1
|
Zhao Z, Yuan J, Zheng Q, Tscharke BJ, Boogaerts T, Wang Z, Chen S, O'Brien JW, van Nuijs ALN, Covaci A, Mueller J, Thai PK. Utilizing national wastewater and sales data to derive and validate the correction factors of five common antidepressants for wastewater-based epidemiology. WATER RESEARCH 2025; 276:123263. [PMID: 39983321 DOI: 10.1016/j.watres.2025.123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Monitoring antidepressant use is important for understanding mental health treatment status in populations and detecting potential misuse. Wastewater-based epidemiology (WBE) is a cost-effective approach to conduct such monitoring but requires valid correction factors (CFs) to accurately convert wastewater mass loads into consumption estimates. Most existing CFs are calculated from pharmacokinetic studies with small cohorts and are not specifically validated for WBE purposes. This study aimed to fill this knowledge gap by calibrating and validating the CFs for 5 commonly prescribed antidepressants. CFs were calibrated by dividing corresponding geo-located sales data by wastewater mass loads from 18 wastewater treatment plants in Australia for the same 3.5-year period. The refined CFs were 9.0 for fluoxetine, 6.4 for venlafaxine, and 25 for quetiapine. For the case of racemic citalopram and the pure S-enantiomer (escitalopram), individual CFs were proposed as 2.0 and 11, respectively. To validate their applicability, the new CFs were applied to independent datasets of wastewater samples collected in Belgium (2019 to 2022) and Australia (2020) and compared with sales data. The new calibrated CFs produced more accurate wastewater-based estimates of consumption for citalopram, escitalopram, fluoxetine, venlafaxine, and quetiapine, enhancing the capability of WBE in public health surveillance.
Collapse
Affiliation(s)
- Zeyang Zhao
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jingyi Yuan
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Shuo Chen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia.
| |
Collapse
|
2
|
Domingues RR, Wiltbank MC, Hernandez LL, Adcock SJJ. Prenatal treatment with the antidepressant fluoxetine on maternal and neonatal behavior in sheep. Pediatr Res 2025:10.1038/s41390-025-03799-3. [PMID: 39809853 DOI: 10.1038/s41390-025-03799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Fluoxetine is commonly prescribed to treat depression during pregnancy. We aimed to evaluate the effects of prenatal fluoxetine exposure on maternal-offspring behavior in a non-depressed sheep model. METHODS On day 119 ± 1 of a 151-day expected gestation, Hampshire ewes were randomly assigned to receive intravenous fluoxetine (10 mg/kg for the first 2 days and 5 mg/kg daily thereafter until parturition) or a control vehicle. Video was recorded of 8 fluoxetine-treated ewes and 10 control ewes for 2 h before and after parturition. RESULTS Fluoxetine did not alter dam behavior during the peripartum period, including time spent lying before the first birth, lying bout duration, probability of needing birth assistance, duration of birth assistance when provided, and time spent touching her lambs. However, in utero exposure impaired neonatal vigor as lambs spent less time standing and tended to spend less time nursing compared to unexposed lambs. CONCLUSION Neonatal behavioral impairments are consistent with those associated with fluoxetine exposure during human gestation. This effect appears to be independent of maternal behavior, which was unaffected by antidepressant use. IMPACT Lambs exposed to SSRI in utero spent less time standing and tended to spend less time nursing than control lambs, consistent with neonatal behavioral outcomes encountered in clinical practice. The reduced neonatal vigor was likely unrelated to maternal behavior, which was not altered by SSRI treatment. Non-depressed sheep models can help to elucidate the behavioral effects of antidepressant use during pregnancy to enhance health outcomes and patient care.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI, USA
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI, USA
| | - Sarah J J Adcock
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
Dadkhah M, Afshari S, Samizadegan T, Shirmard LR, Barin S. Pegylated chitosan nanoparticles of fluoxetine enhance cognitive performance and hippocampal brain derived neurotrophic factor levels in a rat model of local demyelination. Exp Gerontol 2024; 195:112533. [PMID: 39134215 DOI: 10.1016/j.exger.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tara Samizadegan
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Sajjad Barin
- Department of Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Ruiz-Santiago C, Rodríguez-Pinacho CV, Pérez-Sánchez G, Acosta-Cruz E. Effects of selective serotonin reuptake inhibitors on endocrine system (Review). Biomed Rep 2024; 21:128. [PMID: 39070109 PMCID: PMC11273194 DOI: 10.3892/br.2024.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are typically prescribed for treating major depressive disorder (MDD) due to their high efficacy. These drugs function by inhibiting the reuptake of serotonin [also termed 5-hydroxytryptamine (5-HT)], which raises the levels of 5-HT in the synaptic cleft, leading to prolonged activation of postsynaptic 5-HT receptors. Despite the therapeutic benefits of SSRIs, this mechanism of action also disturbs the neuroendocrine response. Hypothalamic-pituitary-adrenal (HPA) axis activity is strongly linked to both MDD and the response to antidepressants, owing to the intricate interplay within the serotonergic system, which regulates feeding, water intake, sexual drive, reproduction and circadian rhythms. The aim of the present review was to provide up-to-date evidence for the proposed effects of SSRIs, such as fluoxetine, citalopram, escitalopram, paroxetine, sertraline and fluvoxamine, on the endocrine system. For this purpose, the literature related to the effects of SSRIs on the endocrine system was searched using the PubMed database. According to the available literature, SSRIs may have an adverse effect on glucose metabolism, sexual function and fertility by dysregulating the function of the HPA axis, pancreas and gonads. Therefore, considering that SSRIs are often prescribed for extended periods, it is crucial to monitor the patient closely with particular attention to the function of the endocrine system.
Collapse
Affiliation(s)
- Carolina Ruiz-Santiago
- Department of Biotechnology, Faculty of Chemistry, Universidad Autónoma de Coahuila, Saltillo Coahuila 25280, México
| | | | - Gilberto Pérez-Sánchez
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñíz, México City 14370, México
| | - Erika Acosta-Cruz
- Department of Biotechnology, Faculty of Chemistry, Universidad Autónoma de Coahuila, Saltillo Coahuila 25280, México
| |
Collapse
|
5
|
Ampuero E, Luarte A, Flores FS, Soto AI, Pino C, Silva V, Erlandsen M, Concha T, Wyneken U. The multifaceted effects of fluoxetine treatment on cognitive functions. Front Pharmacol 2024; 15:1412420. [PMID: 39081952 PMCID: PMC11286485 DOI: 10.3389/fphar.2024.1412420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Fluoxetine, the prototypical selective serotonin reuptake inhibitor (SSRI), is widely used to treat major depressive disorder (MDD) and a variety of other central nervous system conditions, primarily due to its established clinical safety profile. Although its efficacy in treating depression is well-recognized, the impact of fluoxetine on cognitive functions remains inconsistent and elusive. In this review, we first examine the well-substantiated biological mechanisms underlying fluoxetine's antidepressant effects, which include serotonin reuptake inhibition and activation of TrkB receptors-key to brain-derived neurotrophic factor (BDNF) signaling. Subsequently, we delve into the cognitive side effects observed in both preclinical and clinical studies, affecting domains such as memory, attention, and executive functions. While certain studies indicate cognitive improvements in patients with underlying disorders, there is also evidence of negative effects, influenced by variables like gender, duration of treatment, age, disease pathology, and the specifics of cognitive testing. Significantly, the negative cognitive outcomes reported in preclinical research often involve healthy, non-diseased animals. This review underscores the necessity for heightened caution in fluoxetine prescription and further investigation into its potentially detrimental cognitive effects, even when used prophylactically.
Collapse
Affiliation(s)
- Estíbaliz Ampuero
- Laboratorio Neurofarmacología del Comportamiento, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| | - Alejandro Luarte
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Francisca Sofia Flores
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Antonia Ignacia Soto
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Catalina Pino
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Viviana Silva
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Macarena Erlandsen
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Teresita Concha
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
6
|
Varengue R, Delion M, De Carli E, Fournier LL, Durigneux J, Dinomais M, Van Bogaert P. Evaluation of safety of fluoxetine for cerebellar mutism syndrome in children after posterior fossa surgery. Arch Pediatr 2024; 31:231-237. [PMID: 38485568 DOI: 10.1016/j.arcped.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 05/19/2024]
Abstract
BACKGROUND Cerebellar mutism syndrome (CMS) occurs in 8-29 % of children undergoing posterior fossa tumor surgery. Its main symptoms are mutism and emotional lability. Although it is always transient, recovery time can be lengthy with long-term cognitive sequelae. There is no approved drug treatment for CMS, but some drugs are used in everyday medical practice. One of these is fluoxetine, which has been used for many years in our institution. The main objective of this study was to establish the safety profile of fluoxetine in this condition. MATERIALS AND METHODS The records of patients admitted to the pediatric intensive care unit after brain surgery at Angers University Hospital from 2010 to 2020 were reviewed. Children aged 2 years and older who underwent a posterior fossa tumor surgery and were diagnosed with CMS were included. Data on patient characteristics, prescription of fluoxetine treatment, side effects if any, and complete mutism duration were collected. RESULTS Among 246 patients admitted to the pediatric intensive care unit for brain surgery during the study period, 23 had CMS and eight were prescribed fluoxetine. No serious adverse event related to fluoxetine was reported. Complete mutism duration did not differ significantly between the fluoxetine group and the non-fluoxetine group(p = 0.22). However, the treatment was initiated after recovery from complete mutism in half of the treated patients. CONCLUSION This study suggests a positive safety profile of fluoxetine used in postoperative CMS. It does not answer the question of whether the treatment is effective for this indication. A randomized controlled trial based on a syndrome severity scale should be conducted to provide a more reliable assessment of the efficacy and safety of fluoxetine.
Collapse
Affiliation(s)
- Roxane Varengue
- Department of Neuropediatrics and Pediatric Neurosurgery, Angers University Hospital, 4 rue Larrey, 49100 Angers, France.
| | - Matthieu Delion
- Department of Neuropediatrics and Pediatric Neurosurgery, Angers University Hospital, 4 rue Larrey, 49100 Angers, France
| | - Emilie De Carli
- Pediatric oncology department, Angers University Hospital, 4 rue Larrey, 49100 Angers, France
| | - Luc Le Fournier
- Department of Neuropediatrics and Pediatric Neurosurgery, Angers University Hospital, 4 rue Larrey, 49100 Angers, France
| | - Julien Durigneux
- Department of Neuropediatrics and Pediatric Neurosurgery, Angers University Hospital, 4 rue Larrey, 49100 Angers, France; Pediatric Physical Medicine and Rehabilitation Department, Les Capucins, 11 boulevard Jean Sauvage, 49100 Angers, France
| | - Mickael Dinomais
- Pediatric Physical Medicine and Rehabilitation Department, Les Capucins, 11 boulevard Jean Sauvage, 49100 Angers, France; Laboratoire Angevin de recherche en ingénierie des systèmes (LARIS) EA7315, University of Angers, 62 avenue Notre Dame du Lac 49000, Angers, France
| | - Patrick Van Bogaert
- Department of Neuropediatrics and Pediatric Neurosurgery, Angers University Hospital, 4 rue Larrey, 49100 Angers, France; Laboratoire Angevin de recherche en ingénierie des systèmes (LARIS) EA7315, University of Angers, 62 avenue Notre Dame du Lac 49000, Angers, France
| |
Collapse
|
7
|
Zheng JY, Li XX, Liu X, Zhang CC, Sun YX, Ma YN, Wang HL, Su YA, Si TM, Li JT. Fluoxetine reverses early-life stress-induced depressive-like behaviors and region-specific alterations of monoamine transporters in female mice. Pharmacol Biochem Behav 2024; 237:173722. [PMID: 38336220 DOI: 10.1016/j.pbb.2024.173722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The sex difference that females are more vulnerable to depression than males has been recently replicated in an animal model of early-life stress (ES) called the limited bedding and nesting material (LBN) paradigm. Adopting this animal model, we have previously examined the effects of ES on monoamine transporter (MATs) expression in stress-related regions in adult female mice, and the reversal effects of a novel multimodal antidepressant, vortioxetine. In this study, replacing vortioxetine with a classical antidepressant, fluoxetine, we aimed to replicate the ES effects in adult female mice and to elucidate the commonality and differences between fluoxetine and vortioxetine. We found that systemic 30-day treatment with fluoxetine successfully reversed ES-induced depression-like behaviors (especially sucrose preference) in adult female mice. At the molecular level, we largely replicated the ES effects, such as reduced serotonin transporter (SERT) expression in the amygdala and increased norepinephrine transporter (NET) expression in the medial prefrontal cortex (mPFC) and hippocampus. Similar reversal effects of fluoxetine and vortioxetine were observed, including SERT in the amygdala and NET in the mPFC, whereas different reversal effects were observed for NET in the hippocampus and vesicular monoamine transporters expression in the nucleus accumbens. Overall, these results demonstrate the validity of the LBN paradigm to induce depression-like behaviors in female mice, highlight the involvement of region-specific MATs in ES-induced depression-like behaviors, and provide insights for further investigation of neurobiological mechanisms, treatment, and prevention associated with depression in women.
Collapse
Affiliation(s)
- Jia-Ya Zheng
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xue-Xin Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiao Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Chen-Chen Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yu-Nu Ma
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| |
Collapse
|
8
|
Li X, Feng D, Ma S, Li M, Zhao S, Tang M. Ventral hippocampus is more sensitive to fluoxetine-induced changes in extracellular 5-HT concentration, membrane 5-HT transporter level and immobility times. Neuropharmacology 2024; 242:109766. [PMID: 37858884 DOI: 10.1016/j.neuropharm.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Hippocampal responses to selective 5-HT reuptake inhibitor (SSRI) have long been studied. However, its sub-regional involvements in mediating SSRI's pharmacological effects have not been fully addressed. The current study sought to investigate neurochemical, neurobiological and neurobehavioral changes in response to direct fluoxetine perfusion into the ventral and dorsal sub-regions of the hippocampus in C57BL/6 mice. Following fluoxetine perfusion, time courses of dialysate 5-HT, 5-HT transporter (5-HTT) protein (total, membrane and cytoplasmic fractions), locomotion, and immobility times in the forced swim test (FST) and tail suspension test (TST) were determined. At baseline, 5-HT uptake efficiency assessed by the no-net-flux microdialysis, and 5-HTT protein were measured as well. Results show that fluoxetine dose-dependently increased dialysate 5-HT, lowered membrane 5-HTT protein and increased cytoplasmic fraction without changing the total level, decreased immobility times in both the FST and TST, with greater responses all detected in the ventral sub-region compared to the dorsal sub-region. Fluoxetine didn't affect locomotor activity, ruling out the possibility that fluoxetine's effects on immobility maybe due to alteration in locomotion. Besides, lower 5-HT uptake efficiency and lower membrane 5-HTT protein level were found in the ventral sub-region at baseline. Together, the sub-regional differences at baseline and in responses to fluoxetine added powerful evidence to support the existence of two distinct 5-HT sub-systems in the hippocampus, with greater changes to fluoxetine detected in the ventral sub-system.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Dan Feng
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Man Tang
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
9
|
Fan S, Guo W, Xiao D, Guan M, Liao T, Peng S, Feng A, Wang Z, Yin H, Li M, Chen J, Xiong W. Microbiota-gut-brain axis drives overeating disorders. Cell Metab 2023; 35:2011-2027.e7. [PMID: 37794596 DOI: 10.1016/j.cmet.2023.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Overeating disorders (ODs), usually stemming from dieting history and stress, remain a pervasive issue in contemporary society, with the pathological mechanisms largely unresolved. Here, we show that alterations in intestinal microbiota are responsible for the excessive intake of palatable foods in OD mice and patients with bulimia nervosa (BN). Stress combined with a history of dieting causes significant changes in the microbiota and the intestinal metabolism, which disinhibit the vagus nerve terminals in the gut and thereby lead to a subsequent hyperactivation of the gut-brain axis passing through the vagus, the solitary tract nucleus, and the paraventricular nucleus of the thalamus. The transplantation of a probiotic Faecalibacterium prausnitzii or dietary supplement of key metabolites restores the activity of the gut-to-brain pathway and thereby alleviates the OD symptoms. Thus, our study delineates how the microbiota-gut-brain axis mediates energy balance, unveils the underlying pathogenesis of the OD, and provides potential therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Fan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Dan Xiao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Mengyuan Guan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Tiepeng Liao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Airong Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Hao Yin
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230026, China.
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
10
|
Pereira CDS, Cruz JN, Ferreira MKM, Baia-da-Silva DC, Fontes-Junior EA, Lima RR. Global Research Trends and Hotspots Analysis of the Scientific Production of Amitriptyline: A Bibliometric Approach. Pharmaceuticals (Basel) 2023; 16:1047. [PMID: 37513958 PMCID: PMC10386017 DOI: 10.3390/ph16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Amitriptyline was first introduced as a medication to treat depression. Over time, this substance has been used to treat other conditions, such as gastrointestinal disorders, fibromyalgia, neuropathic pain, and analgesia, among others. However, there are no published studies that provide a broad view of the possible motivations that have led to changes in the use of amitriptyline. In this study, we have identified the landscape of use for amitriptyline based on knowledge mapping of the 100 most-cited articles about this drug. We searched Web of Science Core Collection without time and language restrictions. We obtained 14,446 results, but we only used the 100 most-cited articles that had amitriptyline as the object of study. We collected the following information from each article: authors, country of the corresponding authors, year of publication, citation count, citation density (number of citations per year), and keywords. In addition, we seek to map in the chosen articles study design and research findings. We found that since 1980, the use of amitriptyline has expanded beyond depression, moving to off-label use to treat a variety of diseases and conditions, including post-herpetic neuralgia, neuropathic pain, primary fibrosis, fibromyalgia, and migraine, can be considered a drug with more clinical applicability than its original clinical indication.
Collapse
Affiliation(s)
- Cristian Dos Santos Pereira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| | - Eneas Andrade Fontes-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém 66075-110, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University do Pará, Belém 66075-110, Brazil
| |
Collapse
|
11
|
Domingues RR, Wiltbank MC, Hernandez LL. Maternal serotonin: implications for the use of selective serotonin reuptake inhibitors during gestation†. Biol Reprod 2023; 109:17-28. [PMID: 37098165 PMCID: PMC10344603 DOI: 10.1093/biolre/ioad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Maternal use of antidepressants has increased throughout the last decades; selective serotonin reuptake inhibitors (SSRI) are the most prescribed antidepressants. Despite the widespread use of SSRI by women during reproductive age and pregnant women, an increasing amount of research warns of possible detrimental effects of maternal use of SSRI during pregnancy including low birthweight/small for gestational age and preterm birth. In this review, we revisited the impact of maternal use of SSRI during pregnancy, its impact on serotonin homeostasis in the maternal and fetal circulation and the placenta, and its impact on pregnancy outcomes-particularly intrauterine growth restriction and preterm birth. Maternal use of SSRI increases maternal and fetal serotonin. The increase in maternal circulating serotonin and serotonin signaling likely promotes vasoconstriction of the uterine and placental vascular beds decreasing blood perfusion to the uterus and consequently to the placenta and fetus with potential impact on placental function and fetal development. Several adverse pregnancy outcomes are similar between women, sheep, and rodents (decreased placental size, decreased birthweight, shorter gestation length/preterm birth, neonatal morbidity, and mortality) highlighting the importance of animal studies to assess the impacts of SSRI. Herein, we address the complex interactions between maternal SSRI use during gestation, circulating serotonin, and the regulation of blood perfusion to the uterus and fetoplacental unit, fetal growth, and pregnancy complications.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
13
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
14
|
Porwal M, Kumar A, Rastogi V, Maheshwari KK, Verma A. Odevixibat: A Review of a Bioactive Compound for the Treatment of Pruritus Approved by the FDA. Curr Drug Res Rev 2023; 16:CDRR-EPUB-130058. [PMID: 36892028 DOI: 10.2174/2589977515666230308125238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Odevixibat is synthesized through chemical modification of Benzothiazepine's structure. It is a tiny chemical that inhibits the ileal bile acid transporter and is used to treat a variety of cholestatic illnesses, including progressive familial intrahepatic cholestasis (PFIC). For cholestatic pruritus and liver disease development, bile acid transporter inhibition is a unique treatment strategy. Odevixibat reduces enteric bile acid reuptake. Oral odevixibat was also studied in children with cholestatic liver disease. Odevixibat received its first approval in the European Union (EU) in July 2021 for the treatment of PFIC in patients aged 6 months, followed by approval in the USA in August 2021 for the treatment of pruritus in PFIC patients aged 3 months. Bile acids in the distal ileum can be reabsorbed by the ileal sodium/bile acid cotransporter, a transport glycoprotein. Odevixibat is a sodium/bile acid co-transporter reversible inhibitor. An average 3 mg once-daily dose of odevixibat for a week resulted in a 56% reduction in the area under the curve of bile acid. A daily dose of 1.5 mg resulted in a 43% decrease in the area under the curve for bile acid. Odevixibat is also being evaluated in many countries for the treatment of other cholestatic illnesses, including Alagille syndrome and biliary atresia. This article reviews the updated information on odevixibat with respect to its clinical pharmacology, mechanism of action, pharmacokinetics, pharmacodynamics, metabolism, drug-drug interactions, pre-clinical studies, and clinical trials.
Collapse
Affiliation(s)
- Mayur Porwal
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, Uttar Pradesh, India
| | - Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| | | | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| |
Collapse
|
15
|
Önal HT, Yetkin D, Ayaz F. Immunostimulatory activity of fluoxetine in macrophages via regulation of the PI3K and P38 signaling pathways. Immunol Res 2022; 71:413-421. [PMID: 36512200 PMCID: PMC9745289 DOI: 10.1007/s12026-022-09350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Fluoxetine is an antidepressant drug that is heavily preferred in the cure of depression, which is from the selective serotonin reuptake inhibitor (SSRI) group. There are many reports on the effect of fluoxetine on the immune system, and its effect on the macrophage cells has never been looked at before. We aimed to demonstrate the cytokine production potential of fluoxetine antidepressant, which is widely used in the clinic, in the J774.2 cell line and its effect on PI3K and P38 pathways. The use of fluoxetine alone in J774.2 macrophage cells showed immunostimulatory properties by inducing the production of tumor necrosis factor-α (TNF-α), interleukin (IL) IL-6, IL-12p40, and granulocyte–macrophage colony-stimulating factor (GM-CSF) cytokines. It showed anti-inflammatory properties by completely stopping the production of cytokines (IL-6, IL12p40, TNF-α, and GM-CSF) at all concentrations where LPS and fluoxetine were used together. While PI3K and P38 pathways were not effective in the immunostimulatory effect in the presence of the drug agent, we found that the PI3K and P38 pathways were influenced during their anti-inflammatory activity.
Collapse
Affiliation(s)
- Harika Topal Önal
- Medical Laboratory Techniques, Vocational School of Health Services, Toros University, 33140 Mersin, Turkey
| | - Derya Yetkin
- Mersin University Advanced Technology Education Research and Application Center, Mersin University, 33110 Mersin, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, Mersin, Turkey 33110
- Mersin University Biotechnology Research and Application Center, Mersin University, 33110, Mersin, Turkey
| |
Collapse
|
16
|
Dell’Osso B, Di Nicola M, Cipelli R, Peduto I, Pugliese AC, Signorelli MS, Ventriglio A, Martinotti G. Antidepressant Prescription for Major Depressive Disorder: Results from a Population-Based Study in Italy. Curr Neuropharmacol 2022; 20:2381-2392. [PMID: 35193487 PMCID: PMC9890297 DOI: 10.2174/1570159x20666220222142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES There is limited evidence about the factors influencing antidepressant (AD) prescription for the treatment of major depressive disorder (MDD) in Real World clinical practice in Italy. In this retrospective, population-based study, we set out to describe a patient cohort initiated on AD treatment for MDD and investigate the possible predictors of different AD prescriptions in the primary care setting. METHODS Patients with a diagnosis of MDD who received an initial prescription of one of 11 selected ADs between 1-Apr-2017 and 31-Mar-2019 (index date) were identified from primary care electronic medical records in the Longitudinal Patient Database. Patients prescribed ≥1 AD in the 12 months before the index date were excluded. Results were stratified by AD molecule. Multivariable logistic regression models estimated the association between patients' demographic, clinical factors, and choice of AD molecule. RESULTS The study cohort comprised 8,823 patients (67.1% female; mean age 61.6 years). Previous AD treatments (prescribed in the 10 years before the index date) had been received by 46.6% of patients (non-naïve patients). The most commonly reported psychiatric and medical comorbidities reported in the 12 months before the index date were anxiety (8.4%) and hypertension (41.9%), respectively. Patients' age was a significant predictor of AD molecule prescribed at index date in eight of the 11 molecules investigated, while patients' gender influenced clinician prescribing bupropion, citalopram, fluoxetine, fluvoxamine, sertraline, and vortioxetine. CONCLUSION Results from this Real World study provide useful information for clinicians on the clinical factors influencing AD prescription in patients treated for MDD in primary care.
Collapse
Affiliation(s)
- Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, Milan, Italy
| | - Marco Di Nicola
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d'Annunzio” of Chieti - Pescara, Chieti, Italy
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
17
|
Waseem R, Shamsi A, Khan T, Hassan MI, Kazim SN, Shahid M, Islam A. Unraveling the Binding Mechanism of Alzheimer's Drugs with Irisin: Spectroscopic, Calorimetric, and Computational Approaches. Int J Mol Sci 2022; 23:ijms23115965. [PMID: 35682643 PMCID: PMC9180407 DOI: 10.3390/ijms23115965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The prevalence of Alzheimer’s disease (AD) has been a major health concern for a long time. Despite recent progress, there is still a strong need to develop effective disease-modifying therapies. Several drugs have already been approved to retard the progression of AD-related symptoms; however, there is a need to develop an effective carrier system for the delivery of drugs to combat such diseases. In recent years, various biological macromolecules, including proteins, have been used as carriers for drug delivery. Irisin is a beneficial hormone in such diseases, including AD and related pathologies. Herein, the interaction mechanism of irisin with AD drugs such as memantine, galantamine, and fluoxetine is investigated. Fluorescence studies revealed that the above drugs bind to irisin with significant affinity, with fluoxetine having the highest binding affinity. Isothermal titration calorimetry (ITC) complemented the spontaneous binding of these drugs with irisin, delineating various associated thermodynamic and binding parameters. Molecular docking further validated the fluorescence and ITC results and unfolded the mechanism that hydrogen bonding governs the binding of fluoxetine to irisin with a significant binding score, i.e., −6.3 kcal/mol. We believe that these findings provide a promising solution to fight against AD as well as a platform for further research to utilize irisin in the drug-delivery system for an effective therapeutic strategy.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
- Correspondence:
| |
Collapse
|
18
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Norouzi R, Zarei M, Khataee A, Ebratkhahan M, Rostamzadeh P. Electrochemical removal of fluoxetine via three mixed metal oxide anodes and carbonaceous cathodes from contaminated water. ENVIRONMENTAL RESEARCH 2022; 207:112641. [PMID: 34979125 DOI: 10.1016/j.envres.2021.112641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In this work, the fluoxetine (FLX) removal has been studied via the anodic oxidation (AO) process. Anode electrodes were Ti/RuO2, Ti/RuO2-IrO2, and Ti/RuO2-IrO2-SnO2, and cathode electrodes were graphite and carbon nanotubes (CNTs). The performances of electrodes were compared in terms of FLX removal efficiency. As a result, Ti/RuO2-IrO2-SnO2 and CNTs were the optimal anode and cathode, respectively. The properties of the optimal electrodes were investigated using scanning electron microscopy, atomic force microscopy and X-ray diffraction spectroscopy. Cyclic voltammetry analysis was performed to study the electrochemical behavior of electrodes. The effect of current intensity (mA), initial pH, initial FLX concentration (mg/L) and process time (min) on the FLX removal efficiency was investigated and the response surface methodology was applied for the optimization of the AO process. The results showed that at current intensity, pH, initial FLX concentration and process time of 500 mA, 6, 25 mg/L and 160 min, maximum FLX removal efficiency was observed, which was 96.25%. Gas Chromatography-Mass Spectrometry (GC-MS), and total organic carbon (TOC) analysis was determined to evaluate the intermediates, and mineralization efficiency. The TOC removal efficiency was reached 81.51% after 6 h under optimal experimental conditions, indicating the successful removal of the FLX.
Collapse
Affiliation(s)
- Ramin Norouzi
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| | - Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Paria Rostamzadeh
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
20
|
El Zarif T, Yibirin M, De Oliveira-Gomes D, Machaalani M, Nawfal R, Bittar G, Bahmad HF, Bitar N. Overcoming Therapy Resistance in Colon Cancer by Drug Repurposing. Cancers (Basel) 2022; 14:cancers14092105. [PMID: 35565237 PMCID: PMC9099737 DOI: 10.3390/cancers14092105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite improvements in standardized screening methods and the development of promising therapies for colorectal cancer (CRC), survival rates are still low. Drug repurposing offers an affordable solution to achieve new indications for previously approved drugs that could play a protagonist or adjuvant role in the treatment of CRC. In this review, we summarize the current data supporting drug repurposing as a feasible option for patients with CRC. Abstract Colorectal cancer (CRC) is the third most common cancer in the world. Despite improvement in standardized screening methods and the development of promising therapies, the 5-year survival rates are as low as 10% in the metastatic setting. The increasing life expectancy of the general population, higher rates of obesity, poor diet, and comorbidities contribute to the increasing trends in incidence. Drug repurposing offers an affordable solution to achieve new indications for previously approved drugs that could play a protagonist or adjuvant role in the treatment of CRC with the advantage of treating underlying comorbidities and decreasing chemotherapy toxicity. This review elaborates on the current data that supports drug repurposing as a feasible option for patients with CRC with a focus on the evidence and mechanism of action promising repurposed candidates that are widely used, including but not limited to anti-malarial, anti-helminthic, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic agents.
Collapse
Affiliation(s)
- Talal El Zarif
- Faculty of Medicine, Lebanese University, Beirut 1003, Lebanon; (T.E.Z.); (M.M.); (R.N.)
| | - Marcel Yibirin
- Internal Medicine Residency Program, Department of Medicine, Boston University Medical Center, Boston, MA 02218, USA;
| | - Diana De Oliveira-Gomes
- Department of Research, Foundation for Clinic, Public Health, and Epidemiological Research of Venezuela (FISPEVEN), Caracas 1050, Venezuela;
| | - Marc Machaalani
- Faculty of Medicine, Lebanese University, Beirut 1003, Lebanon; (T.E.Z.); (M.M.); (R.N.)
| | - Rashad Nawfal
- Faculty of Medicine, Lebanese University, Beirut 1003, Lebanon; (T.E.Z.); (M.M.); (R.N.)
| | | | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: ; Tel.: +1-786-961-0216
| | - Nizar Bitar
- Head of Hematology-Oncology Division, Sahel General Hospital, Beirut 1002, Lebanon;
- President of the Lebanese Society of Medical Oncology (LSMO), Beirut 1003, Lebanon
| |
Collapse
|
21
|
Mahdi M, Hermán L, Réthelyi JM, Bálint BL. Potential Role of the Antidepressants Fluoxetine and Fluvoxamine in the Treatment of COVID-19. Int J Mol Sci 2022; 23:3812. [PMID: 35409171 PMCID: PMC8998734 DOI: 10.3390/ijms23073812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Mapping non-canonical cellular pathways affected by approved medications can accelerate drug repurposing efforts, which are crucial in situations with a global impact such as the COVID-19 pandemic. Fluoxetine and fluvoxamine are well-established and widely-used antidepressive agents that act as serotonin reuptake inhibitors (SSRI-s). Interestingly, these drugs have been reported earlier to act as lysosomotropic agents, inhibitors of acid sphingomyelinase in the lysosomes, and as ligands of sigma-1 receptors, mechanisms that might be used to fight severe outcomes of COVID-19. In certain cases, these drugs were administered for selected COVID-19 patients because of their antidepressive effects, while in other cases, clinical studies were performed to assess the effect of these drugs on treating COVID-19 patients. Clinical studies produced promising data that encourage the further investigation of fluoxetine and fluvoxamine regarding their use in COVID-19. In this review, we summarize experimental data and the results of the performed clinical studies. We also provide an overview of previous knowledge on the tissue distribution of these drugs and by integrating this information with the published experimental results, we highlight the real opportunity of using these drugs in our fight against COVID-19.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, Bartók Béla út 2-26, 4031 Debrecen, Hungary
| | - Levente Hermán
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1083 Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1083 Budapest, Hungary
| | - Bálint László Bálint
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| |
Collapse
|
22
|
Synthesis of new halogenated flavonoid-based isoxazoles: in vitro and in silico evaluation of a-amylase inhibitory potential, a SAR analysis and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Singh K, Bhatia R, Kumar B, Singh G, Monga V. Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents. Curr Neuropharmacol 2022; 20:1329-1358. [PMID: 34727859 PMCID: PMC9881079 DOI: 10.2174/1570159x19666211102154311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy.
Collapse
Affiliation(s)
- Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda-151401, Punjab, India
| |
Collapse
|
24
|
Mao ZX, Yang X, Wang HY, Guo WJ. Case report: Chronological symptom profile after cessation of overdose zolpidem in a patient with comorbid bipolar disorder-from anxiety, craving, paresthesia and influenza-like symptoms to seizures and hallucinations. Front Psychiatry 2022; 13:962836. [PMID: 36061292 PMCID: PMC9428267 DOI: 10.3389/fpsyt.2022.962836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Insomnia is a major public health problem that determines the quality of life. Among the many causes of insomnia, psychological factors have an important influence on the process, duration of insomnia, help-seeking behavior, and treatment choice. Regarding medical treatment, zolpidem is always chosen to treat acute and transient insomnia due to its few side effects. Although some randomized controlled trials have verified its safety, zolpidem abuse and withdrawal reactions have been reported in recent years. CASE REPORT A 25-year-old unmarried man with a college degree who worked as a graphic designer was referred and admitted to the inpatient ward for a chief complaint of "alternative episodes of lowering and elevation of mood for 10 years, overdosage use of zolpidem for two years." He underwent a time-dependent withdrawal reaction after admission. It was characterized by rebound insomnia, anxiety, craving, skin paresthesia, influenza-like symptoms, tonic-clonic-type seizures, and hallucinations. At the 1-year follow-up, he did not exhibit any remaining withdrawal symptoms. DISCUSSION The acute cessation of overdosage zolpidem use causes a series of withdrawal symptoms that manifest in chronological order. Additionally, long-term benzodiazepine exposure has potential influences on zolpidem dependence/tolerance. However, patients with a history of abuse or dependence, or mental disorders seem to be at risk of drug abuse. Clinicians should be alert to the potential for zolpidem dependence and addiction. Once the acute cessation of overdosage zolpidem use occurs, the potential of the withdrawal reaction needs to be considered and addressed properly.
Collapse
Affiliation(s)
- Zi-Xin Mao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Yang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Yao Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Wan-Jun Guo
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Li H, Fernández-Guasti A, Xu Y, Swaab D. Retracted: Sexual orientation, neuropsychiatric disorders and the neurotransmitters involved. Neurosci Biobehav Rev 2021; 131:479-488. [PMID: 34597715 DOI: 10.1016/j.neubiorev.2021.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor in Chief of Neuroscience and Biobehavioral Reviews after concerns were raised with respect to the phrasing of comparisons drawn between humans and animal models. These comparisons were deemed unsupportable, and thus in the best interests of publication standards the Editor has concluded it is necessary to retract the paper. The authors disagree with the reason for the retraction.
Collapse
Affiliation(s)
- Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, the Netherlands
| | | | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, PR China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, PR China; Brain Research Institute of Zhejiang University, Hangzhou, 31003, PR China.
| | - Dick Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, the Netherlands.
| |
Collapse
|
26
|
Khan MF, Murphy CD. Bacterial degradation of the anti-depressant drug fluoxetine produces trifluoroacetic acid and fluoride ion. Appl Microbiol Biotechnol 2021; 105:9359-9369. [PMID: 34755212 DOI: 10.1007/s00253-021-11675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022]
Abstract
Fluoxetine (FLX) is a blockbuster drug with annual sales in the billions of dollars. Its widespread use has resulted in its detection in water courses, where it impacts aquatic life. Investigations on the biodegradation of FLX by microorganisms are important, since augmentation of secondary wastewater treatment by an effective degrader may be one method of improving the drug's removal. In this paper, we demonstrate that common environmental bacteria can use FLX as a sole carbon and energy source. Investigations into the metabolites formed using fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) and gas chromatography-mass spectrometry indicated that the drug was initially hydrolysed to yield 4-(trifluoromethyl)phenol (TFMP) and 3-(methylamino)-1-phenylpropan-1-ol. Since the fluorometabolite accumulated, the bacteria presumably used the latter compound for carbon and energy. Further growth studies revealed that TFMP could also be used as a sole carbon and energy source and was most likely catabolised via meta-cleavage, since semialdehyde products were detected in culture supernatants. The final products of the degradation pathway were trifluoroacetate and fluoride ion; the former is a dead-end product and was not further catabolised. Fluoride ion most likely arises owing to spontaneous defluorination of the meta-cleavage products that were shown to be photolabile.Key points• Bacteria can use FLX and TFMP as sole carbon and energy sources for their growth.• Biodegradation produces fluorometabolites that were detected by 19F NMR and GC-MS.• Trifluoroacetic acid and fluoride ion were identified as end products.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
27
|
Algethami FK, Saidi I, Abdelhamid HN, Elamin MR, Abdulkhair BY, Chrouda A, Ben Jannet H. Trifluoromethylated Flavonoid-Based Isoxazoles as Antidiabetic and Anti-Obesity Agents: Synthesis, In Vitro α-Amylase Inhibitory Activity, Molecular Docking and Structure-Activity Relationship Analysis. Molecules 2021; 26:molecules26175214. [PMID: 34500647 PMCID: PMC8434401 DOI: 10.3390/molecules26175214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus is a major health problem globally. The management of carbohydrate digestion provides an alternative treatment. Flavonoids constitute the largest group of polyphenolic compounds, produced by plants widely consumed as food and/or used for therapeutic purposes. As such, isoxazoles have attracted the attention of medicinal chemists by dint of their considerable bioactivity. Thus, the main goal of this work was to discover new hybrid molecules with properties of both flavonoids and isoxazoles in order to control carbohydrate digestion. Moreover, the trifluoromethyl group is a key entity in drug development, due to its strong lipophilicity and metabolic stability. Therefore, the present work describes the condensation of a previously synthesized trifluoromethylated flavonol with different aryl nitrile oxides, affording 13 hybrid molecules indicated as trifluoromethylated flavonoid-based isoxazoles. The structures of the obtained compounds were deduced from by 1H NMR, 13C NMR, and HRMS analysis. The 15 newly synthesized compounds inhibited the activity of α-amylase with an efficacy ranging from 64.5 ± 0.7% to 94.7 ± 1.2% at a concentration of 50 μM, and with IC50 values of 12.6 ± 0.2 μM-27.6 ± 1.1 μM. The most effective compounds in terms of efficacy and potency were 3b, 3h, 3j, and 3m. Among the new trifluoromethylated flavonoid-based isoxazoles, the compound 3b was the most effective inhibitor of α-amylase activity (PI = 94.7 ± 1.2% at 50 μM), with a potency (IC50 = 12.6 ± 0.2 μM) similar to that of the positive control acarbose (IC50 = 12.4 ± 0.1 μM). The study of the structure-activity relationship based on the molecular docking analysis showed a low binding energy, a correct mode of interaction in the active pocket of the target enzyme, and an ability to interact with the key residues of glycosidic cleavage (GLU-230 and ASP-206), explaining the inhibitory effects of α-amylase established by several derivatives.
Collapse
Affiliation(s)
- Faisal K. Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.R.E.); (B.Y.A.)
- Correspondence: (F.K.A.); (H.B.J.)
| | - Ilyes Saidi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia;
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Advanced Multifunctional Materials Laboratory, Faculty of Science, Assiut University, Assiut 71575, Egypt;
| | - Mohamed R. Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.R.E.); (B.Y.A.)
| | - Babiker Y. Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.R.E.); (B.Y.A.)
| | - Amani Chrouda
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products Team, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia;
- Correspondence: (F.K.A.); (H.B.J.)
| |
Collapse
|
28
|
He Y, Zhang H, Deng J, Cai Z, Gu M, Zhao C, Guo Y. The functions of fluoxetine and identification of fluoxetine-mediated circular RNAs and messenger RNAs in cerebral ischemic stroke. Bioengineered 2021; 12:2364-2376. [PMID: 34098829 PMCID: PMC8806530 DOI: 10.1080/21655979.2021.1935403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fluoxetine is used to improve cognition, exercise ability, depression, and neurological functions in patients with cerebral ischemic stroke. Circular RNAs (circRNAs) play important regulatory roles in multiple diseases. However, studies regarding the fluoxetine-mediated circRNA-microRNA-messenger RNA (mRNA) axis have not been conducted. This study is aim to investigate the functions of fluoxetine and identification of fluoxetine-mediated circRNAs and mRNAs in cerebral ischemic stroke. The middle cerebral artery occlusion (MCAO) rat models were successfully established at fisrt, and then rats were intraperitoneally injected with 10-mg/kg fluoxetine hydrochloride for 14 d. Afterward, the cerebral infarction area was evaluated using triphenyltetrazolium chloride staining. High-throughput sequencing was adopted to screen the differential circRNAs and mRNAs. The candidate circRNAs, mRNAs, and potential microRNAs were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). In addtion, microRNA and circRNA binding was verified using the dual-luciferase reporter assay. Results revealed that fluoxetine markedly diminished the cerebral infarction area in rats after MCAO. The circRNAs and mRNAs were differentially expressed, which includes 879 circRNAs and 815 mRNAs between sham and MCAO groups, respectively, and 958 circRNAs and 838 mRNAs between MCAO and fluoxetine groups, respectively. In which, circMap2k1 and Pidd1 expression was significantly increased in the MCAO group but suppressed after fluoxetine treatment. Moreover, circMap2k1 directly binds with miR-135b-5p. Taken together, we verified that fluoxetine could improve brain injury after cerebral ischemic stroke. Moreover, the circMap2k1/miR-135b-5p/Pidd1 axis is potentially involved in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yitao He
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hui Zhang
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jian Deng
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhili Cai
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Mei Gu
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyong Zhao
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yi Guo
- Department of Neurology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Zhou X, Yao Y, Wang C, Xu Y, Zhang W, Ma Y, Wu G. Haloamines as Bifunctional Reagents for Oxidative Aminohalogenation of Maleimides. Org Lett 2021; 23:3669-3673. [PMID: 33845578 DOI: 10.1021/acs.orglett.1c01052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented copper-catalyzed oxidative aminohalogenation of electron-deficient maleimides with secondary amines and NXS (X = Cl, Br, I) was developed, in which the N-X bonds generated in situ were used as difunctionalized reagents. The distinctive features of this multicomponent reaction include a simple green catalytic system, a spectral substrate range, and the late-stage modification of drug molecules. Most importantly, this umpolung radical cascade strategy exploits the in situ formation of N-iodoamines that enable efficient alkene aminoiodination.
Collapse
Affiliation(s)
- Xueying Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yujing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Caihong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yaling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Wenliang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
30
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
31
|
Li P, Cheng J, Gu Q, Wang P, Lin Z, Fan Q, Chen J, Wang Z. Intermediation of perceived stress between early trauma and plasma M/P ratio levels in obsessive-compulsive disorder patients. J Affect Disord 2021; 285:105-111. [PMID: 33640860 DOI: 10.1016/j.jad.2021.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study is to find the correlation among BDNF metabolism, early trauma, and current stress status of OCD patients. As well as to study the BDNF metabolism-stress related pathological mechanism in OCD development. METHODS A total of 140 participants were recruited in this study, including 64 drug-naïve OCD patients (OCDs) and 76 healthy controls (HCs). The clinical data of the subjects were measured using YBOCS, CTQ, and PSS. The plasma mBDNF and proBDNF values were measured by ELISA while the M/P ratio was calculated. RESULTS The mBDNF, proBDNF plasma levels, and M/P ratio of unmedicated OCD individuals decreased evidently comparing with HCs. Also, positive associations were found between PSS and CTQ and between CTQ and M/P ratio. The negative correlation included proBDNF and PSS as well as proBDNF and CTQ. Intermediary analysis generated by SPSS has showed that the perceived stress played a complete mediating role between early trauma and plasma M/P ratio levels, and the mediating effect was 0.043 in non-medication OCD patients. CONCLUSIONS Findings from this study suggested that early trauma experience and stress state work together in regulating BDNF metabolism level in OCD patients. The nucleus accumbens and reward loop are also pivotal in the pathogenesis of OCD.
Collapse
Affiliation(s)
- Puyu Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayue Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiumeng Gu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguang Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Palma TL, Costa MC. Anaerobic biodegradation of fluoxetine using a high-performance bacterial community. Anaerobe 2021; 68:102356. [PMID: 33766774 DOI: 10.1016/j.anaerobe.2021.102356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 01/13/2023]
Abstract
Fluoxetine (FLX), an antidepressant extensively used worldwide is considered an emerging pollutant. The present work intends to investigate for the first time the capacity of a bacterial community containing sulphate-reducing bacteria (SRB) enriched from an anaerobic sludge to biodegrade and use FLX as sole carbon source, since current literature suggests that this drug is poorly biodegraded being mainly removed by adsorption to sediments, where it persists. FLX was biodegraded under sulphate reducing conditions until reaching its lowest and reliably detectable concentration, when 20 mg/L of the drug was used as sole carbon source, while 66 ± 9% of 50 mg/L FLX was removed, after 31 days. The initial bacterial population was mainly constituted by Desulfomicrobium and Desulfovibrio whereas during the experiments using FLX as unique carbon source a clear shift occurred with the increase of vadinBC27 wastewater-sludge group, Macellibacteroidetes, Dethiosulfovibrio, Bacteroides, Tolumonas, Sulfuricurvum, f_Enterobacteriaceae_OTU_18 that are assumed for the first time as FLX degrading bacteria. Although the main mechanism of FLX removal described in literature is by adsorption, in the results herein presented anaerobic biodegradation appears to play the main role in the removal of the FLX, thus demonstrating the potentialities that the anaerobic processes can play in wastewater treatment aiming the removal of new emerging compounds.
Collapse
Affiliation(s)
- Tânia Luz Palma
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, Building 7, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, University of Algarve, Campus de Gambelas, Building 8, 8005-139, Faro, Portugal.
| | - Maria Clara Costa
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, Building 7, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, University of Algarve, Campus de Gambelas, Building 8, 8005-139, Faro, Portugal.
| |
Collapse
|
33
|
Deodhar M, Rihani SBA, Darakjian L, Turgeon J, Michaud V. Assessing the Mechanism of Fluoxetine-Mediated CYP2D6 Inhibition. Pharmaceutics 2021; 13:pharmaceutics13020148. [PMID: 33498694 PMCID: PMC7912198 DOI: 10.3390/pharmaceutics13020148] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Fluoxetine is still one of the most widely used antidepressants in the world. The drug is extensively metabolized by several cytochrome P450 (CYP450) enzymes and subjected to a myriad of CYP450-mediated drug interactions. In a multidrug regimen, preemptive mitigation of drug-drug interactions requires knowledge of fluoxetine actions on these CYP450 enzymes. The major metabolic pathway of fluoxetine leading to the formation of its active metabolite, norfluoxetine, is mediated by CYP2D6. Fluoxetine and norfluoxetine are strong affinity substrates of CYP2D6 and can inhibit, potentially through various mechanisms, the metabolism of other sensitive CYP2D6 substrates. Remarkably, fluoxetine-mediated CYP2D6 inhibition subsides long after fluoxetine first passes through the liver and even remains long after the discontinuation of the drug. Herein, we review pharmacokinetic and pharmacogenetic information to help us understand the mechanisms underlying the prolonged inhibition of CYP2D6 following fluoxetine administration. We propose that long-term inhibition of CYP2D6 is likely a result of competitive inhibition. This is due to strong affinity binding of fluoxetine and norfluoxetine to the enzyme and unbound fluoxetine and norfluoxetine levels circulating in the blood for a long period of time because of their long elimination half-life. Additionally, we describe that fluoxetine is a CYP2C9 substrate and a mechanism-based inhibitor of CYP2C19.
Collapse
Affiliation(s)
- Malavika Deodhar
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
| | - Sweilem B. Al Rihani
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
| | - Lucy Darakjian
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
- Faculty of pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
- Faculty of pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: or
| |
Collapse
|
34
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
35
|
Del Casale A, Bonanni L, Bargagna P, Novelli F, Fiaschè F, Paolini M, Forcina F, Anibaldi G, Cortese FN, Iannuccelli A, Adriani B, Brugnoli R, Girardi P, Paris J, Pompili M. Current Clinical Psychopharmacology in Borderline Personality Disorder. Curr Neuropharmacol 2021; 19:1760-1779. [PMID: 34151763 PMCID: PMC8977633 DOI: 10.2174/1570159x19666210610092958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/11/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Patients with Borderline Personality Disorder (BPD) manifest affective and behavioral symptoms causing personal distress, relationship difficulties, and reduced quality of life with global functioning impairment, mainly when the disease takes an unfavorable course. A substantial amount of healthcare costs is dedicated to addressing these issues. Many BPD patients receive medications, mostly those who do not respond to psychological interventions. OBJECTIVE Our aim was to assess the efficacy of the most used strategies of pharmacological interventions in BPD with a comprehensive overview of the field. METHODS We searched the PubMed database for papers focused on the most used psychotropic drugs for BPD. We included randomized controlled trials and open studies in adult patients with BPD, focusing on the efficacy and tolerability of single classes of drugs with respect to specific clinical presentations that may occur during the course of BPD. RESULTS Specific second-generation antipsychotics (SGAs) or serotonergic antidepressants can be effective for different core symptoms of BPD, mainly including mood symptoms, anxiety, and impulse dyscontrol. Some atypical antipsychotics can also be effective for psychotic and dissociative symptoms. Specific antiepileptics can be useful in some cases in treating different BPD symptoms, mainly including mood instability, impulsiveness, and anger. CONCLUSION No medication is currently approved for BPD, and clinicians should carefully assess the benefits and risks of drug treatment. Further studies are needed to identify specific personalized treatment strategies, also considering the clinical heterogeneity and possible comorbidities of BPD.
Collapse
Affiliation(s)
- Antonio Del Casale
- Address correspondence to this author at the Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University, Rome; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Campêlo JDM, Rodrigues TB, Costa JL, Santos JM. Optimization of QuEChERS extraction for detection and quantification of 20 antidepressants in postmortem blood samples by LC-MS/MS. Forensic Sci Int 2020; 319:110660. [PMID: 33385954 DOI: 10.1016/j.forsciint.2020.110660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
In this study, a comprehensively optimization of QuEChERS (quick, easy, cheap, effective, rugged and safe) method using design of experiments (DOE) was conducted to evaluate the best conditions to obtain the most effective extraction. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis was performed to identify and quantify the antidepressants, with electrospray ionization acquired in positive mode. The method was validated for all analytes; the calibration curves were linear from 10-1000ng/mL, with R2>0.98, and with LOD and LOQ defined as 10ng/mL. Method imprecision and bias were less than 14.3% and 18.9%, respectively. Neither carryover nor interferences were observed. Overall, the optimized method was applied in postmortem real sample analysis to quantify the antidepressants. This study showed a viable method that can be applied for routine forensic analysis, with a quick and easy sample preparation and a rapid total run time of 8min for each analysis.
Collapse
Affiliation(s)
- Jacqueline de M Campêlo
- Chemistry Department, Federal Rural University of Pernambuco, UFRPE, Recife, Pernambuco, Brazil
| | - Taís B Rodrigues
- Campinas Poison Control Center, Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Jose L Costa
- Campinas Poison Control Center, Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Jandyson M Santos
- Chemistry Department, Federal Rural University of Pernambuco, UFRPE, Recife, Pernambuco, Brazil.
| |
Collapse
|
37
|
Mustac T, Yuabov A, Macanian J, Aminov S, Fazylov D, Lulu EB, Nashed M, Albakry A, Jean-Philippe-Morisset B, Bodnar RJ. Acute d-fenfluramine, but not fluoxetine decreases sweet intake in BALB/c, C57BL/6 and SWR inbred mouse strains. Physiol Behav 2020; 224:113029. [PMID: 32590091 DOI: 10.1016/j.physbeh.2020.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
Dopamine, opioid and muscarinic receptor antagonists differentially reduce sucrose and saccharin intakes across inbred mouse strains. Whereas these systems stimulate sweet intake, serotonin signaling inhibits food intake. The present study examined whether fluoxetine (0.1-10 mg/kg) or d-fenfluramine (0.1-6 mg/kg) differentially inhibited sucrose or saccharin intake in BALB/c, C57BL/6 and SWR mice. Fluoxetine marginally altered sucrose intake in all strains. d-fenfluramine significantly, but quite similarly reduced (ID40) sucrose and saccharin intake in BALB/c (5.7 vs. 5.8 mg/kg), C57BL/6 (4.4 vs. 4.3 mg/kg) and SWR (4.6 vs. 5.6 mg/kg) mice, suggesting serotonin-induced inhibition of orosensory mechanisms in all three inbred mouse strains.
Collapse
Affiliation(s)
- Tatjana Mustac
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Asnat Yuabov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Jason Macanian
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Sonya Aminov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - David Fazylov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Eden Ben Lulu
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Mirna Nashed
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Ahmed Albakry
- Department of Psychology, Queens College, City University of New York (CUNY)
| | | | - Richard J Bodnar
- Department of Psychology, Queens College, City University of New York (CUNY); CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
38
|
Solek P, Koszla O, Mytych J, Badura J, Chelminiak Z, Cuprys M, Fraczek J, Tabecka-Lonczynska A, Koziorowski M. Neuronal life or death linked to depression treatment: the interplay between drugs and their stress-related outcomes relate to single or combined drug therapies. Apoptosis 2020; 24:773-784. [PMID: 31278507 PMCID: PMC6711955 DOI: 10.1007/s10495-019-01557-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depression is a serious medical condition, typically treated by antidepressants. Conventional monotherapy can be effective only in 60–80% of patients, thus modern psychiatry deals with the challenge of new methods development. At the same moment, interactions between antidepressants and the occurrence of potential side effects raise serious concerns, which are even more exacerbated by the lack of relevant data on exact molecular mechanisms. Therefore, the aims of the study were to provide up-to-date information on the relative mechanisms of action of single antidepressants and their combinations. In this study, we evaluated the effect of single and combined antidepressants administration on mouse hippocampal neurons after 48 and 96 h in terms of cellular and biochemical features in vitro. We show for the first time that co-treatment with amitriptyline/imipramine + fluoxetine initiates in cells adaptation mechanisms which allow cells to adjust to stress and finally exerts less toxic events than in cells treated with single antidepressants. Antidepressants treatment induces in neuronal cells oxidative and nitrosative stress, which leads to micronuclei and double-strand DNA brakes formation. At this point, two different mechanistic events are initiated in cells treated with single and combined antidepressants. Single antidepressants (amitriptyline, imipramine or fluoxetine) activate cell cycle arrest resulting in proliferation inhibition. On the other hand, treatment with combined antidepressants (amitriptyline/imipramine + fluoxetine) initiates p16-dependent cell cycle arrest, overexpression of telomere maintenance proteins and finally restoration of proliferation. In conclusion, our findings may pave the way to better understanding of the stress-related effects on neurons associated with mono- and combined therapy with antidepressants.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Oliwia Koszla
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Badura
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Zaneta Chelminiak
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Magdalena Cuprys
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Fraczek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
39
|
Francisco A, Engel DF, Figueira TR, Rogério F, de Bem AF, Castilho RF. Mitochondrial NAD(P) + Transhydrogenase is Unevenly Distributed in Different Brain Regions, and its Loss Causes Depressive-like Behavior and Motor Dysfunction in Mice. Neuroscience 2020; 440:210-229. [PMID: 32497756 DOI: 10.1016/j.neuroscience.2020.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
NAD(P)+ transhydrogenase (NNT) links redox states of the mitochondrial NAD(H) and NADP(H) via a reaction coupled to proton-motive force across the inner mitochondrial membrane. NNT is believed to be ubiquitously present in mammalian cells, but its expression may vary substantially in different tissues. The present study investigated the tissue distribution and possible roles of NNT in the mouse brain. The pons exhibited high NNT expression/activity, and immunohistochemistry revealed intense NNT labeling in neurons from brainstem nuclei. In some of these regions, neuronal NNT labeling was strongly colocalized with enzymes involved in the biosynthesis of 5-hydroxytryptamine (5-HT) and nitric oxide (NO), which directly or indirectly require NADPH. Behavioral tests were performed in mice lacking NNT activity (Nnt-/-, mice carrying the mutated NntC57BL/6J allele from the C57BL/6J strain) and the Nnt+/+ controls. Our data demonstrated that aged Nnt-/- mice (18-20 months old), but not adult mice (3-4 months old), showed an increased immobility time in the tail suspension test that was reversed by fluoxetine treatment, providing evidence of depressive-like behavior in these mice. Aged Nnt-/- mice also exhibited behavioral changes and impaired locomotor activity in the open field and rotarod tests. Despite the colocalization between NNT and NO synthase, the S-nitrosation and cGMP levels were independent of the Nnt genotype. Taken together, our results indicated that NNT is unevenly distributed throughout the brain and associated with 5-THergic and NOergic neurons. The lack of NNT led to alterations in brain functions related to mood and motor behavior/performance in aged mice.
Collapse
Affiliation(s)
- Annelise Francisco
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Daiane F Engel
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tiago R Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fábio Rogério
- Department of Anatomical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andreza F de Bem
- Department of Physiological Science, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Roger F Castilho
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
40
|
Colorimetric detection of fluoxetine using citrate-capped silver nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
41
|
Ngo DTN, Nguyen TQ, Huynh HK, Nguyen TT. Thermodynamics of selective serotonin reuptake inhibitors partitioning into 1,2-dioleoyl- sn-glycero-3-phosphocholine bilayers. RSC Adv 2020; 10:39338-39347. [PMID: 35518408 PMCID: PMC9057331 DOI: 10.1039/d0ra07367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022] Open
Abstract
Knowledge of thermodynamics of lipid membrane partitioning of amphiphilic drugs as well as their binding site within the membrane are of great relevance not only for understanding the drugs' pharmacology but also for the development and optimization of more potent drugs. In this study, the interaction between two representatives of selective serotonin reuptake inhibitors, including paroxetine and sertraline, and large unilamellar vesicles (LUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was investigated by second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) to determine the driving force of the drug partitioning across lipid membranes. It was found that temperature increase from 25 to 42 °C greatly enhanced the partitioning of paroxetine and sertraline into DOPC LUVs, and sertraline intercalated into the lipid vesicles to a greater extent than paroxetine in the temperature range examined. The partitioning of both drugs into DOPC LUVs was a spontaneous, endothermic and entropy-driven process. FTIR measurements suggested that sertraline could penetrate deeply into the acyl tails of DOPC LUVs as shown by the considerable shifts in the lipid's CH2 and C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching modes induced by the drug. Paroxetine, however, could reside closer to the head groups of the lipid since its presence caused a larger shift in the PO2− bands of DOPC LUVs. The findings reported here provide valuable insights into the influence of small molecules' chemical structure on their molecular interaction with the lipid bilayer namely their possible binding sites within the lipid bilayer and their thermodynamics profiles of partitioning, which could benefit rational drug design and drug delivery systems. Paroxetine and sertraline have the same thermodynamics profile of phospholipid bilayer partitioning but different location within the lipid bilayer.![]()
Collapse
Affiliation(s)
- Dat T. N. Ngo
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Trinh Q. Nguyen
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Hieu K. Huynh
- University of Medicine and Pharmacy at Ho Chi Minh City
- Ho Chi Minh City
- Vietnam
| | - Trang T. Nguyen
- Department of Chemical Engineering
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| |
Collapse
|
42
|
Bui E, King F, Melaragno A. Pharmacotherapy of anxiety disorders in the 21st century: A call for novel approaches. Gen Psychiatr 2019; 32:e100136. [PMID: 31922087 PMCID: PMC6936967 DOI: 10.1136/gpsych-2019-100136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
While limited advances have occurred in the past 30 years in the pharmacological management of anxiety and stress-related disorders, novel molecular pathways both within and without the monoamine systems are currently under investigation and offer promising new avenues for more effective future treatments. Enhancing psychotherapy approaches with pharmacological compounds offers the potential to not only transform the standard of care of these conditions, but more broadly would introduce a paradigm shift in the way medications and their role in psychiatric care are conceptualised. Although further human trials and more translational research are sorely needed, continuing to pursue innovative mechanisms and treatments is hoped to yield substantial results in the coming decades and a departure from the reliance on chemical agents of the 20th century.
Collapse
Affiliation(s)
- Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Franklin King
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
43
|
Major Depressive Disorder and Oxidative Stress: In Silico Investigation of Fluoxetine Activity against ROS. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major depressive disorder is a psychiatric disease having approximately a 20% lifetime prevalence in adults in the United States (U.S.), as reported by Hasin et al. in JAMA Psichiatry 2018 75, 336–346. Symptoms include low mood, anhedonia, decreased energy, alteration in appetite and weight, irritability, sleep disturbances, and cognitive deficits. Comorbidity is frequent, and patients show decreased social functioning and a high mortality rate. Environmental and genetic factors favor the development of depression, but the mechanisms by which stress negatively impacts on the brain are still not fully understood. Several recent works, mainly published during the last five years, aim at investigating the correlation between treatment with fluoxetine, a non-tricyclic antidepressant drug, and the amelioration of oxidative stress. In this work, the antioxidant activity of fluoxetine was investigated using a computational protocol based on the density functional theory approach. Particularly, the scavenging of five radicals (HO•, HOO•, CH3OO•, CH2=CHOO•, and CH3O•) was considered, focusing on hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. Thermodynamic as well as kinetic aspects are discussed, and, for completeness, two metabolites of fluoxetine and serotonin, whose extracellular concentration is enhanced by fluoxetine, are included in our analysis. Indeed, fluoxetine may act as a radical scavenger, and exhibits selectivity for HO• and CH3O•, but is inefficient toward peroxyl radicals. In contrast, the radical scavenging efficiency of serotonin, which has been demonstrated in vitro, is significant, and this supports the idea of an indirect antioxidant efficiency of fluoxetine.
Collapse
|
44
|
Vera-Chang MN, Moon TW, Trudeau VL. Cortisol disruption and transgenerational alteration in the expression of stress-related genes in zebrafish larvae following fluoxetine exposure. Toxicol Appl Pharmacol 2019; 382:114742. [PMID: 31476325 DOI: 10.1016/j.taap.2019.114742] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022]
Abstract
Fluoxetine (FLX), the active ingredient in well-known therapeutic drugs such as Prozac, is highly prescribed worldwide to treat affective disorders even among pregnant women and adolescents. Given that FLX readily crosses the placenta, a fetus from a treated pregnant woman is potentially at risk from unintended effects of the chemical. Moreover, FLX reaches aquatic ecosystems at biologically active levels through sewage release, so fish may also be inadvertently affected. We previously demonstrated that FLX exposure to environmentally- (Low FLX Lineage; LFL) and human- (High FLX Lineage; HFL) relevant concentrations during the first 6 days of life in zebrafish (ZF; Danio rerio) reduced cortisol levels in the adults (F0), an effect that persisted across 3 consecutive unexposed generations (F1 to F3). Here, we show that the transcriptional profile of selected genes in the steroidogenesis pathway in the F0 whole-larvae varied in magnitude and direction in both FLX lineages, despite the same attenuated cortisol phenotype induced by both concentrations. We also observed an up-regulation in the transcript levels of some steroidogenic-related genes and a down-regulation of a gene involved in the inactivation of cortisol in the F3 HFL larvae. These findings on the transcript levels of the selected genes in the larvae from F0 and F3 suggest that specific coping mechanism(s) are activated in descendants to attempt to counteract the disruptive effects of FLX. Our data are cause for concern, given the increasing prescription rates of FLX and other antidepressants, and the potential long-term negative impacts on humans and aquatic organisms.
Collapse
Affiliation(s)
| | - Thomas W Moon
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
45
|
Tisler S, Zindler F, Freeling F, Nödler K, Toelgyesi L, Braunbeck T, Zwiener C. Transformation Products of Fluoxetine Formed by Photodegradation in Water and Biodegradation in Zebrafish Embryos ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7400-7409. [PMID: 31136157 DOI: 10.1021/acs.est.9b00789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The present study investigates the transformation of the antidepressant fluoxetine (FLX) by photo- and biodegradation and shows similarities and differences in transformation products (TPs). TPs were identified using LC-high-resolution mass spectrometry with positive and negative electrospray ionization. In a sunlight simulator, photodegradation was carried out using ultrapure water (pH 6, 8, and 10) and surface water (pH 8) to study the effect of direct and indirect photolysis, respectively. The well-known metabolite norfluoxetine (NFLX) proved to be a minor TP in photolysis (≤2% of degraded FLX). In addition, 26 TPs were detected, which were formed by cleavage of the phenolether bond ( O-dealkylation) which primarily formed 3-(methylamino)-1-phenyl-1-propanol (TP 166) and 4-(trifluoromethyl)phenol, by hydroxylation of the benzyl moiety, by CF3 substitution to benzoic aldehyde/acid, and by adduct formation at the amine group ( N-acylation with aldehydes and carboxylic acids). Higher pH favors the neutral species of FLX and the neutral/anionic species of primary TPs and, therefore, photodegradation. In zebrafish embryos, the bioconcentration factor of FLX was found to be 110, and about 1% of FLX taken up by the embryos was transformed to NFLX. Seven metabolites known from photodegradation and formed by hydrolysis, hydroxylation, and N-acylation as well as three new metabolites formed by N-hydroxylation, N-methylation, and attachment of an amine group were identified in zebrafish embryos. The study highlights the importance of considering a broad range of TPs of FLX in fresh water systems and in ecotoxicity tests and to include TP formation in both environmental processes and metabolism in organisms.
Collapse
Affiliation(s)
- Selina Tisler
- Environmental Analytical Chemistry, ZAG , University of Tübingen , Hölderlinstrasse 12 , 72074 Tübingen , Germany
| | - Florian Zindler
- Aquatic Ecology & Toxicology , Centre for Organismal Studies, University of Heidelberg , Im Neuenheimer Feld 504, Heidelberg 69120 , Germany
| | | | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser , 76139 Karlsruhe , Germany
| | | | - Thomas Braunbeck
- Aquatic Ecology & Toxicology , Centre for Organismal Studies, University of Heidelberg , Im Neuenheimer Feld 504, Heidelberg 69120 , Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, ZAG , University of Tübingen , Hölderlinstrasse 12 , 72074 Tübingen , Germany
| |
Collapse
|
46
|
Saowapon MT, Thurbide KB. Dehydration of a Water Stationary Phase as a Novel Separation Gradient in Capillary Supercritical Fluid Chromatography. Chromatographia 2019. [DOI: 10.1007/s10337-019-03735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Synthesis of Optimized Molecularly Imprinted Polymers for the Isolation and Detection of Antidepressants via HPLC. Biomimetics (Basel) 2019; 4:biomimetics4010018. [PMID: 31105203 PMCID: PMC6477609 DOI: 10.3390/biomimetics4010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022] Open
Abstract
Antidepressants such as amitryptiline and fluoxetine are on the list of modern essential medicines of the World Health Organization. However, there are growing concerns regarding the ecological impact of these pharmaceuticals, leading to a great need to improve current wastewater treatment procedures. In this contribution, we will report on the use of molecularly imprinted polymers (MIPs) for the extraction of antidepressants in water samples. MIPs were developed for fluoxetine and duloxetine, antidepressants belonging to the class of selective serotonin reuptake inhibitors (SSRIs). The binding capacity of these microparticles was evaluated using ultraviolet–visible (UV–Vis) spectroscopy. A new high-performance liquid chromatography (HPLC) procedure coupled to UV detection was developed, which enabled the study of mixtures of fluoxetine and duloxetine with other nitrogen-containing compounds. These results indicate that it is possible to selectively extract SSRIs from complex samples. Therefore, these versatile polymers are a promising analytical tool for the clean-up of water samples, which will benefit aquatic life and reduce the ecological impact of pharmaceuticals.
Collapse
|
48
|
Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and its metabolite norfluoxetine induce microglial apoptosis. J Neurochem 2019; 148:761-778. [DOI: 10.1111/jnc.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022]
|
49
|
Meijide FJ, Da Cuña RH, Prieto JP, Dorelle LS, Babay PA, Lo Nostro FL. Effects of waterborne exposure to the antidepressant fluoxetine on swimming, shoaling and anxiety behaviours of the mosquitofish Gambusia holbrooki. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:646-655. [PMID: 30096666 DOI: 10.1016/j.ecoenv.2018.07.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Chemical pollution from pharmaceuticals is increasingly recognized as a major hazard to the aquatic biota. Among the wide variety of pharmaceuticals, fluoxetine (FLX) is one of the most widely prescribed antidepressants, and therefore, it is frequently identified in the aquatic environment. As FLX is designed to alter human behaviour and many physiological pathways are conserved across vertebrates, this drug may affect the behaviour of fish living in FLX-polluted environments. Here, we exposed groups of female mosquitofish Gambusia holbrooki to waterborne FLX for 14 days, under semi-static conditions with daily renewal of test solutions. Following exposure, we conducted a set of behavioural assays in individual fish, aimed at assessing the effects of FLX on their locomotor activity and behavioural responses. We found that FLX impaired swimming behaviour at high concentrations (25 μg/L and 50 μg/L) but not at low concentrations close to environmental levels (1 μg/L and 5 μg/L). When swimming activity was assessed 5 min after transfer of the focal fish to the testing tank, 50 μg/L FLX was the only concentration showing significant effects. However, when the same trials were performed 24 h later, 25 μg/L FLX turned out to be an effect concentration in addition to 50 μg/L. Interestingly, these concentrations would elicit fish plasma concentrations comprised within the range of human therapeutic doses. When subjected to a light/dark preference test, fish showed tendency to remain less time in the dark area at high FLX concentrations, thus suggesting an anti-anxiety response. Shoaling behaviour was not affected by FLX exposure. Our study contributes to the growing body of literature evaluating the effects of FLX on animal behaviour. Regarding the experimental design used in behavioural testing, our findings suggest that focal fish should be subjected to long habituation periods, namely of at least a few hours, in order to better assess the effects of drug exposure.
Collapse
Affiliation(s)
- Fernando J Meijide
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET-UBA, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Rodrigo H Da Cuña
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET-UBA, Ciudad Autónoma de Buenos Aires, Argentina
| | - José P Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Luciana S Dorelle
- Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET-UBA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paola A Babay
- Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, 1650 Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET-UBA, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
50
|
Szabó L, Mile V, Kiss DJ, Kovács K, Földes T, Németh T, Tóth T, Homlok R, Balogh GT, Takács E, Wojnárovits L. Applicability evaluation of advanced processes for elimination of neurophysiological activity of antidepressant fluoxetine. CHEMOSPHERE 2018; 193:489-497. [PMID: 29156334 DOI: 10.1016/j.chemosphere.2017.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Presence of the antidepressant fluoxetine in different water bodies has raised significant concerns due to its detrimental effects on non-targeted organisms, especially on fish. When seeking for an appropriate technology able to remove fluoxetine residue from a complex water matrix, special attention needs to be paid to the elimination of the neurophysiological activity that eventually lies behind the noxious effects of the parent compound. Our aim was to probe the applicability of advanced oxidation techniques for this purpose using in situ generated free radical system based on OH-initiated peroxyl radical-mediated processes. By performing product analysis experiments along with quantum chemical calculations, the most probable reaction paths were analyzed including aromatic hydroxylation, defluorination, O-dealkylation and C-dealkylation. The candidates for neurophysiological activity were further investigated by molecular docking. The hydroxylated derivatives are well accommodated in the binding pocket of the corresponding protein, suggesting that these compounds may retain the activity of the parent compound. From a worst-case perspective, we suggest that prolonged treatment needs to be applied to further transform hydroxylated derivatives.
Collapse
Affiliation(s)
- László Szabó
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary.
| | - Viktória Mile
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
| | - Dóra J Kiss
- Institute of Chemistry, Eötvös Loránd University, H-1117, Budapest, Hungary; Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117, Budapest, Hungary
| | - Krisztina Kovács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
| | - Tamás Földes
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117, Budapest, Hungary
| | - Tamás Németh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Tünde Tóth
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Renáta Homlok
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
| | - György T Balogh
- Compound Profiling Laboratory, Gedeon Richter Plc., H-1103, Budapest, Hungary
| | - Erzsébet Takács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
| | - László Wojnárovits
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
| |
Collapse
|