1
|
Romanenko A, Peter H, Meibom J, Borchardt MA, Kohn T. Diversity of lake bacteria promotes human echovirus inactivation. Appl Environ Microbiol 2025; 91:e0236624. [PMID: 39819037 PMCID: PMC11837565 DOI: 10.1128/aem.02366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Human enteric viruses can remain infective in surface waters for extended periods of time, posing a public health risk. Microbial activity contributes to the inactivation of waterborne enteric viruses, but while individual bacteria-virus interactions have been characterized, the importance of microbial diversity remains unknown. Here, we experimentally manipulated the diversity of bacterial communities from Lake Geneva across three seasons using a dilution-to-extinction approach and monitored the inactivation and genome decay of echovirus 11, a member of the Enterovirus genus. Long-read sequencing of the 16S rRNA gene revealed diversity gradients ranging between 373 and 2,722 bacterial species. Compared to sterile controls, echovirus 11 inactivation was enhanced by the presence of active bacteria and depended both on season and sample dilution. Throughout all seasons, the highest inactivation (between 3.0 and 7.9 log10 fold reduction in infectivity over 96 h) was observed in the least diluted incubations (i.e., the highest bacterial richness). Genome decay exhibited a 24-h lag and was less pronounced than the corresponding infectivity loss (ranging between 2.3 and 3.8 log10 fold over 96 h), indicating that microbial inactivation primarily targets the echovirus 11 capsid. We found a positive-saturating relationship between bacterial species richness and viral inactivation, suggesting functional redundancy and pointing toward the importance of rare species for viral inactivation. Biomarker analysis revealed several clades of bacteria, particularly members of Chitinophagaceae, to be significantly associated with echovirus 11 inactivation. Overall, these findings suggest that high microbial diversity enhances the capacity of surface waters to rid themselves of contamination by enteric viruses and hence protects public health.IMPORTANCEHuman enteric viruses in natural waterbodies pose a public health risk. Microorganisms, particularly bacteria, contribute to the inactivation of enteroviruses, thereby mitigating this risk. We use experimental manipulations of lake water bacterial diversity to unravel the importance of diversity for the inactivation of echovirus 11, a model human pathogen. Our findings suggest that bacterial diversity is important for echovirus 11 inactivation and that specific, but numerically rare, bacteria present in the surface water of Lake Geneva across different seasons contribute to viral inactivation. These findings contribute to our understanding of the inactivation of human enteric viruses in natural waterbodies-a hitherto understudied ecosystem service.
Collapse
Affiliation(s)
- Andrii Romanenko
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Josephine Meibom
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mark A. Borchardt
- U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
| | - Tamar Kohn
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Zaher H, Quílez del Moral JF, Lemrabet S, Koutchala N, Bencharki B. In Vitro Antiviral Activity of a Silydianin-Rich Extract from Silybum marianum Seeds Against Four Strains of Enteroviruses: EV71, Coxsackievirus B2, Coxsackievirus A10, and Poliovirus SL-1 and Its Impact on Improving Delayed Gastric Emptying in Mice. Antibiotics (Basel) 2025; 14:196. [PMID: 40001439 PMCID: PMC11851915 DOI: 10.3390/antibiotics14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Gastroparesis, a chronic digestive disorder characterized by delayed gastric emptying, often results from diabetes, post-surgical complications, autoimmune diseases, and neurological disorders. In approximately 50% of cases, the cause is idiopathic gastroparesis (IGD). Recent studies suggest a link between chronic enteroviral infection and persistent gastrointestinal symptoms, including delayed gastric emptying. This study investigates the effects of a silydianin-rich extract from Silybum marianum seeds on enteroviral infections in vitro and the mitigation of delayed gastric emptying in mice. Silydianin, a key bioactive compound known for its liver-protective and antioxidant properties, has not been extensively studied for its impact on enteroviral infections and gastroparesis. METHODS NMR spectroscopy (1H, 13C, DEPT 135 and 2D, and HSQC) and HRMS identified silydianin as the primary compound, with minor flavonolignans. This study assessed the cytotoxicity and antiviral activity of the extract at various stages of the viral life cycle, including virucidal activity, cell protection, and post-infection effects, using neutral red assays in RD cells, with results confirmed by real-time PCR. The viruses studied included coxsackievirus B2, coxsackievirus A10, poliovirus SL-1, and enterovirus EV71. The impact on delayed gastric emptying was evaluated in a mouse model using doses of 100 and 200 mg/kg compared to a control group receiving physiological saline. RESULTS The silydianin-rich extract showed consistent antiviral activity, with the highest selectivity index (SI) for EV71 (4.08) during virucidal activity. It provided moderate cell protection, with EC50 values ranging from 120.88 to 186.10 µg/mL and SI values from 2.20 to 3.39. Post-infection treatment showed varying efficacy, with coxsackie A10 demonstrating the highest SI (3.90). In vivo, the extract at 200 mg/kg significantly improved gastric emptying to 96.47% and slightly increased gastrointestinal transit from 50.33% to 61.46%. CONCLUSIONS These results suggest that silydianin may be effective for treating enteroviral infections and enhancing intestinal function, making it a promising candidate for gastroparesis treatment and warranting further research.
Collapse
Affiliation(s)
- Houda Zaher
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat 26000, Morocco;
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain;
- Virology Department, National Institute of Hygiene, Ministry of Health, Rabat 10020, Morocco;
| | | | - Sanae Lemrabet
- Virology Department, National Institute of Hygiene, Ministry of Health, Rabat 10020, Morocco;
| | - Neri Koutchala
- Department of Computer Science and Artificial Intelligence, Technical School of Computer Engineering and Telecommunications, University of Granada, 18071 Granada, Spain;
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat 26000, Morocco;
| |
Collapse
|
3
|
Zhong Z, Su X, Yang K, Huang W, Wang J, Zhuo Z, Xiang J, Lin L, He S, Li T, Zhang J, Ge S, Zhang S, Xia N. Sequence-specific nanoparticle barcode strategy for multiplex human enterovirus typing. Nat Commun 2024; 15:6478. [PMID: 39090126 PMCID: PMC11294541 DOI: 10.1038/s41467-024-50921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Human enteroviruses (HEV) can cause a range of diseases from mild to potentially life-threatening. Identification and genotyping of HEV are crucial for disease management. Existing typing methods, however, have inherent limitations. Developing alternative methods to detect HEV with more virus types, high accuracy, and sensitivity in an accessible manner presents a technological and analytical challenge. Here, a sequence-specific nanoparticle barcode (SSNB) method is presented for simultaneous detection of 10 HEV types. This method significantly increases sensitivity, enhancing detection by 10-106 times over the traditional multiplex hybrid genotyping (MHG) method, by resolving cross-interference between the multiple primer sets. Furthermore, the SSNB method demonstrates a 100% specificity in accurately distinguishing between 10 different HEV types and other prevalent clinical viruses. In an analysis of 70 clinical throat swab samples, the SSNB method shows slightly higher detection rate for positive samples (50%) compared to the RT-PCR method (48.6%). Additionally, further assessment of the typing accuracy for samples identified as positive by SSNB using sequencing method reveals a concordance rate of 100%. The combined high sensitivity and specificity level of the methodology, together with the capability for multiple type analysis and compatibility with clinical workflow, make this approach a promising tool for clinical settings.
Collapse
Affiliation(s)
- Zecheng Zhong
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaosong Su
- Zhongshan Hospital Fudan University Xiamen Branch, Xiamen, 361015, Fujian, China
| | - Kunyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Weida Huang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhihao Zhuo
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiyu Xiang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lesi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shuizhen He
- Xiamen Haicang Hospital, Haiyu Road, Xiamen, 361026, Fujian, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
4
|
Chesnais M, Bujaki E, Filhol T, Caval V, Joffret ML, Martin J, Jouvenet N, Bessaud M. Opening a 60-year time capsule: sequences of historical poliovirus cold variants shed a new light on a contemporary strain. Virus Evol 2024; 10:veae063. [PMID: 39170726 PMCID: PMC11336667 DOI: 10.1093/ve/veae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Polioviruses (PVs) are positive strand RNA viruses responsible for poliomyelitis. Many PVs have been isolated and phenotypically characterized in the 1940s-50s for the purpose of identifying attenuated strains that could be used as vaccine strains. Among these historical PVs, only few are genetically characterized. We report here the sequencing of four PV strains stored for more than 60 years in a sealed box. These PVs are cold variants that were selected by Albert Sabin based on their capacity to multiply at relatively low temperatures. Inoculation of permissive cells at 25°C showed that two of the four historical virus stocks still contained infectious particles. Both viruses reached titres that were higher at 25°C than at 37°C, thus demonstrating that they were genuine cold variants. We obtained sequences that span virtually all the genome for three out of the four strains; a short sequence that partly covers the 5' untranslated region was recovered for the last one. Unexpectedly, the genome of one historical cold variant (which derives from PV-3 Glenn) displayed a very high nucleotide identity (above 95%) with that of a PV strain (PV-3 strain WIV14) sampled in China in 2014 and then classified as a highly evolved vaccine-derived PV. Our analyses made this hypothesis very unlikely and strongly suggested that Glenn and WIV14 shared a very recent common ancestor with one another. Some strains used to produce the inactivated polio vaccine were also very close to Glenn and WIV14 in the capsid-encoding region, but they had not been sequenced beyond the capsid. We therefore sequenced one of these strains, Saukett A, which was available in our collection. Saukett A and WIV14 featured an identity higher than 99% at the nucleotide level. This work provides original data on cold variants that were produced and studied decades ago. It also highlights that sequences of historical PV strains could be crucial to reliably characterize contemporary PVs in case of release from a natural reservoir or from a facility, which is of highest importance for the PV eradication program.
Collapse
Affiliation(s)
- Morgane Chesnais
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
- Laboratoire associé au Centre national de référence pour les entérovirus & paréchovirus, 28 rue du Dr Roux, Paris 75 015, France
| | - Erika Bujaki
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Typhaine Filhol
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
| | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
- Laboratoire associé au Centre national de référence pour les entérovirus & paréchovirus, 28 rue du Dr Roux, Paris 75 015, France
| | - Javier Martin
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
- Laboratoire associé au Centre national de référence pour les entérovirus & paréchovirus, 28 rue du Dr Roux, Paris 75 015, France
| |
Collapse
|
5
|
Torii S, David SC, Larivé O, Cariti F, Kohn T. Observed Kinetics of Enterovirus Inactivation by Free Chlorine Are Host Cell-Dependent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18483-18490. [PMID: 36649532 DOI: 10.1021/acs.est.2c07048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Virucidal efficacies of disinfectants are typically assessed by infectivity assay utilizing a single type of host cell. Enteroviruses infect multiple host cells via various entry routes, and each entry route may be impaired differently by a given disinfectant. Yet, it is unknown how the choice of host cells affects the observed inactivation kinetics. Here, we evaluated the inactivation kinetics of echovirus 11 (E11) by free chlorine, ultraviolet (UV) irradiation, and heat, using three different host cells (BGMK, RD, and A549). Inactivation rates were independent of the host cell for treatment of E11 by UV or heat. Conversely, E11 inactivation by free chlorine occurred 2-fold faster when enumerated on BGMK cells compared with RD and A549 cells. Host cell-dependent inactivation kinetics by free chlorine were also observed for echovirus 7, 9, and 13, and coxsackievirus A9. E11 inactivation by free chlorine was partly caused by a loss in host cell attachment, which was most pronounced for BGMK cells. BGMK cells lack the attachment receptor CD55 and a key subunit of the uncoating receptor β2M, which may contribute to the differential inactivation kinetics for this cell type. Consequently, inactivation kinetics of enteroviruses should be assessed using host cells with different receptor profiles.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Shannon Christa David
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Odile Larivé
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Federica Cariti
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
6
|
Li C, Sylvestre É, Fernandez-Cassi X, Julian TR, Kohn T. Waterborne virus transport and the associated risks in a large lake. WATER RESEARCH 2023; 229:119437. [PMID: 36476383 DOI: 10.1016/j.watres.2022.119437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Waterborne enteric viruses in lakes, especially at recreational water sites, may have a negative impact on human health. However, their fate and transport in lakes are poorly understood. In this study, we propose a coupled water quality and quantitative microbial risk assessment (QMRA) model to study the transport, fate and infection risk of four common waterborne viruses (adenovirus, enterovirus, norovirus and rotavirus), using Lake Geneva as a study site. The measured virus load in raw sewage entering the lake was used as the source term in the water quality simulations for a hypothetical scenario of discharging raw wastewater at the lake surface. After discharge into the lake, virus inactivation was modeled as a function of water temperature and solar irradiance that varied both spatially and temporally during transport throughout the lake. Finally, the probability of infection, while swimming at a popular beach, was quantified and compared among the four viruses. Norovirus was found to be the most abundant virus that causes an infection probability that is at least 10 times greater than the other viruses studied. Furthermore, environmental inactivation was found to be an essential determinant in the infection risks posed by viruses to recreational water users. We determined that infection risks by enterovirus and rotavirus could be up to 1000 times lower when virus inactivation by environmental stressors was accounted for compared with the scenarios considering hydrodynamic transport only. Finally, the model highlighted the role of the wind field in conveying the contamination plume and hence in determining infection probability. Our simulations revealed that for beaches located west of the sewage discharge, the infection probability under eastward wind was 43% lower than that under westward wind conditions. This study highlights the potential of combining water quality simulation and virus-specific risk assessment for a safe water resources usage and management.
Collapse
Affiliation(s)
- Chaojie Li
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Émile Sylvestre
- Department Environmental Microbiology, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Timothy R Julian
- Department Environmental Microbiology, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, Gao L, Nghiem LD, Wang Q. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. BIORESOURCE TECHNOLOGY 2022; 344:126197. [PMID: 34710608 DOI: 10.1016/j.biortech.2021.126197] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Sludge from wastewater treatment plants can act as a repository and crucial environmental provider of antibiotic resistance genes (ARGs). Over the past few years, people's knowledge regarding the occurrence and removal of ARGs in sludge has broadened remarkably with advancements in molecular biological techniques. Anaerobic and aerobic digestion were found to effectively achieve sludge reduction and ARGs removal. This review summarized advanced detection and removal techniques of ARGs, in the last decade, in the sludge digestion field. The fate of ARGs due to different sludge digestion strategies (i.e., anaerobic and aerobic digestion under mesophilic or thermophilic conditions, and in combination with relevant pretreatment technologies (e.g., thermal hydrolysis pretreatment, microwave pretreatment and alkaline pretreatment) and additives (e.g., ferric chloride and zero-valent iron) were systematically summarized and compared in this review. To date, this is the first review that provides a comprehensive assessment of the state-of-the-art technologies and future recommendations.
Collapse
Affiliation(s)
- Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Melbourne & Adelaide SA 5001, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Graham KE, Anderson CE, Boehm AB. Viral pathogens in urban stormwater runoff: Occurrence and removal via vegetated biochar-amended biofilters. WATER RESEARCH 2021; 207:117829. [PMID: 34763278 DOI: 10.1016/j.watres.2021.117829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Urban runoff is one of the greatest sources of microbial pollution to surface waters. Biofilters can limit the impact of stormwater runoff on surface water quality by diverting runoff from receiving waters. However, our understanding of how biofilter design choices, including the addition of vegetation and geomedia, may impact the removal of pathogens is lacking. In this study, we characterized viruses (adenovirus, enterovirus, norovirus GII, crAssphage) in San Francisco Bay area urban runoff and assessed the removal of lab-cultured viruses (MS2, adenovirus 2, coxsackievirus B5) from biochar-amended biofilter mesocosms during challenge testing. We quantified viruses using (RT-)qPCR and F+ coliphage plaque assays. We found that all the pathogenic viruses targeted were found at low concentrations (adenovirus: all positive samples were <limit of quantification, enterovirus: <limit of quantification-1.9 × 102 gc/L, norovirus GII: <limit of quantification-1.2 × 102 gc/L) in San Francisco Bay area urban runoff and the presence of norovirus GII in runoff was associated with developed land use and decreased precipitation. Biofilters had variable success in removing adenovirus, enterovirus, and MS2 from runoff in laboratory-scale column experiments. In addition, there was no significant difference in the removal of each virus in vegetated versus non-vegetated biofilters, with the exception of MS2 which had slightly higher removal in vegetated biofilters (0.40 log10 units, Welch's t-test, p = 0.004). When comparing removal of human viruses and viral indicators, adenovirus and enterovirus were removed more efficiently (log10-removal adenovirus = 3.2; log10-removal enterovirus = 1.1) than indicator virus MS2 (log10-removal by RT-qPCR = 0.36, log10-removal by plaque assay = 0.36). These results provide evidence that MS2 may be a conservative indicator for human virus removal in biofiltration systems, but more work is needed to examine this relationship. Results from this study can help inform design choices regarding biofilters intended to improve water quality and our understanding of virus attenuation in biofiltration systems.
Collapse
Affiliation(s)
- Katherine E Graham
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Claire E Anderson
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
10
|
Sano D, Watanabe R, Oishi W, Amarasiri M, Kitajima M, Okabe S. Viral Interference as a Factor of False-Negative in the Infectious Adenovirus Detection Using Integrated Cell Culture-PCR with a BGM Cell Line. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:84-92. [PMID: 33392927 DOI: 10.1007/s12560-020-09453-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of viral interference on the detection of enteric viruses using the integrated cell culture (ICC)-PCR with a BGM cell line. It was possible to detect 102 plaque-forming units (PFU)/flask of enterovirus 71 (EV71) in spite of the presence of 104 PFU/flask of adenovirus 40 (AdV40). Meanwhile, 104 PFU/flask of AdV40 was not detected in the presence of 102 PFU/flask of EV71. This inhibition of AdV40 detection using ICC-PCR was attributable to the growth of EV71, because the addition of a growth inhibitor of EV71 (rupintrivir) neutralized the detection inhibition of AdV40. The growth inhibition of AdV40 under co-infection with EV71 is probably caused by the immune responses of EV71-infected cells. AdV is frequently used as a fecal contamination indicator of environmental water, but this study demonstrated that false-negative detection of infectious AdV using ICC-PCR could be caused by the co-existence of infectious EV in a water sample. The addition of rupintrivir could prevent false-negative detection of AdV using ICC-PCR. This study, therefore, emphasizes the importance of confirming the presence of multiple enteric viruses in a sample derived from environmental water prior to the application of ICC-PCR because the viral interference phenomenon may lead to the false-negative detection of target viruses.
Collapse
Affiliation(s)
- Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| | - Ryosuke Watanabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mohan Amarasiri
- Department of Health Science, School of Allied Health Sciences, Kitasato University, A1-505, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
11
|
Corpuz MVA, Buonerba A, Vigliotta G, Zarra T, Ballesteros F, Campiglia P, Belgiorno V, Korshin G, Naddeo V. Viruses in wastewater: occurrence, abundance and detection methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140910. [PMID: 32758747 PMCID: PMC7368910 DOI: 10.1016/j.scitotenv.2020.140910] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 04/14/2023]
Abstract
This paper presents an updated and comprehensive review on the different methods used for detection and quantification of viruses in wastewater treatment systems. The analysis of viability of viruses in wastewater and sludge is another thrust of this review. Recent studies have mostly focused on determining the abundance and diversity of viruses in wastewater influents, in samples from primary, secondary, and tertiary treatment stages, and in final effluents. A few studies have also examined the occurrence and diversity of viruses in raw and digested sludge samples. Recent efforts to improve efficiency of virus detection and quantification methods in the complex wastewater and sludge matrices are highlighted in this review. A summary and a detailed comparison of the pre-treatment methods that have been utilized for wastewater and sludge samples are also presented. The role of metagenomics or sequencing analysis in monitoring wastewater systems to predict disease outbreaks, to conduct public health surveillance, to assess the efficiency of existing treatment systems in virus removal, and to re-evaluate current regulations regarding pathogenic viruses in wastewater is discussed in this paper. Challenges and future perspectives in the detection of viruses, including emerging and newly emerged viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in wastewater systems are discussed in this review.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Giovanni Vigliotta
- Laboratory of Microbiology, University of Salerno, 84084 Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| |
Collapse
|
12
|
Monteiro S, Smigic N, Rajkovic A, Santos R. Efficiency of PEG secondary concentration and PCR for the simultaneous concentration and quantification of foodborne bacteria, viruses and protozoa. FEMS Microbiol Lett 2020; 367:5841523. [DOI: 10.1093/femsle/fnaa085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Fresh fruits are a potential source of many different pathogens, including bacteria, enteric viruses and protozoa that may pose serious health risks. The consumption of raspberries has been widely associated with large foodborne outbreaks and because of the low concentration at which most of these pathogens are found, sensitive and accurate detection methods are required. Methods that would allow for an accurate and sensitive simultaneous elution and concentration of the different classes of pathogens would decrease the time for analysis, the costs associated and the expertise necessary. In this study we explored the use of polyethylene glycol (PEG) secondary concentration to simultaneously concentrate bacteria, enteric viruses and protozoa from raspberries. PEG secondary concentration showed good recovery rates for all the organisms tested. This work indicates that PEG secondary concentration followed by quantitative (Reverse Transcription) Polymerase Chain Reaction (q(RT)PCR) may be a relevant alternative to standardized methods for the simultaneous concentration of bacteria, enteric viruses and protozoa.
Collapse
Affiliation(s)
- Silvia Monteiro
- Laboratorio Analises, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Nada Smigic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Andreja Rajkovic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ricardo Santos
- Laboratorio Analises, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Abstract
Viruses represent the most abundant and diverse of the biological entities in environmental waters, including the seas and probably also freshwater systems. They are important players in ecological networks in waters and influence global biochemical cycling and community composition dynamics. Among the many diverse viruses from terrestrial environments found in environmental waters, some are plant, animal, and/or human pathogens. The majority of pathogenic viral species found in waters are very stable and can survive outside host cells for long periods. The occurrence of such viruses in environmental waters has raised concerns because of the confirmation of the infectivity of waterborne viruses even at very low concentrations. This chapter focuses mainly on the survival of human, animal, and plant pathogenic viruses in aqueous environments, the possibility of their water-mediated transmission, the ecological implications of viruses in water, the methods adapted for detecting such viruses, and how to minimize the risk of viruses spreading through water.
Collapse
|
14
|
Martín-Díaz J, Lucena F. Extraction and RT-qPCR detection of enteroviruses from solid environmental matrixes: Method decision tree for different sample types and viral concentrations. J Virol Methods 2017; 251:145-150. [PMID: 29029976 DOI: 10.1016/j.jviromet.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022]
Abstract
Quantitative RT-PCR methods (RT-qPCR) are becoming increasingly desirable for the detection of enteric viruses in solid environmental matrixes such as sediments, soils and sewage sludge. However, effective methodologies that allow the extraction of high quality RNA ready for molecular quantification continue to be evaluated. In the present study, four different methods for enterovirus extraction from solid environmental matrixes were compared in terms of viral recovery and inhibitor removal. Three indirect methods based on glycine elution and concentration by ultracentrifugation were tested. The main differences between indirect methods were the sample to glycine buffer ratio, and the ultracentrifugation protocol applied. One commercial direct method was also tested. The indirect methods produced better results than the direct method. The ultracentrifugation led to viral losses in samples with high titers; however, as the virus concentration reduced, the ultracentrifugation became increasingly important for viral recovery. Two commercial RNA extraction kits were also evaluated and it was selected the most effective in removing RT-qPCR inhibitors. The results obtained allowed the development of a method decision tree with three versions that are suitable for different samples and viral concentrations.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/Montalegre 6, 08001 Barcelona, Spain.
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/Montalegre 6, 08001 Barcelona, Spain
| |
Collapse
|
15
|
Monteiro S, Santos R. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: Implications for public health risk assessment. J Appl Microbiol 2017; 124:965-976. [PMID: 28833965 DOI: 10.1111/jam.13568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/03/2023]
Abstract
AIM To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. METHODS AND RESULTS Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. CONCLUSION The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. SIGNIFICANCE AND IMPACT OF THE STUDY Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses.
Collapse
Affiliation(s)
- S Monteiro
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| | - R Santos
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| |
Collapse
|
16
|
Sadik NJ, Uprety S, Nalweyiso A, Kiggundu N, Banadda NE, Shisler JL, Nguyen TH. Quantification of multiple waterborne pathogens in drinking water, drainage channels, and surface water in Kampala, Uganda, during seasonal variation. GEOHEALTH 2017; 1:258-269. [PMID: 32158991 PMCID: PMC7007170 DOI: 10.1002/2017gh000081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 05/18/2023]
Abstract
Longitudinal water quality monitoring is important for understanding seasonal variations in water quality, waterborne disease transmission, and future implications for climate change and public health. In this study, microfluidic quantitative polymerase chain reaction (MFQPCR) was used to quantify genes from pathogens commonly associated with human intestinal infections in water collected from protected springs, a public tap, drainage channels, and surface water in Kampala, Uganda, from November 2014 to May 2015. The differences in relative abundance of genes during the wet and dry seasons were also assessed. All water sources tested contained multiple genes from pathogenic microorganisms, with drainage channels and surface waters containing a higher abundance of genes as compared to protected spring and the public tap water. Genes detected represented the presence of enterohemorrhagic Escherichia coli, Shigella spp., Salmonella spp., Vibrio cholerae, and enterovirus. There was an increased presence of pathogenic genes in drainage channels during the wet season when compared to the dry season. In contrast, surface water and drinking water sources contained little seasonal variation in the quantity of microbes assayed. These results suggest that individual water source types respond uniquely to seasonal variability and that human interaction with contaminated drainage waters, rather than direct ingestion of contaminated water, may be a more important contributor to waterborne disease transmission. Furthermore, future work in monitoring seasonal variations in water quality should focus on understanding the baseline influences of any one particular water source given their unique complexities.
Collapse
Affiliation(s)
- Nora J. Sadik
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sital Uprety
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Amina Nalweyiso
- School of Food Technology, Nutrition and BioengineeringMakerere UniversityKampalaUganda
| | - Nicholas Kiggundu
- School of Food Technology, Nutrition and BioengineeringMakerere UniversityKampalaUganda
| | - Noble E. Banadda
- School of Food Technology, Nutrition and BioengineeringMakerere UniversityKampalaUganda
| | - Joanna L. Shisler
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Thanh H. Nguyen
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
17
|
Bessaud M, Joffret ML, Blondel B, Delpeyroux F. Exchanges of genomic domains between poliovirus and other cocirculating species C enteroviruses reveal a high degree of plasticity. Sci Rep 2016; 6:38831. [PMID: 27958320 PMCID: PMC5153852 DOI: 10.1038/srep38831] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
The attenuated Sabin strains contained in the oral poliomyelitis vaccine are genetically unstable, and their circulation in poorly immunized populations can lead to the emergence of pathogenic circulating vaccine-derived polioviruses (cVDPVs). The recombinant nature of most cVDPV genomes and the preferential presence of genomic sequences from certain cocirculating non-polio enteroviruses of species C (EV-Cs) raise questions about the permissiveness of genetic exchanges between EV-Cs and the phenotypic impact of such exchanges. We investigated whether functional constraints limited genetic exchanges between Sabin strains and other EV-Cs. We bypassed the natural recombination events by constructing 29 genomes containing a Sabin 2 capsid-encoding sequence and other sequences from Sabin 2 or from non-polio EV-Cs. Most genomes were functional. All recombinant viruses replicated similarly in vitro, but recombination modulated plaque size and temperature sensitivity. All viruses with a 5′UTR from Sabin 2 were attenuated in mice, whereas almost all viruses with a non-polio 5′UTR caused disease. These data highlight the striking conservation of functional compatibility between different genetic domains of cocirculating EV-Cs. This aspect is only one of the requirements for the generation of recombinant cVDPVs in natural conditions, but it may facilitate the generation of viable intertypic recombinants with diverse phenotypic features, including pathogenicity.
Collapse
Affiliation(s)
- Maël Bessaud
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| |
Collapse
|
18
|
Bessaud M, Pelletier I, Blondel B, Delpeyroux F. A Rapid Method for Engineering Recombinant Polioviruses or Other Enteroviruses. Methods Mol Biol 2016; 1387:251-62. [PMID: 26983739 DOI: 10.1007/978-1-4939-3292-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The cloning of large enterovirus RNA sequences is labor-intensive because of the frequent instability in bacteria of plasmidic vectors containing the corresponding cDNAs. In order to circumvent this issue we have developed a PCR-based method that allows the generation of highly modified or chimeric full-length enterovirus genomes. This method relies on fusion PCR which enables the concatenation of several overlapping cDNA amplicons produced separately. A T7 promoter sequence added upstream the fusion PCR products allows its transcription into infectious genomic RNAs directly in transfected cells constitutively expressing the phage T7 RNA polymerase. This method permits the rapid recovery of modified viruses that can be subsequently amplified on adequate cell-lines.
Collapse
Affiliation(s)
- Maël Bessaud
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Institut Pasteur, Biologie des Virus Entériques, 25 rue du Dr Roux, 75015, Paris, France
| | - Isabelle Pelletier
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Institut Pasteur, Biologie des Virus Entériques, 25 rue du Dr Roux, 75015, Paris, France
| | - Bruno Blondel
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Institut Pasteur, Biologie des Virus Entériques, 25 rue du Dr Roux, 75015, Paris, France
| | - Francis Delpeyroux
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France.
- Institut Pasteur, Biologie des Virus Entériques, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
19
|
Bessaud M, Sadeuh-Mba SA, Joffret ML, Razafindratsimandresy R, Polston P, Volle R, Rakoto-Andrianarivelo M, Blondel B, Njouom R, Delpeyroux F. Whole Genome Sequencing of Enterovirus species C Isolates by High-Throughput Sequencing: Development of Generic Primers. Front Microbiol 2016; 7:1294. [PMID: 27617004 PMCID: PMC4999429 DOI: 10.3389/fmicb.2016.01294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023] Open
Abstract
Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C) consists of more than 20 types, among which the three serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions. A simple method was developed to quickly sequence the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to being sequenced by a high-throughput technique. The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures. By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.
Collapse
Affiliation(s)
- Maël Bessaud
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| | | | - Marie-Line Joffret
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| | | | - Patsy Polston
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | - Romain Volle
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | | | - Bruno Blondel
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | - Richard Njouom
- Centre Pasteur du Cameroun, Service de Virologie Yaoundé, Cameroon
| | - Francis Delpeyroux
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| |
Collapse
|
20
|
Stokdyk JP, Firnstahl AD, Spencer SK, Burch TR, Borchardt MA. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR. WATER RESEARCH 2016; 96:105-13. [PMID: 27023926 DOI: 10.1016/j.watres.2016.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 05/04/2023]
Abstract
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.
Collapse
Affiliation(s)
- Joel P Stokdyk
- Wisconsin Water Science Center, U.S. Geological Survey, Middleton, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Aaron D Firnstahl
- Wisconsin Water Science Center, U.S. Geological Survey, Middleton, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Susan K Spencer
- Environmentally Integrated Dairy Management Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Tucker R Burch
- Environmentally Integrated Dairy Management Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Mark A Borchardt
- Environmentally Integrated Dairy Management Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA.
| |
Collapse
|
21
|
Coudray-Meunier C, Fraisse A, Martin-Latil S, Delannoy S, Fach P, Perelle S. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System. PLoS One 2016; 11:e0147832. [PMID: 26824897 PMCID: PMC4732599 DOI: 10.1371/journal.pone.0147832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022] Open
Abstract
Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health.
Collapse
Affiliation(s)
- Coralie Coudray-Meunier
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Audrey Fraisse
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sandra Martin-Latil
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Identypath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Identypath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sylvie Perelle
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
- * E-mail:
| |
Collapse
|
22
|
Fout GS, Cashdollar JL, Griffin SM, Brinkman NE, Varughese EA, Parshionikar SU. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR. J Vis Exp 2016:e52646. [PMID: 26862985 PMCID: PMC4781652 DOI: 10.3791/52646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. This method was developed with the goal of having a standardized method for use in multiple analytical laboratories during monitoring period 3 of the Unregulated Contaminant Monitoring Rule. Herein we present the protocol for extraction of viral ribonucleic acid (RNA) from water sample concentrates and for quantitatively measuring enterovirus and norovirus concentrations using reverse transcription-quantitative PCR (RT-qPCR). Virus concentrations for the molecular assay are calculated in terms of genomic copies of viral RNA per liter based upon a standard curve. The method uses a number of quality controls to increase data quality and to reduce interlaboratory and intralaboratory variation. The method has been evaluated by examining virus recovery from ground and reagent grade waters seeded with poliovirus type 3 and murine norovirus as a surrogate for human noroviruses. Mean poliovirus recoveries were 20% in groundwaters and 44% in reagent grade water. Mean murine norovirus recoveries with the RT-qPCR assay were 30% in groundwaters and 4% in reagent grade water.
Collapse
Affiliation(s)
- G Shay Fout
- National Exposure Research Laboratory, U.S. Environmental Protection Agency;
| | | | - Shannon M Griffin
- National Exposure Research Laboratory, U.S. Environmental Protection Agency
| | - Nichole E Brinkman
- National Exposure Research Laboratory, U.S. Environmental Protection Agency
| | - Eunice A Varughese
- National Exposure Research Laboratory, U.S. Environmental Protection Agency
| | - Sandhya U Parshionikar
- Technical Services Center, Office of Ground Water and Drinking Water, U.S. Environmental Protection Agency
| |
Collapse
|
23
|
Martín-Díaz J, Casas-Mangas R, García-Aljaro C, Blanch AR, Lucena F. Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2182-2188. [PMID: 27148720 DOI: 10.2166/wst.2016.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Raquel Casas-Mangas
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Cristina García-Aljaro
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Anicet R Blanch
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Francisco Lucena
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| |
Collapse
|
24
|
Hill VR, Narayanan J, Gallen RR, Ferdinand KL, Cromeans T, Vinjé J. Development of a nucleic Acid extraction procedure for simultaneous recovery of DNA and RNA from diverse microbes in water. Pathogens 2015; 4:335-54. [PMID: 26016775 PMCID: PMC4493477 DOI: 10.3390/pathogens4020335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022] Open
Abstract
Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters.
Collapse
Affiliation(s)
- Vincent R Hill
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, 1600 Clifton Road NE, Mailstop D-66, Atlanta, GA 30329, USA.
| | - Jothikumar Narayanan
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, 1600 Clifton Road NE, Mailstop D-66, Atlanta, GA 30329, USA.
| | - Rachel R Gallen
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, 1600 Clifton Road NE, Mailstop D-66, Atlanta, GA 30329, USA.
| | - Karen L Ferdinand
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, GA 30329, USA.
| | - Theresa Cromeans
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, GA 30329, USA.
| | - Jan Vinjé
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, GA 30329, USA.
| |
Collapse
|
25
|
Miura T, Okabe S, Nakahara Y, Sano D. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process. WATER RESEARCH 2015; 75:282-91. [PMID: 25770448 DOI: 10.1016/j.watres.2015.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different adsorptive behavior to MLSS. Our observations suggested that sapoviruses are more associated with MLSS and removed more efficiently than enteroviruses and norovirus GII.
Collapse
Affiliation(s)
- Takayuki Miura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Yoshihito Nakahara
- Aqua Technology Administration, Mitsubishi Rayon Co. Ltd., 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Daisuke Sano
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
26
|
Mininni G, Blanch AR, Lucena F, Berselli S. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7361-74. [PMID: 24946701 DOI: 10.1007/s11356-014-3132-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/30/2014] [Indexed: 05/24/2023]
Abstract
This paper presents the current sewage sludge legislation in Europe and expected developments regarding the coming directives on the application of the "End-of-waste" criteria and on fertilizers. Discussion on sludge production and processing is also included. The Directive 86/278 has regulated the use in agriculture of residual sludge from domestic and urban wastewater. After 1986, this directive was transposed in the different member state legislation and currently the national limit values on heavy metals, some organic micropollutants and pathogens are placed in a rather wide range. This seems the inevitable consequence of different attitudes towards sludge management practices in the member states. The discussion by the European Joint Research Center (JRC) in Seville regarding application of end-of-waste criteria for compost and digestate has produced a final document (IPTS 2014) where sludge was excluded from the organic wastes admitted for producing an end-of-waste compost. Sludge processing in Europe seems addressed to different goals: sludge minimization, full stabilization and hygienization by thermal hydrolysis processes before anaerobic digestion, and on-site incineration by fluidized bed furnace. Thermophilic anaerobic digestion was applied with success on the Prague WWTP with a preliminary lysimeter centrifugation. Coming techniques, like wet oxidation and pyrolysis, are applied only on very few plants.
Collapse
Affiliation(s)
- G Mininni
- CNR-Istituto di Ricerca sulle Acque, via Salaria km 29.3, 00015, Monterotondo, RM, Italy,
| | | | | | | |
Collapse
|
27
|
Levantesi C, Beimfohr C, Blanch AR, Carducci A, Gianico A, Lucena F, Tomei MC, Mininni G. Hygienization performances of innovative sludge treatment solutions to assure safe land spreading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7237-47. [PMID: 25233915 DOI: 10.1007/s11356-014-3572-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/08/2014] [Indexed: 05/15/2023]
Abstract
The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.
Collapse
Affiliation(s)
- C Levantesi
- CNR - Water Research Institute, Monterotondo, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Helmeke C, Gräfe L, Irmscher HM, Gottschalk C, Karagiannis I, Oppermann H. Effectiveness of the 2012/13 trivalent live and inactivated influenza vaccines in children and adolescents in Saxony-Anhalt, Germany: a test-negative case-control study. PLoS One 2015; 10:e0122910. [PMID: 25885063 PMCID: PMC4401761 DOI: 10.1371/journal.pone.0122910] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/18/2015] [Indexed: 11/24/2022] Open
Abstract
A live attenuated influenza vaccine has been available in Germany since the influenza season 2012/13, which is approved for children aged 2-17 years. Using data from our laboratory-based surveillance system, we described the circulation of influenza and non-influenza respiratory viruses during the influenza season 2012/13 in Saxony-Anhalt. We estimated the effectiveness of live and inactivated trivalent influenza vaccines in preventing laboratory-confirmed cases among children and adolescents. From week 40/2012 to 19/2013, sentinel paediatricians systematically swabbed acute respiratory illness patients for testing of influenza and 5 non-influenza viruses by PCR. We compared influenza cases and influenza-negative controls. Among children aged 2-17 years, we calculated overall and vaccine type-specific effectiveness against laboratory-confirmed influenza, stratified by age group (2-6; 7-17 years). We used multivariable logistic regression to adjust estimates for age group, sex and month of illness. Out of 1,307 specimens, 647 (35%) were positive for influenza viruses and 189 (15%) for at least one of the tested non-influenza viruses. For vaccine effectiveness estimation, we included 834 patients (mean age 7.3 years, 53% males) in our analysis. Of 347 (42%) influenza-positive specimens, 61 (18%) were positive for A(H1N1)pdm09, 112 (32%) for A(H3N2) and 174 (50%) for influenza B virus. The adjusted overall vaccine effectiveness including both age groups was 38% (95% CI: 0.8-61%). The adjusted effectiveness for inactivated vaccines was 37% (95% CI: -35-70%) and for live vaccines 84% (95% CI: 45-95%). Effectiveness for the live vaccine was higher in 2-6 year-old children (90%, 95% CI: 20-99%) than in children aged 7-17 years (74%, 95% CI: -32-95%). Our study of the strong influenza season in 2012/13 suggests a high preventive effect of live attenuated influenza vaccine especially among young children, which could not be reached by inactivated vaccines. We recommend the use of live attenuated influenza vaccines in children unless there are contraindications.
Collapse
MESH Headings
- Adolescent
- Case-Control Studies
- Child
- Child, Preschool
- Female
- Germany
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza B virus/genetics
- Influenza B virus/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/standards
- Influenza, Human/prevention & control
- Logistic Models
- Male
- Odds Ratio
- RNA, Viral/analysis
- Treatment Outcome
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/standards
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/standards
Collapse
Affiliation(s)
- Carina Helmeke
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- State Agency for Consumer Protection Saxony-Anhalt, Department of Hygiene, Magdeburg, Germany
- * E-mail:
| | - Lutz Gräfe
- State Agency for Consumer Protection Saxony-Anhalt, Department of Hygiene, Magdeburg, Germany
| | - Hanns-Martin Irmscher
- State Agency for Consumer Protection Saxony-Anhalt, Department of Hygiene, Magdeburg, Germany
| | - Constanze Gottschalk
- State Agency for Consumer Protection Saxony-Anhalt, Department of Hygiene, Magdeburg, Germany
| | - Ioannis Karagiannis
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Hanna Oppermann
- State Agency for Consumer Protection Saxony-Anhalt, Department of Hygiene, Magdeburg, Germany
| |
Collapse
|
29
|
Changes in Microbial Water Quality Associated with an Extreme Recreational Water Event in Ohio, United States. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s12403-015-0164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Paar J, Doolittle MM, Varma M, Siefring S, Oshima K, Haugland RA. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences. J Microbiol Methods 2015; 112:28-35. [PMID: 25744574 DOI: 10.1016/j.mimet.2015.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/28/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
A method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for detecting interferences in RNA recovery and analysis, was developed for the direct, culture-independent detection of genetic markers from FRNA coliphage genogroups I, II & IV in water samples. Results were obtained from an initial evaluation of the performance of this method in analyses of waste water, ambient surface water and stormwater drain and outfall samples from predominantly urban locations. The evaluation also included a comparison of the occurrence of the FRNA genetic markers with genetic markers from general and human-related bacterial fecal indicators determined by current or pending EPA-validated qPCR methods. Strong associations were observed between the occurrence of the putatively human related FRNA genogroup II marker and the densities of the bacterial markers in the stormwater drain and outfall samples. However fewer samples were positive for FRNA coliphage compared to either the general bacterial fecal indicator or the human-related bacterial fecal indicator markers particularly for ambient water samples. Together, these methods show promise as complementary tools for the identification of contaminated storm water drainage systems as well as the determination of human and non-human sources of contamination.
Collapse
Affiliation(s)
- Jack Paar
- U.S. Environmental Protection Agency, New England Regional Laboratory, North Chelmsford, MA, USA
| | - Mark M Doolittle
- ESAT Contractor-TechLaw, Inc., EPA New England Regional Laboratory, North Chelmsford, MA, USA
| | - Manju Varma
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, OH, USA
| | - Shawn Siefring
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, OH, USA
| | - Kevin Oshima
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, OH, USA
| | - Richard A Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, OH, USA.
| |
Collapse
|
31
|
Integrating bacterial and viral water quality assessment to predict swimming-associated illness at a freshwater beach: a cohort study. PLoS One 2014; 9:e112029. [PMID: 25409012 PMCID: PMC4237328 DOI: 10.1371/journal.pone.0112029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND & OBJECTIVE Recreational waters impacted by fecal contamination have been linked to gastrointestinal illness in swimmer populations. To date, few epidemiologic studies examine the risk for swimming-related illnesses based upon simultaneous exposure to more than one microbial surrogate (e.g. culturable E. coli densities, genetic markers). We addressed this research gap by investigating the association between swimming-related illness frequency and water quality determined from multiple bacterial and viral genetic markers. METHODS Viral and bacterial genetic marker densities were determined from beach water samples collected over 23 weekend days and were quantified using quantitative polymerase chain reaction (qPCR). These genetic marker data were paired with previously determined human exposure data gathered as part of a cohort study carried out among beach users at East Fork Lake in Ohio, USA in 2009. Using previously unavailable genetic marker data in logistic regression models, single- and multi-marker/multi-water quality indicator approaches for predicting swimming-related illness were evaluated for associations with swimming-associated gastrointestinal illness. RESULTS Data pertaining to genetic marker exposure and 8- or 9-day health outcomes were available for a total of 600 healthy susceptible swimmers, and with this population we observed a significant positive association between human adenovirus (HAdV) exposure and diarrhea (odds ratio = 1.6; 95% confidence interval: 1.1-2.3) as well as gastrointestinal illness (OR = 1.5; 95% CI: 1.0-2.2) upon adjusting for culturable E. coli densities in multivariable models. No significant associations between bacterial genetic markers and swimming-associated illness were observed. CONCLUSIONS This study provides evidence that a combined measure of recreational water quality that simultaneously considers both bacterial and viral densities, particularly HAdV, may improve prediction of disease risk than a measure of a single agent in a beach environment likely influenced by nonpoint source human fecal contamination.
Collapse
|
32
|
Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in environmental water samples. Appl Environ Microbiol 2014; 80:7505-11. [PMID: 25261510 DOI: 10.1128/aem.02578-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To secure food and water safety, quantitative information on multiple pathogens is important. In this study, we developed a microfluidic quantitative PCR (MFQPCR) system to simultaneously quantify 11 major human viral pathogens, including adenovirus, Aichi virus, astrovirus, enterovirus, human norovirus, rotavirus, sapovirus, and hepatitis A and E viruses. Murine norovirus and mengovirus were also quantified in our MFQPCR system as a sample processing control and an internal amplification control, respectively. River water contaminated with effluents from a wastewater treatment plant in Sapporo, Japan, was collected and used to validate our MFQPCR system for multiple viruses. High-throughput quantitative information was obtained with a quantification limit of 2 copies/μl of cDNA/DNA. Using this MFQPCR system, we could simultaneously quantify multiple viral pathogens in environmental water samples. The viral quantities obtained using MFQPCR were similar to those determined by conventional quantitative PCR. Thus, the MFQPCR system developed in this study can provide direct and quantitative information for viral pathogens, which is essential for risk assessments.
Collapse
|
33
|
Mazari-Hiriart M, Pérez-Ortiz G, Orta-Ledesma MT, Armas-Vargas F, Tapia MA, Solano-Ortiz R, Silva MA, Yañez-Noguez I, López-Vidal Y, Díaz-Ávalos C. Final opportunity to rehabilitate an urban river as a water source for Mexico City. PLoS One 2014; 9:e102081. [PMID: 25054805 PMCID: PMC4108367 DOI: 10.1371/journal.pone.0102081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 06/15/2014] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.
Collapse
Affiliation(s)
- Marisa Mazari-Hiriart
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Gustavo Pérez-Ortiz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México
| | - María Teresa Orta-Ledesma
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, México, D.F., México
| | - Felipe Armas-Vargas
- Posgrado en Ciencias de la Tierra, Instituto de Geología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Marco A. Tapia
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México
- Posgrado en Ciencias Biológicas, Facultad de Ciencias-Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Rosa Solano-Ortiz
- Posgrado en Ciencias Biológicas, Facultad de Ciencias-Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Miguel A. Silva
- Posgrado de Ciencias Bioquímicas, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Isaura Yañez-Noguez
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, México, D.F., México
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | - Carlos Díaz-Ávalos
- Departamento de Probabilidad y Estadística, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, México, D.F., México
| |
Collapse
|
34
|
Liu H, Wu Y, Liu C, He J. A single-tube nucleotide isolation reagent for the quantitative PCR detection of virus in body fluids. J Virol Methods 2014; 203:81-87. [PMID: 24720911 DOI: 10.1016/j.jviromet.2014.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 11/21/2022]
Abstract
A high-salt reagent composed of guanidinium thiocyanate, guanidine hydrochloride, urea, sodium citrate, and other compounds was designed for the single-tube isolation of viral nucleotides from body fluids. The single-tube reagent was used for the extraction of SIV RNA and HBV DNA from standard virus stock dilutions and virus-positive samples. The sensitivity and reproducibility of the single-tube reagent were analysed via quantitative PCR assays. The results revealed that the single-tube reagent can facilitate quantitative PCR-mediated detection in a reaction system with a 25-μl volume using only 100 μl of a body fluid sample and reaches a sensitivity of up to 50 copies/ml. The low coefficients of variance of both the HBV and SIV standard stock results indicate the excellent reproducibility of the single-tube reagent. A Bland-Altman analysis of the assay results from the SIV- and HBV-positive samples revealed that the single-tube reagent can precisely extract both RNA and DNA viral nucleotides from virus-positive samples. All of the isolation steps were performed in a single tube and were completed in no more than 35 min. The only major equipment required is a high-speed freezing centrifuge. The single-tube reagent is economical and easy to use and does not require any complex equipment.
Collapse
Affiliation(s)
- Hong Liu
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuansheng Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuihua Liu
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinyang He
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
35
|
Ji Z, Wang XC, Xu L, Zhang C, Funamizu N, Okabe S, Sano D. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:99-109. [PMID: 24715657 DOI: 10.1007/s12560-014-9140-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.
Collapse
Affiliation(s)
- Zheng Ji
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Lee CS, Lee C, Marion J, Wang Q, Saif L, Lee J. Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:757-66. [PMID: 24333998 DOI: 10.1016/j.scitotenv.2013.11.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 05/27/2023]
Abstract
Human enteric viruses are significant etiological agents for many recreational waterborne illnesses. The occurrence and density of human enteric viruses such as human adenovirus (HAdV), human enterovirus (HEnV), and human norovirus genogroups I/II (HNoV GI/GII) were investigated using quantitative real-time PCR (qPCR) at freshwater beaches along with monitoring fecal indicators and environmental parameters. During the 2009 swimming season, water samples were collected from three inland freshwater beaches in Ohio, USA. Of the total samples, 40% (26/65) and 17% (11/65) were positive for HAdV and HEnV respectively, but HNoV GI/GII were not detected. There was no significant association among the detected human enteric viruses (HAdV and HEnV) and fecal bacteria indicators (Escherichia coli and Bacteroides) by Spearman correlation and principal component analyses. Logistic regression analysis also revealed that the odds of finding HAdV or HEnV was not influenced by levels of fecal bacteria indicators. However, there was a 14-fold increase in the odds of HEnV detection for each 1-log increase in daily water inflow (m(3)/s) into freshwater beach reservoirs (adjusted odds ratio=14.2; 95% confidence interval=1.19-171). In summary, the viral occurrence at the freshwater beaches was not readily explained by the levels of fecal bacteria indicators, but appeared to be more related to water reservoir inflows. These results suggest that hydrological data must be considered in future epidemiology efforts aimed at characterizing beach water safety.
Collapse
Affiliation(s)
- Chang Soo Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheonghoon Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Marion
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Jiyoung Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Food Sciences & Technology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Wu J, Kodzius R, Cao W, Wen W. Extraction, amplification and detection of DNA in microfluidic chip-based assays. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1140-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Miura T, Parnaudeau S, Grodzki M, Okabe S, Atmar RL, Le Guyader FS. Environmental detection of genogroup I, II, and IV noroviruses by using a generic real-time reverse transcription-PCR assay. Appl Environ Microbiol 2013; 79:6585-92. [PMID: 23956397 PMCID: PMC3811514 DOI: 10.1128/aem.02112-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/13/2013] [Indexed: 01/16/2023] Open
Abstract
Norovirus is the most common agent implicated in food-borne outbreaks and is frequently detected in environmental samples. These viruses are highly diverse, and three genogroups (genogroup I [GI], GII, and GIV) infect humans. Being noncultivable viruses, real-time reverse transcription-PCR (RT-PCR) is the only sensitive method available for their detection in food or environmental samples. Selection of consensus sequences for the design of sensitive assays has been challenging due to sequence diversity and has led to the development of specific real-time RT-PCR assays for each genogroup. Thus, sample screening can require several replicates for amplification of each genogroup (without considering positive and negative controls or standard curves). This study reports the development of a generic assay that detects all three human norovirus genogroups on a qualitative basis using a one-step real-time RT-PCR assay. The generic assay achieved good specificity and sensitivity for all three genogroups, detected separately or in combination. At variance with multiplex assays, the choice of the same fluorescent dye for all three probes specific to each genogroup allows the levels of fluorescence to be added and may increase assay sensitivity when multiple strains from different genogroups are present. When it was applied to sewage sample extracts, this generic assay successfully detected norovirus in all samples found to be positive by the genogroup-specific RT-PCRs. The generic assay also identified all norovirus-positive samples among 157 archived nucleic acid shellfish extracts, including samples contaminated by all three genogroups.
Collapse
Affiliation(s)
- Takayuki Miura
- Laboratoire de Microbiologie, IFREMER, Nantes, France
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Marco Grodzki
- Laboratoire de Microbiologie, IFREMER, Nantes, France
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
39
|
Gentry-Shields J, Wang A, Cory RM, Stewart JR. Determination of specific types and relative levels of QPCR inhibitors in environmental water samples using excitation-emission matrix spectroscopy and PARAFAC. WATER RESEARCH 2013; 47:3467-3476. [PMID: 23601829 DOI: 10.1016/j.watres.2013.03.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
Assays that utilize PCR offer powerful tools to detect pathogens and other microorganisms in environmental samples. However, PCR inhibitors present in nucleic acid extractions can increase a sample's limit of detection, skew calculated marker concentrations, or cause false-negative results. It would be advantageous to predict which samples contain various types and levels of PCR inhibitors, especially the humic and fulvic acids that are frequently cited as PCR inhibitors in natural water samples. This study investigated the relationships between quantitative PCR (qPCR) inhibition and the humic and fulvic content of dissolved organic matter (DOM), as well as several other measures of DOM quantity and quality, in water samples. QPCR inhibition was also compared to water quality parameters, precipitation levels, and land use adjacent to the sampling location. Results indicate that qPCR inhibition in the tested water samples was correlated to several humic substance-like, DOM components, most notably terrestrially-derived, humic-like DOM and microbially-derived, fulvic-like DOM. No correlation was found between qPCR inhibition and water quality parameters or land use, but a relationship was noted between inhibition and antecedent rainfall. This study suggests that certain fractions of humic substances are responsible for PCR inhibition from temperate, freshwater systems. PARAFAC modeling of excitation-emission matrix spectroscopy provides insight on the components of the DOM pool that impact qPCR success and may be useful in evaluating methods to remove PCR inhibitors present in samples.
Collapse
Affiliation(s)
- Jennifer Gentry-Shields
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | | | |
Collapse
|
40
|
Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses. J Clin Microbiol 2013; 51:1528-33. [PMID: 23486707 DOI: 10.1128/jcm.03368-12] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are several U.S. FDA-cleared molecular respiratory virus panels available today, each with advantages and disadvantages. This study compares four multiplex panels, the BioFire Diagnostics FilmArray RP (respiratory panel), the GenMark Dx eSensor RVP (respiratory viral panel), the Luminex xTAG RVPv1, and the Luminex xTAG RVP fast. Three hundred specimens (200 retrospective and 100 consecutive) were tested using all four platforms to determine performance characteristics. The overall sensitivity and specificity, respectively, and 95% confidence interval (CI; in parentheses) for each panel were as follows: FilmArray RP, 84.5% (79.2, 88.6) and 100% (96.2, 100); eSensor RVP, 98.3% (95.5, 99.5) and 99.2% (95.4, 100); xTAG RVPv1, 92.7% (88.5, 95.4) and 99.8% (96.0, 100); and xTAG RVP fast, 84.4% (78.5, 88.9) and 99.9% (96.1, 100). The sensitivity of each assay fluctuated by viral target, with the greatest discrepancies noted for adenovirus and influenza virus B detection. Hands-on time and time to result were recorded and ease of use was assessed to generate a complete profile of each assay.
Collapse
|
41
|
Pang XL, Lee BE, Pabbaraju K, Gabos S, Craik S, Payment P, Neumann N. Pre-analytical and analytical procedures for the detection of enteric viruses and enterovirus in water samples. J Virol Methods 2012; 184:77-83. [DOI: 10.1016/j.jviromet.2012.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 01/14/2023]
|
42
|
Ji Z, Wang X, Zhang C, Miura T, Sano D, Funamizu N, Okabe S. Occurrence of hand-foot-and-mouth disease pathogens in domestic sewage and secondary effluent in Xi'an, China. Microbes Environ 2012; 27:288-92. [PMID: 22446307 PMCID: PMC4036047 DOI: 10.1264/jsme2.me11352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hand, foot and mouth disease (HFMD), caused by a group of enteric viruses such as Enterovirus 71 (EV71), Coxsackievirus A16 (CVA16) and Coxsackievirus A10 (CVA10), is heavily epidemic in East Asia. This research focused on investigating the occurrence of HFMD pathogens in domestic sewage and secondary effluent before disinfection in a wastewater treatment plant (WWTP) in Xi’an, the largest megacity in northwest China. In order to simultaneously detect all three HFMD pathogens, a semi-nested RT-PCR assay was constructed with a newly designed primer set targeting conservative gene regions from the 5′ untranslated region (UTR) to VP2. As a result, 86% of raw sewage samples and 29% of the secondary effluent samples were positive for the HFMD viral gene, indicating that HFMD pathogens were highly prevalent in domestic wastewater and that they could also persist, even with lower probability, in the secondary effluent before disinfection. Of the three HFMD pathogens, CVA10 was positive in 48% of the total samples, while the occurrences of CVA16 and EV71 were 12% and 2%, respectively. It could thus be stated that CVA10 is the main HFMD pathogen prevailing in the study area, at least during the investigation period. High genetic diversity in the conservative gene region among the same serotype of the HFMD pathogen was identified by phylogenetic analysis, implying that this HFMD pathogen replicates frequently among the population excreting the domestic sewage.
Collapse
Affiliation(s)
- Zheng Ji
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technolog, Xi'an, Shaanxi 710055, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Viral contamination in oyster and mussel samples was evaluated after a massive storm with hurricane wind named "Xynthia tempest" destroyed a number of sewage treatment plants in an area harboring many shellfish farms. Although up to 90% of samples were found to be contaminated 2 days after the disaster, detected viral concentrations were low. A 1-month follow-up showed a rapid decrease in the number of positive samples, even for norovirus.
Collapse
|
44
|
Deboosere N, Horm SV, Delobel A, Gachet J, Buchy P, Vialette M. Viral elution and concentration method for detection of influenza A viruses in mud by real-time RT-PCR. J Virol Methods 2011; 179:148-53. [PMID: 22036660 DOI: 10.1016/j.jviromet.2011.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 10/09/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
Abstract
The role of environmental reservoirs in avian influenza virus (AIV) transmission has been investigated during AIV-associated outbreaks. To date, no method has been defined for detection of AIV from mud samples. A procedure using elution and polyethylene glycol (PEG) concentration steps was designed to detect AIV by RT-PCR from 42g of raw mud, corresponding to 30g of the solid fraction of mud. RNA was recovered with MagMAX AI/ND Viral RNA Isolation kit (Ambion, Austin, TX). Three elution buffers were studied and viral recoveries higher than 29% were yielded by elution with a 10% beef extract solution (pH 7). The overall method showed that, under some conditions, virus was not detectable in PEG samples, whereas viruses were detected in the elution fractions. PCR curves were improved significantly by running the amplification reaction with a mixture containing a PCR additive for inhibitor removal, such as T4 gene 32 protein (Gp32), although PCR inhibitors from mud were removed partially from PEG samples. A theoretical detection threshold of 5×10(5) RNA copies of H5N1 virus per 30g of solid mud could be obtained by elution. The overall method has proved successful for detecting H5N1 virus contamination of mud specimens collected during outbreak investigations of avian influenza in Cambodia.
Collapse
Affiliation(s)
- Nathalie Deboosere
- Unité de Sécurité Microbiologique, Institut Pasteur de Lille, 1 rue du Prof. Calmette, BP 245, 59019 Lille, France.
| | | | | | | | | | | |
Collapse
|
45
|
Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples. Appl Environ Microbiol 2011; 77:4336-43. [PMID: 21602369 DOI: 10.1128/aem.00077-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls.
Collapse
|
46
|
Development of an effective method for recovery of viral genomic RNA from environmental silty sediments for quantitative molecular detection. Appl Environ Microbiol 2011; 77:3975-81. [PMID: 21515729 DOI: 10.1128/aem.02692-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nine approaches to recover viral RNA from environmental silty sediments were newly developed and compared to quantify RNA viruses in sediments using molecular methods. Four of the nine approaches employed direct procedures for extracting RNA from sediments (direct methods), and the remaining five approaches used indirect methods wherein viral particles were recovered before RNA extraction. A direct method using an SDS buffer with EDTA to lyse viral capsids in sediments, phenol-chloroform-isoamyl alcohol to extract RNA, isopropanol to concentrate RNA, and magnetic beads to purify RNA resulted in the highest rate of recovery (geometric mean of 11%, with a geometric standard deviation of 0.02; n = 7) of poliovirus 1 (PV1) inoculated in an environmental sediment sample. The direct method exhibiting the highest rate of PV1 recovery was applied to environmental sediment samples. One hundred eight sediment samples were collected from the Takagi River, Miyagi, Japan, and its estuary from November 2007 to April 2009, and the genomic RNAs of enterovirus and human norovirus in these samples were quantified by reverse transcription (RT)-quantitative PCR (qPCR). The human norovirus genome was detected in one sample collected at the bay, although its concentration was below the quantification limit. Meanwhile, the enterovirus genome was detected in two samples at the river mouth and river at concentrations of 8.6 × 10(2) and 2.4 × 10(2) copies/g (wet weight), respectively. This is the first report to obtain quantitative data for a human pathogenic virus in a river and in estuarine sediments using RT-qPCR.
Collapse
|
47
|
Schriewer A, Wehlmann A, Wuertz S. Improving qPCR efficiency in environmental samples by selective removal of humic acids with DAX-8. J Microbiol Methods 2011; 85:16-21. [DOI: 10.1016/j.mimet.2010.12.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 11/15/2022]
|
48
|
Jofre J, Blanch AR. Feasibility of methods based on nucleic acid amplification techniques to fulfil the requirements for microbiological analysis of water quality. J Appl Microbiol 2011; 109:1853-67. [PMID: 20722877 DOI: 10.1111/j.1365-2672.2010.04830.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular methods based on nucleic acid recognition and amplification are valuable tools to complement and support water management decisions. At present, these decisions are mostly supported by the principle of end-point monitoring for indicators and a small number of selected measured by traditional methods. Nucleic acid methods show enormous potential for identifying isolates from conventional culture methods, providing data on cultivable and noncultivable micro-organisms, informing on the presence of pathogens in waters, determining the causes of waterborne outbreaks, and, in some cases, detecting emerging pathogens. However, some features of water microbiology affect the performance of nucleic acid-based molecular techniques and thus challenge their suitability for routine water quality control. These features include the variable composition of target water samples, the generally low numbers of target micro-organisms, the variable water quality required for different uses and the physiological status or condition of such micro-organisms. The standardization of these molecular techniques is also an important challenge for its routine use in terms of accuracy (trueness and precision) and robustness (reproducibility and reliability during normal usage). Most of national and international water regulations recommend the application of standard methods, and any new technique must be validated respect to established methods and procedures. Moreover, molecular methods show a high cost-effectiveness value that limits its practicability on some microbial water analyses. However, new molecular techniques could contribute with new information or at least to supplement the limitation of traditional culture-based methods. Undoubtedly, challenges for these nucleic acid-based methods need to be identified and solved to improve their feasibility for routine microbial water monitoring.
Collapse
Affiliation(s)
- J Jofre
- Department of Microbiology, School of Biology, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
49
|
Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in class B anaerobically digested biosolids by culture and molecular methods. Appl Environ Microbiol 2010; 76:6441-8. [PMID: 20693452 DOI: 10.1128/aem.02685-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most common class B biosolids in the United States are generated by mesophilic anaerobic digestion (MAD), and MAD biosolids have been used for land application. However, the pathogen levels in MAD biosolids are still unclear, especially with respect to enteric viruses. In this study, we determined the occurrence and the quantitative levels of enteric viruses and indicators in 12 MAD biosolid samples and of Salmonella enterica in 6 MAD biosolid samples. Three dewatered biosolid samples were also included in this study for purposes of comparison. Human adenoviruses (HAdV) had the highest gene levels and were detected more frequently than other enteric viruses. The gene levels of noroviruses (NV) reported were comparable to those of enteroviruses (EV) and human polyomaviruses (HPyV). The occurrence percentages of HAdV, HAdV species F, EV, NV GI, NV GII, and HPyV in MAD samples were 83, 83, 42, 50, 75, and 58%, respectively. No hepatitis A virus was detected. Infectious HAdV was detected more frequently than infectious EV, and all infectious HAdV were detected when samples were propagated in A549 cells. Based on most-probable-number (MPN) analysis, A549 cells were more susceptible to biosolid-associated viruses than BGM cells. All indicator levels in MAD biosolids were approximately 10(4) MPN or PFU per gram (dry), and the dewatered biosolids had significantly higher indicator levels than the MAD biosolids. Only two MAD samples tested positive for Salmonella enterica, where the concentration was below 1.0 MPN/4 g. This study provides a broad comparison of the prevalence of different enteric viruses in MAD biosolids and reports the first detection of noroviruses in class B biosolids. The observed high quantitative and infectivity levels of adenoviruses in MAD biosolids indicate that adenovirus is a good indicator for the evaluation of sludge treatment efficiency.
Collapse
|
50
|
Development of an RNA extraction protocol for detection of waterborne viruses by reverse transcriptase quantitative PCR (RT-qPCR). J Virol Methods 2010; 169:8-12. [PMID: 20600332 DOI: 10.1016/j.jviromet.2010.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 11/24/2022]
Abstract
RNA extraction from environmental samples yields frequently an RNA preparation containing inhibitors of molecular reactions. Commercial RNA extraction kits commonly permit extraction of only 0.1-0.2 ml sample volume. An RNA extraction buffer (RNAX buffer) was formulated for the extraction of viral RNA from 4.0 ml using a silica column based protocol. To evaluate the RNAX buffer based protocol, we used hepatitis A virus (HAV) and coxsackievirus B3 (CVB3) to monitor the RNA extraction efficiency from environmental samples. For evaluation of viral RNA recovery from water concentrates which were prepared from river and pond water by PEG concentration, serial ten fold dilutions of two waterborne viruses were added to the water concentrates for evaluation by quantitative detection. Quantitative recovery of HAV and CVB3 was determined by reverse transcriptase quantitative real-time PCR (RT-qPCR). The extracted RNA was compatible with RT-qPCR and sensitivity of detection of 0.8PFU per reaction was found with RNAX buffer and the developed protocol. This level of sensitivity was obtained using viral RNA extracted from 4.0 ml of an inoculated water sample concentrate. The RNAX buffer developed in this study could be applicable to the detection of other pathogens in water and food.
Collapse
|