacking, hence a systematic review and meta-analysis were performed. This study aimed to determine the seroprevalence of anti-Toxoplasma gondii among pregnant women, HIV/AIDs and children in West Africa, Cameroon and Gabon. The epidemiology of the disease published between 1984 and 2019 using PubMed, Web of Science, Ovid MEDLINE, AJOL and Google Scholar databases were identified. Studies that met the inclusion criteria of Toxoplasma gondii infections under the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist were analysed. A total of 58 eligible studies were selected for meta-analysis. These studies considered 18,674 hosts and an overall pooled seroprevalence of anti-T. gondii antibodies were 45.4, 39.0 and 29.5% for pregnant women, HIV/AIDS patients and children, respectively. Pooled seroprevalence was highest in Gabon and lowest in Mali for pregnant women while highest levels of seropositivity for anti-T. gondii antibodies for HIV/AIDS individuals and children were both observed in Ghana. The major risk factors associated with anti-T. gondii seropositivity were gravida status, contact with cats, consumption of raw vegetables and /fruits, age and CD4 counts. More studies are needed to determine seroconversion rate. Improved sensitization among immunocompromised patients on T. gondii and its risk factors will be an efficient method to reducing the prevalence of the disease. One Health interventions involving transdisciplinary, integrative research and capacity building are necessary to address the problem of toxoplasmosis in West Africa.
Collapse
|
24
|
Dubey JP, Cerqueira-Cézar CK, Murata FHA, Kwok OCH, Hill D, Yang Y, Su C. All about Toxoplasma gondii infections in pigs: 2009-2020. Vet Parasitol 2020; 288:109185. [PMID: 33271424 DOI: 10.1016/j.vetpar.2020.109185] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. Toxoplasma gondii infection in pigs continues to be of public health concern. Pigs are important for the economy of many countries, particularly, USA, China, and European countries. Among the many food animals, pigs are considered the most important for T. gondii transmission in USA and China because viable parasites have rarely been isolated from beef or indoor raised chickens. Besides public health issues, T. gondii causes outbreaks of clinical toxoplasmosis in pigs in China, associated with a unique genotype of T. gondii (ToxoDB genotype #9 or Chinese 1), rarely found in other countries. The safety of ready to eat pork products with respect to T. gondii infection is a matter of recent debate. Here, we review in detail seroprevalence, prevalence of viable and nonviable T. gondii, epidemiology, risk assessment, diagnosis, and curing of pork products containing T. gondii for the past decade. This review will be of interest to biologists, parasitologists, veterinarians, and public health workers.
Collapse
Affiliation(s)
- Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA.
| | - Camila K Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - Fernando H A Murata
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - Oliver C H Kwok
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - Dolores Hill
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - Yurong Yang
- Laboratory of Veterinary Pathology, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
25
|
|
26
|
Scimeca RC, Perez E, Fairbanks WS, Ammar S, Su C, Gerhold RW, Reichard MV. Seroprevalence, DNA isolation, and genetic characterization of Toxoplasma gondii from black bear (Ursus americanus) sera collected in Eastern Oklahoma. Parasitol Res 2020; 119:1109-1115. [PMID: 32086592 DOI: 10.1007/s00436-019-06535-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Black bears (Ursus americanus) are commonly exposed to Toxoplasma gondii. However, there are no reports of exposure or infection with T. gondii in black bears from Oklahoma. The purpose of our project was to determine the seroprevalence of T. gondii antibodies in black bears collected in Oklahoma. Additionally, since only serum was available from these bears, we sought to determine if DNA extraction and PCR amplification for T. gondii was possible on serum samples from bears with positive titers. Seroprevalence was determined using modified agglutination test (MAT). Serum was collected from 44 live-trapped bears in southeastern Oklahoma; 32 (73% ± 58-84%) had antibodies against T. gondii. Seroprevalence in adult bears (85% ± 67-95%) was significantly higher (p = 0.028) than yearlings (33.0% ± 56-80%). Adult bears were 3.4 times more likely to have antibodies to T. gondii than yearlings. From the bears with positive titers, T. gondii DNA was detected in 12 of the 32 seropositive samples by PCR of the B1 gene, with two of the samples showing variation in two nucleotide positions when compared with available sequences. Multilocus PCR-RFLP genotyping of these 12 samples revealed three ToxoDB genotypes, including #2 (type III, haplogroup 3), #4 (type XII, haplogroup 12), and #74 (haplogroup 12). To the best of our knowledge, this is the first report of T. gondii seroprevalence in black bears from Oklahoma. Our results indicate that exposure and infection with T. gondii in black bears from Oklahoma is common.
Collapse
Affiliation(s)
- Ruth C Scimeca
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Erica Perez
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - W Sue Fairbanks
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sawsan Ammar
- Department of Biomedical and Diagnostic Services, University of Tennessee, Knoxville, TN, 37996, USA.,Clinical Pathology Department, College of Veterinary Medicine, Sadat City University, Sadat City, Menofia, Egypt
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard W Gerhold
- Department of Biomedical and Diagnostic Services, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mason V Reichard
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
27
|
Abstract
Congenital infections are infections transmitted from mother to child during pregnancy (transplacentally) or delivery (peripartum). They have the potential to adversely affect fetal development and long-term neurodevelopmental outcome through inflammatory, destructive, developmental, or teratogenic lesions of the brain. Because the fetal/neonatal brain has a limited capacity to respond to injury, early inflammatory changes may be difficult to visualize and only manifest as neurocognitive disability later in life. Teratogenic effects, which may include aberrations of neuronal proliferation and migration, are more easily visible on imaging, but may be equally difficult to use to predict long-term neurocognitive outcomes. This chapter reviews the general pathophysiology of congenital infection and describes the epidemiology, the antenatal and postnatal diagnosis, and the treatment of congenital infections as well as the long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Isabelle Boucoiran
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Departments of Obstetrics and Gynecology and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada.
| | - Fatima Kakkar
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Christian Renaud
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
28
|
Blaga R, Aubert D, Thébault A, Perret C, Geers R, Thomas M, Alliot A, Djokic V, Ortis N, Halos L, Durand B, Mercier A, Villena I, Boireau P. Toxoplasma gondii in beef consumed in France: regional variation in seroprevalence and parasite isolation. ACTA ACUST UNITED AC 2019; 26:77. [PMID: 31868577 PMCID: PMC6927255 DOI: 10.1051/parasite/2019076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/05/2019] [Indexed: 02/01/2023]
Abstract
In France, the consumption of cattle and sheep meat appears to be a risk factor for infection of pregnant women with Toxoplasma gondii. Several nation-wide surveys in France have investigated the prevalence of T. gondii in sheep and pig meat, but little is known at present about the prevalence of the parasite in beef. The main objective of the present cross-sectional survey was to estimate the seroprevalence of T. gondii infection in beef consumed in France. A secondary objective was to attempt to isolate T. gondii from cattle tissues and to study the geographical and age variations of this seroprevalence. The overall estimate of seroprevalence of T. gondii in bovine carcasses (n = 2912), for a threshold of 1:6 was 17.38%. A strong age effect was observed (p < 0.0001) with a seroprevalence of 5.34% for calves (<8 months) and 23.12% for adults (>8 months). Seroprevalence estimates given by area of birth and area of slaughtering for adults showed that the areas with the highest seroprevalence were not the same between these two variables. Only two strains, corresponding to genotype II, were isolated from heart samples, indicating that there is a limited risk of human infection with T. gondii, which needs to be correlated with the food habit of consuming raw or undercook (bleu or saignant) beef. However, new questions have emerged, especially concerning the isolation of parasites from beef and the precise role of bovines, generally described as poor hosts for T. gondii, in human infection.
Collapse
Affiliation(s)
- Radu Blaga
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, INRA, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France - UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Dominique Aubert
- National Reference Center on Toxoplasmosis, Toxoplasma Biological Resources Center, CHU Reims and EA7510, SFR CAP-Santé, University of Reims Champagne-Ardenne, USC EpiToxo ANSES, 51095 Reims, France
| | - Anne Thébault
- ANSES, Direction de l'évaluation des risques, Unité Méthodes et Etudes, 94700 Maisons-Alfort, France
| | - Catherine Perret
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Régine Geers
- National Reference Center on Toxoplasmosis, Toxoplasma Biological Resources Center, CHU Reims and EA7510, SFR CAP-Santé, University of Reims Champagne-Ardenne, USC EpiToxo ANSES, 51095 Reims, France
| | - Myriam Thomas
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Annie Alliot
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Vitomir Djokic
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Naïma Ortis
- National Reference Center on Toxoplasmosis, Toxoplasma Biological Resources Center, CHU Reims and EA7510, SFR CAP-Santé, University of Reims Champagne-Ardenne, USC EpiToxo ANSES, 51095 Reims, France
| | - Lénaïg Halos
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, INRA, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France - UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Benoît Durand
- Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94700 Maisons-Alfort, France
| | - Aurélien Mercier
- INSERM, Université de Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, 87000 Limoges, France - National Reference Center on Toxoplasmosis, Toxoplasma Biological Resources Center, CHU Limoges, 87042 Limoges, France
| | - Isabelle Villena
- National Reference Center on Toxoplasmosis, Toxoplasma Biological Resources Center, CHU Reims and EA7510, SFR CAP-Santé, University of Reims Champagne-Ardenne, USC EpiToxo ANSES, 51095 Reims, France
| | - Pascal Boireau
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, National Reference Laboratory for Foodborne Parasites, Animal Health Laboratory, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| |
Collapse
|
29
|
Wit LA, Kilpatrick AM, VanWormer E, Croll DA, Tershy BR, Kim M, Shapiro K. Seasonal and spatial variation in
Toxoplasma gondii
contamination in soil in urban public spaces in California, United States. Zoonoses Public Health 2019; 67:70-78. [DOI: 10.1111/zph.12656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Luz A. Wit
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences School of Natural Resources University of Nebraska‐Lincoln Lincoln Nebraska
| | - Donald A. Croll
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Bernie R. Tershy
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Minji Kim
- Department of Pathology, Microbiology and Immunology School of Veterinary Medicine University of California, Davis Davis California
| | - Karen Shapiro
- Department of Pathology, Microbiology and Immunology School of Veterinary Medicine University of California, Davis Davis California
- One Health Institute School of Veterinary Medicine University of California, Davis Davis California
| |
Collapse
|
30
|
Liu XY, Wang ZD, El-Ashram S, Liu Q. Toxoplasma gondii oocyst-driven infection in pigs, chickens and humans in northeastern China. BMC Vet Res 2019; 15:366. [PMID: 31653218 PMCID: PMC6814962 DOI: 10.1186/s12917-019-2121-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022] Open
Abstract
Background Toxoplasma gondii, an intracellular apicomplexan protozoan parasite, can infect almost all warm-blooded animals. The aim of the present study was to investigate T. gondii oocyst-driven infection in pigs, chickens and humans in Jilin province, northeastern China. Results The serum samples of pigs, chickens and humans were sampled and tested by indirect enzyme-linked immunosorbent assays (ELISAs) using dense granule antigen GRA7, oocyst-specific protein OWP8, and sporozoite-specific protein CCp5A, respectively. Results showed a prevalence of 16.7% by GRA7-ELISA, and 12.2% by OWP8- and CCp5A-ELISA in pigs; 10.4% by GRA7-ELISA, 13.5% by OWP8-ELISA, and 9.4% by CCp5A-ELISA in chickens; and 14.2% by GRA7-ELISA, 3.6% by OWP8-ELISA, and 3.0% by CCp5A-ELISA in humans. No significant differences were observed between T. gondii seroprevalence in pigs and chickens among the three antigens-based ELISAs (P > 0.05). However, there were significant differences between T. gondii seroprevalence rates in humans (P < 0.05). These findings demonstrated a low prevalence of T. gondii oocyst-driven infection in humans, a medium prevalence in pigs, and a high prevalence in chickens. Conclusions The present study demonstrated that different oocyst-driven infection rates in different animal species, which would help to design effective strategies to prevent T. gondii transmission. To our knowledge, this is the first study to differentiate T. gondii infective forms in pigs, chickens and humans in China.
Collapse
Affiliation(s)
- Xiao-Yi Liu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Ze-Dong Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.,Military Veterinary Institute Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Quan Liu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China. .,Military Veterinary Institute Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
31
|
He JJ, Ma J, Wang JL, Zhang FK, Li JX, Zhai BT, Wang ZX, Elsheikha HM, Zhu XQ. Global Transcriptome Profiling of Multiple Porcine Organs Reveals Toxoplasma gondii-Induced Transcriptional Landscapes. Front Immunol 2019; 10:1531. [PMID: 31333663 PMCID: PMC6618905 DOI: 10.3389/fimmu.2019.01531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
We characterized the porcine tissue transcriptional landscapes that follow Toxoplasma gondii infection. RNAs were isolated from liver, spleen, cerebral cortex, lung, and mesenteric lymph nodes (MLNs) of T. gondii-infected and uninfected (control) pigs at days 6 and 18 postinfection, and were analyzed using next-generation sequencing (RNA-seq). T. gondii altered the expression of 178, 476, 199, 201, and 362 transcripts at 6 dpi and 217, 223, 347, 119, and 161 at 18 dpi in the infected brain, liver, lung, MLNs and spleen, respectively. The differentially expressed transcripts (DETs) were grouped into five expression patterns and 10 sub-clusters. Gene Ontology enrichment and pathway analysis revealed that immune-related genes dominated the overall transcriptomic signature and that metabolic processes, such as steroid biosynthesis, and metabolism of lipid and carboxylic acid, were downregulated in infected tissues. Co-expression network analysis identified transcriptional modules associated with host immune response to infection. These findings not only show how T. gondii infection alters porcine transcriptome in a tissue-specific manner, but also offer a gateway for testing new hypotheses regarding human response to T. gondii infection.
Collapse
Affiliation(s)
- Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin-Tao Zhai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ze-Xiang Wang
- Department of Parasitology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
32
|
Stelzer S, Basso W, Benavides Silván J, Ortega-Mora L, Maksimov P, Gethmann J, Conraths F, Schares G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol 2019; 15:e00037. [PMID: 32095611 PMCID: PMC7033994 DOI: 10.1016/j.fawpar.2019.e00037] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii is a zoonotic parasite that can be transmitted from animals to humans. Felids, including domestic cats, are definitive hosts that can shed oocysts with their feces. In addition to infections that occur by accidental oral uptake of food or water contaminated with oocysts, it is assumed that a large proportion of affected humans may have become infected by consuming meat or other animal products that contained infective parasitic stages of T. gondii. Since farm animals represent a direct source of infection for humans, but also a possible reservoir for the parasite, it is important to control T. gondii infections in livestock. Moreover, T. gondii may also be pathogenic to livestock where it could be responsible for considerable economic losses in some regions and particular farming systems, e.g. in areas where the small ruminant industry is relevant. This review aims to summarize actual knowledge on the prevalence and effects of infections with T. gondii in the most important livestock species and on the effects of toxoplasmosis on livestock. It also provides an overview on potential risk factors favoring infections of livestock with T. gondii. Knowledge on potential risk factors is prerequisite to implement effective biosecurity measures on farms to prevent T. gondii infections. Risk factors identified by many studies are cat-related, but also those associated with a potential contamination of fodder or water, and with access to a potentially contaminated environment. Published information on the costs T. gondii infections cause in livestock production, is scarce. The most recent peer reviewed reports from Great Britain and Uruguay suggest annual cost of about 5-15 million US $ per country. Since these estimates are outdated, future studies are needed to estimate the present costs due to toxoplasmosis in livestock. Further, the fact that T. gondii infections in livestock may affect human health needs to be considered and the respective costs should also be estimated, but this is beyond the scope of this article.
Collapse
Affiliation(s)
- S. Stelzer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - W. Basso
- Institute of Parasitology, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - J. Benavides Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León) Grulleros, 24346 León, Spain
| | - L.M. Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - P. Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - J. Gethmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - F.J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - G. Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
33
|
Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. [PMID: 32095620 PMCID: PMC7033973 DOI: 10.1016/j.fawpar.2019.e00049] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Collapse
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, One Shields Ave, 4206 VM3A, University of California, Davis, CA 95616-5270, USA
| | - Lillian Bahia-Oliveira
- Laboratory of Immunoparasitology, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON K1A 0K9, Canada
| | - Aurélien Dumètre
- Aix Marseille Univ, IRD 257, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Luz A. de Wit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95050, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska-Lincoln, VBS 111, Lincoln, NE 68583, USA
| | - Isabelle Villena
- EA 7510, UFR Medicine, University Reims Champagne-Ardenne, National Reference Center on Toxoplasmosis, Hospital Maison Blanche, Reims, France
| |
Collapse
|
34
|
Djurković-Djaković O, Dupouy-Camet J, Van der Giessen J, Dubey JP. Toxoplasmosis: Overview from a One Health perspective. Food Waterborne Parasitol 2019; 15:e00054. [PMID: 32095624 PMCID: PMC7034049 DOI: 10.1016/j.fawpar.2019.e00054] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
Toxoplasmosis is paradigmatic of the One Health approach, as the causative parasite Toxoplasma gondii infects virtually all warm-blooded animals, including humans. This makes T. gondii one of the most successful parasites on earth, infecting up to a third of the global human population. Moreover, the T. gondii disease burden has been ranked among the highest of all parasitic diseases. To reduce the disease burden of toxoplasmosis in humans, interventions are needed in the animal reservoirs, necessitating close collaboration between both the human and veterinary medical sectors. In the present special issue of FAWPAR, several of the most pertinent topics related to the impact and control of toxoplasmosis are addressed by leading experts in the field. This collection of papers highlights state-of-the-art knowledge, gaps in knowledge and future perspectives, as well as the benefits of current and proposed future activities to tackle toxoplasmosis within the One Health context.
Collapse
Affiliation(s)
- Olgica Djurković-Djaković
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, Dr. Subotica 4, P.O. Box 102, 11129 Belgrade, Serbia
| | | | - Joke Van der Giessen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jitender P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA
| |
Collapse
|
35
|
Aguirre AA, Longcore T, Barbieri M, Dabritz H, Hill D, Klein PN, Lepczyk C, Lilly EL, McLeod R, Milcarsky J, Murphy CE, Su C, VanWormer E, Yolken R, Sizemore GC. The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. ECOHEALTH 2019; 16:378-390. [PMID: 30945159 PMCID: PMC6682582 DOI: 10.1007/s10393-019-01405-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 06/02/2023]
Abstract
One Health is a collaborative, interdisciplinary effort that seeks optimal health for people, animals, plants, and the environment. Toxoplasmosis, caused by Toxoplasma gondii, is an intracellular protozoan infection distributed worldwide, with a heteroxenous life cycle that practically affects all homeotherms and in which felines act as definitive reservoirs. Herein, we review the natural history of T. gondii, its transmission and impacts in humans, domestic animals, wildlife both terrestrial and aquatic, and ecosystems. The epidemiology, prevention, and control strategies are reviewed, with the objective of facilitating awareness of this disease and promoting transdisciplinary collaborations, integrative research, and capacity building among universities, government agencies, NGOs, policy makers, practicing physicians, veterinarians, and the general public.
Collapse
Affiliation(s)
- A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, 4400 University Dr. MSN: 5F2, Fairfax, VA, 22030-4400, USA.
| | - Travis Longcore
- Spatial Sciences Institute, University of Southern California, 3616 Trousdale Parkway, AHF B55, Los Angeles, CA, 90089, USA
| | - Michelle Barbieri
- NMFS/PIFSC/PSD/Hawaiian Monk Seal Research Program, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, USA
| | - Haydee Dabritz
- Community Health Branch, Yolo County Health & Human Services Agency, 137 N Cottonwood St, Woodland, CA, 95695, USA
| | - Dolores Hill
- U.S. Department of Agriculture, Center Road Building 307-C Room 134, BARC East, Beltsville, MD, 20705, USA
| | - Patrice N Klein
- United States Department of Agriculture Forest Service, 201 14th Street, SW, Washington, DC, 20250, USA
| | | | - Emily L Lilly
- Virginia Military Institute, 303D Maury-Brooke Hall, Lexington, VA, 24450, USA
| | - Rima McLeod
- The University of Chicago, AMB N310, (MC 2114) 5841 South Maryland Avenue, Chicago, IL, 60637, USA
| | | | - Caroline E Murphy
- The Wildlife Society, 425 Barlow Place, Suite 200, Bethesda, MD, 20814, USA
| | - Chunlei Su
- M409 Walters Life Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elizabeth VanWormer
- University of Nebraska-Lincoln, 406 Hardin Hall, 3310 Holdrege Street, Lincoln, NE, 68583, USA
| | - Robert Yolken
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Grant C Sizemore
- American Bird Conservancy, 4301 Connecticut Ave., NW, Suite 451, Washington, DC, 20008, USA
| |
Collapse
|
36
|
Fredericks J, Hawkins-Cooper D, Hill D, Luchansky J, Porto-Fett A, Gamble H, Fournet V, Urban J, Holley R, Dubey J. Low salt exposure results in inactivation of Toxoplasma gondii bradyzoites during formulation of dry cured ready-to-eat pork sausage. Food Waterborne Parasitol 2019; 15:e00047. [PMID: 32095618 PMCID: PMC7034007 DOI: 10.1016/j.fawpar.2019.e00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022] Open
Abstract
The production of safe and healthy food products represents one of the main objectives of the food industry. The presence of microorganisms in meat and products containing meat can result in a range of human health problems, as well as economic losses to producers of these products. However, contaminated meat products continue to initiate serious and large-scale outbreaks of disease in consumers. In addition to outbreaks of diseases caused by bacteria and viruses, parasitic organisms, such as Toxoplasma gondii, are responsible for foodborne infections worldwide, and in the case of T. gondii, is considered the 2nd leading cause of death from foodborne illness in the U.S. Transmission of Toxoplasma gondii has historically been linked to the consumption of raw or undercooked meat products, including pork. Specific concerns with respect to pork products are ready-to-eat (RTE) pork meals. These are pork or products containing pork that are prepared by curing or drying, and are not intended to be cooked before being consumed. Previous studies have demonstrated that T. gondii is inactivated during dry cured sausage preparation, apparently in the batter during fermentation. In this study, we have analyzed timing of inactivation of T. gondii in freshly prepared pepperoni batter to confirm our previous findings, to determine how quickly inactivation occurs during fermentation, and to confirm what parameters of the sausage preparation are involved in inactivation of the parasite. Results from the current and previous study indicate that rapid inactivation of T. gondii bradyzoites occurs in low salt batter for dry cured sausage within 4 h of initiation of fermentation.
Collapse
Affiliation(s)
- J. Fredericks
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - D.S. Hawkins-Cooper
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - D.E. Hill
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - J. Luchansky
- USDA, ARS, NEA, Food Safety and Intervention Technologies, 600 E. Mermaid Ln. ERRC, Wyndmoor, PA 19038-8598, United States of America
| | - A. Porto-Fett
- USDA, ARS, NEA, Food Safety and Intervention Technologies, 600 E. Mermaid Ln. ERRC, Wyndmoor, PA 19038-8598, United States of America
| | - H.R. Gamble
- National Academy of Sciences, 500 Fifth Street NW, Washington, DC 20001, United States of America
| | - V.M. Fournet
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - J.F. Urban
- USDA, ARS, BHNRC, Diet, Genomics, and Immunology Laboratory, BARC-East, Bldgs. 307-C, Beltsville, MD 20705, United States of America
| | - R. Holley
- Faculty of Agricultural and Food Sciences, Room 250 Ellis Building, 13 Freedman Crescent, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J.P. Dubey
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| |
Collapse
|
37
|
de Wit LA, Croll DA, Tershy B, Correa D, Luna-Pasten H, Quadri P, Kilpatrick AM. Potential public health benefits from cat eradications on islands. PLoS Negl Trop Dis 2019; 13:e0007040. [PMID: 30763304 PMCID: PMC6392314 DOI: 10.1371/journal.pntd.0007040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/27/2019] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
Cats (Felis catus) are reservoirs of several pathogens that affect humans, including Toxoplasma gondii. Infection of pregnant women with T. gondii can cause ocular and neurological lesions in newborns, and congenital toxoplasmosis has been associated with schizophrenia, epilepsy, movement disorders, and Alzheimer's disease. We compared seroprevalence of T. gondii and risk factors in people on seven islands in Mexico with and without introduced cats to determine the effect of cat eradication and cat density on exposure to T. gondii. Seroprevalence was zero on an island that never had cats and 1.8% on an island where cats were eradicated in 2000. Seroprevalence was significantly higher (12-26%) on the five islands with cats, yet it did not increase across a five-fold range of cat density. Having cats near households, being male and spending time on the mainland were significant risk factors for T. gondii seroprevalence among individuals, whereas eating shellfish was protective. Our results suggest that cats are an important source of T. gondii on islands, and eradicating, but not controlling, introduced cats from islands could benefit human health.
Collapse
Affiliation(s)
- Luz A. de Wit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| | - Donald A. Croll
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Bernie Tershy
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Dolores Correa
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Hector Luna-Pasten
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Paulo Quadri
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
38
|
Wadhawan A, Hill DE, Dagdag A, Mohyuddin H, Donnelly P, Jones JL, Postolache TT. No evidence for airborne transmission of Toxoplasma gondii in a very high prevalence area in Lancaster County. Pteridines 2018; 29:172-178. [PMID: 31649420 PMCID: PMC6812650 DOI: 10.1515/pteridines-2018-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Toxoplasma gondii (T. gondii) has been associated with acute food-borne illness, chronic low-grade inflammation, neuropsychiatric conditions and reactivation of chronic latent infection in immunocompetent hosts. Primary infection with T. gondii in pregnant women can lead to congenital toxoplasmosis. In addition to well-known oral tissue-cyst or oocyst ingestion, we hypothesized that the very high prevalence of T. gondii in certain populations exposed to agricultural dust could be, in part, a consequence of airborne infection with oocysts. Methods: Wo collected environmental dust samples from an area with a reportedly high T. gondii seroprevalence in the Old Order Amish population, in Lancaster, Pennsylvania. Samples included: a) air filters from air-conditioning units; b) swabs of settled dust; and c) vacuum filters containing airborne field dust. Pools of the swabs and shredded sub-samples of the air filters were fed to pigs, with inoculation into mice of heart tissue from seroconverted pigs. We also investigated the presence of T. gondii DNA using PCR amplification. Results: Only one pig seroconverted. However, bioassay of pig heart tissue further inoculated into mice showed no evidence of T. gondii infection. Consistently, no evidence of T. gondii DNA was revealed in any sample. Conclusions: No evidence of airborne transmission was found in the environmental samples that were examined.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dolores E Hill
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hira Mohyuddin
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick Donnelly
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey L Jones
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA; Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD 21201, USA,
| |
Collapse
|
39
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. Public health risks associated with food-borne parasites. EFSA J 2018; 16:e05495. [PMID: 32625781 PMCID: PMC7009631 DOI: 10.2903/j.efsa.2018.5495] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parasites are important food‐borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe‐focused ranking exercise, using multicriteria decision analysis, identified potentially food‐borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food‐borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well‐established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T. gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures.
Collapse
|
40
|
Hu RS, He JJ, Elsheikha HM, Zhang FK, Zou Y, Zhao GH, Cong W, Zhu XQ. Differential Brain MicroRNA Expression Profiles After Acute and Chronic Infection of Mice With Toxoplasma gondii Oocysts. Front Microbiol 2018; 9:2316. [PMID: 30333806 PMCID: PMC6176049 DOI: 10.3389/fmicb.2018.02316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Brain microRNAs (miRNAs) change in abundance in response to Toxoplasma gondii infection. However, their precise role in the pathogenesis of cerebral infection with T. gondii oocyst remains unclear. We studied the abundance of miRNAs in the brain of mice on days 11 and 33 post-infection (dpi) in order to identify miRNA pattern specific to early (11 dpi) and late (33 dpi) T. gondii infection. Mice were challenged with T. gondii oocysts (Type II strain) and on 11 and 33 dpi, the expression of miRNAs in mouse brain was investigated using small RNA (sRNA) sequencing. miRNA expression was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the biological processes, molecular functions, and cellular components, as well as pathways involved in infection. More than 1,500 miRNAs (1,352 known and 150 novel miRNAs) were detected in the infected and control mice. The expression of miRNAs varied across time after infection; 3, 38, and 108 differentially expressed miRNAs (P < 0.05) were detected during acute infection, chronic infection and chronic vs. acute infection, respectively. GO analysis showed that chronically infected mice had more predicted targets of dysregulated miRNAs than acutely infected mice. KEGG analysis indicated that most predicted targets were involved in immune- or disease-related pathways. Our data indicate that T. gondii infection alters the abundance of miRNAs in mouse brain particularly at the chronic stage, probably to fine-tune conditions required for the establishment of a latent brain infection.
Collapse
Affiliation(s)
- Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Loughborough, United Kingdom
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Marine Science, Shandong University at Weihai, Weihai, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
41
|
Hill D, Luchansky J, Porto-Fett A, Gamble H, Fournet V, Hawkins-Cooper D, Urban J, Gajadhar A, Holley R, Juneja V, Dubey J. Rapid inactivation of Toxoplasma gondii bradyzoites during formulation of dry cured ready-to-eat pork sausage. Food Waterborne Parasitol 2018; 12:e00029. [PMID: 32095600 PMCID: PMC7033975 DOI: 10.1016/j.fawpar.2018.e00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/15/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
Curing processes for pork meat in the U.S. currently require individual validation of methods to demonstrate inactivation of Trichinella spiralis, a nematode parasite historically associated with pork. However, for protozoan parasites, no such strictures exist. It has been assumed, with little evidence, that curing processes required to inactivate Trichinella also inactivate Toxoplasma gondii. Currently no model of meat chemistry exists that can be correlated with inactivation of T. gondii. Given the possibility of the presence of T. gondii in pork meat, and the frequent use of pork for ready-to-eat (RTE) products not intended to be cooked, curing methods which inactivate T. gondii early in the curing process would be of great value to producers. In this study, we tested the effect of five variables - salt/brine concentration, water activity (aw), pH, temperature, and time on inactivation of T. gondii bradyzoites in tissue cysts using low and high endpoints for common curing treatments during preparation of dry cured pork sausage. Survival of T. gondii bradyzoites at each stage of preparation was assessed using a mouse bioassay. Results indicated that encysted T. gondii bradyzoites do not survive the early stages of the dry curing process within the endpoint parameters tested here, even at levels of NaCl that are lower than typically used for dry curing (1.3%). Exposure of T. gondii encysted bradyzoites to curing components in the formulated batter resulted in rapid inactivation of bradyzoites. These data suggest that the use of dry curing components may be effective for controlling T. gondii potentially transmitted through RTE meats, rendering them safe from risk with respect to T. gondii transmission to human consumers.
Collapse
Affiliation(s)
- D.E. Hill
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - J. Luchansky
- USDA, ARS, NEA, Food Safety and Intervention Technologies, 600 E. Mermaid Ln. ERRC, Wyndmoor, PA 19038-8598, United States of America
| | - A. Porto-Fett
- USDA, ARS, NEA, Food Safety and Intervention Technologies, 600 E. Mermaid Ln. ERRC, Wyndmoor, PA 19038-8598, United States of America
| | - H.R. Gamble
- National Academy of Sciences, 500 Fifth Street NW, Washington, DC 20001, United States of America
| | - V.M. Fournet
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - D.S. Hawkins-Cooper
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| | - J.F. Urban
- USDA, ARS, BHNRC, Diet, Genomics, and Immunology Laboratory, BARC-East, Bldgs. 307-C, Beltsville, MD 20705, United States of America
| | - A.A. Gajadhar
- University of Saskatchewan, Department of Veterinary Microbiology, 52 Campus Drive, Saskatoon, SK S7N5B4, Canada
| | - R. Holley
- University of Manitoba, Faculty of Agricultural and Food Sciences, Room 250 Ellis Building, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
| | - V.K. Juneja
- USDA, ARS, NEA, Food Safety and Intervention Technologies, 600 E. Mermaid Ln. ERRC, Wyndmoor, PA 19038-8598, United States of America
| | - J.P. Dubey
- USDA, ARS, NEA, Animal Parasitic Diseases Laboratory, BARC-East, Bldgs. 1001 & 307-C, Beltsville, MD 20705, United States of America
| |
Collapse
|
42
|
Egorov AI, Converse R, Griffin SM, Styles J, Klein E, Sams E, Hudgens E, Wade TJ. Environmental risk factors for Toxoplasma gondii infections and the impact of latent infections on allostatic load in residents of Central North Carolina. BMC Infect Dis 2018; 18:421. [PMID: 30139351 PMCID: PMC6108134 DOI: 10.1186/s12879-018-3343-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii infection can be acquired through ingestion of infectious tissue cysts in undercooked meat or environmental oocysts excreted by cats. This cross-sectional study assessed environmental risk factors for T. gondii infections and an association between latent infections and a measure of physiologic dysregulation known as allostatic load. METHODS Serum samples from 206 adults in the Durham-Chapel Hill, North Carolina area were tested for immunoglobulin (IgG) responses to T. gondii using commercial ELISA kits. Allostatic load was estimated as a sum of 15 serum biomarkers of metabolic, neuroendocrine and immune functions dichotomized at distribution-based cutoffs. Vegetated land cover within 500 m of residences was estimated using 1 m resolution data from US EPA's EnviroAtlas. RESULTS Handling soil with bare hands at least weekly and currently owning a cat were associated with 5.3 (95% confidence limits 1.4; 20.7) and 10.0 (2.0; 50.6) adjusted odds ratios (aOR) of T. gondii seropositivity, respectively. There was also a significant positive interaction effect of handling soil and owning cats on seropositivity. An interquartile range increase in weighted mean vegetated land cover within 500 m of residence was associated with 3.7 (1.5; 9.1) aOR of T. gondii seropositivity. Greater age and consumption of undercooked pork were other significant predictors of seropositivity. In turn, T. gondii seropositivity was associated with 61% (13%; 130%) greater adjusted mean allostatic load compared to seronegative individuals. In contrast, greater vegetated land cover around residence was associated with significantly reduced allostatic load in both seronegative (p < 0.0001) and seropositive (p = 0.004) individuals. CONCLUSIONS Residents of greener areas may be at a higher risk of acquiring T. gondii infections through inadvertent ingestion of soil contaminated with cat feces. T. gondii infections may partially offset health benefits of exposure to the natural living environment.
Collapse
Affiliation(s)
- Andrey I Egorov
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, MD 58-C, 109. T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Reagan Converse
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, MD 58-C, 109. T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Shannon M Griffin
- United States Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH, USA
| | - Jennifer Styles
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, MD 58-C, 109. T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.,Gillings School of Global Public Health, Environmental Sciences and Engineering Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Klein
- ORAU Student Services Contractor to US EPA, Chapel Hill, NC, USA
| | - Elizabeth Sams
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, MD 58-C, 109. T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Edward Hudgens
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, MD 58-C, 109. T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Timothy J Wade
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, MD 58-C, 109. T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
43
|
Costa JG, Vilariño MJ. Antigens to detect the acute phase of toxoplasmosis in pregnant women: standardized comparison. Biomark Med 2018; 12:517-534. [DOI: 10.2217/bmm-2017-0345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A key element in any diagnostic technique is the antigen (Ag), a biomarker, but this is usually a protein that has a function to the parasite. Some biological aspects of the Ags and of the Toxoplasma gondii can influence the effectiveness of the diagnosis, as well as the antibody isotype and the characteristics of the assay. A large number of papers have assessed different proteins to distinguish the phases of infection, but the ‘indices of effectiveness’ differ among reports. This work presents for the first time a summary of all the Ags that have been evaluated, with standardized measurements of sensitivity and specificity. These values were calculated with information presented in the papers on Ag evaluations to differentiate the infection phases.
Collapse
Affiliation(s)
- Juan Gabriel Costa
- Laboratorio de Microbiología, Hospital provincial del Centenario, Rosario, Santa Fe, Argentina
- Cátedra de Fisicoquímica, Facultad de Bioquímica y Ciencias Biológicas de Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Santa Fe, Argentina
| | - María Julia Vilariño
- Departamento de Neurología pediátrica, Hospital Escuela Eva Perón, Granadero Baigorria, Santa Fe, Argentina
| |
Collapse
|
44
|
Taetzsch SJ, Bertke AS, Gruszynski KR. Zoonotic disease transmission associated with feral cats in a metropolitan area: A geospatial analysis. Zoonoses Public Health 2018; 65:412-419. [PMID: 29423934 DOI: 10.1111/zph.12449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 12/17/2022]
Abstract
Feral cats raise public health concerns due to their large population numbers and ability to harbour pathogens that cause disease in people, pets, and wildlife. Information regarding the potential for feral cats to intersect with areas frequented by humans is lacking. This study examined the potential for feral cats and human territories to overlap in the Richmond metropolitan area of Central Virginia. Feral cats (n = 275) were trapped for monthly trap-neuter-release (TNR) clinics from July to November 2016. A geographic information system (GIS) was used to map feral cat trapping locations, elementary and preschools, public parks, and community gardens, and to evaluate the potential for cat interaction with these areas, presuming a maximum habitat radius of 0.44 miles. We found that 8.0% of feral cats in the Richmond metropolitan area had potential to range onto public elementary or preschool property, and 81.5% of feral cats trapped in Richmond City had potential to roam into one or more places of interest, including elementary and preschool grounds, public parks, and community gardens. This provides public health, veterinary, and human health professionals with important information that can be used to focus resources in an effort to reduce zoonosis associated with feral cat populations.
Collapse
Affiliation(s)
- S J Taetzsch
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - A S Bertke
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - K R Gruszynski
- Virginia Department of Health, Office of Epidemiology, Richmond, VA, USA
| |
Collapse
|
45
|
Zhou CX, Cong W, Chen XQ, He SY, Elsheikha HM, Zhu XQ. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Front Microbiol 2018; 8:2612. [PMID: 29354104 PMCID: PMC5761440 DOI: 10.3389/fmicb.2017.02612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI- mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Wei Cong
- Department of Prevention and Treatment of Animal Diseases, College of Marine Science, Shandong University (Weihai), Weihai, China
| | - Xiao-Qing Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shen-Yi He
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
46
|
Wadhawan A, Dagdag A, Duffy A, Daue ML, Ryan KA, Brenner LA, Stiller JW, Pollin TI, Groer MW, Huang X, Lowry CA, Mitchell BD, Postolache TT. Positive association between Toxoplasma gondii IgG serointensity and current dysphoria/hopelessness scores in the Old Order Amish: a preliminary study. Pteridines 2017; 28:185-194. [PMID: 29657363 DOI: 10.1515/pterid-2017-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii (T. gondii) IgG seropositivity and serointensity have been previously associated with suicidal self-directed violence (SSDV). Although associations with unipolar depression have also been investigated, the results have been inconsistent, possibly as a consequence of high heterogeneity. We have now studied this association in a more homogeneous population, [that is (i.e.) Old Order Amish (OOA)] with previously reported high T. gondii seroprevalence. In 306 OOA with a mean age of 46.1 ± 16.7 years, including 191 (62.4%) women in the Amish Wellness Study, we obtained both T. gondii IgG titers (by enzyme-linked immunosorbent assay [ELISA]), and depression screening questionnaires (Patient Health Questionnaire [PHQ-9] [n = 280] and PHQ-2 [n = 26]). Associations between T. gondii IgG and dysphoria/hopelessness and anhedonia scores on depression screening questionnaires were analyzed using multivariable linear methods with adjustment for age and sex. Serointensity was associated with both current dysphoria/hopelessness (p = 0.045) and current combined anhedonia and dysphoria/hopelessness (p = 0.043), while associations with simple anhedonia and past/lifelong (rather than current) phenotypes were not significant. These results indicate the need for larger longitudinal studies to corroborate the association between dysphoria/hopelessness and T. gondii IgG-titers. Current hopelessness is a known risk factor for SSDV which responds particularly well to cognitive behavioral therapy, and may be a focused treatment target for T. gondii-positive individuals at high-risk for SSDV.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; and Saint Elizabeths' Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allyson Duffy
- College of Nursing, University of South Florida College of Nursing, Tampa, FL, USA
| | - Melanie L Daue
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Kathy A Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine and Rehabilitation, and Neurology, University of Colorado, Anschutz School of Medicine, Denver, CO, USA; and Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO, USA
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Saint Elizabeths' Hospital, Department of Neurology, Washington, DC, USA; and Maryland State Athletic Commission, Baltimore, MD, USA
| | - Toni I Pollin
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maureen W Groer
- College of Nursing, University of South Florida College of Nursing, Tampa, FL, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; and Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; and Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
47
|
Evaluation of novel oocyst wall protein candidates of Toxoplasma gondii. Parasitol Int 2017; 66:643-651. [DOI: 10.1016/j.parint.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022]
|
48
|
Webb GJ, Shah H, David MD, Tiew S, Beare N, Hirschfield GM. Post-prophylaxis Toxoplasma chorioretinitis following donor-recipient mismatched liver transplantation. Transpl Infect Dis 2017; 18:805-808. [PMID: 27500398 PMCID: PMC5053268 DOI: 10.1111/tid.12589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/19/2016] [Accepted: 06/06/2016] [Indexed: 11/28/2022]
Abstract
Toxoplasmosis may be transferred by organ transplantation. The most common clinical presentation is with multisystem disease, although isolated ocular toxoplasmosis has been described. Many centers have suggested that universal use of co-trimoxazole prophylaxis obviates the need for specific Toxoplasma testing. We report a case of donor-acquired ocular toxoplasmosis after liver transplantation despite co-trimoxazole prophylaxis. The diagnosis was confirmed by Toxoplasma polymerase chain reaction assay in conjunction with seroconversion. The fact that the infection was donor acquired was confirmed by serological mismatch and the absence of sporozoite-specific antigen antibody in the recipient.
Collapse
Affiliation(s)
- G J Webb
- National Institute of Health Research Birmingham Liver Biomedical Research Unit, Birmingham, UK
| | - H Shah
- National Institute of Health Research Birmingham Liver Biomedical Research Unit, Birmingham, UK
| | - M D David
- Clinical Microbiology, Queen Elizabeth Hospital, Birmingham, UK
| | - S Tiew
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - N Beare
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - G M Hirschfield
- National Institute of Health Research Birmingham Liver Biomedical Research Unit, Birmingham, UK.
| |
Collapse
|
49
|
Abstract
Foodborne infections are a significant cause of morbidity and mortality worldwide, and foodborne parasitic diseases, though not as widespread as bacterial and viral infections, are common on all continents and in most ecosystems, including arctic, temperate, and tropical regions. Outbreaks of disease resulting from foodstuffs contaminated by parasitic protozoa have become increasingly recognized as a problem in the United States and globally. Increased international trade in food products has made movement of these organisms across national boundaries more frequent, and the risks associated with infections have become apparent in nations with well-developed food safety apparatus in place.
Collapse
|
50
|
Guiton PS, Sagawa JM, Fritz HM, Boothroyd JC. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells. PLoS One 2017; 12:e0173018. [PMID: 28362800 PMCID: PMC5376300 DOI: 10.1371/journal.pone.0173018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 01/13/2023] Open
Abstract
Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world’s human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection.
Collapse
Affiliation(s)
- Pascale S. Guiton
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janelle M. Sagawa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Heather M. Fritz
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|