1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Arnold AR, Prochaska T, Fickenwirth M, Powers A, Smith AK, Chahine EB, Stevens JS, Michopoulos V. A systematic review on the bidirectional relationship between trauma-related psychopathology and reproductive aging. JOURNAL OF MOOD AND ANXIETY DISORDERS 2024; 8:100082. [PMID: 39803367 PMCID: PMC11721711 DOI: 10.1016/j.xjmad.2024.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Objective Natural variation in ovarian steroid hormones across the female lifespan contributes to an increased risk for depressive and posttraumatic stress disorder (PTSD) symptoms in women. However, minimal work has focused on understanding the impacts of reproductive aging on the brain and behavioral health of trauma-exposed women. This systematic review examines the bidirectional relationship between trauma-related psychopathology and reproductive aging. Method Following PRISMA guidelines, a systematic review of PubMed, PsychInfo, and Medline databases was undertaken to identify controlled studies on how trauma history impacts psychopathology and menopause symptoms during reproductive aging. Results Twenty-one studies met the eligibility criteria, with only four utilizing the gold standard STRAW+ 10 criteria for defining reproductive aging stages. The peri and postmenopausal periods appear to be particularly vulnerable phases for individuals with trauma exposure. Menopause symptoms and trauma-related psychopathology symptom severity increase during reproductive aging with increases in the degree of trauma exposure. However, mechanistic insights that may explain this interaction are currently neglected in this area of research. Conclusion There is a significant lack of understanding regarding how reproductive aging and its related neuroendocrine changes impact the brain to influence PTSD and depression symptoms related to trauma exposure. This lack of basic understanding impedes the ability to identify, assess, and treat PTSD and depressive symptoms in trauma-exposed women most effectively, and mitigate the long-term consequences of these behavioral health symptoms on morbidity and mortality in aging women.
Collapse
Affiliation(s)
- Amanda R. Arnold
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Trinidi Prochaska
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Maximilian Fickenwirth
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - E. Britton Chahine
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Simone CB, Serebrenik AA, Gore EM, Mohindra P, Brown SL, Wang D, Chetty IJ, Vujaskovic Z, Menon S, Thompson J, Fine G, Kaytor MD, Movsas B. Multicenter Phase 1b/2a Clinical Trial of Radioprotectant BIO 300 Oral Suspension for Patients With Non-Small Cell Lung Cancer Receiving Concurrent Chemoradiotherapy. Int J Radiat Oncol Biol Phys 2024; 118:404-414. [PMID: 37652301 DOI: 10.1016/j.ijrobp.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Radiation therapy is part of the standard treatment regimen for non-small cell lung cancer (NSCLC). Although radiation therapy is an effective tool to manage NSCLC, it can be associated with significant dose-limiting toxicities. These toxicities can lead to treatment interruption or early termination and worsening clinical outcomes in addition to reductions in patient quality of life. Based on preclinical efficacy for radioprotection of normal tissues, we evaluated the clinical utility of BIO 300 Oral Suspension (BIO 300; synthetic genistein nanosuspension) in patients with NSCLC. METHODS AND MATERIALS In this multicenter, open-label, single-arm, ascending dose phase 1b/2a study, patients were enrolled with newly diagnosed stage II-IV NSCLC planned for 60 to 70/1.8-2.0 Gy radiation therapy and concurrent weekly paclitaxel/carboplatin. Oral BIO 300 (cohort 1, 500 mg/d; cohort 2, 1000 mg/d; cohort 3, 1500 mg/d) was self-administered once daily starting 2 to 7 days before initiating concurrent chemoradiotherapy and continued until the end of radiation therapy. The primary endpoint was acute dose-limiting toxicities attributable to BIO 300. Secondary outcomes included pharmacokinetics, pharmacodynamics, overall toxicity profile, quality of life, local response rate, and survival. RESULTS Twenty-one participants were enrolled. No dose-limiting toxicities were reported. BIO 300 dosing did not alter chemotherapy pharmacokinetics. Adverse events were not dose-dependent, and those attributable to BIO 300 (n = 11) were all mild to moderate in severity (grade 1, n = 9; grade 2, n = 2) and predominantly gastrointestinal (n = 7). A dose-dependent decrease in serum transforming growth factor β1 levels was observed across cohorts. Based on safety analysis, the maximum tolerated dose of BIO 300 was not met. Patient-reported quality of life and weight were largely stable throughout the study period. No patient had progression as their best overall response, and a 65% tumor response rate was achieved (20% complete response rate). CONCLUSIONS The low toxicity rates, along with the pharmacodynamic results and tumor response rates, support further investigation of BIO 300 as an effective radioprotector.
Collapse
Affiliation(s)
- Charles B Simone
- Baltimore and Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore, Maryland; New York Proton Center, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York.
| | | | - Elizabeth M Gore
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pranshu Mohindra
- Baltimore and Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Ding Wang
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Zeljko Vujaskovic
- Baltimore and Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Smitha Menon
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jonathan Thompson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gil Fine
- Humanetics Corporation, Minneapolis, Minnesota
| | | | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| |
Collapse
|
5
|
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, Alshagdali NM, Alshammari AD, Alharbi FM, Alshammari AM, Algharbi WF, Albrykan KM, Alshammari FN. The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol Res Pract 2024; 253:155018. [PMID: 38070222 DOI: 10.1016/j.prp.2023.155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Tumorigenesis exemplifies the complex process of neoplasm origination, which is characterised by somatic genetic alterations and abnormal cellular growth. This multidimensional phenomenon transforms previously dormant cells into malignant equivalents, resulting in uncontrollable proliferation and clonal expansion. Various elements, including random mutations, harmful environmental substances, and genetic predispositions, influence tumorigenesis's aetiology. MicroRNAs (miRNAs) are now recognised as crucial determinants of gene expression and key players in several biological methods, including oncogenesis. A well-known hypoxia-inducible miRNA is MiR-210, which is of particular interest because of its complicated role in the aetiology of cancer and a variation of physiological and pathological situations. MiR-210 significantly impacts cancer by controlling the hypoxia-inducible factor (HIF) signalling pathway. By supporting angiogenesis, metabolic reprogramming, and cellular survival in hypoxic microenvironments, HIF signalling orchestrates adaptive responses, accelerating the unstoppable development of tumorous growth. Targeting several components of this cascade, including HIF-1, HIF-3, and FIH-1, MiR-210 plays a vital role in modifying HIF signalling and carefully controlling the HIF-mediated response and cellular fates in hypoxic environments. To understand the complexities of this relationship, careful investigation is required at the intersection of MiR-210 and HIF signalling. Understanding this relationship is crucial for uncovering the mechanisms underlying cancer aetiology and developing cutting-edge therapeutic approaches. The current review emphasises MiR-210's significance as a vital regulator of the HIF signalling cascade, with substantial implications spanning a range of tumor pathogenesis.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Reem A Alanzi
- College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peppicelli S, Ruzzolini J, Lulli M, Biagioni A, Bianchini F, Caldarella A, Nediani C, Andreucci E, Calorini L. Extracellular Acidosis Differentially Regulates Estrogen Receptor β-Dependent EMT Reprogramming in Female and Male Melanoma Cells. Int J Mol Sci 2022; 23:15374. [PMID: 36499700 PMCID: PMC9736857 DOI: 10.3390/ijms232315374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERβ, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERβ in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERβ in male cells and EMT was strongly promoted. An inverse relationship between ERβ expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERβ expressing cell subpopulations and ERβ receptor silencing. Finally, we found that ERβ regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERβ regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Adele Caldarella
- Tuscany Cancer Registry, Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO)-Florence, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
- Center of Excellence for Research, Transfer and High Education DenoTHE, University of Florence, 50134 Florence, Italy
| |
Collapse
|
7
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
8
|
Bai R, Cui J. Burgeoning Exploration of the Role of Natural Killer Cells in Anti-PD-1/PD-L1 Therapy. Front Immunol 2022; 13:886931. [PMID: 35634343 PMCID: PMC9133458 DOI: 10.3389/fimmu.2022.886931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies targeting programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) have been considered breakthrough therapies for a variety of solid and hematological malignancies. Although cytotoxic T cells play an important antitumor role during checkpoint blockade, they still show a potential killing effect on tumor types showing loss of/low major histocompatibility complex (MHC) expression and/or low neoantigen load; this knowledge has shifted the focus of researchers toward mechanisms of action other than T cell-driven immune responses. Evidence suggests that the blockade of the PD-1/PD-L1 axis may also improve natural killer (NK)-cell function and activity through direct or indirect mechanisms, which enhances antitumor cytotoxic effects; although important, this topic has been neglected in previous studies. Recently, some studies have reported evidence of PD-1 and PD-L1 expression in human NK cells, performed exploration of the intrinsic mechanism by which PD-1/PD-L1 blockade enhances NK-cell responses, and made some progress. This article summarizes the recent advances regarding the expression of PD-1 and PD-L1 molecules on the surface of NK cells as well as the interaction between anti-PD-1/PD-L1 drugs and NK cells and associated molecular mechanisms in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Jiuwei Cui
- *Correspondence: Jiuwei Cui, ; orcid.org/0000-0001-6496-7550
| |
Collapse
|
9
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
10
|
Aspros KGM, Carter JM, Hoskin TL, Suman VJ, Subramaniam M, Emch MJ, Ye Z, Sun Z, Sinnwell JP, Thompson KJ, Tang X, Rodman EPB, Wang X, Nelson AW, Chernukhin I, Hamdan FH, Bruinsma ES, Carroll JS, Fernandez-Zapico ME, Johnsen SA, Kalari KR, Huang H, Leon-Ferre RA, Couch FJ, Ingle JN, Goetz MP, Hawse JR. Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer. NPJ Breast Cancer 2022; 8:20. [PMID: 35177654 PMCID: PMC8854734 DOI: 10.1038/s41523-022-00387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERβ) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERβ and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERβ was expressed in approximately 18% of TNBCs, and expression of ERβ was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERβ formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERβ-mediated suppression of TNBC. Our findings indicate that ERβ+ tumors exhibit different characteristics compared to ERβ- tumors and demonstrate that ERβ functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.
Collapse
Affiliation(s)
- Kirsten G M Aspros
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vera J Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael J Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenqing Ye
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Esther P B Rodman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiyin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adam W Nelson
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason S Carroll
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Martin E Fernandez-Zapico
- Shulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Fergus J Couch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Expanding the armory for treating lymphoma: Targeting redox cellular status through thioredoxin reductase inhibition. Pharmacol Res 2022; 177:106134. [DOI: 10.1016/j.phrs.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
|
12
|
Tashjian RZ, Kazmers NH, Epperson RT, Honeggar M, Ma Y, Chalmers PN, Williams DL, Jurynec MJ. The effect of estrogen-like compound on rotator cuff tendon healing in a murine model. J Orthop Res 2021; 39:2711-2724. [PMID: 33533088 DOI: 10.1002/jor.25000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/04/2023]
Abstract
Estrogen deficiency has been shown to negatively influence rotator cuff tendon healing. Therefore, the addition of an estrogen-like-compound (ELC) in a nonestrogen-deficient animal may improve the quality of a rotator cuff repair. The purpose of this study was to evaluate the effects of an ELC, diethylstilbestrol (DES), on tendon healing in a murine rotator cuff repair model. Thirty-three male wild-type mice (C57BL/6NJ) were randomly divided into three study groups. Group 1-unoperated mice with normal rotator cuff tendons. Groups 2 and 3 consisted of surgically repaired rotator cuff tendons; Group 2 (repair-only) was the standard repair group (no DES injected), whereas Group 3 (repair + DES) was the experimental repair group (injected with DES). Comparing the maximal thickness of calcified fibrocartilage to uncalcified fibrocartilage, the ratios for the control (intact tendon), repair-only, and repair + DES groups were 2:1, 0.9:1, and 1.7:1. RNA expression data demonstrated upregulation of chondrogenic, angiogenic, and tendon modulation genes in the repair- only group compared to the control (intact tendon) group (p < 0.04 for all), and that addition of DES further increased the osteogenic, angiogenic, and tendon modulation gene expression compared to the repair-only group (p < 0.02). Immunohistochemical analysis indicated that the addition of DES further increased osteogenic, angiogenic, and tendon maturation protein expression at the enthesis compared to standard repairs.
Collapse
Affiliation(s)
- Robert Z Tashjian
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Nikolas H Kazmers
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Richard T Epperson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
- Bone and Biofilm Research Laboratory, Department of Veterans Affairs, Salt Lake City, Utah, USA
| | - Matthew Honeggar
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Ying Ma
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Peter N Chalmers
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Dustin L Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
- Bone and Biofilm Research Laboratory, Department of Veterans Affairs, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Estrogen Receptor β Participates in Alternariol-Induced Oxidative Stress in Normal Prostate Epithelial Cells. Toxins (Basel) 2021; 13:toxins13110766. [PMID: 34822550 PMCID: PMC8621730 DOI: 10.3390/toxins13110766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Alternaria toxins are considered as emerging mycotoxins, however their toxicity has not been fully evaluated in humans. Alternariol (AOH), the most prevalent Alternaria mycotoxin, was previously reported to be genotoxic and to affect hormonal balance in cells; however, its direct molecular mechanism is not known. The imbalance in androgen/estrogen ratio as well as chronic inflammation are postulated as factors in prostate diseases. The environmental agents affecting the hormonal balance might participate in prostate carcinogenesis. Thus, this study evaluated the effect of two doses of AOH on prostate epithelial cells. We observed that AOH in a dose of 10 µM induces oxidative stress, DNA damage and cell cycle arrest and that this effect is partially mediated by estrogen receptor β (ERβ) whereas the lower tested dose of AOH (0.1 µM) induces only oxidative stress in cells. The modulation of nuclear erythroid-related factor 2 (Nrf2) was observed in response to the higher dose of AOH. The use of selective estrogen receptor β (ERβ) inhibitor PHTPP revealed that AOH-induced oxidative stress in both tested doses is partially dependent on activation of ERβ, but lack of its activation did not protect cells against AOH-induced ROS production or DNA-damaging effect in case of higher dose of AOH (10 µM). Taken together, this is the first study reporting that AOH might affect basic processes in normal prostate epithelial cells associated with benign and malignant changes in prostate tissue.
Collapse
|
14
|
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 2020; 11:584626. [PMID: 33324403 PMCID: PMC7724774 DOI: 10.3389/fimmu.2020.584626] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marina Chiara Garassino
- Medical Oncology Department, Istituto Nazionale dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, Novara, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
15
|
Hypoxia and HIF Signaling: One Axis with Divergent Effects. Int J Mol Sci 2020; 21:ijms21165611. [PMID: 32764403 PMCID: PMC7460602 DOI: 10.3390/ijms21165611] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The correct concentration of oxygen in all tissues is a hallmark of cellular wellness, and the negative regulation of oxygen homeostasis is able to affect the cells and tissues of the whole organism. The cellular response to hypoxia is characterized by the activation of multiple genes involved in many biological processes. Among them, hypoxia-inducible factor (HIF) represents the master regulator of the hypoxia response. The active heterodimeric complex HIF α/β, binding to hypoxia-responsive elements (HREs), determines the induction of at least 100 target genes to restore tissue homeostasis. A growing body of evidence demonstrates that hypoxia signaling can act by generating contrasting responses in cells and tissues. Here, this dual and controversial role of hypoxia and the HIF signaling pathway is discussed, with particular reference to the effects induced on the complex activities of the immune system and on mechanisms determining cell and tissue responses after an injury in both acute and chronic human diseases related to the heart, lung, liver, and kidney.
Collapse
|
16
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
17
|
Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12040907. [PMID: 32276421 PMCID: PMC7226505 DOI: 10.3390/cancers12040907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor (ER) signaling has been widely studied in a variety of solid tumors, where the differential expression of ERα and ERβ subtypes can impact prognosis. ER signaling has only recently emerged as a target of interest in acute myeloid leukemia (AML), an aggressive hematological malignancy with sub-optimal therapeutic options and poor clinical outcomes. In a variety of tumors, ERα activation has proliferative effects, while ERβ targeting results in cell senescence or death. Aberrant ER expression and hypermethylation have been characterized in AML, making ER targeting in this disease of great interest. This review describes the expression patterns of ERα and ERβ in AML and discusses the differing signaling pathways associated with each of these receptors. Furthermore, we assess how these signaling pathways can be targeted by various selective estrogen receptor modulators to induce AML cell death. We also provide insight into ER targeting in AML and discuss pending questions that require further study.
Collapse
|
18
|
Kowalska K, Habrowska-Górczyńska DE, Domińska K, Urbanek KA, Piastowska-Ciesielska AW. ERβ and NFκB-Modulators of Zearalenone-Induced Oxidative Stress in Human Prostate Cancer Cells. Toxins (Basel) 2020; 12:toxins12030199. [PMID: 32235729 PMCID: PMC7150752 DOI: 10.3390/toxins12030199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) is commonly expressed in prostate cancer (PCa) cells and is associated with increased proliferation, metastases and androgen independence. Zearalenone (ZEA) is one of the most common mycotoxins contaminating food, which might mimic estrogens and bind to estrogen receptors (ERs). The ratio of androgens to estrogens in men decreases physiologically with age, and is believed to participate in prostate carcinogenesis. In this study, we evaluated the role of NFκB and ERβ in the induction of oxidative stress in human PCa cells by ZEA. As observed, ZEA at a dose of 30 µM induces oxidative stress in PCa cells associated with DNA damage and G2/M cell cycle arrest. We also observed that the inhibition of ERβ and NFΚB via specific inhibitors (PHTPP and BAY 117082) significantly increased ZEA-induced oxidative stress, although the mechanism seems to be different for androgen-dependent and androgen-independent cells. Based on our findings, it is possible that the activation of ERβ and NFΚB in PCa might protect cancer cells from ZEA-induced oxidative stress. We therefore shed new light on the mechanism of ZEA toxicity in human cells.
Collapse
Affiliation(s)
- Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
- Correspondence: ; +48-426393180
| | - Dominika Ewa Habrowska-Górczyńska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Kinga Anna Urbanek
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| |
Collapse
|
19
|
Ventral prostate and mammary gland phenotype in mice with complete deletion of the ERβ gene. Proc Natl Acad Sci U S A 2020; 117:4902-4909. [PMID: 32075916 PMCID: PMC7060692 DOI: 10.1073/pnas.1920478117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disagreements about the phenotype of estrogen receptor β (ERβ) knockout mouse, created by removing the DNA-binding domain of the ERβ gene or interruption of the gene with a neocassette (Oliver Smithies ERβ knockout mice [ERβOS-/-]), prompted us to create an ERβ knockout mouse by deleting the ERβ gene with the use of CRISPR/Cas9 technology. We confirmed that the ERβ gene was eliminated from the mouse genome and that no ERβ mRNA or protein was detectable in tissues of this mouse. Overall the phenotype of the ventral prostate (VP) and mammary gland (MG) in ERβcrispr-/- mice was similar to, but more severe than, that in the ERβOS-/-mice. In the VP of 6-mo-old ERβcrispr-/- mice there was epithelial hyperplasia, fibroplasia, inflammation, stromal overgrowth, and intraductal cancer-like lesions. This was accompanied by an increase in Ki67 and P63 and loss in DACH1 and PURα, two androgen receptor (AR) repressors. In the MG there was overexpression of estrogen receptor α and progesterone receptor, loss of collagen, increase in proliferation and expression of metalloproteases, and invasive epithelium. Surprisingly, by 18 mo of age, the number of hyperplastic foci was reduced, the ducts of the VP and MG became atrophic, and, in the VP, there was massive immune infiltration and massive desquamation of the luminal epithelial cells. These changes were coincident with reduced levels of androgens in males and estrogens in females. We conclude that ERβ is a tumor suppressor gene in the VP and MG where its loss increases the activity AR and ERα, respectively.
Collapse
|
20
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
21
|
Zhang Y, Wu Y, Zhou X, Yi B, Wang L. Estrogen Receptor Beta Inhibits The Proliferation, Migration, And Angiogenesis Of Gastric Cancer Cells Through Inhibiting Nuclear Factor-Kappa B Signaling. Onco Targets Ther 2019; 12:9153-9164. [PMID: 31807000 PMCID: PMC6842292 DOI: 10.2147/ott.s214529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the regulatory roles of estrogen receptor beta (ERβ) on gastric cancer (GC) cells, and reveal the potential mechanisms relating to nuclear factor-kappa B (NF-κB) signaling. Methods GC cell lines SGC7901 and MKN45 were transfected with pEGFP-C1-ERβ to overexpress ERβ, and treated with PMA (a NF-κB activator) to activate NF-κB signaling. The cell proliferation and migration, as well as the formation of vessel-like structures in human venous endothelial cells (HUVECs) were detected. The expression of ERβ, NF-κB p65, p-NF-κB p65, Ki67 (a proliferation marker), vascular endothelial growth factor A (VEGF-A) and matrix metalloproteinase 2 (MMP-2), the DNA binding activity of NF-κB p65, the content of VEGF-A, and the activity of MMP-2 were detected in SGC7901 and MKN45 cells. Results The transfection of pEGFP-C1-ERβ significantly increased the expression of ERβ in SGC7901 and MKN45 cells (P < 0.05). Overexpression of ERβ in SGC7901 and MKN45 cells significantly decreased the cell activity, cell number in G2/M phase, cell migration, the expression of Ki67, VEGF-A and MMP-2, VEGF-A content, MMP-2 activity, as well as the number of vessel-like structures formed by HUVECs (P < 0.05). Overexpression of ERβ also significantly decreased the DNA binding activity and the expression of p-NF-κB p65 in SGC7901 and MKN45 cells (P < 0.05). The anti-tumor effect of ERβ overexpression on GC cells was reversed by the intervention of PMA (P < 0.05). Conclusion Overexpression of ERβ inhibited the proliferation, migration, and angiogenesis of GC cells through inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Yahua Wu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Xufeng Zhou
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Benyi Yi
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Lili Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| |
Collapse
|
22
|
Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Domińska K, Sakowicz A, Piastowska-Ciesielska AW. Estrogen receptor β plays a protective role in zearalenone-induced oxidative stress in normal prostate epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:504-513. [PMID: 30738973 DOI: 10.1016/j.ecoenv.2019.01.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Zearalenone (ZEA) - a fungal mycotoxin is reported to both cause the oxidative stress associated with death of cells as well as induction of the proliferation of cells, depending on its concentration and the type of cells. ZEA due to its structural similarity to naturally occurring estrogens is able to bind to estrogen receptors and triggers estrogen-associated signaling pathways. The aim of this study is to evaluate whether the induction of oxidative stress in normal epithelial prostate PNT1A cells is associated with estrogenic activity of ZEA. We observed that ZEA-induced oxidative stress in PNT1A cells is associated with a decrease in the oxidative stress defense enzymes expression, cell cycle arrest in G2/M cell cycle phase as well as the decreased migration of cells. The results also suggest that the observed effect might be associated with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)- hypoxia inducible factor 1 alpha (HIF-1α) signaling pathway. The usage of estrogen receptor β (ERβ) selective antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]-phenol PHTPP showed that ERβ activity is able to decrease the ZEA-induced oxidative stress, but is not enough to counteract it, indicating that ZEA-induced oxidative stress is only partially associated with estrogenic activity of ZEA.
Collapse
Affiliation(s)
- Karolina Kowalska
- Medical University of Lodz, Laboratory of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | | | - Kinga Anna Urbanek
- Medical University of Lodz, Laboratory of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agata Sakowicz
- Medical University of Lodz, Department of Medical Biotechnology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Laboratory of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| |
Collapse
|
23
|
Guo R, Li Y, Wang Z, Bai H, Duan J, Wang S, Wang L, Wang J. Hypoxia-inducible factor-1α and nuclear factor-κB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci 2019; 110:1665-1675. [PMID: 30844110 PMCID: PMC6500984 DOI: 10.1111/cas.13989] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Some driver gene mutations, including epidermal growth factor receptor (EGFR), have been reported to be involved in expression regulation of the immunosuppressive checkpoint protein programmed cell death ligand 1 (PD-L1), but the underlying mechanism remains obscure. We investigated the potential role and precise mechanism of EGFR mutants in PD-L1 expression regulation in non-small-cell lung cancer (NSCLC) cells. Examination of pivotal EGFR signaling effectors in 8 NSCLC cell lines indicated apparent associations between PD-L1 overexpression and phosphorylation of AKT and ERK, especially with increased protein levels of phospho-IκBα (p-IκBα) and hypoxia-inducible factor-1α (HIF-1α). Flow cytometry results showed stronger membrane co-expression of EGFR and PD-L1 in NSCLC cells with EGFR mutants compared with cells carrying WT EGFR. Additionally, ectopic expression or depletion of EGFR mutants and treatment with EGFR pathway inhibitors targeting MEK/ERK, PI3K/AKT, mTOR/S6, IκBα, and HIF-1α indicated strong accordance among protein levels of PD-L1, p-IκBα, and HIF-1α in NSCLC cells. Further treatment with pathway inhibitors significantly inhibited xenograft tumor growth and p-IκBα, HIF-1α, and PD-L1 expression of NSCLC cells carrying EGFR mutant in nude mice. Moreover, immunohistochemical analysis revealed obviously increased protein levels of p-IκBα, HIF-1α, and PD-L1 in NSCLC tissues with EGFR mutants compared with tissues carrying WT EGFR. Non-small-cell lung cancer tissues with either p-IκBα or HIF-1α positive staining were more likely to possess elevated PD-L1 expression compared with tissues scored negative for both p-IκBα and HIF-1α. Our findings showed important roles of phosphorylation activation of AKT and ERK and potential interplay and cooperation between NF-κB and HIF-1α in PD-L1 expression regulation by EGFR mutants in NSCLC.
Collapse
Affiliation(s)
- Rong Guo
- Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Department of Laboratory AnimalPeking University Cancer Hospital and InstituteBeijingChina
| | - Zhijie Wang
- Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Hua Bai
- Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Jianchun Duan
- Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shuhang Wang
- Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Lvhua Wang
- Department of Radiation TherapyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Jie Wang
- Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
24
|
Xiao L, Luo Y, Tai R, Zhang N. Estrogen receptor β suppresses inflammation and the progression of prostate cancer. Mol Med Rep 2019; 19:3555-3563. [PMID: 30864712 PMCID: PMC6472045 DOI: 10.3892/mmr.2019.10014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/11/2019] [Indexed: 01/03/2023] Open
Abstract
Previous studies demonstrated that estrogen receptor β (ERβ) signaling alleviates systemic inflammation in animal models, and suggested that ERβ-selective agonists may deactivate microglia and suppress T cell activity via downregulation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). In the present study, the role of ERβ in lipopolysaccharide (LPS)-induced inflammation and association with NF-κB activity were investigated in PC-3 and DU145 prostate cancer cell lines. Cells were treated with LPS to induce inflammation, and ELISA was performed to determine the expression levels of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein 1 (MCP-1), interleukin (IL)-1β and IL-6. MTT and Transwell assays, and Annexin V/propidium iodide staining were conducted to measure cell viability, apoptosis and migration, respectively. Protein expression was determined via western blot analysis. LPS-induced inflammation resulted in elevated expression levels of TNF-α, IL-1β, MCP-1 and IL-6 compared with controls. ERβ overexpression significantly inhibited the LPS-induced production of TNF-α, IL-1β, MCP-1 and IL-6. In addition, the results indicated that ERβ suppressed viability and migration, and induced apoptosis in prostate cancer cells, which was further demonstrated by altered expression of proliferating cell nuclear antigen, B-cell lymphoma 2-associated X protein, caspase-3, E-cadherin and matrix metalloproteinase-2. These effects were reversed by treatment with the ERβ antagonist PHTPP or ERβ-specific short interfering RNA. ERβ overexpression reduced the expression levels of p65 and phosphorylated NF-κB inhibitor α (IκBα), but not total IκBα expression in LPS-treated cells. In conclusion, ERβ suppressed the viability and migration of the PC-3 and DU145 prostate cancer cell lines and induced apoptosis. Furthermore, it reduced inflammation and suppressed the activation of the NF-κB pathway, suggesting that ERβ may serve roles as an anti-inflammatory and anticancer agent in prostate cancer.
Collapse
Affiliation(s)
- Long Xiao
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| | - Yaohui Luo
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| | - Rongfen Tai
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| | - Ningnan Zhang
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| |
Collapse
|
25
|
Equilin in conjugated equine estrogen increases monocyte-endothelial adhesion via NF-κB signaling. PLoS One 2019; 14:e0211462. [PMID: 30699196 PMCID: PMC6353580 DOI: 10.1371/journal.pone.0211462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
The adhesion of monocytes to endothelial cells, which is mediated by adhesion molecules, plays a crucial role in the onset of atherosclerosis. Conjugated equine estrogen, which is widely used for estrogen-replacement therapy, contains both estrone sulfate and various nonhuman estrogens, including equilin. To investigate the association between various estrogen types and atherosclerosis risk, we examined their effect on adhesion-molecule expression in human umbilical vein endothelial cells (HUVECs). In estrogen-treated HUVECs, the mRNA and protein expression levels of adhesion molecules were quantified by real-time polymerase chain reaction and enzyme immunoassay. Additionally, a flow-chamber system was used to assess the effects of estrogens on the adherence of U937 monocytoid cells to HUVECs. Equilin, but not 17β-estradiol (E2) or other types of estrogen, significantly increased the mRNA (P < 0.01) and protein (P < 0.05) expression of the adhesion molecules E-selectin and intercellular adhesion molecule-1 as compared with levels in controls. Equilin treatment increased the adherence of U937 monocytoid cells to HUVECs relative to the that in the control (P < 0.05), decreased estrogen receptor (ER)β expression, and increased the expression of proteins involved in nuclear factor kappa-B (NF-κB) activation relative to levels in controls. Furthermore, the accumulation of NF-κB subunit p65 in HUVEC nuclei was promoted by equilin treatment. By contrast, E2 treatment neither increased the number of adhered monocytoid cells to HUVECs nor altered the expression of ERβ or NF-κB-activating proteins. Our findings suggest that in terms of the adhesion of monocytes at the onset of atherosclerosis, E2 may be preferable for estrogen-replacement therapy. Further studies comparing equilin treatment with that of E2 are needed to investigate their differential impacts on atherosclerosis.
Collapse
|
26
|
Luo AJ, Tan J, He LY, Jiang XZ, Jiang ZQ, Zeng Q, Yao K, Xue J. Suppression of Tescalcin inhibits growth and metastasis in renal cell carcinoma via downregulating NHE1 and NF-kB signaling. Exp Mol Pathol 2018; 107:110-117. [PMID: 30594602 DOI: 10.1016/j.yexmp.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common form of kidney cancer. Recent studies reported that Tescalcin was overexpressed in various tumor types. However, the status of Tescalcin protein expression in RCC and its biological function is uncertain. This study was designed to investigate the expression of Tescalcin in human RCC and its biological function. METHODS shRNA transfection was performed to abrogates the expression of Tescalcin. Quantitative real time PCR and western blotting assays were used to determine mRNA and protein expression levels, respectively. The cell viability was analyzed by MTT and colony formation. Cell flow cytometry was used to assess pHi value and cell apoptosis. Cell invasive and migratory ability was measured with modified Boyden chamber assay. Xenograft model was setup to evaluate tumor growth. RESULTS Tescalcin was overexpressed in RCC tissues compared with matched normal tissues. It was also overexpressed in RCC cell lines relative that of normal cells. Suppression Tescalcin with specific shRNA resulted in the inhibition of cell proliferation, migration, invasion and apoptosis of RCC cells. Additionally, silencing of Tescalcin also caused the inhibition of the tumor growth in nude mice. Mechanistic study showed that Tescalcin regulated cell proliferation, migration and invasion via NHE1/pHi axis as well as AKT/NF-κB signaling pathway. CONCLUSIONS These findings demonstrate that atopic expression of Tescalcin facilitates the survival, migration and invasion of RCC cells via NHE1/pHi axis as well as AKT/ NF-κB signaling pathway, providing new perspectives for the future study of Tescalcin as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Ai-Jing Luo
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Jing Tan
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Le-Ye He
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Xian-Zhen Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Zhi-Qiang Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Qing Zeng
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Kun Yao
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Juan Xue
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
27
|
Faria M, Shepherd P, Pan Y, Chatterjee SS, Navone N, Gustafsson JÅ, Strom A. The estrogen receptor variants β2 and β5 induce stem cell characteristics and chemotherapy resistance in prostate cancer through activation of hypoxic signaling. Oncotarget 2018; 9:36273-36288. [PMID: 30555629 PMCID: PMC6284737 DOI: 10.18632/oncotarget.26345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy resistant prostate cancer is a major clinical problem. When the prostate cancer has become androgen deprivation resistant, one of the few treatment regimens left is chemotherapy. There is a strong connection between a cancer's stem cell like characteristics and drug resistance. By performing RNA-seq we observed several factors associated with stem cells being strongly up-regulated by the estrogen receptor β variants, β2 and β5. In addition, most of these factors were also up-regulated by hypoxia. One mechanism of chemotherapy resistance was expression of the hypoxia-regulated, drug transporter genes, where especially ABCG2 and MDR1 were shown to be expressed in recurrent prostate cancer and to cause chemotherapy resistance by efficiently transporting drugs like docetaxel out of the cells. Another mechanism was expression of the hypoxia-regulated Notch3 gene, which causes chemotherapy resistance in urothelial carcinoma, although the mechanism is unknown. It is well known that hypoxic signaling is involved in increasing chemotherapy resistance. Regulation of the hypoxic factors, HIF-1α and HIF-2α is very complex and extends far beyond hypoxia itself. We have recently shown that two of the estrogen receptor β variants, estrogen receptor β2 and β5, bind to and stabilize both HIF-1α and HIF-2α proteins leading to expression of HIF target genes. This study suggests that increased expression of the estrogen receptor β variants, β2 and β5, could be involved in development of a cancer's stem cell characteristics and chemotherapy resistance, indicating that targeting these factors could prevent or reverse chemotherapy resistance and cancer stem cell expansion.
Collapse
Affiliation(s)
- Michelle Faria
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Pan
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Sujash S Chatterjee
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Anders Strom
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| |
Collapse
|
28
|
Chen CH, Li SX, Xiang LX, Mu HQ, Wang SB, Yu KY. HIF-1α induces immune escape of prostate cancer by regulating NCR1/NKp46 signaling through miR-224. Biochem Biophys Res Commun 2018; 503:228-234. [PMID: 29885835 DOI: 10.1016/j.bbrc.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metastasis of prostate cancer (PCa) is largely affected by natural killer (NK) cells. This study aimed to clarify the mechanisms underlying tumor cells escaping from NK cells mediated by HIF-1α. METHODS MiR-224 expression in lymphocytes and HIF-1α protein level in NK cells were determined by qRT-PCR and western blot, respectively. The amount of NKp46+ NK cells was detected with flow cytometry. The IFN-γ level was examined by enzyme linked immunosorbent assay (ELISA). NK cells were tested for cytolytic activity with a Non-Radioactive Cytotoxicity Assay, and treated with oxygenglucose deprivation (OGD) for hypoxia simulation. Interaction between miR-224 and NCR1 was evaluated with dual luciferase reporter assay. RESULTS MiR-224 was down-regulated in lymphocytes isolated from prostate cancer tissues (n = 10). Overexpression of miR-224 protected prostate cancer from NK cells. HIF-1α increased miR-224 to inhibit the killing capability of NK cells on prostate cancer. MiR-224 controlled the expression of NCR1. Overexpression of miR-224 protected prostate cancer from NK cells through NCR1/NKp46 signaling. Suppression of HIF-1α enhanced the cytotoxicity of NK cells on prostate cancer via miR-224/NCR1 pathway. CONCLUSION HIF-1α inhibits NCR1/NKp46 pathway through up-regulating miR-224, which affects the killing capability of NK cells on prostate cancer, thus inducing immune escape of tumor cells.
Collapse
Affiliation(s)
- Chao-Hao Chen
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shao-Xun Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lu-Xia Xiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hai-Qi Mu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai-Yuan Yu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
29
|
Bakuchiol exhibits anti-metastasis activity through NF-κB cross-talk signaling with AR and ERβ in androgen-independent prostate cancer cells PC-3. J Pharmacol Sci 2018; 138:1-8. [DOI: 10.1016/j.jphs.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022] Open
|
30
|
Huang M, Du H, Zhang L, Che H, Liang C. The association of HIF-1α expression with clinicopathological significance in prostate cancer: a meta-analysis. Cancer Manag Res 2018; 10:2809-2816. [PMID: 30174456 PMCID: PMC6109649 DOI: 10.2147/cmar.s161762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) plays an important role in tumor growth, invasion, and metastasis. The aim of this study was to perform a meta-analysis to explore the association of HIF-1α expression with clinicopathological significance in patients with prostate cancer (PCa). Methods A detailed literature search was made in PubMed, Embase, Cochrane Library, China Biology Medicine disc (CBM), and China National Knowledge Infrastructure (CNKI) up to August 21, 2017. Odds ratios (ORs) with 95% CIs were calculated to evaluate the strength of the correlations. Analysis of pooled data was performed using Review Manager 5.3 software. Results Eventually, 14 studies were identified and involved in this meta-analysis. The rate of HIF-1α protein expression was significantly higher in PCa than in nonmalignant prostate tissues (OR=12.01, 95% CI: 8.22-17.55, P<0.00001). Similar results were found in different subgroups. There were significant differences between HIF-1α expression and clinicopathological significance. The expression of HIF-1α protein was significantly associated with Gleason score (Gleason ≥7 vs Gleason <7: OR=3.58, 95% CI: 2.35-5.46, P<0.00001). The frequency of HIF-1α protein expression was significantly higher in T3-T4 stages than in T1-T2 stages of PCa (OR=3.70, 95% CI: 1.53-8.96, P=0.004). The expression of HIF-1α protein was significantly associated with the presence of lymph node and/or bone metastasis of PCa (metastasis positive vs negative: OR=7.07, 95% CI: 4.08-12.25, P<0.00001). Conclusion Taken together, our findings have demonstrated the certain associations of HIF-1α expression with an increased risk and clinicopathological significance in PCa patients, indicating that HIF-1α may serve as a valuable biomarker for diagnosing PCa and monitoring the progression.
Collapse
Affiliation(s)
- Meng Huang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Ultrasound, The East District of First Affiliated Hospital of Anhui Medical University, The People's Hospital of Feidong, Hefei, Anhui, China
| | - Hexi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
| | - Hong Che
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
| |
Collapse
|
31
|
Influence and mechanism of Angiotensin 1-7 on biological properties of normal prostate epithelial cells. Biochem Biophys Res Commun 2018; 502:152-159. [DOI: 10.1016/j.bbrc.2018.05.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
|
32
|
Therapeutic utility of natural estrogen receptor beta agonists on ovarian cancer. Oncotarget 2018; 8:50002-50014. [PMID: 28654894 PMCID: PMC5564823 DOI: 10.18632/oncotarget.18442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/28/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic cancers. Despite success with initial chemotherapy, the majority of patients relapse with an incurable disease. Development of chemotherapy resistance is a major factor for poor long-term survival in ovarian cancer. The biological effects of estrogens are mediated by estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Emerging evidence suggests that ovarian cancer cells express ERβ that functions as a tumor suppressor; however, the clinical utility of ERβ agonists in ovarian cancer remains elusive. We tested the utility of two natural ERβ agonists liquiritigenin (Liq), which is isolated from Glycyrrhiza uralensis and S-equol, which is isolated from soy isoflavone daidzein, for treating ovarian cancer. Both natural ERβ ligands had significant growth inhibition in cell viability and survival assays, reduced migration and invasion, and promoted apoptosis. Further, ERβ agonists showed tumor suppressive functions in therapy-resistant ovarian cancer model cells and sensitized ovarian cancer cells to cisplatin and paclitaxel treatment. Global RNA-Seq analysis revealed that ERβ agonists modulate several tumor suppressive pathways, including downregulation of the NF-κB pathway. Immunoprecipitation assays revealed that ERβ interacts with p65 subunit of NF-κB and ERβ overexpression reduced the expression of NF-κB target genes. In xenograft assays, ERβ agonists reduced tumor growth and promoted apoptosis. Collectively, our findings demonstrated that natural ERβ agonists have the potential to significantly inhibit ovarian cancer cell growth by anti-inflammatory and pro-apoptotic actions, and natural ERβ agonists represent novel therapeutic agents for the management of ovarian cancer.
Collapse
|
33
|
Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 2018; 8:35376-35389. [PMID: 28430640 PMCID: PMC5471062 DOI: 10.18632/oncotarget.15686] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer. Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance. In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.
Collapse
|
34
|
Puccio I, Khan S, Butt A, Graham D, Sehgal V, Patel D, Novelli M, Lovat LB, Rodriguez-Justo M, Hamoudi RA. Immunohistochemical assessment of Survivin and Bcl3 expression as potential biomarkers for NF-κB activation in the Barrett metaplasia-dysplasia-adenocarcinoma sequence. Int J Exp Pathol 2018; 99:10-14. [PMID: 29473241 DOI: 10.1111/iep.12260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Non-dysplastic Barrett's oesophagus (NDBE) occurs as a consequence of an inflammatory response triggered through prolonged gastro-oesophageal reflux and it may precede the development of oesophageal adenocarcinoma. NF-κB activation as a result of the inflammatory response has been shown in NDBE, but the possible mechanism involved in the process is unknown. The aim of this study was to assess, using immunohistochemistry, Survivin and Bcl3 expression as potential biomarkers for NF-κB activation along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Survivin is an NF-κB-inducible anti-apoptotic protein, and Bcl3 is a negative regulator of NF-κB. There was progressive upregulation of Survivin expression along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Bcl3 expression was upregulated in non-dysplastic Barrett's oesophagus, low-grade, high-grade dysplasia and oesophageal adenocarcinoma when compared to squamous group. The study shows the differential expression of Bcl3 between the squamous and Barrett's stage, suggesting that Bcl3 could be a surrogate marker for early event involving constitutive NF-κB activation. In addition, the study suggests that NF-κB activation may infer resistance to apoptosis through the expression of anti-apoptotic genes such as Survivin, which showed progressive increase in expression throughout the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. This ability to avoid apoptosis may underlie the persistence and malignant predisposition of Barrett's metaplasia.
Collapse
Affiliation(s)
- Ignazio Puccio
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | - Saif Khan
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | - Adil Butt
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | - David Graham
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | - Vinay Sehgal
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | - Dominic Patel
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | - Marco Novelli
- Research Department of Pathology, University College London, London, UK
| | - Laurence B Lovat
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK
| | | | - Rifat A Hamoudi
- Research Department of Tissue and Energy, Division of Surgery & Interventional Science, University College London, London, UK.,Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
35
|
Roma A, Rota SG, Spagnuolo PA. Diosmetin Induces Apoptosis of Acute Myeloid Leukemia Cells. Mol Pharm 2018; 15:1353-1360. [DOI: 10.1021/acs.molpharmaceut.7b01151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alessia Roma
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1
| | - Sarah G. Rota
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1
| | - Paul A. Spagnuolo
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1
- School of Pharmacy, University of Waterloo, 10A Victoria Street S, Kitchener, Ontario, Canada, N2G 1C5
| |
Collapse
|
36
|
The ERβ4 variant induces transformation of the normal breast mammary epithelial cell line MCF-10A; the ERβ variants ERβ2 and ERβ5 increase aggressiveness of TNBC by regulation of hypoxic signaling. Oncotarget 2018; 9:12201-12211. [PMID: 29552303 PMCID: PMC5844739 DOI: 10.18632/oncotarget.24134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/05/2017] [Indexed: 01/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) still remains a challenge to treat in the clinic due to a lack of good targets for treatment. Although TNBC lacks expression of ERα, the expression of ERβ and its variants are detected quite frequently in this cancer type and can represent an avenue for treatment. We show that two of the variants of ERβ, namely ERβ2 and ERβ5, control aggressiveness of TNBC by regulating hypoxic signaling through stabilization of HIF-1α. RNA-seq of patient derived xenografts (PDX) from TNBC shows expression of ERβ2, ERβ4 and ERβ5 variants in more than half of the samples. Furthermore, expression of ERβ4 in the immortalized, normal mammary epithelial cell line MCF-10A that is resistant to tumorsphere formation caused transformation and development of tumorspheres. By contrast, ERβ1, ERβ2 or ERβ5 were unable to support tumorsphere formation. We have previously shown that all variants except ERβ1 stabilize HIF-1α but only ERβ4 appears to have the ability to transform normal mammary epithelial cells, pointing towards a unique property of ERβ4. We propose that ERβ variants may be good diagnostic tools and also serve as novel targets for treatment of breast cancer.
Collapse
|
37
|
Ma J, Mi C, Wang KS, Lee JJ, Jin X. Zinc finger protein 91 (ZFP91) activates HIF-1α via NF-κB/p65 to promote proliferation and tumorigenesis of colon cancer. Oncotarget 2017; 7:36551-36562. [PMID: 27144516 PMCID: PMC5095020 DOI: 10.18632/oncotarget.9070] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc finger protein 91 (ZFP91) has been reported to be involved in various biological processes. However, the clinical significance and biological role of ZFP91 in colon cancer remains unknown. Here, we show that ZFP91 expression is upregulated in patients with colon cancer. We found that ZFP91 upregulated HIF-1α at the levels of promoter and protein in colon cancer cells. Using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter gene assay, we found that NF-κB/p65 is required for the binding of ZFP91 to the HIF-1α promoter at -197/-188 base pairs and for the transcriptional activation of HIF-1α gene mediated by ZFP91. Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and tumor xenograft assay demonstrated that ZFP91 enhanced cell proliferation of colon cancer through upregulating HIF-1α in vitro and in vivo. Furthermore, ZFP91 is positively associated with HIF-1α in human colon cancer. Thus, we concluded that ZFP91 activates transcriptional coregulatory protein HIF-1α through transcription factor NF-κB/p65 in the promotion of proliferation and tumorigenesis in colon cancer cell. ZFP91 may serve as a driver gene to activate HIF-1α transcription in the development of cancer.
Collapse
Affiliation(s)
- Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ke Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jung Joon Lee
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| |
Collapse
|
38
|
Wong KK, Hussain FA, Loo SK, López JI. Cancer/testis antigen SPATA19 is frequently expressed in benign prostatic hyperplasia and prostate cancer. APMIS 2017; 125:1092-1101. [PMID: 28972294 DOI: 10.1111/apm.12775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
Spermatogenesis-associated 19 (SPATA19) is a cancer/testis antigen overexpressed in various cancers. However, its protein expression profile in malignant or non-malignant tissues remains unknown. Thus, in this study, we investigated SPATA19 protein expression patterns in a panel of non-malignant human samples and primary prostate cancer (PCa) with or without benign prostatic hyperplasia (BPH) tissues. SPATA19 was absent in all non-malignant tissues investigated (n=14) except testis and prostate tissues. In terms of malignancies, all PCa cases were positive for SPATA19 exhibiting frequency between 20 and 100% (median 85%) with 63 (52.5%) and 57 (47.5%) cases demonstrating weak/moderate and strong intensities, respectively. Thirty-nine PCa cases (32.5%) contained BPH, and all BPH glands were SPATA19 positive (frequency between 20 and 100%; median 90%) with 13 (33.3%) demonstrating strong SPATA19 expression. Higher SPATA19 expression (higher frequency, intensity, or H-score) was not associated with overall survival or disease-specific survival (DFS) in all PCa cases. However, biochemical recurrence (BR) was associated with worse DFS (p = 0.005) in this cohort of 120 patients, and cases with strong SPATA19 intensity were associated with BR (p = 0.020). In conclusion, we showed that SPATA19 protein was frequently expressed in both BPH and PCa glands, and this warrants future investigations on its pathogenic roles in the disease.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - José I López
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain
| |
Collapse
|
39
|
Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget 2017; 8:71292-71316. [PMID: 29050362 PMCID: PMC5642637 DOI: 10.18632/oncotarget.19772] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression post-transcriptionally. They are crucial for normal development and maintaining homeostasis. Researchers have discovered that dysregulated miRNA expression contributes to many pathological conditions, including cancer. miRNAs can augment or suppress tumorigenesis based on their expression and transcribed targetome in various cell types. In recent years, researchers have begun to identify miRNAs commonly dysregulated in cancer. One recently identified miRNA, miR-708-5p, has been shown to have profound roles in promoting or suppressing oncogenesis in a myriad of solid and hematological tumors. This review highlights the diverse, sometimes controversial findings reported for miR-708-5p in cancer, and the importance of further exploring this exciting miRNA.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| |
Collapse
|
40
|
Ma Q, Wu X, Wu J, Liang Z, Liu T. SERP1 is a novel marker of poor prognosis in pancreatic ductal adenocarcinoma patients via anti-apoptosis and regulating SRPRB/NF-κB axis. Int J Oncol 2017; 51:1104-1114. [PMID: 28902358 PMCID: PMC5592859 DOI: 10.3892/ijo.2017.4111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Stress associated endoplasmic reticulum protein 1 (SERP1), can cause accumulation of unfolded proteins in ER stress. However, studies on the role of SERP1 in pancreatic ductal adenocarcinoma (PDAC) are still incomplete. The present study aimed at identifying whether SERP1 acts as a potential novel prognostic marker of PDAC, and analyzed its possible mechanism. GEO database analysis showed SERP1 was significantly upregulated in PDAC tissues, and strongly associated with advanced clinical stage of PDAC patients from TCGA database. Univariate and multivariate Cox regression analysis further revealed SERP1 high expression was an independent factor for the prognosis of PDAC. Gene set enrichment analysis (GSEA) revealed that SERP1 was mainly involved in regulating cell apoptosis and nuclear factor-κB (NF-κB) signaling pathway, and downregulated SERP1 significantly promoted PANC-1 cell apoptosis. To further explore its possible mechanism, protein-protein interaction (PPI) and gene ontology (GO) analysis showed the functions of proteins interacting with SERP1 were mainly enriched in regulating cell apoptosis, and SRP receptor β subunit (SRPRB) was the core of the whole PPI network. The expression of SERP1 was negatively correlated with SRPRB expression. In vitro, downregulated SERP1 significantly increased SRPRB expression. Furthermore, upregulated SRPRB could increase cell apoptosis rate and decreased the expression level of NF-κB and the phosphorylation NF-κB. The above results indicated that SERP1 as a potential novel prognostic marker of PDAC probably via regulating cell apoptosis and NF-κB activation, which may be associated with SRPRB.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiuxiu Wu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jing Wu
- Department of Medical Imaging, Beijing Huairou Hospital, University of Chinese Academy of Science, Beijing 101400, P.R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
41
|
Xiao L, Xiao M, Zou M, Xu W. Estrogen receptor β inhibits prostate cancer cell proliferation through downregulating TGF-β1/IGF-1 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8569-8576. [PMID: 31966711 PMCID: PMC6965446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 06/10/2023]
Abstract
Recently, estrogen receptor β (ERβ) appears to be anti-proliferative and pro-apoptotic in normal prostate gland, but its role in androgen independent prostate cancer is limited. In this study, the expression of ERβ was overexpressed in two androgen-independent prostate cancer cell lines, PC-3 and DU145 after transfection with Ad-ERβ-EGFP virus particles. Overexpressed ERβ significantly inhibited cell proliferation in these two prostate cancer cell lines using MTT assay. Flow cytometry and Annexin V-APC/7-AAD double staining confirmed that upregulation of ERβ increased cell apoptotic rate. We found that upregulation of ERβ suppressed the expression of TGF-β1/IGF-1 expression, which could be reversed by ERβ-selective antagonist PHTPP. Consistently, TGF-β1 inhibitor LY2109761 treatment could weaken the effects of ERβ-selective antagonist PHTPP on the expression of IGF-1, survivin and bcl-2 in prostate cancer cells. In conclusion, these results suggest that estrogen may play an important role in androgen-independent prostate cancer cell proliferation through ERβ-mediated suppression of TGF-β1/IGF-1.
Collapse
Affiliation(s)
- Long Xiao
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology Kunming, Yunnan Province, P. R. China
| | - Minhui Xiao
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology Kunming, Yunnan Province, P. R. China
| | - Min Zou
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology Kunming, Yunnan Province, P. R. China
| | - Wanchao Xu
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology Kunming, Yunnan Province, P. R. China
| |
Collapse
|
42
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
43
|
He C, Wang L, Zhang J, Xu H. Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol Cancer 2017; 16:35. [PMID: 28173803 PMCID: PMC5297251 DOI: 10.1186/s12943-017-0603-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia plays an important role in the development of various cancers. MicroRNAs (miRNAs) act as post-transcriptional regulators of gene expression and modulate the tumorigenesis, including gastric cancer. However, the roles and molecular mechanism of miR-224 in gastric cancer under hypoxia remain poorly understood. Method Real-time PCR and Northern blot assay were used to examine the effects of hypoxia and HIF-1α on miR-224 expression. Luciferase and ChIP assays were performed to determine whether miR-224 was a transcriptional target of HIF-1α. Then MTT, colony formation, in vitro scratch and invasion assays were used to detect the effects of miR-224 on cell growth, migration and invasion under hypoxia, as well as the in vivo animal study. Luciferase assay and Western blot were performed to validate the targets of miR-224. Functional studies were performed to determine the roles of RASSF8 as that of miR-224 under hypoxia. The effects of RASSF8 knockdown on the transcriptional activity and translocation of NF-κB were investigated using Luciferase assay and Western blot, respectively. Finally, the expression levels of miR-224 and RASSF8 were detected using real-time PCR in gastric cancer tissues as well as lymph node metastasis tissues. Results We demonstrated that miR-224 was upregulated by hypoxia and HIF-1α. HIF-1α affected miR-224 expression at the transcriptional level. MiR-224 inhibition suppressed cell growth, migration and invasion induced by hypoxia, while miR-224 overexpression resulted in opposite effects. MiR-224 inhibition also suppressed tumor growth in vivo. We then validated that RASSF8 was a direct target of miR-224. RASSF8 overexpression inhibited cell growth and invasion, while RASSF8 knockdown ameliorated the inhibitory effects of miR-224 inhibition on cell growth and invasion. Furthermore, we found that RASSF8 knockdown enhanced the transcriptional activity of NF-κB and p65 translocation, while RASSF8 overexpression resulted in opposite effects. Inhibition of NF-κB activity by PDTC attenuated the effects of RASSF8 knockdown on cell proliferation and invasion. Finally, miR-224 was upregulated in both gastric cancer tissues and lymph node metastasis positive tissues, while RASSF8 expression was opposite to that of miR-224. Conclusion These results indicate that hypoxia-inducible miR-224 promotes gastric cancer cell growth, migration and invasion by downregulating RASSF8 and acts as an oncogene, implying that inhibition of miR-224 may have potential as a therapeutic target for patients with hypoxic gastric tumors.
Collapse
Affiliation(s)
- Chuan He
- Department of Gastroenterology, First Hospital of Jilin University, No.71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Libo Wang
- Department of Gastroenterology, First Hospital of Jilin University, No.71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Jiantao Zhang
- Department of Colorectal and anal surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Hong Xu
- Department of Gastroenterology, First Hospital of Jilin University, No.71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
44
|
Nelson AW, Groen AJ, Miller JL, Warren AY, Holmes KA, Tarulli GA, Tilley WD, Katzenellenbogen BS, Hawse JR, Gnanapragasam VJ, Carroll JS. Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol Cell Endocrinol 2017; 440:138-150. [PMID: 27889472 PMCID: PMC5228587 DOI: 10.1016/j.mce.2016.11.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022]
Abstract
Estrogen Receptor-β (ERβ) has been implicated in many cancers. In prostate and breast cancer its function is controversial, but genetic studies implicate a role in cancer progression. Much of the confusion around ERβ stems from antibodies that are inadequately validated, yet have become standard tools for deciphering its role. Using an ERβ-inducible cell system we assessed commonly utilized ERβ antibodies and show that one of the most commonly used antibodies, NCL-ER-BETA, is non-specific for ERβ. Other antibodies have limited ERβ specificity or are only specific in one experimental modality. ERβ is commonly studied in MCF-7 (breast) and LNCaP (prostate) cancer cell lines, but we found no ERβ expression in either, using validated antibodies and independent mass spectrometry-based approaches. Our findings question conclusions made about ERβ using the NCL-ER-BETA antibody, or LNCaP and MCF-7 cell lines. We describe robust reagents, which detect ERβ across multiple experimental approaches and in clinical samples.
Collapse
Affiliation(s)
- Adam W Nelson
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK; Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Urology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Arnoud J Groen
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Kelly A Holmes
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute Building, School of Medicine, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute Building, School of Medicine, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 USA
| | - Vincent J Gnanapragasam
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Urology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK.
| |
Collapse
|
45
|
Inhibition of KPNA4 attenuates prostate cancer metastasis. Oncogene 2016; 36:2868-2878. [PMID: 27941876 DOI: 10.1038/onc.2016.440] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is a common cancer in men. Although current treatments effectively palliate symptoms and prolong life, the metastatic PCa remains incurable. It is important to find biomarkers and targets to improve metastatic PCa diagnosis and treatment. Here we report a novel correlation between karyopherin α4 (KPNA4) and PCa pathological stages. KPNA4 mediates the cytoplasm-to-nucleus translocation of transcription factors, including nuclear factor kappa B, although its role in PCa was largely unknown. We find that knockdown of KPNA4 reduces cell migration in multiple PCa cell lines, suggesting a role of KPNA4 in PCa progression. Indeed, stable knockdown of KPNA4 significantly reduces PCa invasion and distant metastasis in mouse models. Functionally, KPNA4 alters tumor microenvironment in terms of macrophage polarization and osteoclastogenesis by modulating tumor necrosis factor (TNF)-α and -β. Further, KPNA4 is proved as a direct target of miR-708, a tumor-suppressive microRNA. We disclose the role of miR-708-KPNA4-TNF axes in PCa metastasis and KPNA4's potential as a novel biomarker for PCa metastasis.
Collapse
|
46
|
Gaoli X, Lili W, Zhiwu W, Zhiyuan G. [Research progress of mechanism of hypoxia-inducible factor-1α signaling pathway in condylar cartilage growth and remodeling]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:639-642. [PMID: 28318168 DOI: 10.7518/hxkq.2016.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The condylar cartilage was adapted to hypoxic conditions in vivo. However, condylar cartilage cells exposed in normoxia in vitro affect the chondrocyte phenotype and cartilage matrix formation. This condition also resulted in great difficulty in chondrocyte research. Culturing chondrocyte should be simulated in in vivo hypoxia environment as much as possible. The hypoxia-inducible factor-1α (HIF-1α) demonstrates an important transcription factor of adaptive response to hypoxic conditions. HIF-1α also plays an active role in maintaining homeostasis and function of chondrocytes. This review summarized current knowledge of the HIF-1α structure, signaling pathway, and mechanism of HIF-1α in the condylar cartilage repair.
Collapse
Affiliation(s)
- Xu Gaoli
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wu Lili
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wu Zhiwu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Gu Zhiyuan
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
47
|
Saeed MT, Ahmad J, Kanwal S, Holowatyj AN, Sheikh IA, Zafar Paracha R, Shafi A, Siddiqa A, Bibi Z, Khan M, Ali A. Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression. PeerJ 2016; 4:e2348. [PMID: 27703839 PMCID: PMC5047222 DOI: 10.7717/peerj.2348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP) drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation) and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT), an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer.
Collapse
Affiliation(s)
- Muhammad Tariq Saeed
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Jamil Ahmad
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan; School of Computer Science and IT, Stratford University, VA, United States
| | - Shahzina Kanwal
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Andreana N Holowatyj
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute , Detroit , MI , United States
| | - Iftikhar A Sheikh
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Aamir Shafi
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan; College of Computer Science and Information Technology, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Amnah Siddiqa
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Zurah Bibi
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Mukaram Khan
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Amjad Ali
- Atta-ur-Rehman School of Applied Bio-science (ASAB), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| |
Collapse
|
48
|
Udensi UK, Tchounwou PB. Oxidative stress in prostate hyperplasia and carcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:139. [PMID: 27609145 PMCID: PMC5017015 DOI: 10.1186/s13046-016-0418-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
Prostatic hyperplasia (PH) is a common urologic disease that affects mostly elderly men. PH can be classified as benign prostatic hyperplasia (BPH), or prostate cancer (PCa) based on its severity. Oxidative stress (OS) is known to influence the activities of inflammatory mediators and other cellular processes involved in the initiation, promotion and progression of human neoplasms including prostate cancer. Scientific evidence also suggests that micronutrient supplementation may restore the antioxidant status and hence improve the clinical outcomes for patients with BPH and PCa. This review highlights the recent studies on prostate hyperplasia and carcinogenesis, and examines the role of OS on the molecular pathology of prostate cancer progression and treatment.
Collapse
Affiliation(s)
- Udensi K Udensi
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
49
|
Rahman HP, Hofland J, Foster PA. In touch with your feminine side: how oestrogen metabolism impacts prostate cancer. Endocr Relat Cancer 2016; 23:R249-66. [PMID: 27194038 DOI: 10.1530/erc-16-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the primary cancer in males, with increasing global incidence rates making this malignancy a significant healthcare burden. Androgens not only promote normal prostate maturity but also influence the development and progression of prostate cancer. Intriguingly, evidence now suggests endogenous and exogenous oestrogens, in the form of phytoestrogens, may be equally as relevant as androgens in prostate cancer growth. The prostate gland has the molecular mechanisms, catalysed by steroid sulphatase (STS), to unconjugate and utilise circulating oestrogens. Furthermore, prostate tissue also expresses enzymes essential for local oestrogen metabolism, including aromatase (CYP19A1) and 3β- and 17β-hydroxysteroid dehydrogenases. Increased expression of these enzymes in malignant prostate tissue compared with normal prostate indicates that oestrogen synthesis is favoured in malignancy and thus may influence tumour progression. In contrast to previous reviews, here we comprehensively explore the epidemiological and scientific evidence on how oestrogens impact prostate cancer, particularly focusing on pre-receptor oestrogen metabolism and subsequent molecular action. We analyse how molecular mechanisms and metabolic pathways involved in androgen and oestrogen synthesis intertwine to alter prostate tissue. Furthermore, we speculate on whether oestrogen receptor status in the prostate affects progression of this malignancy.
Collapse
Affiliation(s)
- Habibur P Rahman
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
| | - Johannes Hofland
- Department of Internal MedicineErasmus Medical Center, Rotterdam, The Netherlands
| | - Paul A Foster
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK Centre for EndocrinologyDiabetes and Metabolism, Birmingham Healthcare Partners, Birmingham, UK
| |
Collapse
|
50
|
Storti P, Toscani D, Airoldi I, Marchica V, Maiga S, Bolzoni M, Fiorini E, Campanini N, Martella E, Mancini C, Guasco D, Ferri V, Donofrio G, Aversa F, Amiot M, Giuliani N. The anti-tumoral effect of lenalidomide is increased in vivo by hypoxia-inducible factor (HIF)-1α inhibition in myeloma cells. Haematologica 2015; 101:e107-10. [PMID: 26659917 DOI: 10.3324/haematol.2015.133736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paola Storti
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Denise Toscani
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Irma Airoldi
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova, Italy
| | - Valentina Marchica
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Sophie Maiga
- INSERM, U892, University of Nantes, CNRS, UMR 6299, France
| | - Marina Bolzoni
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Elena Fiorini
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Nicoletta Campanini
- Pathologic Anatomy and Histology, "Azienda Ospedaliero-Universitaria" of Parma, Italy
| | - Eugenia Martella
- Pathologic Anatomy and Histology, "Azienda Ospedaliero-Universitaria" of Parma, Italy
| | - Cristina Mancini
- Pathologic Anatomy and Histology, "Azienda Ospedaliero-Universitaria" of Parma, Italy
| | - Daniela Guasco
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Valentina Ferri
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Italy
| | - Franco Aversa
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Martine Amiot
- INSERM, U892, University of Nantes, CNRS, UMR 6299, France
| | - Nicola Giuliani
- Myeloma Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| |
Collapse
|