1
|
Greco L, Rubbino F, Ferrari C, Cameletti M, Grizzi F, Bonelli F, Malesci A, Mazzone M, Ricciardiello L, Laghi L. Association of Fusobacterium nucleatum with colorectal cancer molecular subtypes and its outcome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e5. [PMID: 40297307 PMCID: PMC12035788 DOI: 10.1017/gmb.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Massimiliano Mazzone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Macrophage Dynamics Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luigi Ricciardiello
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Biersack B, Nitzsche B, Höpfner M. Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:6. [PMID: 39935431 PMCID: PMC11810460 DOI: 10.20517/cdr.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Small-molecule BRAF inhibitors (e.g., vemurafenib and dabrafenib) and MEK (MAPK/ERK) kinases inhibitors (e.g., trametinib) have distinctly improved the survival of patients suffering from BRAF-mutant cancers such as melanomas. However, the emergence of resistance to BRAF and MEK inhibitor-based melanoma therapy, as well as the reduced sensitivity of other BRAF-mutant cancers such as CRC, poses a considerable clinical problem. For instance, the reactivation of MAPK/ERK signaling hampering cell death induction mechanisms was responsible for BRAF inhibitor resistance, which can be correlated with distinct post-translational and epigenetic processes. Histone deacetylases (HDACs) are prominent epigenetic drug targets and some HDAC inhibitors have already been clinically approved for the therapy of various blood cancers. In addition, several HDACs were identified, which also play a crucial role in the drug resistance of BRAF-mutant cancers. Consequently, inhibition of HDACs was described as a promising approach to overcome resistance. This review summarizes the influence of HDACs (Zn2+-dependent HDACs and NAD+-dependent sirtuins) on BRAF-mutant cancers and BRAF inhibitor resistance based on upregulated survival mechanisms and the prevention of tumor cell death. Moreover, it outlines reasonable HDAC-based strategies to circumvent BRAF-associated resistance mechanisms based on downregulated cell death mechanisms.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth 95440, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
3
|
Huang M, Wang J, Zhang Z, Zuo X. ZMIZ1 Regulates Proliferation, Autophagy and Apoptosis of Colon Cancer Cells by Mediating Ubiquitin-Proteasome Degradation of SIRT1. Biochem Genet 2024; 62:3245-3259. [PMID: 38214831 PMCID: PMC11289246 DOI: 10.1007/s10528-023-10573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/26/2023] [Indexed: 01/13/2024]
Abstract
There are nearly 1.15 million new cases of colon cancer, as well as 586,858 deaths from colon cancer worldwide in 2020. The aim of this study is to reveal whether ZMIZ1 can control the fate of colon cancer cells and the mechanism by which it functions. Specific shRNA transfection was used to knock down the expression of ZMIZ1 in colon cancer cell lines (HCT116 and HT29), and cell proliferation was detected using EdU and CCK-8 reagents, apoptosis by flow cytometry, and autophagy by western blot. The interaction of ZMIZ1 and SIRT1 was analyzed. Knockdown of ZMIZ1 significantly inhibited autophagy and proliferation, and induced apoptosis of HCT116 and HT29 cells. The mRNA level of SIRT1 was not affected by ZMIZ1 knockdown, but the protein level of SIRT1 was significantly decreased and the protein level of the SIRT1-specific substrate, acetylated FOXO3a, was reduced. Immunoprecipitation assays identified the interaction between SIRT1 and ZMIZ1 in HCT116 and HT29 cells. ZMIZ1 increased intracellular ubiquitination of SIRT1. Knockdown or pharmacological inhibition of SIRT1 neutralized the effects of ZMIZ knockdown on proliferation, autophagy and apoptosis in HCT116 and HT29 cells. ZMIZ1 may control the fate of colon cancer cells through the SIRT1/FOXO3a axis. Targeting ZMIZ1 would be beneficial for the treatment of colon cancer.
Collapse
Affiliation(s)
- Min Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China.
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Zhengrong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241000, Anhui, China
| |
Collapse
|
4
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Shin DH, Jo JY, Choi M, Kim KH, Bae YK, Kim SS. Oncogenic KRAS mutation confers chemoresistance by upregulating SIRT1 in non-small cell lung cancer. Exp Mol Med 2023; 55:2220-2237. [PMID: 37779142 PMCID: PMC10618295 DOI: 10.1038/s12276-023-01091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 10/03/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homologue (KRAS) is a frequent oncogenic driver of solid tumors, including non-small cell lung cancer (NSCLC). The treatment and outcomes of KRAS-mutant cancers have not been dramatically revolutionized by direct KRAS-targeted therapies because of the lack of deep binding pockets for specific small molecule inhibitors. Here, we demonstrated that the mRNA and protein levels of the class III histone deacetylase SIRT1 were upregulated by the KRASMut-Raf-MEK-c-Myc axis in KRASMut lung cancer cells and in lung tumors of a mouse model with spontaneous KrasG12D expression. KRASMut-induced SIRT1 bound to KRASMut and stably deacetylated KRASMut at lysine 104, which increased KRASMut activity. SIRT1 knockdown (K/D) or the SIRT1H363Y mutation increased KRASMut acetylation, which decreased KRASMut activity and sensitized tumors to the anticancer effects of cisplatin and erlotinib. Furthermore, in KrasG12D/+;Sirt1co/co mice, treatment with cisplatin and erlotinib robustly reduced the tumor burden and increased survival rates compared with those in spontaneous LSL-KrasG12D/+;Sirt1+/+ mice and mice in each single-drug treatment group. Then, we identified p300 as a KRASMut acetyltransferase that reinforced KRASMut lysine 104 acetylation and robustly decreased KRASMut activity. KRASMut lysine 104 acetylation by p300 and deacetylation by SIRT1 were confirmed by LC‒MS/MS. Consistent with this finding, the SIRT1 inhibitor EX527 suppressed KRASMut activity, which synergistically abolished cell proliferation and colony formation, as well as the tumor burden in KRASMut mice, when combined with cisplatin or erlotinib. Our data reveal a novel pathway critical for the regulation of KRASMut lung cancer progression and provide important evidence for the potential application of SIRT1 inhibitors and p300 activators for the combination treatment of KRASMut lung cancer patients.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Jeong Yeon Jo
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Minyoung Choi
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung-Hee Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Ki Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Saffar H, Nili F, Sarmadi S, Barazandeh E, Saffar H. Evaluation of Sirtuin1 Overexpression by Immunohistochemistry in Cervical Intraepithelial Lesions and Invasive Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:128-131. [PMID: 36730441 DOI: 10.1097/pai.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
Cervical cancer is one of the most common genital cancers in the woman with approximately half a million new cases per year. Development of invasive squamous cell carcinoma (SCC) is the result of persistent and frequent human papilloma virus infection in premalignant lesions of cervix. Thereby identification of biomarkers that could predict progression of dysplastic mucosa to invasive cancer is of great clinical significance. Overexpression of SIRT1 has been reported to induce tumorogenesis in several organs. We evaluated SIRT1 expression in normal squamous epithelium of cervix, low-grade and high-grade cervical intraepithelial lesions and invasive SCC. A total of 104 cases were selected including 34 low-grade cervical intraepithelial lesions (CINs), 37 high-grade CINs, and 35 cases of invasive SCC. The normal cervical epithelium showed negative or weak SIRT1 positivity only in basal layers. SIRT1 cytoplasmic expression was found in 13 of 34 (38.2%) of low-grade CINs, 31 of 37 (83.8%) of high-grade CINs and all 35 (100%) cases of invasive SCC. Expression between 2 groups of CIN was statistically significant ( P =0.001). Thus, SIRT1 appears to be a promising biomarker for predicting the progression of CIN to invasive SCC.
Collapse
Affiliation(s)
| | | | | | | | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Tan L, Peng D, Cheng Y. Significant position of C-myc in colorectal cancer: a promising therapeutic target. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2295-2304. [PMID: 35972682 DOI: 10.1007/s12094-022-02910-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/23/2022] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a malignant tumor initiating from the mucosa of the colorectum. According to the 2020 statistics from the World Health Organization, there are 10.0% CRC cases among all 19.3 million new cancers, followed by lung and breast cancer, and 9.4% CRC cases among all 9.9 million cancer deaths, ranking second. The population of CRC patients in China is large, and its incidence and mortality continue to increase each year. Despite the continuous development of surgical methods, chemotherapy, radiotherapy, targeted therapy and immunotherapy, the overall survival of CRC patients remains low. Past research has suggested that c-myc plays a pivotal role in the development of CRC. A higher expression level of c-Myc is a negative prognostic marker in CRC. However, there are few drugs targeting c-myc directly. Therefore, we focused on discovering the mechanism of c-myc in CRC to provide a reference for a better therapy choice for patients.
Collapse
Affiliation(s)
- Li Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Otsuka R, Sakata H, Murakami K, Kano M, Endo S, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, Sekino N, Hirasawa S, Kinoshita K, Sasaki T, Matsubara H. SIRT1 Expression Is a Promising Prognostic Biomarker in Esophageal Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:126-133. [PMID: 35399170 PMCID: PMC8962800 DOI: 10.21873/cdp.10086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Several articles have assessed the prognostic significance of the expression of sirtuin 1 (SIRT1) in esophageal squamous cell carcinoma (ESCC). However, evidence in this field is insufficient. Thus, we conducted a meta-analysis to investigate the prognostic and clinical impact of SIRT1 expression in ESCC. MATERIALS AND METHODS We searched the PubMed, Cochrane Library, and Web of Science databases for articles on the expression of SIRT1 and clinicopathological features in patients with ESCC. A meta-analysis was conducted. RESULTS Four studies with 429 patients were included. The meta-analysis revealed a significant relationship between the high expression of SIRT1 and higher T-stage (odds ratio=2.39. 95% confidence interval=1.12-5.13, p=0.02), more advanced TNM stage (odds ratio=2.35. 95% confidence interval=1.20-4.60, p=0.01), and a poor overall survival (hazard ratio=1.90, 95% confidence interval=1.45-2.47, p<0.00001). CONCLUSION SIRT1 expression may be a promising prognostic biomarker for patients with ESCC.
Collapse
Affiliation(s)
- Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Haruhito Sakata
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Soichiro Hirasawa
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuma Sasaki
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Garcia-Peterson LM, Li X. Trending topics of SIRT1 in tumorigenicity. Biochim Biophys Acta Gen Subj 2021; 1865:129952. [PMID: 34147543 DOI: 10.1016/j.bbagen.2021.129952] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Carcinogenesis is governed by a series of genetic alterations and epigenetic changes that lead to aberrant patterns in neoplastic cells. Sirtuin-1(SIRT1), an NAD+-dependent protein deacetylase, is capable of deacetylating histones and non-histone substrates that regulate various physiological activities during tumorigenesis. Recent studies have identified the role of SIRT1 in different stages of cancer, including genome instability, tumor initiation, proliferation, metabolism, and therapeutic response. However, the action of SIRT1 has been reported to be both oncogenic and tumor suppressive during carcinogenesis. Consequently, the biological functions of SIRT1 in cancer remain controversial. SCOPE OF REVIEW We highlight the most recent findings on SIRT1 in different stages of tumorigenesis, and update the current status of SIRT1 small molecule modulators in clinical application of cancer treatment. MAJOR CONCLUSION By targeting both tumor suppressors and oncogenic proteins, SIRT1 has a bifunctional role at different stages of tumorigenesis. The impact of SIRT1 on tumorigenesis is also distinct at different stages and is dependent on its dosages. SIRT1 suppresses tumor initiation through its functions in promoting DNA repair, increasing genome stability, and inhibiting inflammation at the pre-cancer stage. However, SIRT1 enhances tumor proliferation, survival, and drug resistance through its roles in anti-apoptosis, pro-tumor metabolism, and anti-inflammation (inhibition of anti-tumor immunity) at the stages of tumor progression, metastasis, and relapse. Consequently, both SIRT1 inhibitors and activators have been explored for cancer treatment. GENERAL SIGNIFICANCE Better understanding the dose- and stage-dependent roles of SIRT1 in each cancer type can provide new avenues of exploration for therapy development.
Collapse
Affiliation(s)
- Liz M Garcia-Peterson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Pillai VB, Gupta MP. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab 2021; 320:E399-E414. [PMID: 33308014 PMCID: PMC7988780 DOI: 10.1152/ajpendo.00483.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
The ability to ward off pathogens with minimal damage to the host determines the immune system's robustness. Multiple factors, including pathogen processing, identification, secretion of mediator and effector molecules, and immune cell proliferation and differentiation into various subsets, constitute the success of mounting an effective immune response. Cellular metabolism controls all of these intricate processes. Cells utilize diverse fuel sources and switch back and forth between different metabolic pathways depending on their energy needs. The three most critical metabolic pathways on which immune cells depend to meet their energy needs are oxidative metabolism, glycolysis, and glutaminolysis. Dynamic switching between these metabolic pathways is needed for optimal function of the immune cells. Moreover, switching between these metabolic pathways needs to be tightly regulated to achieve the best results. Immune cells depend on the Warburg effect for their growth, proliferation, secretory, and effector functions. Here, we hypothesize that the sirtuin, SIRT6, could be a negative regulator of the Warburg effect. We also postulate that SIRT6 could act as a master regulator of immune cell metabolism and function by regulating critical signaling pathways.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
12
|
Zhang Z, Chen X, Liu S. Role of Sirtuin-1 in Neonatal Hypoxic-Ischemic Encephalopathy and Its Underlying Mechanism. Med Sci Monit 2020; 26:e924544. [PMID: 32826847 PMCID: PMC7461657 DOI: 10.12659/msm.924544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is a dreaded disease and one of the leading causes of severe neurological dysfunction in neonates. The present study explored the functions of Sirtuin-1 (SIRT1) in neonatal HIE. MATERIAL AND METHODS A HIE neonatal rat model was generated to determine SIRT1 levels in brain tissues. Cell apoptosis and cell viability were analyzed by flow cytometry and MTT assay. qRT-PCR and Western blot analysis were used to assess gene mRNA and protein levels. Subsequently, the effect of SIRT1 on HIE was investigated in vitro by constructing an oxygen-glucose deprivation (OGD) cell model. RESULTS The effective construction of the HIE rat model was confirmed by the enhanced brain cell apoptosis and the increased expression of HIE-related molecular markers, including S100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE). SIRT1 expression was downregulated in HIE rat brain tissues. These findings indicated that SIRT1 was downregulated in neuronal cells subjected to OGD. In addition, enhanced cell viability and reduced cell apoptosis were observed, suggesting that SIRT1 overexpression relieved OGD-induced neuronal cell injury. Transfection with SIRT1-siRNA further increased OGD-induced neuronal cell injury, evidenced by decreased cell viability and enhanced cell apoptosis. Finally, SIRT1 overexpression significantly downregulated p-p65 protein expression. CONCLUSIONS Our findings revealed that SIRT1 may be a novel and promising therapy target for HIE treatment.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R, China
| | - Xin Chen
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R, China
| | - Sichen Liu
- Department of Neonatology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, P.R. China
| |
Collapse
|
13
|
Kane AM, Fennell LJ, Liu C, Borowsky J, McKeone DM, Bond CE, Kazakoff S, Patch AM, Koufariotis LT, Pearson J, Waddell N, Leggett BA, Whitehall VLJ. Alterations in signaling pathways that accompany spontaneous transition to malignancy in a mouse model of BRAF mutant microsatellite stable colorectal cancer. Neoplasia 2020; 22:120-128. [PMID: 31935636 PMCID: PMC6961716 DOI: 10.1016/j.neo.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
The serrated neoplasia pathway gives rise to a distinct subgroup of colorectal cancers distinguished by the presence of mutant BRAFV600E and the CpG Island Methylator Phenotype (CIMP). BRAF mutant CRC are commonly associated with microsatellite instability, which have an excellent clinical outcome. However, a proportion of BRAF mutant CRC retain microsatellite stability and have a dismal prognosis. The molecular drivers responsible for the development of this cancer subgroup are unknown. To address this, we established a murine model of BRAFV600E mutant microsatellite stable CRC and comprehensively investigated the exome and transcriptome to identify molecular alterations in signaling pathways that drive malignancy. Exome sequencing of murine serrated lesions (mSL) and carcinomas identified frequent hot spot mutations within the gene encoding β-catenin (Ctnnb1). Immunohistochemical staining of β-catenin indicated that these mutations led to an increase in the presence of aberrant nuclear β-catenin that resulted in gene expression changes in targets of β-catenin transcription. Gene expression profiling identified a significant enrichment for transforming growth factor-β (TGF-β) signaling that was present in mSL and carcinomas. Early activation of TGF-β suggests that this pathway may be an early cue directing mSL to microsatellite stable carcinoma. These findings in the mouse model support the importance of alterations in WNT and TGF-β signaling during the transition of human sessile serrated lesions to malignancy.
Collapse
Affiliation(s)
- Alexandra M Kane
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia; Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland Health, Brisbane, Queensland, Australia.
| | - Lochlan J Fennell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Jennifer Borowsky
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia
| | - Diane M McKeone
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Catherine E Bond
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - John Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Barbara A Leggett
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia; The Royal Brisbane and Women's Hospital, Queensland Health, Brisbane, Queensland, Australia
| | - Vicki L J Whitehall
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia; Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland Health, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Differential Expression of KRAS and SIRT1 in Ovarian Cancers with and Without Endometriosis. Reprod Sci 2020; 27:145-151. [PMID: 32046380 DOI: 10.1007/s43032-019-00017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Accumulating research shows that ovarian cancer progression can be influenced by both gene mutations and endometriosis. However, the exact mechanism at hand is poorly understood. In the current study, we explored the expression of KRAS and SIRT1, two genes previously identified as altered in endometriosis and ovarian cancer. Human endometrial samples were obtained from regularly cycling women with endometriosis, ovarian cancer, and endometriosis-associated ovarian cancer between 18 and 50 of age undergoing hysterectomy, and immunohistochemical analyses were performed. The cytoplasmic expression of KRAS was low in eutopic endometrium from women without endometriosis or ovarian cancer; however, it was elevated in those who have been diagnosed with endometriosis, as well as ovarian cancer with or without the presence of endometriosis. Nuclear and cytoplasmic SIRT1 expression was also low within endometrium without either disease. However, nuclear SIRT1 expression was increased in those with endometriosis and ovarian cancer associated with endometriosis. Nuclear but not the cytoplasmic expression of SIRT1 correlated with KRAS expression in ovarian cancers associated with endometriosis. These results suggest roles of KRAS and SIRT1 in endometriosis and endometriosis-associated ovarian cancer. Cytoplasmic KRAS expression proves to be a key biomarker in both diseases, while nuclear SIRT1 may be a new biomarker specific to those with endometriosis and those with both endometriosis and ovarian cancer. Further research of these genes could aid in determining the pathogenesis of both diseases and help in clarifying the development of endometriosis-associated ovarian cancer.
Collapse
|
15
|
Costa-Machado LF, Fernandez-Marcos PJ. The sirtuin family in cancer. Cell Cycle 2019; 18:2164-2196. [PMID: 31251117 PMCID: PMC6738532 DOI: 10.1080/15384101.2019.1634953] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023] Open
Abstract
Sirtuins are a family of protein deacylases and ADP-ribosyl-transferases, homologs to the yeast SIR2 protein. Seven sirtuin paralogs have been described in mammals, with different subcellular locations, targets, enzymatic activities, and regulatory mechanisms. All sirtuins share NAD+ as substrate, placing them as central metabolic hubs with strong relevance in lifespan, metabolism, and cancer development. Much effort has been devoted to studying the roles of sirtuins in cancer, providing a wealth of data on sirtuins roles in mouse models and humans. Also, extensive data are available on the effects of pharmacological modulation of sirtuins in cancer development. Here, we present a comprehensive and organized resume of all the existing evidence linking every sirtuin with cancer development. From our analysis, we conclude that sirtuin modulation after tumor initiation results in unpredictable outcomes in most tumor types. On the contrary, all genetic and pharmacological models indicate that sirtuins activation prior to tumor initiation can constitute a powerful preventive strategy.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Metabolic Syndrome group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo J. Fernandez-Marcos
- Metabolic Syndrome group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
16
|
Brandl L, Zhang Y, Kirstein N, Sendelhofert A, Boos SL, Jung P, Greten F, Rad R, Menssen A. Targeting c-MYC through Interference with NAMPT and SIRT1 and Their Association to Oncogenic Drivers in Murine Serrated Intestinal Tumorigenesis. Neoplasia 2019; 21:974-988. [PMID: 31442917 PMCID: PMC6710297 DOI: 10.1016/j.neo.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
We recently described a positive feedback loop connecting c-MYC, NAMPT, DBC1 and SIRT1 that contributes to unrestricted cancer cell proliferation. Here we determine the relevance of the loop for serrated route intestinal tumorigenesis using genetically well-defined BrafV600E and K-rasG12D mouse models. In both models we show that c-MYC and SIRT1 protein expression increased through progression from hyperplasia to invasive carcinomas and metastases. It correlated with high NAMPT expression and was directly associated to activation of the oncogenic drivers. Assessing functional and molecular consequences of pharmacological interference with factors of the loop, we found that inhibition of NAMPT resulted in apoptosis and reduced clonogenic growth in human BRAF-mutant colorectal cancer cell lines and patient-derived tumoroids. Blocking SIRT1 activity was only effective when combined with a PI3K inhibitor, whereas the latter antagonized the effects of NAMPT inhibition. Interfering with the positive feedback loop was associated with down-regulation of c-MYC and temporary de-repression of TP53, explaining the anti-proliferative and pro-apoptotic effects. In conclusion we show that the c-MYC-NAMPT-DBC1-SIRT1 positive feedback loop contributes to murine serrated tumor progression. Targeting the feedback loop exerted a unique, dual therapeutic effect of oncoprotein inhibition and tumor suppressor activation. It may therefore represent a promissing target for serrated colorectal cancer, and presumably for other cancer types with deregulated c-MYC.
Collapse
Affiliation(s)
- Lydia Brandl
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany.
| | - Yina Zhang
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer"; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Nina Kirstein
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer".
| | - Andrea Sendelhofert
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany.
| | - Sophie Luise Boos
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Peter Jung
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Florian Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt/Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany;and German Cancer Consortium (DKTK) and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany; Department of Medicine II, School of Medicine, Technical University of Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Antje Menssen
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer"; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Zhang J, Ren P, Xu D, Liu X, Liu Z, Zhang C, Li Y, Wang L, Du X, Xing B. Human UTP14a promotes colorectal cancer progression by forming a positive regulation loop with c-Myc. Cancer Lett 2019; 440-441:106-115. [DOI: 10.1016/j.canlet.2018.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
18
|
Brandl L, Kirstein N, Neumann J, Sendelhofert A, Vieth M, Kirchner T, Menssen A. The c-MYC/NAMPT/SIRT1 feedback loop is activated in early classical and serrated route colorectal cancer and represents a therapeutic target. Med Oncol 2018; 36:5. [PMID: 30460421 DOI: 10.1007/s12032-018-1225-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
We have recently identified a positive feedback loop in which c-MYC increases silent information regulator 1 (SIRT1) protein level and activity through transcriptional activation of nicotinamide phosphoribosyltransferase (NAMPT) and NAD+ increase. Here, we determined the relevance of the c-MYC-NAMPT-SIRT1 feedback loop, including the SIRT1 inhibitor deleted in breast cancer 1 (DBC1), for the development of conventional and serrated colorectal adenomas. Immunohistochemical analyses of 104 conventional adenomas with low- and high-grade dysplasia and of 157 serrated lesions revealed that elevated expression of c-MYC, NAMPT, and SIRT1 characterized all conventional and serrated adenomas, whereas DBC1 was not differentially regulated. Analyzing publicly available pharmacogenomic databases from 43 colorectal cancer cell lines demonstrated that responsiveness towards a NAMPT inhibitor was significantly associated with alterations in PTEN and TGFBR2, while features such as BRAF or RNF43 alterations, or microsatellite instability typical for serrated route colorectal cancer, showed increased sensitivities for inhibition of NAMPT and SIRT1. Our findings suggest an activation of the c-MYC-NAMPT-SIRT1 feedback loop that may crucially contribute to initiation and development of both routes to colorectal cancer. Targeting of NAMPT or SIRT1 may represent novel therapeutic strategies with putative higher sensitivity of the serrated route colorectal cancer subtype.
Collapse
Affiliation(s)
- Lydia Brandl
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Nina Kirstein
- Research group "Signaling pathways in colorectal cancer", Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Jens Neumann
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Andrea Sendelhofert
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Michael Vieth
- Department of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Thomas Kirchner
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), DKTK site Munich, DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Antje Menssen
- Research group "Signaling pathways in colorectal cancer", Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany.
| |
Collapse
|
19
|
He WL, Weng XT, Wang JL, Lin YK, Liu TW, Zhou QY, Hu Y, Pan Y, Chen XL. Association Between c-Myc and Colorectal Cancer Prognosis: A Meta-Analysis. Front Physiol 2018; 9:1549. [PMID: 30483143 PMCID: PMC6244870 DOI: 10.3389/fphys.2018.01549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background: There is debate as to whether c-Myc predicts prognosis in colorectal cancer (CRC). In this study, we aimed to review the association between c-Myc and CRC prognosis. Methods: Pertinent studies were identified by searching electronic databases and carefully reviewing the reference lists of pertinent studies until March 2016. The summary hazard ratio (HR) and corresponding 95% confidence interval (CI) were calculated to study the association between c-Myc and CRC prognosis. Results: Eight cohort studies (including seven studies about overall survival [OS] and one study about disease free survival [DFS]) were included. The pooled HR of OS was 1.13 (95% CI: 0.66-1.95). In subgroup analysis, no significant association between c-Myc and CRC prognosis was found in the studies either from Western countries (HR: 0.87, 95% CI: 0.68-1.10) or Asian countries (HR: 1.89, 95% CI: 0.62-5.77). HRs were 0.86 (95% CI: 0.38-1.94) and 1.57 (95% CI: 0.73-3.39) for the studies using univariate analysis and multivariate analysis, respectively. HR from the studies that examined DNA level was significantly different (HR: 2.05, 95% CI: 1.22-3.46); while that about RNA level or protein level was not significantly different. Conclusion: c-Myc was not associated with CRC prognosis in this meta-analysis. However, the conclusion is preliminary and should be examined in future studies.
Collapse
Affiliation(s)
- Wei-Ling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Tao Weng
- The Second Clinical College, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jue-Lian Wang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Kai Lin
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian-Wen Liu
- The Second Clinical College, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian-Yi Zhou
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Hu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xin-Lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Anwar A, Uddin N, Siddiqui BS, Siddiqui RA, Begum S, Choudhary MI. A natural flavonoid lawsonaringenin induces cell cycle arrest and apoptosis in HT-29 colorectal cancer cells by targeting multiple signalling pathways. Mol Biol Rep 2018; 45:1339-1348. [DOI: 10.1007/s11033-018-4294-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
|
21
|
Lee YH, Song NY, Suh J, Kim DH, Kim W, Ann J, Lee J, Baek JH, Na HK, Surh YJ. Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Lett 2018; 431:219-229. [PMID: 29807115 DOI: 10.1016/j.canlet.2018.05.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
SIRT1, an NAD+-dependent histone/protein deacetylase, has diverse physiological actions. Recent studies have demonstrated that SIRT1 is overexpressed in colorectal cancer, suggesting its oncogenic potential. However, the molecular mechanisms by which overexpressed SIRT1 induces the progression of colorectal cancer and its inhibition remain largely unknown. Curcumin (diferuloymethane), a major component of the spice turmeric derived from the plant Curcuma longa L., has been reported to exert chemopreventive and anti-carcinogenic effects on colon carcinogenesis. In the present study, we found that curcumin reduced the expression of SIRT1 protein without influencing its mRNA expression in human colon cancer cells, suggesting posttranslational regulation of SIRT1 by this phytochemical. Notably, ubiquitination and subsequent proteasomal degradation of SIRT1 were induced by curcumin treatment. Results of nano-LC-ESI-MS/MS revealed the direct binding of curcumin to cysteine 67 of SIRT1. In line with this result, the protein stability and clonogenicity of a mutant SIRT1 in which cysteine 67 was substituted by alanine were unaffected by curcumin. Taken together, these observations suggest that curcumin facilitates the proteasomal degradation of oncogenic SIRT1 through covalent modification of SIRT1 at the cysteine 67 residue.
Collapse
Affiliation(s)
- Yeon-Hwa Lee
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Na-Young Song
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyoung Suh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Do-Hee Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyae Ann
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Grizzi F, Basso G, Borroni EM, Cavalleri T, Bianchi P, Stifter S, Chiriva-Internati M, Malesci A, Laghi L. Evolving notions on immune response in colorectal cancer and their implications for biomarker development. Inflamm Res 2018; 67:375-389. [PMID: 29322204 DOI: 10.1007/s00011-017-1128-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) still represents the third most commonly diagnosed type of cancer in men and women worldwide. CRC is acknowledged as a heterogeneous disease that develops through a multi-step sequence of events driven by clonal selections; this observation is sustained by the fact that histologically similar tumors may have completely different outcomes, including a varied response to therapy. METHODS In "early" and "intermediate" stage of CRC (stages II and III, respectively) there is a compelling need for new biomarkers fit to assess the metastatic potential of their disease, selecting patients with aggressive disease that might benefit from adjuvant and targeted therapies. Therefore, we review the actual notions on immune response in colorectal cancer and their implications for biomarker development. RESULTS The recognition of the key role of immune cells in human cancer progression has recently drawn attention on the tumor immune microenvironment, as a source of new indicators of tumor outcome and response to therapy. Thus, beside consolidated histopathological biomarkers, immune endpoints are now emerging as potential biomarkers. CONCLUSIONS The introduction of immune signatures and cellular and molecular components of the immune system as biomarkers is particularly important considering the increasing use of immune-based cancer therapies as therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Gianluca Basso
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Elena Monica Borroni
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Tommaso Cavalleri
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paolo Bianchi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sanja Stifter
- Department of Pathology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Alberto Malesci
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Hereditary Cancer Genetics Clinic, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
23
|
Ma MC, Chiu TJ, Lu HI, Huang WT, Lo CM, Tien WY, Lan YC, Chen YY, Chen CH, Li SH. SIRT1 overexpression is an independent prognosticator for patients with esophageal squamous cell carcinoma. J Cardiothorac Surg 2018; 13:25. [PMID: 29636061 PMCID: PMC5894223 DOI: 10.1186/s13019-018-0718-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sirtuin 1 (SIRT1) regulates DNA repair and metabolism by deacetylating target proteins. SIRT1 may be oncogenic because its overexpression has been detected in many cancers. The aim of the present study was to clarify the prognostic role of SIRT1 in patients with esophageal squamous cell carcinoma (ESCC) and evaluate the effect of SIRT1 inhibitor in vitro. METHODS The expression of SIRT1 was evaluated immunohistochemically in 155 surgically resected ESCC and the staining results were evaluated semiquantitatively by the Immunoreactive Scoring System. The clinical features and treatment outcome were analyzed. The effect of SIRT1 inhibitor, SIRT 1 inhibitor IV, (S)-35, was investigated in vitro on ESCC cell lines. RESULTS The expression of SIRT1 on ESCC did not correlate with age, gender, tumor location, stage, T classification, N classification, surgical margin or histology. Univariate analysis showed that SIRT1 overexpression was associated with inferior overall survival (P = 0.004) and disease-free survival (P = 0.004). In multivariate comparison, SIRT1 overexpression remained independently associated with worse overall survival (P = 0.009, hazard ratio = 1.776) and disease-free survival (P = 0.017, hazard ratio = 1.642). In cell lines, SIRT1 inhibitor inhibited ESCC growth. CONCLUSIONS Our study suggests that SIRT1 overexpression is an independent prognosticator for patients with ESCC and the SIRT1 inhibitor suppressed cell proliferation of ESCC cell lines. Our findings suggest that inhibition of SIRT1 signaling may be a promising novel target for ESCC.
Collapse
Affiliation(s)
- Ming-Chun Ma
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong Dist, Kaohsiung, Taiwan, Republic of China
| | - Tai-Jan Chiu
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong Dist, Kaohsiung, Taiwan, Republic of China
| | - Hung-I Lu
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Chien-Ming Lo
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Wan-Yu Tien
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong Dist, Kaohsiung, Taiwan, Republic of China
| | - Ya-Chun Lan
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong Dist, Kaohsiung, Taiwan, Republic of China
| | - Yen-Yang Chen
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong Dist, Kaohsiung, Taiwan, Republic of China
| | - Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan, Republic of China
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niaosong Dist, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
24
|
Gutting T, Weber CA, Weidner P, Herweck F, Henn S, Friedrich T, Yin S, Kzhyshkowska J, Gaiser T, Janssen KP, Reindl W, Ebert MPA, Burgermeister E. PPARγ-activation increases intestinal M1 macrophages and mitigates formation of serrated adenomas in mutant KRAS mice. Oncoimmunology 2018; 7:e1423168. [PMID: 29721374 DOI: 10.1080/2162402x.2017.1423168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
To identify novel hubs for cancer immunotherapy, we generated C57BL/6J mice with concomitant deletion of the drugable transcription factor PPARγ and transgenic overexpression of the mutant KRASG12V oncogene in enterocytes. Animals developed epithelial hyperplasia, transmural inflammation and serrated adenomas in the small intestine with infiltration of CD3+ FOXP3+ T-cells and macrophages into the lamina propria of the non-malignant mucosa. Within serrated polyps, CD3+ CD8+ T-cells and phosphorylated ERK1/2 were reduced and the senescence marker P21 and macrophage counts up-regulated, indicative of an immunosuppressive tissue microenvironment. Treatment of mutant KRASG12V mice with the PPARγ-agonist rosiglitazone augmented M1 macrophage numbers, reduced IL4 expression and diminished polyp load in mice. Rosiglitazone also promoted M1 polarisation of human THP1-derived macrophages and decreased Il4 mRNA in isolated murine lymphocytes. Thus, inhibition of the oncogenic driver mutant RAS by PPARγ in epithelial and immune cell compartments may be a future target for the prevention or treatment of human malignancies associated with intestinal inflammation.
Collapse
Affiliation(s)
- Tobias Gutting
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian A Weber
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Herweck
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Henn
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Teresa Friedrich
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shuiping Yin
- Dept. of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Kzhyshkowska
- Dept. of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Dept. of Pathology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Klaus-Peter Janssen
- Dept. of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Wolfgang Reindl
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P A Ebert
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Dept. of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
25
|
SIRT1 regulates Mxd1 during malignant melanoma progression. Oncotarget 2017; 8:114540-114553. [PMID: 29383100 PMCID: PMC5777712 DOI: 10.18632/oncotarget.21457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2017] [Indexed: 12/25/2022] Open
Abstract
In a murine melanoma model, malignant transformation promoted by a sustained stress condition was causally related to increased levels of reactive oxygen species resulting in DNA damage and massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, γH2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found downregulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to down-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, whose upregulation is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression.
Collapse
|
26
|
Ning YX, Luo X, Xu M, Feng X, Wang J. Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc. Oncotarget 2017; 8:74836-74845. [PMID: 29088827 PMCID: PMC5650382 DOI: 10.18632/oncotarget.20413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
c-Myc is a key oncogenic transcription factor that participates in tumor pathogenesis. In this study, we found that levels of c-Myc mRNA and protein were higher in early ovarian cancer tissues than normal ovary samples. Increased c-Myc levels correlated positively with clinical stage I (Ia+b/Ic) in ovarian cancer patients. Patients with higher nuclear c-Myc expression had shorter overall survival times than patients with low c-Myc expression. Knocking down c-Myc sensitized ovarian cancer cells to 7-difluoromethoxyl-5,4’-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue that suppressed PI3K/AKT signaling in vitro and in vivo. Finally, c-Myc was confirmed to be a direct target of let-7d, and let-7d-induced suppression of c-Myc increased the DFOG-sensitivity of ovarian cancer cells. These results indicate that nuclear c-Myc expression is an unfavorable factor in early ovarian cancer, and that let-7d increases ovarian cancer cell sensitivity to DFOG by suppressing c-Myc and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying-Xia Ning
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Luo
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Meng Xu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Feng
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Jian Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, National Engineering and Research Center of Human Stem Cell, Changsha, 41007, China
| |
Collapse
|
27
|
Wu S, Jiang J, Liu J, Wang X, Gan Y, Tang Y. Meta-analysis of SIRT1 expression as a prognostic marker for overall survival in gastrointestinal cancer. Oncotarget 2017; 8:62589-62599. [PMID: 28977971 PMCID: PMC5617531 DOI: 10.18632/oncotarget.19880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/12/2017] [Indexed: 01/20/2023] Open
Abstract
Sirtuin 1 (SIRT1), a well-characterized NAD+-dependent histone deacetylase, is generally up-regulated in gastrointestinal cancers. However, the prognostic value of SIRT1 in gastrointestinal cancer remains inconclusive. Therefore, we report a meta-analysis of the association of SIRT1 expression with overall survival (OS) in gastrointestinal cancer. PubMed was systematically searched for studies evaluating the expression of SIRT1 and OS in patients with gastrointestinal cancer. Fifteen studies (six evaluating colorectal cancer, three evaluating hepatocellular carcinoma, three evaluating gastric cancer, and one each evaluating pancreatic cancer, esophageal squamous cell carcinoma, and gastroesophageal junction cancer) with 3,024 patients were finally included. The median percentage of gastrointestinal cancers with high SIRT1 expression was 52.5%. Overall analysis showed an association between high SIRT1 expression and worse OS [summary hazard ratio (sHR) 1.54, 95% confidence intervals (CI) 1.21-1.96] in gastrointestinal cancer. However, heterogeneity was observed across studies, which was mainly attributed to cancer type. Subgroup analysis revealed that SIRT1 was significantly associated with worse OS in non-colorectal gastrointestinal cancer (sHR 1.82, 95% CI 1.50-2.21), in particular in gastric cancer (sHR 3.19, 95% CI 1.97-5.16) and hepatocellular carcinoma (sHR 1.53, 95% CI 1.16-2.01), with no evidence of heterogeneity or bias. However, no association was observed in colorectal cancer (sHR 1.15, 95% CI 0.81-1.62). In conclusion, high SIRT1 expression is a potential marker for poor survival in non-colorectal gastrointestinal cancer, but not in colorectal cancer.
Collapse
Affiliation(s)
- Shuangjie Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinghui Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jun Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinhai Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yifan Tang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Yoo JY, Kim TH, Fazleabas AT, Palomino WA, Ahn SH, Tayade C, Schammel DP, Young SL, Jeong JW, Lessey BA. KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance. Sci Rep 2017; 7:6765. [PMID: 28754906 PMCID: PMC5533722 DOI: 10.1038/s41598-017-04577-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Endometriosis is an inflammatory condition that is associated with progesterone resistance and cell proliferation, resulting in pain, infertility and pregnancy loss. We previously demonstrated phosphorylation of STAT3 in eutopic endometrium of infertile women with this disorder leading to over-expression of the oncogene BCL6 and stabilization of hypoxia-induced factor 1 alpha (HIF-1α). Here we report coordinated activation of KRAS and over-expression of Sirtuin 1 (SIRT1), a histone deacetylase and gene silencer, in the eutopic endometrium from women with endometriosis throughout the menstrual cycle. The mice with conditional activation of KRAS in the PGR positive cells reveal an increase of SIRT1 expression in the endometrium compared to control mice. The expression of progesterone receptor target genes including the Indian Hedgehog pathway genes are significantly down-regulated in the mutant mice. SIRT1 co-localizes with BCL6 in the nuclei of affected individuals and both proteins bind to and suppress the promoter of GLI1, a critical mediator of progesterone action in the Indian Hedgehog pathway, by ChIP analysis. In eutopic endometrium, GLI1 expression is reduced in women with endometriosis. Together, these data suggest that KRAS, SIRT1 and BCL6 are coordinately over-expressed in eutopic endometrium of women with endometriosis and likely participate in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Tae Hoon Kim
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Asgerally T Fazleabas
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Women's Health, Spectrum Health System, Grand Rapids, MI, 49341, USA
| | - Wilder A Palomino
- Institute for Maternal and Child Research, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON K7L 3N6, Canada
| | - David P Schammel
- Pathology Associates, Greenville Hospital System, Greenville, SC, 29605, USA
| | - Steven L Young
- Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jae-Wook Jeong
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Women's Health, Spectrum Health System, Grand Rapids, MI, 49341, USA.
| | - Bruce A Lessey
- Obstetrics and Gynecology, Greenville Health System, Greenville, SC, 29605, USA.
| |
Collapse
|
29
|
Chen H, Zhang W, Cheng X, Guo L, Xie S, Ma Y, Guo N, Shi M. β2-AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells. Cancer Sci 2017; 108:1310-1317. [PMID: 28498637 PMCID: PMC5497720 DOI: 10.1111/cas.13275] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 01/12/2023] Open
Abstract
It has been suggested that β2‐adrenergic receptor (β2‐AR)‐mediated signaling induced by catecholamines regulates the degradation of p53. However, the underlying molecular mechanisms were not known. In the present study, we demonstrated that catecholamines upregulated the expression of silent information regulator 1 (Sirt1) through activating β2‐AR‐mediated signaling pathway, since selective β2‐AR antagonist ICI 118, 551 and non‐selective β‐blocker proprenolol effectively repressed isoproterenol (ISO)‐induced Sirt1 expression. Catecholamines inhibited doxorubicin (DOX)‐induced p53 acetylation and transcription‐activation activities by inducing the expression of Sirt1. Knockdown of the Sirt1 expression by the specific siRNA remarkably blocked the inhibitory effects of ISO on DOX‐induced p53 acetylation. In addition, we demonstrated that catecholamines induced resistance of cervical cancer cells to chemotherapeutics both in vitro and in vivo and that β2‐AR was overexpressed in cervical cancer tissues. Our data suggest that the p53‐dependent, chemotherapeutics‐induced cytotoxicity in cervical cancer cells may be compromised by catecholamines‐induced upregulation of the Sirt1 expression through activating the β2‐AR signaling.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Basic Medical Sciences, Beijing, China
| | - Wei Zhang
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, China
| | - Xiang Cheng
- Institute of Basic Medical Sciences, Beijing, China
| | - Liang Guo
- Institute of Basic Medical Sciences, Beijing, China
| | - Shuai Xie
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, China
| | - Ning Guo
- Institute of Basic Medical Sciences, Beijing, China
| | - Ming Shi
- Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Guo H, Zhang B, Nairn AV, Nagy T, Moremen KW, Buckhaults P, Pierce M. O-Linked N-Acetylglucosamine ( O-GlcNAc) Expression Levels Epigenetically Regulate Colon Cancer Tumorigenesis by Affecting the Cancer Stem Cell Compartment via Modulating Expression of Transcriptional Factor MYBL1. J Biol Chem 2017; 292:4123-4137. [PMID: 28096468 DOI: 10.1074/jbc.m116.763201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Indexed: 12/19/2022] Open
Abstract
To study the regulation of colorectal adenocarcinoma progression by O-GlcNAc, we have focused on the O-GlcNAc-mediated epigenetic regulation of human colon cancer stem cells (CCSC). Xenograft tumors from colon tumor cells with O-linked N-acetylglucosamine transferase (OGT) knockdown grew significantly slower than those formed from control cells, indicating a reduced proliferation of tumor cells due to inhibition of OGT expression. Significant reduction of the CCSC population was observed in the tumor cells after OGT knockdown, whereas tumor cells treated with the O-GlcNAcase inhibitor showed an increased CCSC population, indicating that O-GlcNAc levels regulated the CCSC compartment. When grown in suspension, tumor cells with OGT knockdown showed a reduced ability to form tumorspheres, indicating a reduced self-renewal of CCSC due to reduced levels of O-GlcNAc. ChIP-sequencing experiments using an anti-O-GlcNAc antibody revealed significant chromatin enrichment of O-GlcNAc-modified proteins at the promoter of the transcription factor MYBL1, which was also characterized by the presence of H3K27me3. RNA-sequencing analysis showed an increased expression of MYBL1 in tumor cells with OGT knockdown. Forced overexpression of MYBL1 led to a reduced population of CCSC and tumor growth in vivo, similar to the effects of OGT silencing. Moreover, two CpG islands near the transcription start site of MYBL1 were identified, and O-GlcNAc levels regulated their methylation status. These results strongly argue that O-GlcNAc epigenetically regulates MYBL1, functioning similarly to H3K27me3. The aberrant CCSC compartment observed after modulating O-GlcNAc levels is therefore likely to result, at least in part, from the epigenetic regulation of MYBL1 expression by O-GlcNAc, thereby significantly affecting tumor progression.
Collapse
Affiliation(s)
- Huabei Guo
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| | - Bing Zhang
- the Boston Children's Hospital, Harvard University, Boston, Massachusetts 02115, and
| | - Alison V Nairn
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| | - Phillip Buckhaults
- the South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Michael Pierce
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| |
Collapse
|
31
|
Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 2017; 13:1048-1057. [PMID: 28454212 DOI: 10.3892/ol.2017.5593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetics encompasses changes in DNA methylation, histone and chromatin structure, and non-coding RNAs, specifically microRNA (miRNA) expression. Recent advances in the rapidly evolving field of colorectal cancer (CRC) epigenetics have revealed a complicated network of reciprocal interconnections between miRNAs and other epigenetic machinery. On the one hand, miRNA expression may be regulated by epigenetic mechanisms including DNA methylation and histone modifications. However, miRNAs may affect the epigenetic machinery by directly targeting its enzymatic components. In this study, we focus on the colorectal miRNA expression profile and further illustrate the reciprocal regulation in CRC, with the aim of offering new insights into the strategies of combatting the disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yanlei Ma
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
32
|
SIRT1 overexpression in cervical squamous intraepithelial lesions and invasive squamous cell carcinoma. Hum Pathol 2017; 59:102-107. [DOI: 10.1016/j.humpath.2016.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/04/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022]
|
33
|
Cho EH, Dai Y. SIRT1 controls cell proliferation by regulating contact inhibition. Biochem Biophys Res Commun 2016; 478:868-72. [PMID: 27514448 PMCID: PMC5628616 DOI: 10.1016/j.bbrc.2016.08.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
Abstract
Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition.
Collapse
Affiliation(s)
- Elizabeth H Cho
- Cancer Center, Hematology Oncology Section, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, L913, Boston, MA 02118, United States
| | - Yan Dai
- Cancer Center, Hematology Oncology Section, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, L913, Boston, MA 02118, United States.
| |
Collapse
|
34
|
Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS. Toxicol Lett 2016; 259:133-142. [DOI: 10.1016/j.toxlet.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 12/18/2022]
|
35
|
Baker AM, Van Noorden S, Rodriguez-Justo M, Cohen P, Wright NA, Lampert IA. Distribution of the c-MYC gene product in colorectal neoplasia. Histopathology 2016; 69:222-9. [PMID: 26826706 PMCID: PMC4949543 DOI: 10.1111/his.12939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
AIMS Recent attempts to study MYC distribution in human samples have been confounded by a lack of agreement in immunohistochemical staining between antibodies targeting the N-terminus and those targeting the C-terminus of the MYC protein. The aim of this study was to use a novel in-situ hybridization (ISH) approach to detect MYC mRNA in clinically relevant samples, and thereby determine the reliability of MYC-targeting antibodies. METHODS AND RESULTS We performed immunohistochemistry on human formalin-fixed paraffin embedded normal colon (n = 15), hyperplastic polyp (n = 4) and neoplastic colon samples (n = 55), using the N-terminally directed antibody Y69, and the C-terminally directed antibody 9E10. The MYC protein distributions were then compared with the location of MYC mRNA, determined by ISH. We found that the localization of MYC mRNA correlated well with the protein distribution determined with the N-terminally directed antibody Y69, and was also associated with expression of the proliferation marker Ki67. The protein distribution determined with the C-terminally directed antibody 9E10 was not always associated with MYC mRNA, Y69, or Ki67, and indeed often showed a reciprocal pattern of expression, with staining being strongest in non-proliferating cells. CONCLUSIONS The observed discrepancy between the staining patterns suggests that the significance of 9E10 in immunohistochemical staining is currently uncertain, and therefore should be interpreted with caution.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Susan Van Noorden
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Patrizia Cohen
- Department of Cellular Pathology, Clarence Memorial Wing, St Mary's Hospital, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Irvin A Lampert
- Department of Histopathology, West Middlesex University Hospital, Isleworth, UK
| |
Collapse
|
36
|
Jiang B, Chen JH, Yuan WZ, Ji JT, Liu ZY, Wu L, Tang Q, Shu XG. Prognostic and clinical value of Sirt1 expression in gastric cancer: A systematic meta-analysis. ACTA ACUST UNITED AC 2016; 36:278-284. [PMID: 27072976 DOI: 10.1007/s11596-016-1580-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/18/2016] [Indexed: 12/25/2022]
Abstract
Many studies have reported that the expression of silent information regulator 1 (Sirt1) is associated with the clinical features and prognosis of patients with gastric cancer, but the exact function remains controversial. We conducted this study to illustrate the clinical and prognostic value of Sirt1 in gastric cancer. The related publications before December 2015 were searched in the databases including Pubmed, Cochrane Library, Embase and China National Knowledge Infrastructure (CNKI). The studies were included and excluded according to the inclusion criteria and exclusion criteria. The 3- and 5-year overall survival (OS) and clinical features such as age, T stage, N stage and differentiation were analyzed by software RevMan 5.3. A total of 1650 patients in 7 studies were included according to the inclusion criteria and exclusion criteria. The high expression of Sirt1 was found in 58.4% cases by immunohistochemistry. High expression of Sirt1 was closely linked with the 3-year OS (OR=0.25, 95% CI: 0.16-0.39, P<0.00001, fixed), patient's age (≥60 years old vs. <60 years old; OR=1.43, 95% CI: 1.06-1.93, P=0.02, fixed), T stage (T3+T4 vs. T1+T2; OR=1.45, 95% CI: 1.08-1.94, P=0.01, fixed), N stage (N1+N2+N3 vs. N0; OR=3.47, 95% CI: 2.39-5.05, P<0.00001, fixed) and tumor differentiation (G1+G2 vs. G3; OR=0.50, 95% CI: 0.35-0.69, P<0.0001, fixed). Nevertheless, it seemed that high expression of Sirt1 was not associated with 5-year OS (OR=0.44, 95% CI: 0.15-1.28, P=0.13, random). It was suggested that the high expression of Sirt1 implies a poor prognosis of gastric cancer patients in a relatively short period (3 years), but not in a long time (≥5 years). The expression of Sirt1 is also linked with patients' age, T stage, N stage and tumor differentiation.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Huang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Zheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Tong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng-Yi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Gang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
37
|
Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, Zhang D, Wang J, Liu X, Ouyang G, Zhou J, Xiao W. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun 2016; 7:11057. [PMID: 27009366 PMCID: PMC4820845 DOI: 10.1038/ncomms11057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence supports that ELL (eleven-nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor.
Collapse
Affiliation(s)
- Yu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Chi Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Ji
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Zhichao Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Bo Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Dawei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Xing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jiangang Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wuhan Xiao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| |
Collapse
|
38
|
Cheng F, Su L, Yao C, Liu L, Shen J, Liu C, Chen X, Luo Y, Jiang L, Shan J, Chen J, Zhu W, Shao J, Qian C. SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression. Cancer Lett 2016; 375:274-283. [PMID: 26975631 DOI: 10.1016/j.canlet.2016.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 02/02/2023]
Abstract
Understanding molecular mechanisms of colorectal cancer (CRC) metastasis is urgently required for targeted therapy and prognosis of metastatic CRC. In this study, we explored potential effects of silent mating type information regulation 2 homolog 1 (SIRT1) on CRC metastasis. Our data showed that ectopic expression of SIRT1 markedly increased the migration and invasion of CRC cells. In contrast, silencing SIRT1 repressed this behavior in aggressive CRC cells. Tumor xenograft experiments revealed that knockdown of SIRT1 impaired CRC metastasis in vivo. Silencing SIRT1 in CRC cells induced mesenchymal-epithelial transition (MET), which is the reverse process of epithelial-mesenchymal transition (EMT) and characterized by a gain of epithelial and loss of mesenchymal markers. We provided a mechanistic insight toward regulation of Fra-1 by SIRT1 and demonstrated a direct link between the SIRT1-Fra-1 axis and EMT. Moreover, SIRT1 expression correlated positively with Fra-1 expression, metastasis and overall survival in patients with CRC. Taken together, our data provide a novel mechanistic role of SIRT1 in CRC metastasis, suggesting that SIRT1 may serve as a potential therapeutic target for metastatic CRC.
Collapse
Affiliation(s)
- Feifei Cheng
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chao Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chungang Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xuejiao Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yongli Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lupin Jiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Qian
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
39
|
Schachschal G, Sehner S, Choschzick M, Aust D, Brandl L, Vieth M, Wegscheider K, Baretton GB, Kirchner T, Sauter G, Rösch T. Impact of reassessment of colonic hyperplastic polyps by expert GI pathologists. Int J Colorectal Dis 2016; 31:675-83. [PMID: 26847619 DOI: 10.1007/s00384-016-2523-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recommended follow-up intervals after endoscopic removal of hyperplastic polyps (HP) and sessile serrated adenomas (SSA) differ because of assumed differences in biological behaviour. However, histopathologic differentiation is difficult, with higher SSA rates reported from specialist GI histopathologists. OBJECTIVE The objective of this study was to clarify the relevance of histologic reassessment of HP. DESIGN AND SETTING From a prospective screening colonoscopy study relevant serrated lesions (excluding distal small HP ≤5 mm) diagnosed by private practice pathologists were reassessed by four specialized GI pathologists PATIENTS One thousand sixty-nine screening colonoscopies were performed in patients. MAIN OUTCOME MEASUREMENTS In terms of main outcome measurements, there is a likelihood of changes of the HP diagnosis on reassessment, as well as interrater variability. RESULTS SSA were initially diagnosed in 7 cases (0.7%) and relevant HP in 83 (7.8%; 101 lesions). Of the latter, the chance of a change in diagnosis from HP to SSA by any of the four specialist histopathologists was higher for larger (>5 mm) and right-sided lesions (19.1 vs 1.3%, OR 18.4, p = 0.04) including a higher likelihood to change recommended follow-up intervals (32.1 vs 3.3%, p < 0.01). However, follow-up intervals were determined by concomitant adenomas in 41%. Interrater variability was also higher for these lesions (p = 0.04), with an overall kappa value of 0.48. However, this issue related to only 1.2% of the 1069 study cases. LIMITATION The limitations this study are the limited case number as well as limited retrospective assessment. CONCLUSIONS Right-sided HP >5 mm had a higher chance of change in diagnosis to SSA; therefore, they should probably be treated like adenomas and be removed. However, reliable data for recommendations on follow-up intervals of HP or SSA will require follow-up studies.
Collapse
Affiliation(s)
- Guido Schachschal
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Susanne Sehner
- Department of Medical Biometry and Epidemiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Choschzick
- Department of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Aust
- Department of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Lydia Brandl
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Michael Vieth
- Institute of Pathology, Bayreuth Hospital, Bayreuth, Germany
| | - Karl Wegscheider
- Department of Medical Biometry and Epidemiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo B Baretton
- Department of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Guido Sauter
- Department of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany.
| |
Collapse
|
40
|
YU DENGFENG, JIANG SUJUAN, PAN ZHIPENG, CHENG WEIDONG, ZHANG WENJUN, YAO XIAOKUN, LI YUCHENG, LUN YONGZHI. Expression and clinical significance of Sirt1 in colorectal cancer. Oncol Lett 2016; 11:1167-1172. [PMID: 26893713 PMCID: PMC4738140 DOI: 10.3892/ol.2015.3982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023] Open
Abstract
The objective of the present study was to examine the expression of Silent information regulator 1 (Sirt1) in colorectal cancer and peritumoral normal mucosa tissue, and therefore analyze the role and molecular mechanism of Sirt1 in the pathogenesis of colorectal cancer. Colorectal cancer tissue specimens were employed as the experimental group, and adjacent normal mucosa tissues >5 cm from tumor lesions were used as the control group. The expression of Sirt1 was detected by the immunohistochemical streptavidin peroxidase detection method in paraffin-embedded sections, whilst Sirt1 protein expression was examined by western blot analysis in the fresh tissues. Sirt1 protein was primarily expressed in the nuclei of the tumor cells, and positive staining was brownish-yellow in color. The relative expression quantities of Sirt1 in the peritumoral normal rectal mucosa and rectal carcinoma were 1.15 and 2.62, and the differences between the two groups were statistically significant (P<0.05). The expression level of Sirt1 in colorectal carcinoma was significantly associated with the depth of tumor invasion, differentiation and tumor size (P<0.05). Sirt1 expression was also found to be associated with tumor tissue type, lymph node metastasis, Duke's stage and patient age. These characteristics combined may therefore be used as markers for the early diagnosis of colorectal cancer pathogenesis.
Collapse
Affiliation(s)
- DENG-FENG YU
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
- Department of Anorectal Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - SU-JUAN JIANG
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
- Department of Gynecology and Obstetrics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - ZHI-PENG PAN
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - WEI-DONG CHENG
- Department of Anorectal Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - WEN-JUN ZHANG
- Department of Anorectal Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - XIAO-KUN YAO
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - YU-CHENG LI
- Department of Dermatology, Yuzhou People's Hospital, Xuchang, Henan 461670, P.R. China
| | - YONG-ZHI LUN
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
41
|
Sirtuin 1 promotes the growth and cisplatin resistance of endometrial carcinoma cells: a novel therapeutic target. J Transl Med 2015; 95:1363-73. [PMID: 26367491 DOI: 10.1038/labinvest.2015.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 11/08/2022] Open
Abstract
Sirtuin 1 (SIRT1), originally identified as a longevity gene, is induced by caloric restriction, and regulates various cellular functions including DNA repair, cell survival and metabolism via the deacetylation of target proteins such as histone and p53. These functions are considered to act dualistically as preventing or facilitating cancer. This study aimed to clarify the expression and role of SIRT1 in endometrial carcinoma. Because a high-calorie diet was a well-known risk factor for endometrial carcinoma, we first hypothesized that SIRT1 might be downregulated in normal endometrial glandular cells of obese women. However, no correlation was observed between the expression of SIRT1 and body mass index (BMI). In contrast, regardless of BMI, the immunohistochemical expression of SIRT1 was significantly higher in endometrial carcinoma (108 cases) than in normal endometria (60 cases) (P<0.05), and its overexpression was associated with a shorter survival (P<0.05). Our experiments in vivo revealed that SIRT1 accelerated the proliferation of endometrial carcinoma cell lines (HHUA, HEC151, and HEC1B). SIRT1 overexpression significantly enhanced the resistance for cisplatin and paclitaxel in HHUA cells. Although p53 is an important target protein for SIRT1, the selective SIRT1 inhibitor (EX527) significantly suppressed the proliferation and cisplatin resistance of three endometrial carcinoma cell lines regardless of the p53 mutation status. In addition, SIRT1 overexpression in HHUA cells accelerated tumor growth and cisplatin resistance in nude mice, and EX527 significantly suppressed the growth of tumors of HHUA and HEC1B cells. No adverse effect of EX527 was observed in these mice. In conclusion, SIRT1 is involved in the acquisition of the aggressive behavior associated with endometrial carcinoma, and the SIRT1 inhibitor, EX527, may be a useful agent for the treatment of this malignancy.
Collapse
|
42
|
Wu S, Li T, Mu Q, Li Y, Gao X, He S, Sun C. Expression of PI3Kp110α and PI3Kp110β in the colorectal conventional adenoma, serrated lesions and adenoma with canceration and their significance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:16026-16035. [PMID: 26884879 PMCID: PMC4730092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
AIMS To evaluate the expression and clinical significance of PI3Kp110α and PI3Kp110β in colorectal conventional adenoma, serrated lesions and adenoma with canceration. METHODS AND RESULTS Immunohistochemistry and Western blot analysis were conducted to detect the expression of p110α and p110β in normal colorectal tissues, conventional adenoma, serrated lesions and adenoma canceration. Results revealed that the expression of P110α and P110β in the adenoma canceration was significantly higher than that in normal tissues, tubular adenoma (low grade) and tubular-villous adenoma (low grade) of conventional adenoma, hyperplastic polyps of serrated lesions (P<0.05). But there was no significant difference between the adenoma canceration and the high grade adenoma of conventional adenoma, all grade of villous adenoma and serrated adenoma (P>0.05). The expression of p110α and p110β was correlated with different clinicopathologic factors in conventional adenoma, serrated adenoma and adenoma canceration (P<0.05). CONCLUSIONS p110α and p110β were highly expressed in villous adenoma, serrated adenoma and adenoma with canceration. Its high expression may be the risk factor of the progress of adenoma to adenocarcinoma, and may be an important cause of what canceration rate of villous adenoma and serrated adenoma was higher than that of other adenomas. Combined detection of p110α and p110β is helpful to determine the canceration potential of colorectal villous adenoma and serrated adenoma.
Collapse
Affiliation(s)
- Shuhua Wu
- Department of Pathology, Binzhou Medical University HospitalBinzhou, Shandong Province, China
| | - Tangyue Li
- Department of Pathology, Binzhou Medical UniversityBinzhou, Shandong Province, China
| | - Qinghai Mu
- Department of Pathology, Binzhou Medical University HospitalBinzhou, Shandong Province, China
| | - Yangyang Li
- Department of Pathology, Binzhou Medical University HospitalBinzhou, Shandong Province, China
| | - Xiangqian Gao
- Department of Pathology, Binzhou Medical University HospitalBinzhou, Shandong Province, China
| | - Shuang He
- Department of Pathology, Binzhou Medical University HospitalBinzhou, Shandong Province, China
| | - Chenbo Sun
- Department of Pathology, Binzhou Medical UniversityBinzhou, Shandong Province, China
| |
Collapse
|
43
|
Guan X, Yi Y, Huang Y, Hu Y, Li X, Wang X, Fan H, Wang G, Wang D. Revealing potential molecular targets bridging colitis and colorectal cancer based on multidimensional integration strategy. Oncotarget 2015; 6:37600-12. [PMID: 26461477 PMCID: PMC4741951 DOI: 10.18632/oncotarget.6067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation may play a vital role in the pathogenesis of inflammation-associated tumors. However, the underlying mechanisms bridging ulcerative colitis (UC) and colorectal cancer (CRC) remain unclear. Here, we integrated multidimensional interaction resources, including gene expression profiling, protein-protein interactions (PPIs), transcriptional and post-transcriptional regulation data, and virus-host interactions, to tentatively explore potential molecular targets that functionally link UC and CRC at a systematic level. In this work, by deciphering the overlapping genes, crosstalking genes and pivotal regulators of both UC- and CRC-associated functional module pairs, we revealed a variety of genes (including FOS and DUSP1, etc.), transcription factors (including SMAD3 and ETS1, etc.) and miRNAs (including miR-155 and miR-196b, etc.) that may have the potential to complete the connections between UC and CRC. Interestingly, further analyses of the virus-host interaction network demonstrated that several virus proteins (including EBNA-LP of EBV and protein E7 of HPV) frequently inter-connected to UC- and CRC-associated module pairs with their validated targets significantly enriched in both modules of the host. Together, our results suggested that multidimensional integration strategy provides a novel approach to discover potential molecular targets that bridge the connections between UC and CRC, which could also be extensively applied to studies on other inflammation-related cancers.
Collapse
Affiliation(s)
- Xu Guan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongfei Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| |
Collapse
|
44
|
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer. Mar Drugs 2015; 13:6152-209. [PMID: 26437418 PMCID: PMC4626684 DOI: 10.3390/md13106152] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Sofía García-Mauriño
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville 41012, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Antonio Alcaide
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| |
Collapse
|
45
|
Abstract
Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress-and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model.
Collapse
|
46
|
Qiu G, Li X, Che X, Wei C, He S, Lu J, Jia Z, Pang K, Fan L. SIRT1 is a regulator of autophagy: Implications in gastric cancer progression and treatment. FEBS Lett 2015; 589:2034-42. [PMID: 26049033 DOI: 10.1016/j.febslet.2015.05.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
Abstract
Silent mating type information regulation 1 (SIRT1) is implicated in tumorigenesis through its effect on autophagy. In gastric cancer (GC), SIRT1 is a marker for prognosis and is involved in cell invasion, proliferation, epithelial-mesenchymal transition (EMT) and drug resistance. Autophagy can function as a cell-survival mechanism or lead to cell death during the genesis and treatment of GC. This functionality is determined by factors including the stage of the tumor, cellular context and stress levels. Interestingly, SIRT1 can regulate autophagy through the deacetylation of autophagy-related genes (ATGs) and mediators of autophagy. Taken together, these findings support the need for continued research efforts to understand the mechanisms mediating the development of gastric cancer and unveil new strategies to eradicate this disease.
Collapse
Affiliation(s)
- Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Chao Wei
- Xi'an Health School, Xi'an 710054, Shaanxi Province, China
| | - Shicai He
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jing Lu
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zongliang Jia
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Ke Pang
- Shaanxi Friendship Hospital, Xi'an 710068, Shaanxi Province, China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
47
|
Singh CK, George J, Nihal M, Sabat G, Kumar R, Ahmad N. Novel downstream molecular targets of SIRT1 in melanoma: a quantitative proteomics approach. Oncotarget 2015; 5:1987-99. [PMID: 24743044 PMCID: PMC4039116 DOI: 10.18632/oncotarget.1898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Melanoma is one of the most lethal forms of skin cancer and its incidence is continuing to rise in the United States. Therefore, novel mechanism and target-based strategies are needed for the management of this disease. SIRT1, a NAD(+)-dependent class III histone deacetylase, has been implicated in a variety of physiological processes and pathological conditions. We recently demonstrated that SIRT1 is upregulated in melanoma and its inhibition by a small-molecule, tenovin-1, inhibits cell proliferation and clonogenic survival of melanoma cells, possibly via activating p53. Here, we employed a gel free quantitative proteomics approach to identify the downstream effectors and targets of SIRT1 in melanoma. The human malignant melanoma, G361 cells were treated with tenovin-1 followed by protein extraction, in liquid trypsin digestion, and peptide analyses using nanoLC-MS/MS. A total of 1091 proteins were identified, of which 20 proteins showed significant differential expression with 95% confidence interval. These proteins were subjected to gene ontology and Ingenuity Pathway Analysis (IPA) to obtain the information regarding their biological and molecular functions. Real-Time qRT-PCR validation showed that five of these (PSAP, MYO1B, MOCOS, HIS1H4A and BUB3) were differentially expressed at mRNA levels. Based on their important role in cell cycle regulation, we selected to focus on BUB family proteins (BUB3, as well as BUB1 and BUBR1) for subsequent validation. The qRT-PCR and immunoblot analyses showed that tenovin-1 inhibition of SIRT1 resulted in a downregulation of BUB3, BUB1 and BUBR1 in multiple melanoma cell lines. Since tenovin-1 is an inhibitor of both SIRT1 and SIRT2, we employed lentivirus mediated silencing of SIRT1 and SIRT2 in G361 cells to determine if the observed effects on BUB family proteins are due to SIRT1- or SIRT2- inhibition. We found that only SIRT1 inhibition resulted in a decrease in BUB3, BUB1 and BUBR1. Our study identified the mitotic checkpoint regulator BUB family proteins as novel downstream targets of SIRT1. However, further validation is needed in appropriate models to confirm our findings and expand on our observations.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | | | | | | | | |
Collapse
|
48
|
Raimondi L, Amodio N, Di Martino MT, Altomare E, Leotta M, Caracciolo D, Gullà A, Neri A, Taverna S, D'Aquila P, Alessandro R, Giordano A, Tagliaferri P, Tassone P. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget 2015; 5:3039-54. [PMID: 24839982 PMCID: PMC4102790 DOI: 10.18632/oncotarget.1747] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) cells induce relevant angiogenic effects within the human bone marrow milieu (huBMM) by the aberrant expression of angiogenic factors. Hypoxia triggers angiogenic events within the huBMM and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is over-expressed by MM cells. Since synthetic miR-199a-5p mimics negatively regulates HIF-1α, we here investigated a miRNA-based therapeutic strategy against hypoxic MM cells. We indeed found that enforced expression of miR-199a-5p led to down-modulated expression of HIF-1α as well as of other pro-angiogenic factors such as VEGF-A, IL-8, and FGFb in hypoxic MM cells in vitro. Moreover, miR-199a-5p negatively affected MM cells migration, while it increased the adhesion of MM cells to bone marrow stromal cells (BMSCs) in hypoxic conditions. Furthermore, transfection of MM cells with miR-199a-5p significantly impaired also endothelial cells migration and down-regulated the expression of endothelial adhesion molecules such as VCAM-1 and ICAM-1. Finally, we identified a hypoxia/AKT/miR-199a-5p loop as a potential molecular mechanism responsible of miR-199a-5p down-regulation in hypoxic MM cells. Taken together our results indicate that miR-199a-5p has an important role for the pathogenesis of MM and support the hypothesis that targeting angiogenesis via a miRNA/HIF-1α pathway may represent a novel potential therapeutical approach for this still lethal disease.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kriegl L. [In situ analyses of molecular mechanisms of colorectal carcinogenesis]. DER PATHOLOGE 2014; 34 Suppl 2:269-73. [PMID: 24196627 DOI: 10.1007/s00292-013-1821-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The main signaling pathways of colorectal carcinogenesis encompass the classical adenoma-carcinoma sequence and the serrated route. In the classical adenoma-carcinoma sequence there are initially frequent mutations of the APC gene which lead to an activation of the WNT signaling pathway. When the WNT signaling pathway is activated β-catenin mediates the transcription of diverse factors which cause migration, invasion and proliferation of cells. Although APC mutations occur in all tumor cells, a heterogeneous distribution pattern of β-catenin is found in tumors and β-catenin also represents an important prognostic marker. A similar picture is found for γ-catenin which is expressed independently from β-catenin. Clearly more homogeneous is the expression of TCF4 and LEF1 which are the main binding partners of β-catenin and γ-catenin and are likewise important prognostic markers. The TRAIL signaling pathway is therapeutically interesting and within this pathway loss of the main receptors TRAIL-R1 and TRAIL-R2 is frequently found. Furthermore, the membranous localization of both factors correlates with a better overall survival. These results might be therapeutically relevant with respect to therapy with recombinant TRAIL molecules binding to TRAIL-R1 and TRAIL-R2. In the serrated route oncogen-induced senescence caused by mutations of the KRAS and BRAF oncogenes initially plays an important role. This senescence blockade is overcome by hypermethylation of the p16(INK4a) promoter and leads to the development of invasive tumors. The SIRT1 and c-Myc genes also contribute to progression of lesions in the serrated route and are activated through the RAS/RAF/MAPK-kinase signaling pathway as well as the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- L Kriegl
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland,
| |
Collapse
|
50
|
Abstract
In the majority of human tumors the oncogenic transcription factor c-MYC is deregulated and contributes to the formation of many biologically important tumor properties. These include the induction of cell cycle progression, transformation, genomic instability and immortalization. So far it was unclear which target genes of c-MYC mediate the effects. Using genome-wide approaches we identified a large number of c-MYC target genes. Subsequently, we characterized some target genes for their role in c-MYC-induced genomic instability and immortalization. The protein deacetylase SIRT1 was found to be an important mediator of c-MYC-induced immortalization. Using in situ analyses of colorectal cancer specimens we demonstrated that c-MYC is a regulator of the identified target genes in human tumors thus implicating their relevance for tumorigenesis in humans.
Collapse
Affiliation(s)
- A Menssen
- Deutsches Konsortium für Translationale Krebsforschung, Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchnerstr. 36, 80337, München, Deutschland,
| |
Collapse
|