1
|
Abraham DJ, Black CM, Denton CP, Distler JHW, Domsic R, Feghali-Bostwick C, Gourh P, Hinchcliff M, Kolling F, Kuwana M, Lafyatis R, Landegren U, Mahoney JM, Martin J, Matucci-Cerinic M, McMahan ZH, Mora AL, Mouthon L, Rabinovitch M, Rojas M, Rubin K, Trojanowska M, Varga J, Whitfield ML, Gabrielli A, Krieg T. An international perspective on the future of systemic sclerosis research. Nat Rev Rheumatol 2025; 21:174-187. [PMID: 39953141 DOI: 10.1038/s41584-024-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Systemic sclerosis (SSc) remains a challenging and enigmatic systemic autoimmune disease, owing to its complex pathogenesis, clinical and molecular heterogeneity, and the lack of effective disease-modifying treatments. Despite a century of research in SSc, the interconnections among microvascular dysfunction, autoimmune phenomena and tissue fibrosis in SSc remain unclear. The absence of validated biomarkers and reliable animal models complicates diagnosis and treatment, contributing to high morbidity and mortality. Advances in the past 5 years, such as single-cell RNA sequencing, next-generation sequencing, spatial biology, transcriptomics, genomics, proteomics, metabolomics, microbiome profiling and artificial intelligence, offer new avenues for identifying the early pathogenetic events that, once treated, could change the clinical history of SSc. Collaborative global efforts to integrate these approaches are crucial to developing a comprehensive, mechanistic understanding and enabling personalized therapies. Challenges include disease classification, clinical heterogeneity and the establishment of robust biomarkers for disease activity and progression. Innovative clinical trial designs and patient-centred approaches are essential for developing effective treatments. Emerging therapies, including cell-based and fibroblast-targeting treatments, show promise. Global cooperation, standardized protocols and interdisciplinary research are vital for advancing SSc research and improving patient outcomes. The integration of advanced research techniques holds the potential for important breakthroughs in the diagnosis, treatment and care of individuals with SSc.
Collapse
Affiliation(s)
- David J Abraham
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK.
| | - Carol M Black
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK
| | - Christopher P Denton
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Robyn Domsic
- Division of Rheumatology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Pravitt Gourh
- Scleroderma Genomics and Health Disparities Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Monique Hinchcliff
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fred Kolling
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology. Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology. University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Research programme: Molecular Tools and Functional Genomics, Uppsala University, Uppsala, Sweden
| | | | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases and Inflammation, fibrosis and aging Initiative, IRCCS Ospedle San Raffaele and Vita Salute University San Raffaele, Milan, Italy
| | - Zsuzsanna H McMahan
- Department of Internal Medicine, Division of Rheumatology, UTHealth Houston, Houston, TX, USA
| | - Ana L Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Luc Mouthon
- Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune and Auto-Inflammatory diseases in Île-de-France, East and West, Cochin Hospital, Public Assistance-Hospitals of Paris, Paris-Centre, Paris Cité University, Paris, France
| | - Marlene Rabinovitch
- Department of Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristofer Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Trojanowska
- Boston University, Department of Medicine, Arthritis & Autoimmune Diseases Research Center, Boston, MA, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Armando Gabrielli
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany.
- Foundation of Molecular Medicine and Cellular Therapy Polytechnic University of Marche, Via Tronto, Ancona, Italy.
| | - Thomas Krieg
- Translational Matrix Biology, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Ojeh N, Vecin NM, Pastar I, Volk SW, Wilgus T, Griffiths S, Ramey‐Ward AN, Driver VR, DiPietro LA, Gould LJ, Tomic‐Canic M. The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines. Wound Repair Regen 2025; 33:e13232. [PMID: 39639458 PMCID: PMC11621255 DOI: 10.1111/wrr.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Preclinical studies for wound healing disorders are an essential step in translating discoveries into therapies. Also, they are an integral component of initial safety screening and gaining mechanistic insights using an in vivo approach. Given the complexity of the wound healing process, existing guidelines for animal testing do not capture key information due to the inevitable variability in experimental design. Variations in study interpretation are increased by complexities associated with wound aetiology, wounding procedure, multiple treatment conditions, wound assessment, and analysis, as well as lack of acknowledgement of limitation of the model used. Yet, no standards exist to guide reporting crucial experimental information required to interpret results in translational studies of wound healing. Consistency in reporting allows transparency, comparative, and meta-analysis studies and avoids repetition and redundancy. Therefore, there is a critical and unmet need to standardise reporting for preclinical wound studies. To aid in reporting experimental conditions, The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines have now been created by the authors working with the Wound Care Collaborative Community (WCCC) GAPS group to provide a checklist and reporting template for the most frequently used preclinical models in support of development for human clinical trials for wound healing disorders. It is anticipated that the WRAHPS Guidelines will standardise comprehensive methods for reporting in scientific manuscripts and the wound healing field overall. This article is not intended to address regulatory requirements but is intended to provide general guidelines on important scientific considerations for such studies.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Preclinical and Health Sciences, Faculty of Medical SciencesThe University of the West IndiesBridgetownBarbados
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Traci Wilgus
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Vickie R. Driver
- School of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue RegenerationUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lisa J. Gould
- South Shore Hospital Center for Wound HealingWeymouthMassachusettsUSA
| | - Marjana Tomic‐Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
3
|
Baker Frost D, Savchenko A, Takamura N, Wolf B, Fierkens R, King K, Feghali-Bostwick C. A Positive Feedback Loop Exists between Estradiol and IL-6 and Contributes to Dermal Fibrosis. Int J Mol Sci 2024; 25:7227. [PMID: 39000334 PMCID: PMC11241801 DOI: 10.3390/ijms25137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| | - Alisa Savchenko
- College of Osteopathic Medicine, Rocky Vista University, 4130 Rocky Vista Way, Billings, MT 59106, USA;
| | - Naoko Takamura
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Room 305F, Charleston, SC 29425, USA;
| | - Roselyn Fierkens
- Barabara Davis Center, Department of Pediatrics, University of Colorado, School of Medicine, M20-3201N, 1775 Aurora Court, Aurora, CO 80045, USA;
| | - Kimberly King
- School of Medicine, Morehouse College, 720 Westview Drive, Atlanta, GA 30310, USA;
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| |
Collapse
|
4
|
Baker Frost D, Savchenko A, Feghali-Bostwick C, Wolf B. The Relationship between Time, Race, and Estrogen Receptor Alpha in Estradiol-Induced Dermal Fibrosis. Biomedicines 2024; 12:182. [PMID: 38255287 PMCID: PMC10813671 DOI: 10.3390/biomedicines12010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
In the skin, estradiol (E2) promotes profibrotic and proinflammatory cytokines, contributing to extracellular matrix (ECM) deposition. However, the magnitude of the response differs. Using the human skin organ culture model, we evaluated donor characteristics and correlations that contribute to E2-induced interleukin-6 (IL-6), transforming growth factor beta 1 and 2 (TGFB1 and TGFB2), collagen IA2 (Col IA2), collagen IIIA1 (Col IIIA1), and fibronectin (FN) expressions. In vehicle- and E2-treated dermal skin tissue transcripts, we confirm differences in the magnitude; however, there were positive correlations between profibrotic mediators and ECM components 48 h after E2 treatment. Also, positive correlations exist between baseline and E2-induced TGFB1, IL-6, Col IIIA1, and FN transcripts. Since estrogen receptor alpha (ERA) can propagate E2's signal, we measured and detected differences in its baseline and fold change transcript levels, with a significant decline in baseline levels 48 h after incubation and an increase 48 h after E2 treatment. There was a trend to higher transcript levels in African American donors 24 h earlier. Finally, E2-induced ERA transcript levels negatively correlated with its own baseline levels and positively correlated with FN, TGFB1, and Col IA2 transcript levels. Therefore, our data suggest ERA, E2 exposure time, and race/ethnicity contribute to E2-induced dermal fibrosis.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (D.B.F.); (C.F.-B.)
| | - Alisa Savchenko
- Chobanian & Avedisian School of Medicine, Boston University, 72 E. Concord Street, Boston, MA 02118, USA;
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (D.B.F.); (C.F.-B.)
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Room 305F, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Wang Z, Wu Z, Wang H, Feng R, Wang G, Li M, Wang SY, Chen X, Su Y, Wang J, Zhang W, Bao Y, Lan Z, Song Z, Wang Y, Luo X, Zhao L, Hou A, Tian S, Gao H, Miao W, Liu Y, Wang H, Yin C, Ji ZL, Feng M, Liu H, Diao L, Amit I, Chen Y, Zeng Y, Ginhoux F, Wu X, Zhu Y, Li H. An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development. Cell 2023; 186:4454-4471.e19. [PMID: 37703875 DOI: 10.1016/j.cell.2023.08.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/26/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.
Collapse
Affiliation(s)
- Zeshuai Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhisheng Wu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Hao Wang
- Maternal Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Ruoqing Feng
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, China; Shanghai Qi Zhi Institute, Shanghai, China.
| | - Muxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Shuang-Yin Wang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaoyan Chen
- Maternal Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yiyi Su
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weiwen Zhang
- Department of Gynaecology & Obstetrics, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yuzhou Bao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Zhenwei Lan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Zhuo Song
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Maternal Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yiheng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianyang Luo
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lingyu Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Graduate School of Peking Union Medical College, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Hou
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Shuye Tian
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongliang Gao
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Wenbin Miao
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Yingyu Liu
- Maternal Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Huilin Wang
- Maternal Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Cui Yin
- Department of Gynaecology & Obstetrics, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkun Liu
- Jinxin Fertility Group Limited, Chengdu, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China; Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| | - Xueqing Wu
- Department of Gynaecology & Obstetrics, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Yuanfang Zhu
- Maternal Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China.
| | - Hanjie Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
6
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
7
|
Low Baseline Expression of Fibrotic Genes in an Ex Vivo Human Skin Model is a Potential Indicator of Excessive Skin Scarring. Plast Reconstr Surg Glob Open 2022; 10:e4626. [PMID: 36389611 PMCID: PMC9653186 DOI: 10.1097/gox.0000000000004626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
UNLABELLED One of the challenges plastic surgeons face is the unpredictability of postoperative scarring. The variability of wound healing and subsequent scar formation across patients makes it virtually impossible to predict if a patient's surgery will result in excessive fibrosis and scarring, possibly amounting to keloids or hypertrophic scars. There is a need to find predictive molecular indicators of patients or skin location with high risk of excessive scarring. We hypothesized that baseline expression levels of fibrotic genes in the skin can serve as a potential indicator of excessive scarring. METHODS An ex vivo model of skin fibrosis was used with abdominal and breast skin tissue from 45 patients undergoing breast reduction and/or abdominoplasty. Fibrosis was induced in skin explants in organ culture with transforming growth factor-β (TFGβ). Fibrotic gene response was assessed via quantitative real-time polymerase chain reaction and correlated with skin location, age, and baseline levels of fibrotic genes. RESULTS The increase in TFGβ-induced fibronectin1 (FN1) gene expression in skin explants was significantly higher than for Collagen 1A1, alpha smooth muscle actin, and connective tissue growth factor. Also, FN1 expression positively correlated with donor age. Moreover, lower expression of the fibrotic genes FN1, Collagen 1A1, and alpha smooth muscle actin correlated with a more pronounced fibrotic response, represented by higher induction levels of these genes. CONCLUSIONS Skin sites exhibit different baseline levels of profibrotic genes. Further, low baseline expression levels of fibrotic genes FN1, Collagen 1A1, and alpha smooth muscle actin, in donor skin may indicate a potential for excessive scarring of the skin.
Collapse
|
8
|
Elevated Serum IGFBP-2 and CTGF Levels Are Associated with Disease Activity in Patients with Dermatomyositis. DISEASE MARKERS 2022; 2022:9223883. [PMID: 35356065 PMCID: PMC8958080 DOI: 10.1155/2022/9223883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
Background. Insulin-like growth factor-binding proteins (IGFBPs) and connective tissue growth factor (CTGF) participate in angiogenesis. Dermatomyositis (DM) is characterized by microvasculopathy-derived skin lesions. Here, we investigated the clinical significance of serum IGFBP and CTGF levels in DM patients. Methods. In this study, 65 DM patients and 30 healthy controls were enrolled. Serum IGFBP and CTGF levels were examined by ELISA, and their correlation with clinical and laboratory findings was analyzed by Spearman’s correlation. Results. Serum IGFBP-2, IGFBP-4, and CTGF levels were higher in DM patients than in healthy controls (median (quartile): 258.9 (176.4–326.1) ng/mL vs. 167.7 (116.1–209.4) ng/mL,
; 450.4 (327.3–631.8) ng/mL vs. 392.2 (339.0–480.2) ng/mL,
; and 45.71 (38.54–57.45) ng/mL vs. 35.52 (30.23–41.52) ng/mL,
, respectively). IGFBP-2 and CTGF levels were positively correlated with cutaneous (
,
and
,
, respectively) and global (
,
and
,
, respectively) disease activity in DM patients. Conclusion. Serum IGFBP-2 and CTGF levels were increased in patients with DM and correlated with cutaneous and global disease activity.
Collapse
|
9
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
10
|
Baker Frost D, Savchenko A, Ogunleye A, Armstrong M, Feghali-Bostwick C. Elucidating the cellular mechanism for E2-induced dermal fibrosis. Arthritis Res Ther 2021; 23:68. [PMID: 33640015 PMCID: PMC7913437 DOI: 10.1186/s13075-021-02441-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both TGFβ and estradiol (E2), a form of estrogen, are pro-fibrotic in the skin. In the connective tissue disease, systemic sclerosis (SSc), both TGFβ and E2 are likely pathogenic. Yet the regulation of TGFβ in E2-induced dermal fibrosis remains ill-defined. Elucidating those regulatory mechanisms will improve the understanding of fibrotic disease pathogenesis and set the stage for developing potential therapeutics. Using E2-stimulated primary human dermal fibroblasts in vitro and human skin tissue ex vivo, we identified the important regulatory proteins for TGFβ and investigated the extracellular matrix (ECM) components that are directly stimulated by E2-induced TGFβ signaling. METHODS We used primary human dermal fibroblasts in vitro and human skin tissue ex vivo stimulated with E2 or vehicle (ethanol) to measure TGFβ1 and TGFβ2 levels using quantitative PCR (qPCR). To identify the necessary cell signaling proteins in E2-induced TGFβ1 and TGFβ2 transcription, human dermal fibroblasts were pre-treated with an inhibitor of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126. Finally, human skin tissue ex vivo was pre-treated with SB-431542, a TGFβ receptor inhibitor, and ICI 182,780, an estrogen receptor α (ERα) inhibitor, to establish the effects of TGFβ and ERα signaling on E2-induced collagen 22A1 (Col22A1) transcription. RESULTS We found that expression of TGFβ1, TGFβ2, and Col22A1, a TGFβ-responsive gene, is induced in response to E2 stimulation. Mechanistically, Col22A1 induction was blocked by SB-431542 and ICI 182,780 despite E2 stimulation. Additionally, inhibiting E2-induced ERK/MAPK activation and early growth response 1 (EGR1) transcription prevents the E2-induced increase in TGFβ1 and TGFβ2 transcription and translation. CONCLUSIONS We conclude that E2-induced dermal fibrosis occurs in part through induction of TGFβ1, 2, and Col22A1, which is regulated through EGR1 and the MAPK pathway. Thus, blocking estrogen signaling and/or production may be a novel therapeutic option in pro-fibrotic diseases.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA.
| | - Alisa Savchenko
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA
| | - Adeyemi Ogunleye
- Division of Plastic Surgery, University of North Carolina, Chapel Hill, USA
| | - Milton Armstrong
- Department of Surgery, Division of Plastic Surgery, Medical University of South Carolina, Charleston, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
11
|
Nguyen XX, Sanderson M, Helke K, Feghali-Bostwick C. Phenotypic Characterization of Transgenic Mice Expressing Human IGFBP-5. Int J Mol Sci 2020; 22:ijms22010335. [PMID: 33396956 PMCID: PMC7795366 DOI: 10.3390/ijms22010335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/29/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding protein-5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF lung tissues. In this study, we investigated the functional role of IGFBP-5 in the development of fibrosis in vivo using a transgenic model. We generated transgenic mice ubiquitously expressing human IGFBP-5 using CRISPR/Cas9 knock-in. Our data show that the heterozygous and homozygous mice are viable and express human IGFBP-5 (hIGFBP-5). Transgenic mice had increased expression of extracellular matrix (ECM) genes, especially Col3a1, Fn, and Lox in lung and skin tissues of mice expressing higher transgene levels. Histologic analysis of the skin tissues showed increased dermal thickness, and the lung histology showed subtle changes in the heterozygous and homozygous mice as compared with the wild-type mice. These changes were more pronounced in animals expressing higher levels of hIGFBP-5. Bleomycin increased ECM gene expression in wild-type mice and accentuated an increase in ECM gene expression in transgenic mice, suggesting that transgene expression exacerbated bleomycin-induced pulmonary fibrosis. Primary lung fibroblasts cultured from lung tissues of homozygous transgenic mice showed significant increases in ECM gene expression and protein levels, further supporting the observation that IGFBP-5 resulted in a fibrotic phenotype in fibroblasts. In summary, transgenic mice expressing human IGFBP-5 could serve as a useful animal model for examining the function of IGFBP-5 in vivo.
Collapse
Affiliation(s)
- Xinh-Xinh Nguyen
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (X.-X.N.); (M.S.)
| | - Matthew Sanderson
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (X.-X.N.); (M.S.)
| | - Kristi Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (X.-X.N.); (M.S.)
- Correspondence: ; Tel.: +1-843-876-2315
| |
Collapse
|
12
|
Mlakar L, Lane J, Takihara T, Lim C, Sprachman MM, Lloyd KR, Wipf P, Feghali-Bostwick C. Oxetanyl Sulfoxide MMS-350 Ameliorates Pulmonary Fibrosis In Vitro, In Vivo, and Ex Vivo. ACS Med Chem Lett 2020; 11:2312-2317. [PMID: 33214846 DOI: 10.1021/acsmedchemlett.0c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a common feature of several diseases, involves different organs, and results in significant morbidity and mortality. There are currently no effective therapies to halt the progression of fibrosis or reverse it. We have identified the highly water-soluble MMS-350, a novel bis-oxetanyl sulfoxide, as an antifibrotic agent. MMS-350 reduced the profibrotic phenotype induced in vitro in primary human fibroblasts and ameliorated bleomycin-induced pulmonary fibrosis in vivo. Furthermore, MMS-350 reversed fibrosis in human skin in organ culture. MMS-350 reduced levels of extracellular matrix proteins, the activation of fibroblasts, and the induction of pro-fibrotic factors. Similar effects at lower concentrations were observed with KRL507-031 and CL-613-091, two more lipophilic MMS-350 analogues. The fact that MMS-350 was effective at reducing pulmonary fibrosis induced by different triggers, the differential biological effects of its close structural analogues and its oral availability make it an attractive therapeutic candidate for organ fibrosis.
Collapse
Affiliation(s)
- Logan Mlakar
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jessica Lane
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Takahisa Takihara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Chaemin Lim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melissa M Sprachman
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kayla R Lloyd
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
13
|
Tran-Nguyen TK, Xue J, Feghali-Bostwick C, Sciurba FC, Kass DJ, Duncan SR. CD70 Activation Decreases Pulmonary Fibroblast Production of Extracellular Matrix Proteins. Am J Respir Cell Mol Biol 2020; 63:255-265. [PMID: 32320626 DOI: 10.1165/rcmb.2019-0450oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal, medically refractory syndrome characterized by intrapulmonary accumulations of extracellular matrix (ECM) proteins produced by fibroblasts. Activation, clonal expansion, and differentiation of lymphocytes are also frequently present in IPF. Activated T cells are known to exert several effects that promote ECM production, but opposing homeostatic actions, wherein T cells can inhibit fibrosis, are less well understood. We found that CD27, a TNF receptor ubiquitously expressed on naive T cells, is downregulated on CD4 T cells of patients with IPF and that CD70, the sole ligand for CD27, is present on human pulmonary fibroblasts. We hypothesized that cognate engagements between lymphocyte CD27 and fibroblast CD70 could have functional consequences. Accordingly, a series of subsequent studies were conducted to examine the possible role of CD27-CD70 interactions in the regulation of fibrogenesis. Using IB, flow cytometry, RT-PCR, and kinomic assays, we found that fibroblast CD70 expression was inversely correlated with cell density and upregulated by TGF-β1 (transforming growth factor-β1). CD70 agonists, including T-cell-derived soluble CD27, markedly diminished fibroblast collagen and fibronectin synthesis, and these effects were potent enough to also inhibit profibrotic actions of TGF-β1 on ECM production in vitro and in two distinct ex vivo human skin models. CD70 activation was mediated by AKT (protein kinase B) and complex interconnected signaling pathways, and it was abated by prior CD70 knockdown. These results show that the CD70-CD27 axis modulates T-cell-fibroblast interactions and may be an important regulator of fibrosis and wound healing. Fibroblast CD70 could also be a novel target for specific mechanistically based antifibrosis treatments.
Collapse
Affiliation(s)
- Thi K Tran-Nguyen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianmin Xue
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Frank C Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Daniel J Kass
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Steven R Duncan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Nguyen XX, Nishimoto T, Takihara T, Mlakar L, Bradshaw AD, Feghali-Bostwick C. Lysyl oxidase directly contributes to extracellular matrix production and fibrosis in systemic sclerosis. Am J Physiol Lung Cell Mol Physiol 2020; 320:L29-L40. [PMID: 33026236 DOI: 10.1152/ajplung.00173.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Lysyl oxidase (LOX) is a copper-dependent amine oxidase whose primary function is the covalent crosslinking of collagens in the extracellular matrix (ECM). We investigated the role of LOX in the pathophysiology of SSc. LOX mRNA and protein levels were increased in lung fibroblasts of SSc patients compared with healthy controls and IPF patients. In vivo, bleomycin induced LOX mRNA expression in lung tissues, and LOX activity increased in the circulation of mice with pulmonary fibrosis, suggesting that circulating LOX parallels levels in lung tissues. Circulating levels of LOX were reduced upon amelioration of fibrosis with an antifibrotic peptide. LOX induced ECM production at the transcriptional level in lung fibroblasts, human lungs, and human skin maintained in organ culture. In vivo, LOX synergistically exacerbated fibrosis in bleomycin-treated mice. Further, LOX increased the production of interleukin (IL)-6, and the increase was mediated by LOX-induced c-Fos expression, the nuclear localization of c-Fos, and its engagement with the IL-6 promoter region. Our findings demonstrate that LOX expression and activity correlate with fibrosis in vitro, ex vivo, and in vivo. LOX induced ECM production via upregulation of IL-6 and nuclear localization of c-Fos. Thus, LOX has a direct pathogenic role in SSc-associated fibrosis that is independent of its crosslinking function. Our findings also suggest that measuring circulating LOX levels and activity can be used for monitoring response to antifibrotic therapy.
Collapse
Affiliation(s)
- Xinh-Xinh Nguyen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Tetsuya Nishimoto
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Takahisa Takihara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Logan Mlakar
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Li X, Fang Y, Jiang D, Dong Y, Liu Y, Zhang S, Guo J, Qi C, Zhao C, Jiang F, Jin Y, Geng J, Yang C, Zhang H, Wei B, Liang J, Wang C, Dai H, Zhou H, Jiang D, Ning W. Targeting FSTL1 for Multiple Fibrotic and Systemic Autoimmune Diseases. Mol Ther 2020; 29:347-364. [PMID: 33007201 DOI: 10.1016/j.ymthe.2020.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/31/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Follistatin-like 1 (FSTL1) is a matricellular protein that is upregulated during development and disease, including idiopathic pulmonary fibrosis (IPF), keloid, and arthritis. The profibrotic and pro-inflammatory roles of FSTL1 have been intensively studied during the last several years, as well as in this report. We screened and identified epitope-specific monoclonal neutralizing antibodies (nAbs) to functionally block FSTL1. FSTL1 nAbs attenuated bleomycin-induced pulmonary and dermal fibrosis in vivo and transforming growth factor (TGF)-β1-induced dermal fibrosis ex vivo in human skin. In addition, FSTL1 nAbs significantly reduced existing lung fibrosis and skin fibrosis in experimental models. FSTL1 nAbs exerted their potent antifibrotic effects via reduced TGF-β1 responsiveness and subsequent myofibroblast activation and extracellular matrix production. We also observed that FSTL1 nAbs attenuated the severity of collagen-induced arthritis in mice, which was accompanied by reduced inflammatory responses in vitro. Our findings suggest that FSTL1 nAbs are a promising new therapeutic strategy for the treatment of multiple organ fibrosis and systemic autoimmune diseases.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Yinshan Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yingying Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Yingying Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Si Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Jiasen Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Chenjing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Fangxin Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Yueyue Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Bin Wei
- Department of Surgery, Hospital of Beijing Armed Police Corps, Beijing 100027, China
| | - Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China.
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Aoki M, Matsumoto NM, Dohi T, Kuwahawa H, Akaishi S, Okubo Y, Ogawa R, Yamamoto H, Takabe K. Direct Delivery of Apatite Nanoparticle-Encapsulated siRNA Targeting TIMP-1 for Intractable Abnormal Scars. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:50-61. [PMID: 32911344 PMCID: PMC7486579 DOI: 10.1016/j.omtn.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Hypertrophic scars (HSs) and keloids are histologically characterized by excessive extracellular matrix (ECM) deposition. ECM deposition depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). TIMP-1 has been linked to ECM degradation and is therefore a promising therapeutic strategy. In this study, we generated super carbonate apatite (sCA) nanoparticle-encapsulated TIMP-1 small interfering RNA (siRNA) (siTIMP1) preparations and examined the effect of local injections on mouse HSs and on ex vivo-cultured keloids. The sCA-siTIMP1 injections significantly reduced scar formation, scar cross-sectional areas, collagen densities, and collagen types I and III levels in the lesions. None of the mice died or exhibited abnormal endpoints. Apatite accumulation was not detected in the other organs. In an ex vivo keloid tissue culture system, sCA-siTIMP1 injections reduced the thickness and complexity of collagen bundles. Our results showed that topical sCA-siTIMP1 injections during mechanical stress-induced HS development reduced scar size. When keloids were injected three times with sCA-siTIMP1 during 6 days, keloidal collagen levels decreased substantially. Accordingly, sCA-siRNA delivery may be an effective approach for keloid treatment, and further investigations are needed to enable its practical use.
Collapse
Affiliation(s)
- Masayo Aoki
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.
| | - Noriko M Matsumoto
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Teruyuki Dohi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Hiroaki Kuwahawa
- Department of Plastic and Reconstructive Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
| | - Satoshi Akaishi
- Department of Plastic and Reconstructive Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
| | - Yuri Okubo
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | | | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
17
|
Renaud L, da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients With Pulmonary Fibrosis. Front Immunol 2020; 11:383. [PMID: 32210969 PMCID: PMC7075854 DOI: 10.3389/fimmu.2020.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Scleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis (IPF) are two of many chronic fibroproliferative diseases that are responsible for nearly 45% of all deaths in developed countries. While sharing several pathobiological characteristics, they also have very distinct features. Currently no effective anti-fibrotic treatments exist that can halt the progression of PF or reverse it. Our goal is to uncover potential gene targets for the development of anti-fibrotic therapies efficacious in both diseases, and those specific to SSc-PF, by identifying universal pathways and molecules driving fibrosis in SSc-PF and IPF tissues as well as those unique to SSc-PF. Using DNA microarray data, a meta-analysis of the differentially expressed (DE) genes in SSc-PF and IPF lung tissues (diseased vs. normal) was performed followed by a full systems level analysis of the common and unique transcriptomic signatures obtained. Protein-protein interaction networks were generated to identify hub proteins and explore the data using the centrality principle. Our results suggest that therapeutic strategies targeting IL6 trans-signaling, IGFBP2, IGFL2, and the coagulation cascade may be efficacious in both SSc-PF and IPF. Further, our data suggest that the expression of matrikine-producing collagens is also perturbed in PF. Lastly, an overall perturbation of bioenergetics, specifically between glycolysis and fatty acid metabolism, was uncovered in SSc-PF. Our findings provide insights into potential targets for the development of anti-fibrotic therapies that could be effective in both IPF and SSc-PF.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
18
|
Matei AE, Chen CW, Kiesewetter L, Györfi AH, Li YN, Trinh-Minh T, Xu X, Tran Manh C, van Kuppevelt T, Hansmann J, Jüngel A, Schett G, Groeber-Becker F, Distler JHW. Vascularised human skin equivalents as a novel in vitro model of skin fibrosis and platform for testing of antifibrotic drugs. Ann Rheum Dis 2019; 78:1686-1692. [PMID: 31540936 DOI: 10.1136/annrheumdis-2019-216108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Fibrosis is a complex pathophysiological process involving interplay between multiple cell types. Experimental modelling of fibrosis is essential for the understanding of its pathogenesis and for testing of putative antifibrotic drugs. However, most current models employ either phylogenetically distant species or rely on human cells cultured in an artificial environment. Here we evaluated the potential of vascularised in vitro human skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs. METHODS Skin equivalents were assembled on a three-dimensional extracellular matrix by sequential seeding of endothelial cells, fibroblasts and keratinocytes. Fibrotic transformation on exposure to transforming growth factor-β (TGFβ) and response to treatment with nintedanib as an established antifibrotic agent were evaluated by quantitative polymerase chain reaction (qPCR), capillary Western immunoassay, immunostaining and histology. RESULTS Skin equivalents perfused at a physiological pressure formed a mature, polarised epidermis, a stratified dermis and a functional vessel system. Exposure of these models to TGFβ recapitulated key features of SSc skin with activation of TGFβ pathways, fibroblast to myofibroblast transition, increased release of collagen and excessive deposition of extracellular matrix. Treatment with the antifibrotic agent nintedanib ameliorated this fibrotic transformation. CONCLUSION Our data provide evidence that vascularised skin equivalents can replicate key features of fibrotic skin and may serve as a platform for evaluation of antifibrotic drugs in a pathophysiologically relevant human setting.
Collapse
Affiliation(s)
- Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Lisa Kiesewetter
- Translational Center Würzburg, Fraunhofer Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Xiaohan Xu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Cuong Tran Manh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Toin van Kuppevelt
- Radboud Institute for Molecular Life Sciences, Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hansmann
- Translational Center Würzburg, Fraunhofer Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
- University for Applied Sciences Würzburg-Schweinfurt, Wurzburg, Germany
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zurich/Zurich Center of Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Florian Groeber-Becker
- Translational Center Würzburg, Fraunhofer Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Garrett SM, Zhao Q, Feghali-Bostwick C. Induction of a Th17 Phenotype in Human Skin-A Mimic of Dermal Inflammatory Diseases. Methods Protoc 2019; 2:mps2020045. [PMID: 31164624 PMCID: PMC6632176 DOI: 10.3390/mps2020045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023] Open
Abstract
Th17 cells are a subset of effector T helper cells that produce interleukin (IL)-17A, IL-17F, IL-22, and IL-26, which can promote tissue inflammation and contribute to the pathogenesis of rheumatic, fibrosing, and other diseases. Research into these diseases is often limited by a lack of an animal model that closely mimics human disease and the paucity of patient clinical tissues. Therefore, the development of relevant experimental models is crucial. Three media formulations of Th17-skewing cocktail (CT) were evaluated for the ability to induce a Th17 signature in an ex vivo human skin model: CT9 contained αCD3, αCD28, IL-23, IL-1β, IFNγ, IL-4, IL-6, IL-21, and TGFβ; CT8 lacked IL-1β; and CT4 only contained αCD3, αCD28, IL-23, and IL-1β. Healthy donor skin was defatted, distributed as 3 mm punch biopsies, and incubated with one of the cocktail formulations or vehicle for 48 h. All of the cocktail formulations independently significantly stimulated the expression of each gene examined. CT4 induced IL-17A expression 1024-fold, significantly higher than CT9 and CT8. IL-17F was robustly stimulated by CT4 (1557-fold), CT9 (622-fold), and CT8 (111-fold), with significant differences between the CT groups. All of the formulations significantly induced IL-22 (16–42-fold). CT9 stimulated the highest IL-26 response (41-fold), which was significantly higher than CT4 and CT8. IL-10 was stimulated significantly higher with CT8 (10-fold) than CT4 or CT9. The secretion of IL-17A was significantly elevated with all cocktail formulations. Robust IL-17A/IL-17F cytokine induction was preferentially mediated by CT4, which suggested that its components are the minimal constituents necessary for the full induction of these genes in this human skin explant model, while the downstream cytokines were preferentially upregulated by CT4 (IL-22), CT9 (IL-26), or CT8 (IL-10). In summary, our findings suggest that the induction of a Th17 phenotype in human skin is feasible and can be used as a model for rheumatic and fibrosing diseases where Th17 skewing is observed.
Collapse
Affiliation(s)
- Sara M Garrett
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Qihong Zhao
- Bristol-Myers Squibb, Princeton, NJ 08543, USA.
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| |
Collapse
|
20
|
Chai CY, Song J, Tan Z, Tai IC, Zhang C, Sun S. Adipose tissue-derived stem cells inhibit hypertrophic scar (HS) fibrosis via p38/MAPK pathway. J Cell Biochem 2019; 120:4057-4064. [PMID: 30260015 DOI: 10.1002/jcb.27689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The current study was designed to investigate the effects and underlying mechanisms of adipose tissue-derived stem cells (ADSCs) on hypertrophic scar (HS) fibrosis. METHOD Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot analysis were performed to detect the expression of collagen I (Col1), collagen III (Col3), and α-smooth muscle actin (α-SMA) after fibroblasts and cultured HS tissues were treated with ADSC medium. All data were analyzed by using SPSS17.0 software. Statistical analysis was performed by Student t tests. RESULTS The in vitro study showed that ADSC medium decreased the expression of Col1, Col3, and α-SMA. In addition, the protein level of p-p38 was downregulated by ADSC medium treatment in a concentration dependent manner. CONCLUSION The current study demonstrated that ADSC could decrease collagen deposition and scar formation in in vitro experiments. The regulation of the p38/MAPK signaling pathway might play an important role in the process.
Collapse
Affiliation(s)
- Chi-Yung Chai
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenwei Tan
- Department of Orthopedic Sursery, West China Hospital, Chengdu, Sichuan, China
| | - I-Chun Tai
- Southern Medical Science Ltd, Kaohsiung, Taiwan ROC
| | - Chaoying Zhang
- School of Basic Medical Sciences of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
A Human Skin Model Recapitulates Systemic Sclerosis Dermal Fibrosis and Identifies COL22A1 as a TGFβ Early Response Gene that Mediates Fibroblast to Myofibroblast Transition. Genes (Basel) 2019; 10:genes10020075. [PMID: 30678304 PMCID: PMC6409682 DOI: 10.3390/genes10020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
: Systemic sclerosis (SSc) is a complex multi-system autoimmune disease characterized by immune dysregulation, vasculopathy, and organ fibrosis. Skin fibrosis causes high morbidity and impaired quality of life in affected individuals. Animal models do not fully recapitulate the human disease. Thus, there is a critical need to identify ex vivo models for the dermal fibrosis characteristic of SSc. We identified genes regulated by the pro-fibrotic factor TGFβ in human skin maintained in organ culture. The molecular signature of human skin overlapped with that which was identified in SSc patient biopsies, suggesting that this model recapitulates the dermal fibrosis characteristic of the human disease. We further characterized the regulation and functional impact of a previously unreported gene in the setting of dermal fibrosis, COL22A1, and show that silencing COL22A1 significantly reduced TGFβ-induced ACTA2 expression. COL22A1 expression was significantly increased in dermal fibroblasts from patients with SSc. In summary, we identified the molecular fingerprint of TGFβ in human skin and demonstrated that COL22A1 is associated with the pathogenesis of fibrosis in SSc as an early response gene that may have important implications for fibroblast activation. Further, this model will provide a critical tool with direct relevance to human disease to facilitate the assessment of potential therapies for fibrosis.
Collapse
|
22
|
Su Y, Nishimoto T, Hoffman S, Nguyen XX, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor binding protein-4 exerts antifibrotic activity by reducing levels of connective tissue growth factor and the C-X-C chemokine receptor 4. FASEB Bioadv 2018; 1:167-179. [PMID: 31482149 PMCID: PMC6720120 DOI: 10.1096/fba.2018-00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Insulin-like growth factor (IGF) system plays an important role in variety cellular biological functions; we previously reported levels of IGF binding proteins (IGFBP) -3 and -5 are increased in dermal and pulmonary fibrosis associated with the prototypic fibrosing disease systemic sclerosis (SSc), induce extracellular matrix (ECM) production, and promote fibrosis. We sought to examine the effects of another member of the family, IGFBP-4, on ECM production and fibrosis using cell-based, ex vivo organ culture and in vivo mouse lung fibrosis models. IGFBP-4 mRNA levels were significantly decreased in pulmonary fibroblasts of patients with SSc. ECM components were significantly reduced by endogenous and exogenous IGFBP-4. IGFBP-4 also blocked TGFβ-induced ECM production, and inhibited ECM production ex vivo in human lung and skin in organ culture. In vivo, IGFBP-4 reduced bleomycin-induced collagen production and histologic evidence of fibrosis. Silencing IGFBP-4 expression to mimic levels observed in SSc lung fibroblasts resulted in increased ECM production. IGFBP-4 reduced mRNA and protein levels of the chemokine receptor CXCR4 and the pro-fibrotic factor CTGF. Further, CTGF silencing potentiated the anti-fibrotic effects of IGFBP-4. Reduced IGFBP-4 levels in SSc lung fibroblasts may contribute to the fibrotic phenotype via loss of IGFBP-4 anti-fibrotic activity.
Collapse
Affiliation(s)
- YunYun Su
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Tetsuya Nishimoto
- Deceased, Allergy, and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Stanley Hoffman
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xinh-Xinh Nguyen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| |
Collapse
|
23
|
Wang X, Liu K, Ruan M, Yang J, Gao Z. Gallic acid inhibits fibroblast growth and migration in keloids through the AKT/ERK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1114-1120. [PMID: 30265275 DOI: 10.1093/abbs/gmy115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Keloids are a fibroproliferative disorder of the skin resulted from abnormal healing of injured or irritated skin and are characterized by the ability to spread beyond the original boundary of the wound. Here, we tested the effect of gallic acid (GA), a plant polyphenol with selective growth inhibitory effects in cancer, on the proliferation and invasion of keloid fibroblasts (KFs) isolated from patients undergoing surgery. GA inhibited KF proliferation, migration, and invasion in parallel with the downregulation of matrix metalloproteinase-1 and -3 and upregulation of tissue inhibitors of metalloproteinase-1. Flow cytometric analysis showed that GA inhibited cell cycle progression and induced apoptosis. The effects of GA on KFs occurred in parallel with the inhibition of AKT and ERK1/2, suggesting that GA acts by suppressing the AKT/ERK signaling pathway. In ex vivo explant cultures of keloid tissues, GA inhibited the migration of KFs to the wound area and suppressed the expression of angiogenic markers concomitant with the inhibition of collagen deposition. These results identify GA as a potential therapeutic agent for the treatment of keloids and suggest a potential mechanism underlying its protective effect.
Collapse
Affiliation(s)
- Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Liu
- Department of Dermatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengying Ruan
- Department of Nephrology, Tongshan County People's Hospital, Hubei, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
The renaissance of human skin organ culture: A critical reappraisal. Differentiation 2018; 104:22-35. [DOI: 10.1016/j.diff.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
|
25
|
Nguyen XX, Muhammad L, Nietert PJ, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis via Increasing Its Own Expression and That of Other Pro-fibrotic Mediators. Front Endocrinol (Lausanne) 2018; 9:601. [PMID: 30374330 PMCID: PMC6196226 DOI: 10.3389/fendo.2018.00601] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/20/2018] [Indexed: 12/25/2022] Open
Abstract
Pulmonary fibrosis is a hallmark of diseases such as systemic sclerosis (SSc, scleroderma) and idiopathic pulmonary fibrosis (IPF). To date, the therapeutic options for patients with pulmonary fibrosis are limited, and organ transplantation remains the most effective option. Insulin-like growth factor-binding protein 5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF. In this study, we demonstrate that both exogenous and adenovirally expressed IGFBP-5 promote fibrosis by increasing the production of extracellular matrix (ECM) genes and the expression of pro-fibrotic genes in primary human lung fibroblasts. IGFBP-5 increased expression of the pro-fibrotic growth factor CTGF and levels of the matrix crosslinking enzyme lysyl oxidase (LOX). Silencing of IGFBP-5 had different effects in lung fibroblasts from normal donors and patients with SSc or IPF. Moreover, we show that IGFBP-5 increases expression of ECM genes, CTGF, and LOX in human lung tissues maintained in organ culture. Together, our data extend our previous findings and demonstrate that IGFBP-5 exerts its pro-fibrotic activity by directly inducing expression of ECM and pro-fibrotic genes. Further, IGFBP-5 promotes its own expression, generating a positive feedback loop. This suggests that IGFBP-5 likely acts in concert with other growth factors to drive fibrosis and tissue remodeling.
Collapse
Affiliation(s)
- Xinh-Xinh Nguyen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lutfiyya Muhammad
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Carol Feghali-Bostwick
| |
Collapse
|
26
|
The mighty fibroblast and its utility in scleroderma research. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017; 2:69-134. [PMID: 29270465 DOI: 10.5301/jsrd.5000240] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibroblasts are the effector cells of fibrosis characteristic of systemic sclerosis (SSc, scleroderma) and other fibrosing conditions. The excess production of extracellular matrix (ECM) proteins is the hallmark of fibrosis in different organs, such as skin and lung. Experiments designed to assess the pro-fibrotic capacity of factors, their signaling pathways, and potential inhibitors of their effects that are conducted in fibroblasts have paved the way for planning clinical trials in SSc. As such, fibroblasts have proven to be valuable tools in the search for effective anti-fibrotic therapies for fibrosis. Herein we highlight the characteristics of fibroblasts, their role in the etiology of fibrosis, utility in experimental assays, and contribution to drug development and clinical trials in SSc.
Collapse
|
27
|
Li Y, Zhang W, Gao J, Liu J, Wang H, Li J, Yang X, He T, Guan H, Zheng Z, Han S, Dong M, Han J, Shi J, Hu D. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther 2016; 7:102. [PMID: 27484727 PMCID: PMC4970202 DOI: 10.1186/s13287-016-0356-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Hypertrophic scars (HS) generally occur after injury to the deep layers of the dermis, resulting in functional deficiency for patients. Growing evidence has been identified that the supernatant of adipose tissue-derived stem cells (ADSCs) significantly ameliorates fibrosis of different tissues, but limited attention has been paid to its efficacy on attenuating skin fibrosis. In this study, we explored the effect and possible mechanism of ADSC-conditioned medium (ADSC-CM) on HS. METHOD Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of collagen I (Col1), collagen III (Col3), and α-smooth muscle actin (α-SMA) after fibroblasts and cultured HS tissues were stimulated with ADSC-CM and p38 inhibitor/activator. Immunofluorescence staining was performed to test the expression of α-SMA. Masson's trichrome staining, hematoxylin and eosin (H&E) staining, and immunohistochemistry staining were carried out to assess the histological and pathological change of collagen in the BALB/c mouse excisional model. All data were analyzed by using SPSS17.0 software. Statistical analysis was performed by Student's t tests. RESULTS The in vitro and ex vivo study revealed ADSC-CM decreased the expression of Col1, Col3, and α-SMA. Together, thinner and orderly arranged collagen was manifested in HS tissues cultured with ADSC-CM. Dramatically, the assessed morphology showed an accelerated healing rate, less collagen deposition, and col1- and col3-positive cells in the ADSC-CM treated group. Importantly, the protein level of p-p38 was downregulated in a concentration-dependent manner in HS-derived fibroblasts with ADSC-CM treatment, which further decreased the expression of p-p38 after the application of its inhibitor, SB203580. SB203580 led to an obvious decline in the expression of Col1, Col3, and α-SMA in fibroblasts and cultured HS tissues and presented more ordered arrangement and thinner collagen fibers in BALB/c mice. Lastly, anisomycin, an agonist of p38, upregulated the expression of fibrotic proteins and revealed more disordered structure and denser collagen fibers. CONCLUSION This study demonstrated that ADSC-CM could decrease collagen deposition and scar formation in in vitro, ex vivo and in vivo experiments. The regulation of the p38/MAPK signaling pathway played an important role in the process. The application of ADSC-CM may provide a novel therapeutic strategy for HS treatment, and the anti-scarring effect can be achieved by inhibition of the p38/MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jianxin Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Maolong Dong
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| |
Collapse
|
28
|
Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar. Sci Rep 2016; 6:26023. [PMID: 27181267 PMCID: PMC4867599 DOI: 10.1038/srep26023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 04/26/2016] [Indexed: 11/08/2022] Open
Abstract
Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy.
Collapse
|
29
|
Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e520. [PMID: 26495233 PMCID: PMC4596445 DOI: 10.1097/gox.0000000000000503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. METHODS The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). RESULTS TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. CONCLUSION These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids.
Collapse
|
30
|
Gonzalez-Aspajo G, Belkhelfa H, Haddioui-Hbabi L, Bourdy G, Deharo E. Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:330-334. [PMID: 26087228 DOI: 10.1016/j.jep.2015.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plukenetia volubilis L. (Euphorbiaceae) is a domesticated vine distributed from the high-altitude Andean rain forest to the lowlands of the Peruvian Amazon. Oil from the cold-pressed seeds, sold under the commercial name of Sacha Inchi Oil (SIO) is actually much in favour because it contains a high percentage of omega 3 and omega 6, and is hence used as a dietary supplement. SIO is also used traditionally for skin care, in order to maintain skin softness, and for the treatment of wounds, insect bites and skin infections, in a tropical context where the skin is frequently damaged. AIMS OF THE STUDY This study was designed in order to verify whether the traditional use of SIO for skin care would have any impact on Staphylococcus aureus growth and skin adherence, as S. aureus is involved in many skin pathologies (impetigo, folliculitis, furuncles and subcutaneous abscesses) being one if the main pathogens that can be found on the skin. Therefore, our objective was to assess SIO bactericidal activity and interference with adherence to human skin explants and the keratinocyte cell line. Cytotoxicity on that cells was also determined. The activity of SIO was compared to coconut oil (CocO), which is widely used for skin care but has different unsaturated fatty acids contents. MATERIALS AND METHODS Laboratory testing with certified oil, determined antibacterial activity against radio labelled S. aureus. Cytotoxic effects were measured with XTT on keratinocyte cells and with neutral red on human skin explants; phenol was used as cytotoxic control. Adherence assays were carried out by mixing H3-labelled S. aureus bacteria with keratinocyte cells and human skin explants, incubated with oils 2h before (to determine the inhibition of adherence, assimilated to a preventive effect) or 2h after the contact of the biological material with S. aureus (to assess the detachment of the bacteria, assimilated to a curative effect). Residual radioactivity measured after washings made it possible to determine the adherence intensity. Bactericidal effect was determined by colony counting on trypticase soy agar. RESULTS Laboratory assays showed that SIO and CocO, tested undiluted, were not cytotoxic on keratinocytes nor human explants and were not bactericidal neither. SIO was more active as antiadherent (preventive) than CocO on keratinocytes. There was no significant difference between detachment effects (curative) of both oils on keratinocytes but SIO was almost 5 times more active on the detachment of S. aureus from human skin explants. CONCLUSION From that study it can be concluded that the use of SIO on dermal cells is safe and efficient in the inhibition of S. aureus adherence. Our results tend to support the traditional use of undiluted SIO in skin care.
Collapse
Affiliation(s)
- German Gonzalez-Aspajo
- Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, F-31062 Toulouse cedex 09, France; Université de Toulouse 3, UMR 152 Pharma-DEV, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Haouaria Belkhelfa
- Fonderephar, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Laïla Haddioui-Hbabi
- Fonderephar, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Geneviève Bourdy
- Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, F-31062 Toulouse cedex 09, France; Université de Toulouse 3, UMR 152 Pharma-DEV, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Eric Deharo
- Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, F-31062 Toulouse cedex 09, France; Université de Toulouse 3, UMR 152 Pharma-DEV, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France.
| |
Collapse
|
31
|
Su Y, Nishimoto T, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 2015; 10:e0130546. [PMID: 26103640 PMCID: PMC4478026 DOI: 10.1371/journal.pone.0130546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization. METHODS We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts. RESULTS Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype. CONCLUSIONS IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.
Collapse
Affiliation(s)
- Yunyun Su
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tetsuya Nishimoto
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
32
|
MRP1 knockdown down-regulates the deposition of collagen and leads to a reduced hypertrophic scar fibrosis. J Mol Histol 2015; 46:357-64. [PMID: 26092470 DOI: 10.1007/s10735-015-9629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/15/2015] [Indexed: 01/06/2023]
Abstract
Multidrug resistance-associated protein 1 (MRP1) belongs to ATP-binding cassette transporters family. The overexpression of MRP1 is predominantly related with the failure of chemo-radiotherapy in various tumors. However, its possible role in hypertrophic scar (HS) is hardly investigated. Here we showed that the mRNA level and protein expression of MRP1 were higher in HS and HS derived fibroblasts (HSFs) than that in normal skin (NS) and NS derived fibroblasts (NSFs). Immunohistochemistry and immunofluorescence showed that the percentage of positive cells was higher in HS and HSFs. Meanwhile, the co-localization of MRP1 and α-SMA was stronger in HS. MRP1 knockdown in HSFs provoked a significant reduction in the protein expressions of collagen 3 and α-SMA in vitro. Moreover, MRP1 siRNA transfection could decrease the deposition of collagen in cultured tissues ex vivo and inhibit the scar formation in rabbit ear scar model in vivo. H&E staining and Masson trichrome staining revealed thinner and more orderly arranged collagen fiber in the MRP1 siRNA transfection group. The appearance of scar was improved as well. All these results indicate that MRP1 plays an important role in the formation of HS, MRP1 knockdown could be a potential method to reduce the accumulation of collagen and to improve the abnormal deposition of extracellular matrix in HS, which indicates that down-regulation of MRP1 has the potential therapeutic effect in the treatment and prophylaxis of HS.
Collapse
|
33
|
Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 2014; 5:123. [PMID: 24904424 PMCID: PMC4034148 DOI: 10.3389/fphar.2014.00123] [Citation(s) in RCA: 742] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM) characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of non-cancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve non-specific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.
Collapse
Affiliation(s)
- Ryan T Kendall
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
34
|
Aoki M, Miyake K, Ogawa R, Dohi T, Akaishi S, Hyakusoku H, Shimada T. siRNA Knockdown of Tissue Inhibitor of Metalloproteinase-1 in Keloid Fibroblasts Leads to Degradation of Collagen Type I. J Invest Dermatol 2014; 134:818-826. [DOI: 10.1038/jid.2013.396] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/19/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022]
|
35
|
Yasuoka H, Yamaguchi Y, Feghali-Bostwick CA. The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis. PLoS One 2014; 9:e87754. [PMID: 24551065 PMCID: PMC3923757 DOI: 10.1371/journal.pone.0087754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/02/2014] [Indexed: 01/12/2023] Open
Abstract
Systemic sclerosis (SSc) is characterized by excessive fibrosis of the skin and internal organs due to fibroblast proliferation and excessive production of extracellular matrix (ECM). We have shown that insulin-like growth factor binding protein (IGFBP)-5 plays an important role in the development of fibrosis in vitro, ex vivo, and in vivo. We identified a membrane-associated adaptor protein, downstream of tyrosine kinase/docking protein (DOK)5, as an IGFBP-5-regulated target gene using gene expression profiling of primary fibroblasts expressing IGFBP-5. DOK5 is a tyrosine kinase substrate associated with intracellular signaling. Our objective was to determine the role of DOK5 in the pathogenesis of SSc and specifically in IGFBP-5-induced fibrosis. DOK5 mRNA and protein levels were increased in vitro by endogenous and exogenous IGFBP-5 in primary human fibroblasts. DOK5 upregulation required activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Further, IGFBP-5 triggered nuclear translocation of DOK5. DOK5 protein levels were also increased in vivo in mouse skin and lung by IGFBP-5. To determine the effect of DOK5 on fibrosis, DOK5 was expressed ex vivo in human skin in organ culture. Expression of DOK5 in human skin resulted in a significant increase in dermal thickness. Lastly, levels of DOK5 were compared in primary fibroblasts and lung tissues of patients with SSc and healthy donors. Both DOK5 mRNA and protein levels were significantly increased in fibroblasts and skin tissues of patients with SSc compared with those of healthy controls, as well as in lung tissues of SSc patients. Our findings suggest that IGFBP-5 induces its pro-fibrotic effects, at least in part, via DOK5. Furthermore, IGFBP-5 and DOK5 are both increased in SSc fibroblasts and tissues and may thus be acting in concert to promote fibrosis.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Vijayan A, Guha D, Ameer F, Kaziri I, Mooney C, Bennett L, Sureshbabu A, Tonner E, Beattie J, Allan G, Edwards J, Flint D. IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFβ1-induced mesenchymal invasion. Int J Biochem Cell Biol 2013; 45:2774-85. [DOI: 10.1016/j.biocel.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
37
|
Cdc42 inhibits ERK-mediated collagenase-1 (MMP-1) expression in collagen-activated human keratinocytes. J Invest Dermatol 2013; 134:1230-1237. [PMID: 24352036 PMCID: PMC3989453 DOI: 10.1038/jid.2013.499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 11/08/2022]
Abstract
Following injury, keratinocytes switch gene expression programs from the one that promotes differentiation to the one that supports migration. A common feature of human wounds and ulcerations of any form is the expression of matrix metalloproteinase 1 (MMP-1; collagenase-1) by leading-edge basal keratinocytes migrating across the dermal or provisional matrix. Induction of MMP-1 occurs by signaling from the α2β1 integrin in contact with dermal fibrillar type I collagen, and the activity of MMP-1 is required for human keratinocytes to migrate on collagen. Thus, MMP-1 serves a critical role in the repair of damaged human skin. Here, we evaluated the mechanisms controlling MMP-1 expression in primary human keratinocytes from neonatal foreskin and adult female skin. Our results demonstrate that shortly following contact with type I collagen extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase were markedly activated, whereas c-Jun N-terminal kinase (JNK) phosphorylation remained at basal levels. ERK inhibition markedly blocked collagen-stimulated MMP-1 expression in keratinocytes. In contrast, inhibiting p38 or JNK pathways had no effect on MMP-1 production. Moreover, investigating the role of Rho GTPases revealed that Cdc42 attenuates MMP-1 expression by suppressing ERK activity. Thus, our data indicate that injured keratinocytes induce MMP-1 expression through ERK activation, and this process is negatively regulated by Cdc42 activity.
Collapse
|
38
|
Sampson N, Zenzmaier C, Heitz M, Hermann M, Plas E, Schäfer G, Klocker H, Berger P. Stromal insulin-like growth factor binding protein 3 (IGFBP3) is elevated in the diseased human prostate and promotes ex vivo fibroblast-to-myofibroblast differentiation. Endocrinology 2013; 154:2586-99. [PMID: 23720424 DOI: 10.1210/en.2012-2259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of the IGF axis is implicated in the development of benign prostatic hyperplasia (BPH) and prostate cancer (PCa), 2 of the most common diseases affecting elderly males. PCa is the second leading cause of male-related cancer death in Western societies. Although distinct pathologies, BPH and PCa are both characterized by extensive stromal remodeling, in particular fibroblast-to-myofibroblast differentiation, thought to be induced by elevated local production of TGFβ1. We previously showed that TGFβ1-mediated fibroblast-to-myofibroblast differentiation of primary human prostatic stromal cells resulted in the dsyregulation of several components of the IGF axis, including the induction of IGF binding protein 3 (IGFBP3). Using isoform-specific lentiviral-mediated knockdown, we demonstrate herein that IGFBP3 is essential for TGFβ1-mediated differentiation. Although recombinant human IGFBP3 alone was not sufficient to induce differentiation, IGFBP3 synergistically potentiated TGFβ1-mediated stromal remodeling predominantly via an IGF-independent mechanism. Consistent with these in vitro findings, IGFBP3 immunohistochemistry revealed elevated levels of IGFBP3 in the hyperplastic fibromuscular stroma of BPH specimens and in the tumor-adjacent stroma of high-grade PCa. Collectively these data indicate that the dysregulation of the stromal IGF axis, in particular elevated IGFBP3, plays a crucial role in fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma and indicate the therapeutic potential of inhibiting stromal remodeling and the resulting dysregulation of the stromal IGF axis as a novel strategy for the treatment of advanced PCa and BPH.
Collapse
|
39
|
Aida-Yasuoka K, Peoples C, Yasuoka H, Hershberger P, Thiel K, Cauley JA, Medsger TA, Feghali-Bostwick CA. Estradiol promotes the development of a fibrotic phenotype and is increased in the serum of patients with systemic sclerosis. Arthritis Res Ther 2013; 15:R10. [PMID: 23305385 PMCID: PMC3672719 DOI: 10.1186/ar4140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/10/2012] [Accepted: 12/21/2012] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is more prevalent in women. Our goal is to determine the effects of 17β-estradiol (E2) on the development of fibrosis and to compare circulating levels of estrogens in SSc patients and healthy controls. METHODS Using primary human dermal fibroblasts, we evaluated the effect of E2 on fibronectin (FN) expression with and without the estrogen receptor (ER) antagonist ICI 182,780, inhibitors of signaling, propyl-pyrazole-triol, an ERα specific ligand, and genistein, an ERβ selective ligand, to identify the signaling pathways mediating E2's effect. We confirmed the fibrotic effect of E2 in human skin using an ex vivo organ culture model. Lastly, we measured levels of E2 and estrone in serum samples from SSc patients with diffuse cutaneous involvement and healthy controls using mass spectrometry. RESULTS E2 increased expression of FN in dermal fibroblasts. ICI 182,780, inositol-1,4,5-triphosphate inhibitor, and p38 mitogen-activated protein kinase inhibitor blocked the effects of E2 on FN. Propyl-pyrazole-triol, but not genistein, significantly increased FN expression. Ex vivo, E2 induced fibrosis of human skin. The effects of E2 were abrogated by ICI 182,780. Circulating levels of E2 and estrone were significantly increased in sera of patients with diffuse cutaneous SSc. CONCLUSION Our findings implicate estrogens in the fibrotic process and may explain the preponderance of SSc in women. ICI 182,780 or other ER signaling antagonists may be effective agents for the treatment of fibrosis.
Collapse
Affiliation(s)
- Keiko Aida-Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, 628 NW MUH, Pittsburgh, PA 14213, USA
| | - Christine Peoples
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, BST South 7th floor, Pittsburgh, PA 15261, USA
| | - Hidekata Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, 628 NW MUH, Pittsburgh, PA 14213, USA
| | - Pamela Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Katelynn Thiel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, 628 NW MUH, Pittsburgh, PA 14213, USA
| | - Jane A Cauley
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, A510 Crabtree Hall, Pittsburgh, PA 15261, USA
| | - Thomas A Medsger
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, BST South 7th floor, Pittsburgh, PA 15261, USA
| | - Carol A Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, 628 NW MUH, Pittsburgh, PA 14213, USA
| |
Collapse
|
40
|
Ek W, Sahlqvist AS, Crooks L, Sgonc R, Dietrich H, Wick G, Ekwall O, Andersson L, Carlborg Ö, Kämpe O, Kerje S. Mapping QTL affecting a systemic sclerosis-like disorder in a cross between UCD-200 and red jungle fowl chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:352-359. [PMID: 22796227 DOI: 10.1016/j.dci.2012.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
Systemic sclerosis (SSc) or scleroderma is a rare, autoimmune, multi-factorial disease characterized by early microvascular alterations, inflammation, and fibrosis. Chickens from the UCD-200 line develop a hereditary SSc-like disease, showing all the hallmarks of the human disorder, which makes this line a promising model to study genetic factors underlying the disease. A backcross was generated between UCD-200 chickens and its wild ancestor - the red jungle fowl and a genome-scan was performed to identify loci affecting early (21 days of age) and late (175 days of age) ischemic lesions of the comb. A significant difference in frequency of disease was observed between sexes in the BC population, where the homogametic males were more affected than females, and there was evidence for a protective W chromosome effect. Three suggestive disease predisposing loci were mapped to chromosomes 2, 12 and 14. Three orthologues of genes implicated in human SSc are located in the QTL region on chromosome 2, TGFRB1, EXOC2-IRF4 and COL1A2, as well as CCR8, which is more generally related to immune function. IGFBP3 is also located within the QTL on chromosome 2 and earlier studies have showed increased IGFBP3 serum levels in SSc patients. To our knowledge, this study is the first to reveal a potential genetic association between IGFBP3 and SSc. Another gene with an immunological function, SOCS1, is located in the QTL region on chromosome 14. These results illustrate the usefulness of the UCD-200 chicken as a model of human SSc and motivate further in-depth functional studies of the implicated candidate genes.
Collapse
Affiliation(s)
- Weronica Ek
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamaguchi Y, Takihara T, Chambers RA, Veraldi KL, Larregina AT, Feghali-Bostwick CA. A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med 2012; 4:136ra71. [PMID: 22649092 DOI: 10.1126/scitranslmed.3003421] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroproliferative disorders such as idiopathic pulmonary fibrosis and systemic sclerosis have no effective therapies and result in significant morbidity and mortality due to progressive organ fibrosis. We examined the effect of peptides derived from endostatin on existing fibrosis and fibrosis triggered by two potent mediators, transforming growth factor-β (TGF-β) and bleomycin, in human and mouse tissues in vitro, ex vivo, and in vivo. We identified one peptide, E4, with potent antifibrotic activity. E4 prevented TGF-β-induced dermal fibrosis in vivo in a mouse model, ex vivo in human skin, and in bleomycin-induced dermal and pulmonary fibrosis in vivo, demonstrating that E4 exerts potent antifibrotic effects. In addition, E4 significantly reduced existing fibrosis in these preclinical models. E4 amelioration of fibrosis was accompanied by reduced cell apoptosis and lower levels of lysyl oxidase, an enzyme that cross-links collagen, and Egr-1 (early growth response gene-1), a transcription factor that mediates the effects of several fibrotic triggers. Our findings identify E4 as a peptide with potent antifibrotic activity and a possible therapeutic agent for organ fibrosis.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Scleroderma Center, and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ruiz XD, Mlakar LR, Yamaguchi Y, Su Y, Larregina AT, Pilewski JM, Feghali-Bostwick CA. Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis. PLoS One 2012; 7:e43049. [PMID: 22900087 PMCID: PMC3416749 DOI: 10.1371/journal.pone.0043049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.
Collapse
Affiliation(s)
- Ximena D. Ruiz
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Logan R. Mlakar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yunyun Su
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adriana T. Larregina
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Veraldi KL, Feghali-Bostwick CA. Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol J 2012; 6:140-5. [PMID: 22802912 PMCID: PMC3395973 DOI: 10.2174/1874312901206010140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Fibrosis involves an orchestrated cascade of events including activation of fibroblasts, increased production and deposition of extracellular matrix components, and differentiation of fibroblasts into myofibroblasts. Epithelial-mesenchymal cross-talk plays an important role in this process, and current hypotheses of organ fibrosis liken it to an aberrant wound healing response in which epithelial-mesenchymal transition (EMT) and cellular senescence may also contribute to disease pathogenesis. The fibrotic response is associated with altered expression of growth factors and cytokines, including increased levels of transforming growth factor-β1 (TGF-β1) and the more recent observation that increased levels of several insulin-like growth factor binding proteins (IGFBPs) are associated with a number of fibrotic conditions. IGFBPs have been implicated in virtually every cell type and process associated with the fibrotic response, making the IGFBPs attractive targets for the development of novel anti-fibrotic therapies. In this review, the current state of knowledge regarding the classical IGFBP family in organ fibrosis will be summarized and the clinical implications considered.
Collapse
Affiliation(s)
- Kristen L Veraldi
- The Division of Pulmonary, Allergy, and Critical Care Medicine, and Pittsburgh Scleroderma Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
44
|
Yamaguchi Y, Yasuoka H, Stolz DB, Feghali-Bostwick CA. Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med 2011; 15:957-69. [PMID: 20345844 PMCID: PMC2995014 DOI: 10.1111/j.1582-4934.2010.01063.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/17/2010] [Indexed: 01/25/2023] Open
Abstract
Our previous studies have demonstrated increased expression of insulin-like growth factor binding protein-5 (IGFBP-5) in fibrotic tissues and IGFBP-5 induction of extracellular matrix (ECM) components. The mechanism resulting in increased IGFBP-5 in the extracellular milieu of fibrotic fibroblasts is unknown. Since Caveolin-1 (Cav-1) has been implicated to play a role in membrane trafficking and signal transduction in tissue fibrosis, we examined the effect of Cav-1 on IGFBP-5 internalization, trafficking and secretion. We demonstrated that IGFBP-5 localized to lipid rafts in human lung fibroblasts and bound Cav-1. Cav-1 was detected in the nucleus in IGFBP-5-expressing fibroblasts, within aggregates enriched with IGFBP-5, suggesting a coordinate trafficking of IGFBP-5 and Cav-1 from the plasma membrane to the nucleus. This trafficking was dependent on Cav-1 as fibroblasts from Cav-1 null mice had increased extracellular IGFBP-5, and as fibroblasts in which Cav-1 was silenced or lipid raft structure was disrupted through cholesterol depletion also had defective IGFBP-5 internalization. Restoration of Cav-1 function through administration of Cav-1 scaffolding peptide dramatically increased IGFBP-5 uptake. Finally, we demonstrated that IGFBP-5 in the ECM protects fibronectin from proteolytic degradation. Taken together, our findings identify a novel role for Cav-1 in the internalization and nuclear trafficking of IGFBP-5. Decreased Cav-1 expression in fibrotic diseases likely leads to increased deposition of IGFBP-5 in the ECM with subsequent reduction in ECM degradation, thus identifying a mechanism by which reduced Cav-1 and increased IGFBP-5 concomitantly contribute to the perpetuation of fibrosis.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Hidekata Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Carol A Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
45
|
Veraldi KL, Hsu E, Feghali-Bostwick CA. Pathogenesis of pulmonary fibrosis in systemic sclerosis: lessons from interstitial lung disease. Curr Rheumatol Rep 2010; 12:19-25. [PMID: 20425529 DOI: 10.1007/s11926-009-0071-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstitial lung disease is a frequent complication of systemic sclerosis and currently is the leading cause of death. Our ability to predict which individuals are at greatest risk of developing clinically significant, progressive interstitial lung disease remains inadequate. Identification of circulating autoantibodies and other biomarkers, as well as genetic polymorphisms and aberrant gene expression, all hold promise as diagnostic and prognostic tools, as well as therapeutic targets. Many practice patterns for the diagnosis and monitoring of connective tissue disease-associated interstitial lung disease are based upon published experience with idiopathic interstitial lung diseases. Although there are likely commonalities in the pathophysiologic mechanisms and clinical progression among all fibrosing lung diseases, a better understanding of features unique to systemic sclerosis-associated interstitial lung disease is essential to the development of more effective monitoring and treatment strategies.
Collapse
Affiliation(s)
- Kristen L Veraldi
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, 628 NW MUH, 3459 Fifth Ave, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
46
|
Ng KW, Pearton M, Coulman S, Anstey A, Gateley C, Morrissey A, Allender C, Birchall J. Development of an ex vivo human skin model for intradermal vaccination: tissue viability and Langerhans cell behaviour. Vaccine 2009; 27:5948-55. [PMID: 19679220 PMCID: PMC2753709 DOI: 10.1016/j.vaccine.2009.07.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/29/2009] [Accepted: 07/23/2009] [Indexed: 01/16/2023]
Abstract
The presence of resident Langerhans cells (LCs) in the epidermis makes the skin an attractive target for DNA vaccination. However, reliable animal models for cutaneous vaccination studies are limited. We demonstrate an ex vivo human skin model for cutaneous DNA vaccination which can potentially bridge the gap between pre-clinical in vivo animal models and clinical studies. Cutaneous transgene expression was utilised to demonstrate epidermal tissue viability in culture. LC response to the culture environment was monitored by immunohistochemistry. Full-thickness and split-thickness skin remained genetically viable in culture for at least 72 h in both phosphate-buffered saline (PBS) and full organ culture medium (OCM). The epidermis of explants cultured in OCM remained morphologically intact throughout the culture duration. LCs in full-thickness skin exhibited a delayed response (reduction in cell number and increase in cell size) to the culture conditions compared with split-thickness skin, whose response was immediate. In conclusion, excised human skin can be cultured for a minimum of 72 h for analysis of gene expression and immune cell activation. However, the use of split-thickness skin for vaccine formulation studies may not be appropriate because of the nature of the activation. Full-thickness skin explants are a more suitable model to assess cutaneous vaccination ex vivo.
Collapse
Affiliation(s)
- Keng Wooi Ng
- Gene Delivery Research Group, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, UK
| | - Marc Pearton
- Gene Delivery Research Group, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, UK
| | - Sion Coulman
- Gene Delivery Research Group, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, UK
| | - Alexander Anstey
- Gwent Healthcare NHS Trust, Royal Gwent Hospital, Cardiff Road, Newport NP20 2UB, UK
| | - Christopher Gateley
- Gwent Healthcare NHS Trust, Royal Gwent Hospital, Cardiff Road, Newport NP20 2UB, UK
| | - Anthony Morrissey
- Biomedical Microsystems Team, Tyndall National Institute, Prospect Row, Cork, Ireland
| | - Christopher Allender
- Gene Delivery Research Group, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, UK
| | - James Birchall
- Gene Delivery Research Group, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, UK
| |
Collapse
|
47
|
Yasuoka H, Hsu E, Ruiz XD, Steinman RA, Choi AMK, Feghali-Bostwick CA. The fibrotic phenotype induced by IGFBP-5 is regulated by MAPK activation and egr-1-dependent and -independent mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:605-15. [PMID: 19628764 DOI: 10.2353/ajpath.2009.080991] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously shown that insulin-like growth factor (IGF) binding protein- 5 (IGFBP-5) is overexpressed in lung fibrosis and induces the production of extracellular matrix components, such as collagen and fibronectin, both in vitro and in vivo. The exact mechanism by which IGFBP-5 exerts these novel fibrotic effects is unknown. We thus examined the signaling cascades that mediate IGFBP-5-induced fibrosis. We demonstrate for the first time that IGFBP-5 induction of extracellular matrix occurs independently of IGF-I, and results from IGFBP-5 activation of MAPK signaling, which facilitates the translocation of IGFBP-5 to the nucleus. We examined the effects of IGFBP-5 on early growth response (Egr)-1, a transcription factor that is central to growth factor-mediated fibrosis. Egr-1 was up-regulated by IGFBP-5 in a MAPK-dependent manner and bound to nuclear IGFBP-5. In fibroblasts from Egr-1 knockout mice, induction of fibronectin by IGFBP-5 was abolished. Expression of Egr-1 in these cells rescued the extracellular matrix-promoting effects of IGFBP-5. Moreover, IGFBP-5 induced cell migration in an Egr-1-dependent manner. Notably, Egr-1 levels, similar to IGFBP-5, were increased in vivo in lung tissues and in vitro in primary fibroblasts of patients with pulmonary idiopathic fibrosis. Taken together, our findings suggest that IGFBP-5 induces a fibrotic phenotype via the activation of MAPK signaling and the induction of nuclear Egr-1 that interacts with IGFBP-5 and promotes fibrotic gene transcription.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, NW 628 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|