1
|
Romańczyk W, Pryczynicz A. The Significance of Nectin Family Proteins in Various Cancerogenous Processes. Int J Mol Sci 2025; 26:3200. [PMID: 40244005 PMCID: PMC11989267 DOI: 10.3390/ijms26073200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Nectins constitute a family of Ca(2+)-independent immunoglobulin-like adhesion molecules. They are involved in cell proliferation, morphogenesis, growth, development, and immune modulation. Due to their broad involvement in physiological processes, extensive research is being conducted on the expression of individual nectins in a variety of cancers and their potential in diagnosis, prognosis, and treatment. The overexpression of nectin-1 may be a poor prognostic factor in gastrointestinal cancers (intestine and pancreas). Similarly, the overexpression of nectin-2 is a worse prognostic factor (greater tumor advancement and shorter patient survival) in cancers such as gallbladder, esophagus, and breast cancer. Changes in nectin-3 expression also affect the advancement of, e.g., colorectal cancer. Additionally, a significant factor here seems to be the change in the localization of nectin-3 expression within cellular structures. The most extensively studied nectin-4 also shows prognostic potential in many cancers. Most often, its high expression correlates with poor prognosis (e.g., gastric cancer), but it may also be a positive prognostic factor, e.g., in salivary gland cancer. Therapy based on nectin-4 is already known and used in the case of urothelial cancers. The expression of nectin-like protein 5 (necl-5) also shows prognostic and therapeutic potential in pancreatic and lung cancers, as well as in multiple myeloma.
Collapse
Affiliation(s)
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Białystok, 15-269 Białystok, Poland;
| |
Collapse
|
2
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Somsuan K, Wakayama T. Short-Term Treatment of Melatonin Improves the Expression of Cell Adhesion Molecules in the Testis of the Mouse Cryptorchidism Model. J Histochem Cytochem 2024; 72:623-640. [PMID: 39301779 PMCID: PMC11483776 DOI: 10.1369/00221554241279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
Melatonin plays a major role in regulating the sleep-wake cycle and enhancing testosterone production. We investigated the short-term effects of melatonin treatment for 14 consecutive days in the cryptorchidism model. We categorized experimental mice into Sham (S), Orchiopexy (O), Melatonin (Mel), and Orchiopexy + Melatonin (OMel) groups. Surgery involved inducing cryptorchidism in the left testis for seven days, followed by orchiopexy. The Mel group's testes did not descend, but they received melatonin injections after seven days of cryptorchidism. The OMel group underwent both orchiopexy and melatonin treatment. Both O and Mel groups exhibited decreased sperm and round-headed sperm in the epididymis. Significant increases were observed in the numbers of giant cells and negative Nectin-3 cells at p-value<0.05. The pattern of Cadm1 expression changed, and Nectin-2 and Nectin-3 co-expression was lacking in abnormal spermatids. Sertoli cell cytoplasm in both O and Mel groups exhibited autophagosomes and multivesicular bodies, which correlated with increased cyclooxygenase-2 expression. However, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell numbers increased significantly in all treatment groups compared to the S group. Our study found that the combination of orchiopexy and melatonin positively influenced the expression of cell adhesion molecules (Cadm1, Nectin-2, and Nectin-3) involved in spermatogenesis, while reducing giant cells, autophagosomes, and apoptosis.
Collapse
Affiliation(s)
- Arunothai Wanta
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keerakarn Somsuan
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Dash S, Biswas J, Goswami S, Mukherjee S, Ganguli N, Duraivelan K, Mondal S, Mukhopadhyay R, Samanta D. Molecular Crosstalk Between Adherens Junction Proteins, E-cadherin and Nectin-4. J Mol Biol 2024; 436:168709. [PMID: 39009071 DOI: 10.1016/j.jmb.2024.168709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cell-cell junctions formed by the association of cell adhesion molecules facilitate physiological events necessary for growth and development of multicellular organisms. Among them, cadherins and nectins organize and assemble to form adherens junction, which thereby mechanically couples interacting cells. A detailed understanding of the crosstalk involving these cell adhesion molecules is fundamental to the study of the various developmental processes. Although, cadherins and nectins can recruit each other in the adherens junction through an interplay of cytoplasmic adaptor molecules, here, we report a direct interaction between N-terminal extracellular domains of E-cadherin and nectin-4 as demonstrated by surface plasmon resonance (SPR) and Atomic Force Microscopy (AFM)-based single molecule force spectroscopy (SMFS). Kinetic studies using SPR demonstrate the binding between the ectodomains of E-cadherin and nectin-4 with a KD of 3.7 ± 0.7 µM and KD of 5.4 ± 0.2 µM (reciprocal experiment). AFM-based SMFS experiments also support interaction between the ectodomains of E-cadherin and nectin-4 with the koff value of 31.48 ± 1.53 s-1 and the lifetime of the complex of 0.036 ± 0.0026 s. We thus propose a cell adhesion mechanism mediated by E-cadherin and nectin-4, which can have functional significance in early embryogenesis as evident from the expression pattern of both the proteins during early development.
Collapse
Affiliation(s)
- Sagarika Dash
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Jayita Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saumyadeep Goswami
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sarbartha Mukherjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Namrata Ganguli
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kheerthana Duraivelan
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sourav Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rupa Mukhopadhyay
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Dibyendu Samanta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
4
|
Dai R, Xia B, Wang M, Huang M, Chen L, Huang Y, Chen T. Japanese medaka (Oryzias latipes) Nectin4 plays an important role against red spotted grouper nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109650. [PMID: 38788912 DOI: 10.1016/j.fsi.2024.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Nectins are adhesion molecules that play a crucial role in the organization of epithelial and endothelial junctions and function as receptors for the entry of herpes simplex virus. However, the role of Nectin4 remains poorly understood in fish. In this study, nectin4 gene was cloned from medaka (OlNectin4). OlNectin4 was located on chromosome 18 and contained 11 exons, with a total genome length of 25754 bp, coding sequences of 1689 bp, coding 562 amino acids and a molecular weight of 65.5 kDa. OlNectin4 contained four regions, including an Immunoglobulin region, an Immunoglobulin C-2 Type region, a Transmembrane region and a Coiled coil region. OlNectin4 shared 47.18 % and 25.00 % identity to Paralichthys olivaceus and Mus musculus, respectively. In adult medaka, the transcript of nectin4 was predominantly detected in gill. During red spotted grouper nervous necrosis virus (RGNNV) infection, overexpression of OlNectin4 in GE cells significantly increased viral gene transcriptions. Meanwhile, Two mutants named OlNectin4△4 (+4 bp) and OlNectin4△7 (-7 bp) medaka were established using CRISPR-Cas9 system. Nectin4-KO medaka had higher mortality than WT after infected with RGNNV. Moreover, the expression of RGNNV RNA2 gene in different tissues of the Nectin4-KO were higher than WT medaka after challenged with RGNNV. The brain and eye of Nectin4-KO medaka which RGNNV mainly enriched, exhibited significantly higher expression of interferon signaling genes than in WT. Taken together, the OlNectin4 plays a complex role against RGNNV infection by inducing interferon responses for viral clearance.
Collapse
Affiliation(s)
- Ronggui Dai
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Bilin Xia
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyang Wang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Mingxi Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Lei Chen
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yan Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Tiansheng Chen
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
5
|
Qin Q, Liu R, Li Z, Liu M, Wu X, Wang H, Yang S, Sun X, Yi X. Resolving candidate genes of duck ovarian tissue transplantation via RNA-Seq and expression network analyses. Poult Sci 2024; 103:103788. [PMID: 38692177 PMCID: PMC11070914 DOI: 10.1016/j.psj.2024.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Rongxu Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Midi Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xian Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Huimin Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Shuailiang Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xuyang Sun
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China.
| |
Collapse
|
6
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Duangchit S, Wakayama T. Expression of Protein Markers in Spermatogenic and Supporting Sertoli Cells Affected by High Abdominal Temperature in Cryptorchidism Model Mice. J Histochem Cytochem 2023; 71:387-408. [PMID: 37431084 PMCID: PMC10363907 DOI: 10.1369/00221554231185626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Cryptorchidism is a congenital abnormality resulting in increased rates of infertility and testicular cancer. We used cryptorchidism model mice that presented with the translocation of the left testis from the scrotum to the abdominal cavity. Mice underwent the surgical procedure of the left testis at day 0 and were sacrificed at days 3, 5, 7, 14, 21, and 28 post-operatively. The weight of the left cryptorchid testis decreased significantly at days 21 and 28. The morphological changes were observed after 5 days and showed detached spermatogenic cells and abnormal formation of acrosome at day 5, multinucleated giant cells at day 7, and atrophy of seminiferous tubules at days 21 and 28. The high abdominal temperature disrupted the normal expression of cell adhesion molecule-1, Nectin-2, and Nectin-3 which are essential for spermatogenesis. In addition, the pattern and alignment of acetylated tubulin in cryptorchid testes were also changed at days 5, 7, 14, 21, and 28. Ultrastructure of cryptorchid testes revealed giant cells that had been formed by spermatogonia, spermatocytes, and round and elongating spermatids. The study's findings reveal that cryptorchidism's duration is linked to abnormal changes in the testis, impacting protein marker expression in spermatogenic and Sertoli cells. These changes stem from the induction of high abdominal temperature.
Collapse
Affiliation(s)
- Arunothai Wanta
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Suthat Duangchit
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
8
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
9
|
Honig B, Shapiro L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 2021; 181:520-535. [PMID: 32359436 DOI: 10.1016/j.cell.2020.04.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The ability of cells to organize into multicellular structures in precise patterns requires that they "recognize" one another with high specificity. We discuss recent progress in understanding the molecular basis of cell-cell recognition, including unique phenomena associated with neuronal interactions. We describe structures of select adhesion receptor complexes and their assembly into larger intercellular junction structures and discuss emerging principles that relate cell-cell organization to the binding specificities and energetics of adhesion receptors. Armed with these insights, advances in protein design and gene editing should pave the way for breakthroughs toward understanding the molecular basis of cell patterning in vivo.
Collapse
Affiliation(s)
- Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
11
|
Mohseni M, Barzegari Banadkoki S, Dashti A, Farnam G, Keshavarz F K, H Shirazi F. Differential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:61-69. [PMID: 33224211 PMCID: PMC7667558 DOI: 10.22037/ijpr.2020.112214.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most of them imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cytotoxicity and fewer adverse effects. Physical factors are the main means that can influence cell-biomaterial interaction. To explore the importance of attachment phenomena on cancer cells in this research, polydimethylsiloxane (PDMS) substrates with varied stiffness and roughness were synthesized and lung cancer cell's behavior on these surfaces was examined. To achieve diverse surface topography SDBD plasma was used at various exposure times, and different stiffness was obtained by changing in curing agent amount. Atomic force microscopy (AFM) and tensile modulus were employed to the characterization of roughness and stiffness respectively. Lung cancer cell survival and growth were studied by MTT and image processing analysis. The results indicated that softer and rougher surface made lung cancer cells to die. The number of detached cells, mean space of the detached cells, cellular coverage of surface, and the ratio of detached/ all cellular coverage were significantly affected by roughness and stiffness. Therefore, physical factors can control cell function, especially in lung cancer cells and these results might provide a strong base to help cancer cell removal.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Barzegari Banadkoki
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dashti
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Keshavarz F
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020; 25:molecules25214954. [PMID: 33114686 PMCID: PMC7662862 DOI: 10.3390/molecules25214954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences. Moreover, based on recent studies concerning the mechanism of membrane raft formation, we shed new light on a possible role played by MPPs in lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Paulina Olszewska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
- Correspondence: ; Tel.: +48-71375-6356
| |
Collapse
|
13
|
Logan SM, Ruest LB, Benson MD, Svoboda KKH. Extracellular Matrix in Secondary Palate Development. Anat Rec (Hoboken) 2019; 303:1543-1556. [PMID: 31513730 DOI: 10.1002/ar.24263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
The secondary palate arises from outgrowths of epithelia-covered embryonic mesenchyme that grow from the maxillary prominence, remodel to meet over the tongue, and fuse at the midline. These events require the coordination of cell proliferation, migration, and gene expression, all of which take place in the context of the extracellular matrix (ECM). Palatal cells generate their ECM, and then stiffen, degrade, or otherwise modify its properties to achieve the required cell movement and organization during palatogenesis. The ECM, in turn, acts on the cells through their matrix receptors to change their gene expression and thus their phenotype. The number of ECM-related gene mutations that cause cleft palate in mice and humans is a testament to the crucial role the matrix plays in palate development and a reminder that understanding that role is vital to our progress in treating palate deformities. This article will review the known ECM constituents at each stage of palatogenesis, the mechanisms of tissue reorganization and cell migration through the palatal ECM, the reciprocal relationship between the ECM and gene expression, and human syndromes with cleft palate that arise from mutations of ECM proteins and their regulators. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Shaun M Logan
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - L Bruno Ruest
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| |
Collapse
|
14
|
Krishnan R, Qadiri SSN, Oh MJ. Functional characterization of seven-band grouper immunoglobulin like cell adhesion molecule, Nectin4 as a cellular receptor for nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:720-725. [PMID: 31404634 DOI: 10.1016/j.fsi.2019.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Nectin-4/PVRL4 belonging to the family of immunoglobulin-like cell adhesion molecules was identified as a potential cellular receptor for several animal viruses. Here we show that nervous necrosis virus that causes viral nervous necrosis in teleosts uses the same receptor in its life cycle. Transfection of SSN-1 cell lines with an expression vector encoding Nectin-4 rendered them to be more susceptible to NNV. Immunofluorescence microscopy on Nectin-4 expressing cells revealed that the protein interacted with NNV specifically. A virus binding assay indicated that Nectin-4 was a bonafide receptor that supported virus attachment to the host cell whereas siRNA directed against Nectin-4 blocked NNV infections in grouper primary brain cells. Results of the present study will improve our understanding of the pathogenesis of NNV infection and provide a target for the development of novel antiviral interventions in marine finfish aquaculture.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | | | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
15
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
16
|
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int J Mol Sci 2019; 20:E2756. [PMID: 31195621 PMCID: PMC6600153 DOI: 10.3390/ijms20112756] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.
Collapse
Affiliation(s)
- Amanda C Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
17
|
Zankov DP, Sato A, Shimizu A, Ogita H. Differential Effects of Myocardial Afadin on Pressure Overload-Induced Compensated Cardiac Hypertrophy. Circ J 2017; 81:1862-1870. [PMID: 28659552 DOI: 10.1253/circj.cj-17-0394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND Pressure overload induces cardiac hypertrophy, which often ends in heart failure. Afadin is an adaptor protein that is ubiquitously expressed and, in the heart, it localizes at intercalated disks. The current study aimed to examine the afadin-mediated cardiac phenotype in mice exposed to different types of pressure overload: transverse aortic constriction (TAC) burden and angiotensin II (Ang II) stimulation. METHODS AND RESULTS Conditional knockout mice with selective deletion of afadin (afadin cKO) in cardiomyocytes were generated. TAC-operated and Ang II-infused mice at 4 weeks had a similar degree of pressure overload and cardiac hypertrophy in the heart. In afadin cKO mice, TAC operation caused progressive left ventricular dysfunction and heart failure, while Ang II infusion did not deteriorate cardiac function. Furthermore, TAC operation produced more fibrosis and apoptosis in the heart than Ang II infusion, and the expression of growth differentiation factor 15, which can promote apoptosis, in the afadin cKO heart was higher in TAC-operated mice than Ang II-infused ones. CONCLUSIONS In the 2 pressure overload models, myocardial afadin is involved in mechanical stress-induced, but not pharmacological Ang II-related, compensated cardiac hypertrophy.
Collapse
Affiliation(s)
- Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| |
Collapse
|
18
|
Zhai X, Li Y, Liang P, Li L, Zhou Y, Zhang W, Wang D, Wei G. PI3K/AKT/Afadin signaling pathway contributes to pathological vascularization in glioblastomas. Oncol Lett 2017; 15:1893-1899. [PMID: 29434887 DOI: 10.3892/ol.2017.7461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/06/2017] [Indexed: 12/31/2022] Open
Abstract
Glioblastomas are brain tumors with extensive vascularization that are associated with tumor malignancy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is activated in endothelial cell tumors, although its exact function in glioblastoma neovascularization is poorly characterized. The present study identified that endothelial cells derived from human glioblastomas exhibit increased permeability and motility compared with normal brain vascular endothelial cells. Furthermore, the phosphorylation of AKT was significantly induced in glioblastoma-derived endothelial cells and glioblastoma vessels. To the best of our knowledge, the present study demonstrated for the first time that the cell-cell adhesion junction protein Afadin is phosphorylated and re-localized in glioblastoma-derived endothelial cells, and the phosphorylation and re-localization of Afadin is PI3K/AKT pathway-dependent. AKT-mediated phosphorylation and re-localization of Afadin may be critically involved in the modulation of brain endothelial permeability and migration. Therapies targeting the PI3K/AKT/Afadin pathway may therefore be beneficial for reducing the angiogenic potential of glioblastoma.
Collapse
Affiliation(s)
- Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yingliang Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lusheng Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Weidan Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Urinary Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
19
|
Xu Y, Li L, Ren HT, Yin B, Yuan JG, Peng XZ, Qiang BQ, Cui LY. Mutation of the cellular adhesion molecule NECL2 is associated with neuromyelitis optica spectrum disorder. J Neurol Sci 2017; 388:133-138. [PMID: 29627007 DOI: 10.1016/j.jns.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the association of the Nectin/Necl family genes with the risk of developing NMOSD. METHODS Whole-exome sequencing was performed on two familial NMOSD cases and two unaffected family members. Additionally, 106 patients with sporadic NMOSD and 212 healthy controls (HCs) underwent screening for mutant Necl2. Finally, the molecular weight and cellular localization of mutant NECL2 was examined in transfected HeLa cells. RESULTS We identified a novel deletion mutation in Necl2 (c.1052_1060delCCACCACCA; p. Thr351_Thr353del), which was associated with disease manifestation in the NMOSD familial cases. The frequency at which the mutation occurred in patients with sporadic NMOSD was significantly higher than for HCs (5.7% and 0, respectively; p<0.01). The mutation was located in the extracellular domain close to the transmembrane region, at a point in the protein sequence characterized by threonine enrichment. The mutant NECL2 had a lower molecular weight and exhibited defective trafficking to the cell surface. CONCLUSIONS Our results suggest that the Necl2 mutation identified herein may be associated with the risk of developing NMOSD. Furthermore, mutated NECL2 may play a role in the pathogenesis of the disease, potentially through its roles in axonal regeneration and/or via neuron-glia interactions that are relevant to myelination.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liang Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Hai-Tao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Jian-Gang Yuan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Xiao-Zhong Peng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| | - Bo-Qin Qiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| |
Collapse
|
20
|
Nectin spot: a novel type of nectin-mediated cell adhesion apparatus. Biochem J 2017; 473:2691-715. [PMID: 27621480 DOI: 10.1042/bcj20160235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily cell adhesion molecules constituting a family with four members, all of which have three Ig-like loops at their extracellular regions. Nectins play roles in the formation of a variety of cell-cell adhesion apparatuses. There are at least three types of nectin-mediated cell adhesions: afadin- and cadherin-dependent, afadin-dependent and cadherin-independent, and afadin- and cadherin-independent. In addition, nectins trans-interact with nectin-like molecules (Necls) with three Ig-like loops and other Ig-like molecules with one to three Ig-like loops. Furthermore, nectins and Necls cis-interact with membrane receptors and integrins, some of which are associated with the nectin-mediated cell adhesions, and play roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, and survival, co-operatively with these cell surface proteins. The nectin-mediated cell adhesions are implicated in a variety of diseases, including genetic disorders, neural disorders, and cancers. Of the three types of nectin-mediated cell adhesions, the afadin- and cadherin-dependent apparatus has been most extensively investigated, but the examples of the third type of apparatus independent of afadin and cadherin are recently increasing and its morphological and functional properties have been well characterized. We review here recent advances in research on this type of nectin-mediated cell adhesion apparatus, which is named nectin spot.
Collapse
|
21
|
Ruch TR, Engel JN. Targeting the Mucosal Barrier: How Pathogens Modulate the Cellular Polarity Network. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027953. [PMID: 28193722 DOI: 10.1101/cshperspect.a027953] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mucosal barrier is composed of polarized epithelial cells with distinct apical and basolateral surfaces separated by tight junctions and serves as both a physical and immunological barrier to incoming pathogens. Specialized polarity proteins are critical for establishment and maintenance of polarity. Many human pathogens have evolved virulence mechanisms that target the polarity network to enhance binding, create replication niches, move through the barrier by transcytosis, or bypass the barrier by disrupting cell-cell junctions. This review summarizes recent advances and compares and contrasts how three important human pathogens that colonize mucosal surfaces, Pseudomonas aeruginosa, Helicobacter pylori, and Neisseria meningitidis, subvert the host cell polarization machinery during infection.
Collapse
Affiliation(s)
- Travis R Ruch
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
22
|
Zankov DP, Shimizu A, Tanaka-Okamoto M, Miyoshi J, Ogita H. Protective effects of intercalated disk protein afadin on chronic pressure overload-induced myocardial damage. Sci Rep 2017; 7:39335. [PMID: 28045017 PMCID: PMC5206728 DOI: 10.1038/srep39335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Adhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs. At present, the precise role of afadin in cardiac physiology or disease is unknown. To explore this, we generated conditional knockout (cKO) mice with cardiomyocyte-targeted deletion of afadin. Afadin cKO mice were born according to the expected Mendelian ratio and have no detectable changes in cardiac phenotype. On the other hand, chronic pressure overload induced by transverse aortic constriction (TAC) caused systolic dysfunction, enhanced fibrogenesis and apoptosis in afadin cKO mice. Afadin deletion increased macrophage infiltration and monocyte chemoattractant protein-1 expression, and suppressed transforming growth factor (TGF) β receptor signaling early after TAC procedure. Afadin also associated with TGFβ receptor I at IDs. Pharmacological antagonist of TGFβ receptor I (SB431542) augmented mononuclear infiltration and fibrosis in the hearts of TAC-operated control mice. In conclusion, afadin is a critical molecule for cardiac protection against chronic pressure overload. The beneficial effects are likely to be a result from modulation of TGFβ receptor signaling pathways by afadin.
Collapse
Affiliation(s)
- Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
23
|
Tian Y, Gawlak G, Tian X, Shah AS, Sarich N, Citi S, Birukova AA. Role of Cingulin in Agonist-induced Vascular Endothelial Permeability. J Biol Chem 2016; 291:23681-23692. [PMID: 27590342 DOI: 10.1074/jbc.m116.720763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Agonist-induced activation of Rho GTPase signaling leads to endothelial cell (EC) permeability and may culminate in pulmonary edema, a devastating complication of acute lung injury. Cingulin is an adaptor protein first discovered in epithelium and is involved in the organization of the tight junctions. This study investigated the role of cingulin in control of agonist-induced lung EC permeability via interaction with RhoA-specific activator GEF-H1. The siRNA-induced cingulin knockdown augmented thrombin-induced EC permeability monitored by measurements of transendothelial electrical resistance and endothelial cell permeability for macromolecules. Increased thrombin-induced permeability in ECs with depleted cingulin was associated with increased activation of GEF-H1 and RhoA detected in pulldown activation assays. Increased GEF-H1 association with cingulin was essential for down-regulation of thrombin-induced RhoA barrier disruptive signaling. Using cingulin-truncated mutants, we determined that GEF-H1 interaction with the rod + tail domain of cingulin was required for inactivation of GEF-H1 and endothelial cell barrier preservation. The results demonstrate the role for association of GEF-H1 with cingulin as the mechanism of RhoA pathway inactivation and rescue of EC barrier after agonist challenge.
Collapse
Affiliation(s)
- Yufeng Tian
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Grzegorz Gawlak
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Xinyong Tian
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Alok S Shah
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Nicolene Sarich
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Sandra Citi
- the Department of Cell Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Anna A Birukova
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
24
|
Slade JA, Hall JV, Kintner J, Phillips-Campbell R, Schoborg RV. Host Nectin-1 Promotes Chlamydial Infection in the Female Mouse Genital Tract, but Is Not Required for Infection in a Novel Male Murine Rectal Infection Model. PLoS One 2016; 11:e0160511. [PMID: 27486990 PMCID: PMC4972247 DOI: 10.1371/journal.pone.0160511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen, but more than 70% of patients fail to seek treatment due to the asymptomatic nature of these infections. Women suffer from numerous complications from chronic chlamydial infections, which include pelvic inflammatory disease and infertility. We previously demonstrated in culture that host cell nectin-1 knockdown significantly reduced chlamydial titers and inclusion size. Here, we sought to determine whether nectin-1 was required for chlamydial development in vivo by intravaginally infecting nectin-1-/- mice with Chlamydia muridarum and monitoring chlamydial shedding by chlamydial titer assay. We observed a significant reduction in chlamydial shedding in female nectin-1-/- mice compared to nectin-1+/+ control mice, an observation that was confirmed by PCR. Immunohistochemical staining in mouse cervical tissue confirmed that there are fewer chlamydial inclusions in Chlamydia-infected nectin-1-/- mice. Notably, anorectal chlamydial infections are becoming a substantial health burden, though little is known regarding the pathogenesis of these infections. We therefore established a novel male murine model of rectal chlamydial infection, which we used to determine whether nectin-1 is required for anorectal chlamydial infection in male mice. In contrast to the data from vaginal infection, no difference in rectal chlamydial shedding was observed when male nectin-1+/+ and nectin-1-/- mice were compared. Through the use of these two models, we have demonstrated that nectin-1 promotes chlamydial infection in the female genital tract but does not appear to contribute to rectal infection in male mice. These models could be used to further characterize tissue and sex related differences in chlamydial infection.
Collapse
Affiliation(s)
- Jessica A. Slade
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer V. Hall
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer Kintner
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Regenia Phillips-Campbell
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
25
|
Smith YE, Vellanki SH, Hopkins AM. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk. World J Biol Chem 2016; 7:64-77. [PMID: 26981196 PMCID: PMC4768125 DOI: 10.4331/wjbc.v7.i1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.
Collapse
|
26
|
Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:314178. [PMID: 25883953 PMCID: PMC4389985 DOI: 10.1155/2015/314178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 12/21/2022]
Abstract
Vasculature is present in all tissues and therefore is indispensable for development, biology, and pathology of multicellular organisms. Endothelial cells guarantee proper function of the vessels and are the original component in angiogenesis. Morphogenesis of the vascular system utilizes processes like cell adhesion, motility, proliferation, and survival that are closely related to the dynamics of actin filaments and actin-tethered adhesion complexes. Here we review involvement of actin cytoskeleton-associated junctional molecules of endothelial cells in angiogenesis and lymphangiogenesis. Particularly, we focus on F-actin binding protein afadin, an adaptor protein involved in broad range of signaling mechanisms. Afadin mediates the pathways of vascular endothelial growth factor- (VEGF-) and sphingosine 1-phosphate-triggered angiogenesis and is essential for embryonic development of lymph vessels in mice. We propose that targeting actin-tethered junctional molecules, including afadin, may present a new approach to angiogenic therapy that in combination with today used medications like VEGF inhibitors will benefit against development of pathological angiogenesis.
Collapse
|
27
|
Fujiwara Y, Goda N, Tamashiro T, Narita H, Satomura K, Tenno T, Nakagawa A, Oda M, Suzuki M, Sakisaka T, Takai Y, Hiroaki H. Crystal structure of afadin PDZ domain-nectin-3 complex shows the structural plasticity of the ligand-binding site. Protein Sci 2015; 24:376-85. [PMID: 25534554 DOI: 10.1002/pro.2628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C-terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ-binding motif, X-Φ-X-Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin-3 C-terminal peptide containing the class II motif. We engineered the nectin-3 C-terminal peptide and AFPDZ to produce an AFPDZ-nectin-3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel β sheet between β2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å-wider ligand-binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin-3 C-terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Division of Structural Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan; Global-COE (Center of Excellence) Program for Integrative Membrane Biology, Kobe University, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Birukova AA, Meng F, Tian Y, Meliton A, Sarich N, Quilliam LA, Birukov KG. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1. Biochim Biophys Acta Mol Basis Dis 2014; 1852:778-91. [PMID: 25545047 DOI: 10.1016/j.bbadis.2014.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022]
Abstract
Protective effects of prostacyclin (PC) or its stable analog beraprost against agonist-induced lung vascular inflammation have been associated with elevation of intracellular cAMP and Rac GTPase signaling which inhibited the RhoA GTPase-dependent pathway of endothelial barrier dysfunction. This study investigated a distinct mechanism of PC-stimulated lung vascular endothelial (EC) barrier recovery and resolution of LPS-induced inflammation mediated by small GTPase Rap1. Efficient barrier recovery was observed in LPS-challenged pulmonary EC after prostacyclin administration even after 15 h of initial inflammatory insult and was accompanied by the significant attenuation of p38 MAP kinase and NFκB signaling and decreased production of IL-8 and soluble ICAM1. These effects were reproduced in cells post-treated with 8CPT, a small molecule activator of Rap1-specific nucleotide exchange factor Epac. By contrast, pharmacologic Epac inhibitor, Rap1 knockdown, or knockdown of cell junction-associated Rap1 effector afadin attenuated EC recovery caused by PC or 8CPT post-treatment. The key role of Rap1 in lung barrier restoration was further confirmed in the murine model of LPS-induced acute lung injury. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation and live imaging of vascular leak over 6 days using a fluorescent tracer. The data showed significant acceleration of lung recovery by PC and 8CPT post-treatment, which was abrogated in Rap1a(-/-) mice. These results suggest that post-treatment with PC triggers the Epac/Rap1/afadin-dependent mechanism of endothelial barrier restoration and downregulation of p38MAPK and NFκB inflammatory cascades, altogether leading to accelerated lung recovery.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Fanyong Meng
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yufeng Tian
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Angelo Meliton
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nicolene Sarich
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | - Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
Moiseeva EP, Straatman KR, Leyland ML, Bradding P. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells. PLoS One 2014; 9:e85980. [PMID: 24465823 PMCID: PMC3899107 DOI: 10.1371/journal.pone.0085980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
CADM1 is a major receptor for the adhesion of mast cells (MCs) to fibroblasts, human airway smooth muscle cells (HASMCs) and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM). Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.
Collapse
Affiliation(s)
- Elena P. Moiseeva
- Institute for Lung Health, Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Mark L. Leyland
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
30
|
Szaszi K, Amoozadeh Y. New Insights into Functions, Regulation, and Pathological Roles of Tight Junctions in Kidney Tubular Epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:205-71. [DOI: 10.1016/b978-0-12-800097-7.00006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Twiss F, de Rooij J. Cadherin mechanotransduction in tissue remodeling. Cell Mol Life Sci 2013; 70:4101-16. [PMID: 23563964 PMCID: PMC11113614 DOI: 10.1007/s00018-013-1329-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022]
Abstract
Mechanical forces are increasingly recognized as central factors in the regulation of tissue morphogenesis and homeostasis. Central to the transduction of mechanical information into biochemical signaling is the contractile actomyosin cytoskeleton. Fluctuations in actomyosin contraction are sensed by tension sensitive systems at the interface between actomyosin and cell adhesion complexes. We review the current knowledge about the mechanical coupling of cell-cell junctions to the cytoskeleton and highlight the central role of α-catenin in this linkage. We assemble current knowledge about α-catenin's regulation by tension and about its interactions with a diversity of proteins. We present a model in which α-catenin is a force-regulated platform for a machinery of proteins that orchestrates local cortical remodeling in response to force. Finally, we highlight recently described fundamental processes in tissue morphogenesis and argue where and how this α-catenin-dependent cadherin mechanotransduction may be involved.
Collapse
Affiliation(s)
- Floor Twiss
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Uppsalalaan 8, 3884 CT, Utrecht, The Netherlands,
| | | |
Collapse
|
32
|
Huveneers S, de Rooij J. Mechanosensitive systems at the cadherin-F-actin interface. J Cell Sci 2013; 126:403-13. [PMID: 23524998 DOI: 10.1242/jcs.109447] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues, mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension transduce changes in physical force into cellular signaling, is very different, and the molecular mechanisms are only beginning to be elucidated. In this Commentary, we focus on mechanotransduction at cell-cell junctions, aiming to comprehend the molecular mechanisms involved. We describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell-cell junctions. We discuss which cell-cell adhesion receptors have been shown to take part in mechanotransduction. Then we outline the force-induced molecular events that might occur within a key mechanosensitive system at cell-cell junctions; the cadherin-F-actin interface, at which α-catenin and vinculin form a central module. Mechanotransduction at cell-cell junctions emerges as an important signaling mechanism, and we present examples of its potential relevance for tissue development and disease.
Collapse
Affiliation(s)
- Stephan Huveneers
- Sanquin Research and Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
33
|
Abstract
The genus Morbillivirus includes measles virus, canine distemper virus and rinderpest virus. These are highly contagious and exhibit high mortality. These viruses have the attachment glycoprotein, hemagglutinin (H), at the virus surface, which bind to signaling lymphocyte activation molecule (SLAM) and Nectin 4 as receptors for the entry. However, the molecular mechanism for this entry has been limitedly understood. Here we summarize the current topics, (1) newly identified receptor, Nectin 4, (2) crystal structures of H-receptor complexes and (3) detail biochemical studies of the H-F communication for the entry. These provide insight on the mechanism of morbillivirus entry event and furthermore drug developments.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | | | | |
Collapse
|
34
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
35
|
Abstract
Canine distemper is a highly contagious viral disease caused by the canine distemper virus (CDV), which is a member of the Morbillivirus genus, Paramyxoviridae family. Animals that most commonly suffer from this disease belong to the Canidae family; however, the spectrum of natural hosts for CDV also includes several other families of the order Carnivora. The infectious disease presents worldwide distribution and maintains a high incidence and high levels of lethality, despite the availability of effective vaccines, and no specific treatment. CDV infection in dogs is characterized by the presentation of systemic and/or neurological courses, and viral persistence in some organs, including the central nervous system (CNS) and lymphoid tissues. An elucidation of the pathogenic mechanisms involved in canine distemper disease will lead to a better understanding of the injuries and clinical manifestations caused by CDV. Ultimately, further insight about this disease will enable the improvement of diagnostic methods as well as therapeutic studies.
Collapse
|
36
|
Twiss F, Le Duc Q, Van Der Horst S, Tabdili H, Van Der Krogt G, Wang N, Rehmann H, Huveneers S, Leckband DE, De Rooij J. Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biol Open 2012; 1:1128-40. [PMID: 23213393 PMCID: PMC3507192 DOI: 10.1242/bio.20122428] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/13/2012] [Indexed: 11/20/2022] Open
Abstract
Proper regulation of the formation and stabilization of epithelial cell–cell adhesion is crucial in embryonic morphogenesis and tissue repair processes. Defects in this process lead to organ malformation and defective epithelial barrier function. A combination of chemical and mechanical cues is used by cells to drive this process. We have investigated the role of the actomyosin cytoskeleton and its connection to cell–cell junction complexes in the formation of an epithelial barrier in MDCK cells. We find that the E-cadherin complex is sufficient to mediate a functional link between cell–cell contacts and the actomyosin cytoskeleton. This link involves the actin binding capacity of α-catenin and the recruitment of the mechanosensitive protein Vinculin to tensile, punctate cell–cell junctions that connect to radial F-actin bundles, which we name Focal Adherens Junctions (FAJ). When cell–cell adhesions mature, these FAJs disappear and linear junctions are formed that do not contain Vinculin. The rapid phase of barrier establishment (as measured by Trans Epithelial Electrical Resistance (TER)) correlates with the presence of FAJs. Moreover, the rate of barrier establishment is delayed when actomyosin contraction is blocked or when Vinculin recruitment to the Cadherin complex is prevented. Enhanced presence of Vinculin increases the rate of barrier formation. We conclude that E-cadherin-based FAJs connect forming cell–cell adhesions to the contractile actomyosin cytoskeleton. These specialized junctions are sites of Cadherin mechanosensing, which, through the recruitment of Vinculin, is a driving force in epithelial barrier formation.
Collapse
Affiliation(s)
- Floor Twiss
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht , PO Box 85164, 3508 AD Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol 2012; 20:429-39. [PMID: 22721863 DOI: 10.1016/j.tim.2012.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/14/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Measles virus (MV) causes acute respiratory disease, infects lymphocytes and multiple organs, and produces immune suppression leading to secondary infections. In rare instances it can also cause persistent infections in the brain and central nervous system. Vaccine and laboratory-adapted strains of MV use CD46 as a receptor, whereas wild-type strains of MV (wtMV) cannot. Both vaccine and wtMV strains infect lymphocytes, monocytes, and dendritic cells (DCs) using the signaling lymphocyte activation molecule (CD150/SLAM). In addition, MV can infect the airway epithelial cells of the host. Nectin 4 (PVRL4) was recently identified as the epithelial cell receptor for MV. Coupled with recent observations made in MV-infected macaques, this discovery has led to a new paradigm for how the virus accesses the respiratory tract and exits the host. Nectin 4 is also a tumor cell marker which is highly expressed on the apical surface of many adenocarcinoma cell lines, making it a potential target for MV oncolytic therapy.
Collapse
Affiliation(s)
- Ryan S Noyce
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | |
Collapse
|
38
|
Ballester M, Gonin J, Rodenas A, Bernaudin JF, Rouzier R, Coutant C, Daraï E. Eutopic endometrium and peritoneal, ovarian and colorectal endometriotic tissues express a different profile of Nectin-1, -3, -4 and nectin-like molecule 2. Hum Reprod 2012; 27:3179-86. [DOI: 10.1093/humrep/des304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Castellanos KJ, Gagyi E, Kormos B, Valyi-Nagy K, Voros A, Shukla D, Horvath S, Slavin KV, Valyi-Nagy T. Increased axonal expression of nectin-1 in multiple sclerosis plaques. Neurol Sci 2012; 34:465-9. [PMID: 22460696 DOI: 10.1007/s10072-012-1026-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/18/2012] [Indexed: 12/26/2022]
Abstract
Nectin-1 is a cell adhesion molecule that plays a role in interneuronal synapse formation, in axonal guidance during development and possibly in neuron-glia interactions. To better understand axonal changes in MS, nectin-1 expression was determined by immunohistochemistry in normal adult human cerebral white matter (n = 4) and in six MS plaques (three active and three inactive). The intensity of axonal nectin-1 expression was scored on a scale of 0 to 4+. In normal adult cerebral white matter, axons showed weak nectin-1 expression with a score of 1.25 ± 0.50. Axonal nectin-1 expression was significantly stronger within both active (score = 3.33 ± 0.289, p = 0.001) and inactive (score = 2.16 ± 0.29, p = 0.038) MS plaques than in normal white matter. Axons in white matter adjacent to MS plaques showed nectin-1 expression (score = 1.5 ± 0.50) that was not statistically different from normal controls (p = 0.542). These findings raise the possibility that increased expression of nectin-1 in MS lesions plays a role in the pathogenesis of MS through participation in axonal responses to injury and mediation of altered neuron-glia interactions relevant to myelination.
Collapse
Affiliation(s)
- Karla J Castellanos
- Department of Pathology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sato H, Yoneda M, Honda T, Kai C. Morbillivirus receptors and tropism: multiple pathways for infection. Front Microbiol 2012; 3:75. [PMID: 22403577 PMCID: PMC3290766 DOI: 10.3389/fmicb.2012.00075] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
Morbilliviruses, which include measles virus (MeV), canine distemper virus, and rinderpest virus, are among the most important pathogens in their respective hosts and cause severe syndromes. Morbilliviruses are enveloped viruses with two envelope proteins, one of which is hemagglutinin (H) protein, which plays a role in binding to cellular receptors. During morbillivirus infection, the virus initially targets lymphoid cells and replicates efficiently in the lymph nodes. The principal cellular receptor for morbillivirus is signaling lymphocyte activation molecule (SLAM, also called CD150), which is exclusively expressed on immune cells. This feature reflects the strong lymphoid cell tropism and viral spread in the infected body. Morbillivirus infection, however, affects various tissues in the body, including the lung, kidney, gastrointestinal tract, vascular endothelium, and brain. Thus, other receptors for morbilliviruses in addition to SLAM might exist. Recently, nectin-4 has been identified as a novel epithelial cell receptor for MeV. The expression of nectin-4 is localized to polarized epithelial cells, and this localization supports the notion of cell tropism since MeV also grows well in the epithelial cells of the respiratory tract. Although two major receptors for lymphoid and epithelial cells in natural infection have been identified, morbillivirus can still infect many other types of cells with low infectivity, suggesting the existence of inefficient but ubiquitously expressed receptors. We have identified other molecules that are implicated in morbillivirus infection of SLAM-negative cells by alternative mechanisms. These findings indicate that morbillivirus utilizes multiple pathways for establishment of infection. These studies will advance our understanding of morbillivirus tropism and pathogenesis.
Collapse
Affiliation(s)
- Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of TokyoTokyo, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of TokyoTokyo, Japan
| | - Tomoyuki Honda
- Laboratory Animal Research Center, Institute of Medical Science, The University of TokyoTokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of TokyoTokyo, Japan
| |
Collapse
|
41
|
Lachke SA, Higgins AW, Inagaki M, Saadi I, Xi Q, Long M, Quade BJ, Talkowski ME, Gusella JF, Fujimoto A, Robinson ML, Yang Y, Duong QT, Shapira I, Motro B, Miyoshi J, Takai Y, Morton CC, Maas RL. The cell adhesion gene PVRL3 is associated with congenital ocular defects. Hum Genet 2012; 131:235-50. [PMID: 21769484 PMCID: PMC3279124 DOI: 10.1007/s00439-011-1064-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/02/2011] [Indexed: 12/13/2022]
Abstract
We describe a male patient (patient DGAP113) with a balanced translocation, 46,XY,t(1;3)(q31.3;q13.13), severe bilateral congenital cataracts, CNS abnormalities and mild developmental delay. Fluorescence in situ hybridization (FISH) and suppression PCR demonstrated that the chromosome 3 breakpoint lies ~515 kb upstream of the PVRL3 gene, while the chromosome 1 breakpoint lies ~50 kb upstream of the NEK7 gene. Despite the fact that NEK7 is closer to a translocation breakpoint than PVRL3, NEK7 transcript levels are unaltered in patient DGAP113 lymphoblastoid cells and Nek7-deficient mice exhibit no detectable ocular phenotype. In contrast, the expression of PVRL3, which encodes the cell adhesion protein Nectin 3, is significantly reduced in patient DGAP113 lymphoblastoid cells, likely due to a position effect caused by the chromosomal translocation. Nectin 3 is expressed in the mouse embryonic ciliary body and lens. Moreover, Pvrl3 knockout mice as well as a spontaneous mouse mutant ari (anterior retinal inversion), that maps to the Pvrl3 locus, exhibit lens and other ocular defects involving the ciliary body. Collectively, these data identify PVRL3 as a critical gene involved in a Nectin-mediated cell-cell adhesion mechanism in human ocular development.
Collapse
Affiliation(s)
- Salil A. Lachke
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Biological Sciences, University of Delaware, Newark DE 19716 USA
| | - Anne W. Higgins
- Departments of Obstetrics, Gynecology and Reproductive Biology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Maiko Inagaki
- Radiation Research Center for Frontier Science Research, Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 Japan
| | - Irfan Saadi
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Qiongchao Xi
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Michelle Long
- Departments of Obstetrics, Gynecology and Reproductive Biology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Bradley J. Quade
- Departments of Obstetrics, Gynecology and Reproductive Biology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Michael E. Talkowski
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114 USA
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114 USA
| | - Atsuko Fujimoto
- Department of Pediatrics, Keck School of Medicine, University of Southern California Medical Center, Los Angeles, CA 90033 USA
| | | | - Ying Yang
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205 USA
| | - Quynh T. Duong
- The Ohio State University College of Optometry, Columbus, OH 43210 USA
| | - Irit Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Benny Motro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511 Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017 Japan
| | - Cynthia C. Morton
- Departments of Obstetrics, Gynecology and Reproductive Biology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
42
|
Owczarek S, Berezin V. Neuroplastin: Cell adhesion molecule and signaling receptor. Int J Biochem Cell Biol 2012; 44:1-5. [DOI: 10.1016/j.biocel.2011.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
43
|
Abstract
Cadherins and catenins are the central cell-cell adhesion molecules in adherens junctions (AJs). This chapter reviews the knowledge concerning the role of cadherins and catenins in epithelial cancer and examines the published literature demonstrating the changes in the expression and function of these proteins in human cancer and the association of these changes with patient outcomes. The chapter also covers the mechanistic studies aiming at uncovering the significance of changes in cadherin and catenin expression in cancer and potential molecular mechanisms responsible for the causal role of AJs in cancer initiation and progression.
Collapse
Affiliation(s)
- Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,
| |
Collapse
|
44
|
Huang CW, Chen HY, Yen MH, Chen JJW, Young TH, Cheng JY. Gene expression of human lung cancer cell line CL1-5 in response to a direct current electric field. PLoS One 2011; 6:e25928. [PMID: 21998723 PMCID: PMC3187831 DOI: 10.1371/journal.pone.0025928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of physiological strength. Highly metastatic human lung cancer cells, CL1–5, exhibit directional migration and orientation under dcEFs. To understand the transcriptional response of CL1–5 cells to a dcEF, microarray analysis was performed in this study. Methodology/Principal Findings A large electric-field chip (LEFC) was designed, fabricated, and used in this study. CL1–5 cells were treated with the EF strength of 0mV/mm (the control group) and 300mV/mm (the EF-treated group) for two hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. It was shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation, and tight junction. Some up-regulated genes such as ACVR1B and CTTN, and some down-regulated genes such as PTEN, are known to be positively and negatively correlated to cell migration, respectively. The protein-protein interactions of adherens junction-associated EF-regulated genes suggested that platelet-derived growth factor (PDGF) receptors and ephrin receptors may participate in sensing extracellular electrical stimuli. We further observed a high percentage of significantly regulated genes which encode cell membrane proteins, suggesting that dcEF may directly influence the activity of cell membrane proteins in signal transduction. Conclusions/Significance In this study, some of the EF-regulated genes have been reported to be essential whereas others are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of electrotactic response.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Huai-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
| | - Meng-Hua Yen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeremy J. W. Chen
- Institutes of Biomedical Sciences and Molecular Biology, National Chung-Hsing University, Taichung, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Mechanical and Mechantronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Zhao B, Knepper MA, Chou CL, Pisitkun T. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination. Am J Physiol Cell Physiol 2011; 302:C27-45. [PMID: 21940666 DOI: 10.1152/ajpcell.00300.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although extensive phosphoproteomic information is available for renal epithelial cells, previous emphasis has been on phosphorylation of serines and threonines with little focus on tyrosine phosphorylation. Here we have carried out large-scale identification of phosphotyrosine sites in pervanadate-treated native inner medullary collecting ducts of rat, with a view towards identification of physiological processes in epithelial cells that are potentially regulated by tyrosine phosphorylation. The method combined antibody-based affinity purification of tyrosine phosphorylated peptides coupled with immobilized metal ion chromatography to enrich tyrosine phosphopeptides, which were identified by LC-MS/MS. A total of 418 unique tyrosine phosphorylation sites in 273 proteins were identified. A large fraction of these sites have not been previously reported on standard phosphoproteomic databases. All results are accessible via an online database: http://helixweb.nih.gov/ESBL/Database/iPY/. Analysis of surrounding sequences revealed four overrepresented motifs: [D/E]xxY*, Y*xxP, DY*, and Y*E, where the asterisk symbol indicates the site of phosphorylation. These motifs plus contextual information, integrated using the NetworKIN tool, suggest that the protein tyrosine kinases involved include members of the insulin- and ephrin-receptor kinase families. Analysis of the gene ontology (GO) terms and KEGG pathways whose protein elements are overrepresented in our data set point to structures involved in epithelial cell-cell and cell-matrix interactions ("adherens junction," "tight junction," and "focal adhesion") and to components of the actin cytoskeleton as major sites of tyrosine phosphorylation in these cells. In general, these findings mesh well with evidence that tyrosine phosphorylation plays a key role in epithelial polarity determination.
Collapse
Affiliation(s)
- Boyang Zhao
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | |
Collapse
|
46
|
Narita H, Nakagawa A, Yamamoto Y, Sakisaka T, Takai Y, Suzuki M. Refolding, crystallization and preliminary X-ray crystallographic study of the whole extracellular regions of nectins. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:344-8. [PMID: 21393840 PMCID: PMC3053160 DOI: 10.1107/s174430911100337x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/25/2011] [Indexed: 12/14/2022]
Abstract
The nectin family of Ca2+-independent immunoglobulin-like cell-cell adhesion molecules contains four members. Nectins, which have three Ig-like domains in their extracellular region, form cell-cell adherens junctions cooperatively with cadherins. The whole extracellular regions of nectin-1 (nectin-1-EC) and nectin-2 (nectin-2-EC) were expressed in Escherichia coli as inclusion bodies, solubilized in 8 M urea and then refolded by rapid dilution into refolding solution. The refolded proteins were subsequently purified by three chromatographic steps and crystallized using the hanging-drop vapour-diffusion method. The nectin-1-EC crystals belonged to space group P2(1)3 and the nectin-2-EC crystals belonged to space group P6(1)22 or P6(5)22.
Collapse
Affiliation(s)
- Hirotaka Narita
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
47
|
Paban V, Chambon C, Farioli F, Alescio-Lautier B. Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult. Neurobiol Learn Mem 2011; 95:441-52. [PMID: 21345373 DOI: 10.1016/j.nlm.2011.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders. The present study was designed to identify genes and networks in rat prefrontal cortex that are associated with learning and cholinergic-loss-memory deficit. Affymetrix microarray technology was used to screen gene expression changes in rats submitted or not to 192 IgG-saporin immunolesion of cholinergic basal forebrain and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes, which were organized in several clusters of highly correlated genes and would be involved in biological processes such as intracellular signaling process, transcription regulation, and filament organization and axon guidance. Memory loss following cortical cholinergic deafferentation was associated with significant expression of genes belonging to only one clearly delineated cluster and would be involved in biological processes related to cytoskeleton organization and proliferation, and glial and vascular remodeling, i.e., in processes associated with brain repair after injury.
Collapse
Affiliation(s)
- Véronique Paban
- Université d'Aix-Marseille I, Laboratoire de Neurosciences Intégratives et Adaptatives, UMR/CNRS 6149, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France.
| | | | | | | |
Collapse
|
48
|
Huang CW, Chen HY, Yen MH, Chen JJW, Young TH, Cheng JY. Gene expression of human lung cancer cell line CL1-5 in response to a direct current electric field. PLoS One 2011. [PMID: 21998723 DOI: 10.1371/journal.pone.0025928.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of physiological strength. Highly metastatic human lung cancer cells, CL1-5, exhibit directional migration and orientation under dcEFs. To understand the transcriptional response of CL1-5 cells to a dcEF, microarray analysis was performed in this study. METHODOLOGY/PRINCIPAL FINDINGS A large electric-field chip (LEFC) was designed, fabricated, and used in this study. CL1-5 cells were treated with the EF strength of 0 mV/mm (the control group) and 300 mV/mm (the EF-treated group) for two hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. It was shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation, and tight junction. Some up-regulated genes such as ACVR1B and CTTN, and some down-regulated genes such as PTEN, are known to be positively and negatively correlated to cell migration, respectively. The protein-protein interactions of adherens junction-associated EF-regulated genes suggested that platelet-derived growth factor (PDGF) receptors and ephrin receptors may participate in sensing extracellular electrical stimuli. We further observed a high percentage of significantly regulated genes which encode cell membrane proteins, suggesting that dcEF may directly influence the activity of cell membrane proteins in signal transduction. CONCLUSIONS/SIGNIFICANCE In this study, some of the EF-regulated genes have been reported to be essential whereas others are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of electrotactic response.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Andl CD. The Misregulation of Cell Adhesion Components during Tumorigenesis: Overview and Commentary. JOURNAL OF ONCOLOGY 2010; 2010:174715. [PMID: 20953359 PMCID: PMC2952821 DOI: 10.1155/2010/174715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/23/2010] [Accepted: 09/10/2010] [Indexed: 12/18/2022]
Abstract
Cell adhesion complexes facilitate attachment between cells or the binding of cells to the extracellular matrix. The regulation of cell adhesion is an important step in embryonic development and contributes to tissue homeostasis allowing processes such as differentiation and cell migration. Many mechanisms of cancer progression are reminiscent of embryonic development, for example, epithelial-mesenchymal transition, and involve the disruption of cell adhesion and expression changes in components of cell adhesion structures. Tight junctions, adherens junctions, desmosomes, and focal adhesion besides their roles in cell-cell or cell-matrix interaction also possess cell signaling function. Perturbations of such signaling pathways can lead to cancer. This article gives an overview of the common structures of cell adhesion and summarizes the impact of their loss on cancer development and progression with articles highlighted from the present issue.
Collapse
Affiliation(s)
- Claudia D. Andl
- Department of Surgery and Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|