1
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Zhou Y, Zhang H, Zheng X, Zhang R, Chen X, Ma Q, Yang D, Wei J, Pang A, He Y, Feng S, Han M, Zhai W, Jiang E. Impact of BCOR/BCORL1 mutation on outcomes of allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia patients. Ann Hematol 2025:10.1007/s00277-025-06346-6. [PMID: 40202539 DOI: 10.1007/s00277-025-06346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
BCOR alteration is a well-established adverse-risk marker for acute myeloid leukemia (AML) in 2022 ELN risk stratification. However, outcomes of BCOR- or BCORL1-mutated AML after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are as yet poorly defined. In an 877-patient consecutive AML transplantation cohort, we found 83 (9.5%) patients with BCOR or BCORL1 mutation (BCOR/BCORL1mut). We retrospectively evaluated the clinical characteristics and transplant outcomes of BCOR/BCORL1mut patients and compared them with 276 patients with normal karyotype (BCOR/BCORL1wt). Frameshift mutation was the predominant alteration of BCOR (n = 22, 39.3%), and the majority of BCORL1 was missense mutation (n = 25, 65.8%). The most common co-mutated gene of BCOR/BCORL1mut was DNMT3A (n = 23, 27.7%). BCOR/BCORL1mut was also associated with lower WBC counts at diagnosis (P = 0.003), shorter interval from diagnosis to transplantation (P = 0.037), and fewer achieved minimal residual disease negativity pre-transplantation (P < 0.001), compared to BCOR/BCORL1wt. Three-year OS, DFS and CIR of BCOR/BCORL1wt and BCOR/BCORL1mut groups were 75.2% (95% CI, 70.0-80.8%) vs. 76.0% (95% CI, 66.0-87.5%) (HR, 0.92; 95% CI, 0.54-1.57; P = 0.77), 74.5% (95% CI, 69.4-80.1%) vs. 67.7% (95%CI, 57.0-80.4%) (HR, 1.20; 95% CI, 0.75-1.91; P = 0.46), and 12.6% (95% CI, 8.9-17.0%) vs. 24.0% (95% CI, 14.1-35.4%) (HR, 1.85; 95% CI, 1.04-3.3; P = 0.03), respectively. We also investigated the impact of the type and location of BCOR/BCORL1mut on transplant outcomes, but no significant effect was observed. Our findings suggest that BCOR/BCORL1mut is associated with relapse after allo-HSCT, despite no observed difference in OS, and that allo-HSCT could help to overcome the impact of BCOR/BCORL1mut characteristics on outcomes.
Collapse
Affiliation(s)
- YunXia Zhou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinhui Zheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
3
|
Marutha T, Williams S, Novellie M, Dillon B, Carstens N, Mavri-Damelin D. Exome sequencing identifies existing and novel variants in a South African cohort presenting with anterior segment dysgenesis. Gene 2025; 943:149273. [PMID: 39870121 DOI: 10.1016/j.gene.2025.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Anterior segment dysgenesis (ASD) defines a collection of congenital eye disorders that affect structures within the anterior segment of the eye. Mutations in genes that initiate and regulate the complex pathways involved in eye development can cause a spectrum of disorders such as ASD, congenital cataracts and corneal opacity. In South Africa, causes of ASD are poorly understood with few studies looking at the possible genetic basis for these disorders. In this study, we performed exome sequencing on a cohort of South African patients with ASD, focusing on a panel of genes known to regulate eye development pathways, including the PXDN gene which has recently been associated with ASD. We identified novel as well as established variants: specifically, we found a disease-causing variant in PAX6; variants that are likely to be pathogenic in GJA8, BCOR and EPHA2, as well as variants of uncertain significance in PXDN and LTBP2. In conclusion, this study is the first to show disease-causing variants in South African patients presenting with ASD, including the identification of novel variants and highlights the need to expand upon such studies in understudied populations.
Collapse
Affiliation(s)
- Tebogo Marutha
- School of Molecular and Cell Biology Faculty of Science University of the Witwatersrand Johannesburg South Africa
| | - Sue Williams
- Division of Ophthalmology Department of Neurosciences School of Clinical Medicine Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Michael Novellie
- Division of Human Genetics National Health Laboratory Service and School of Pathology Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Bronwyn Dillon
- Division of Human Genetics National Health Laboratory Service and School of Pathology Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Nadia Carstens
- South African Medical Research Council Genomics Centre NIVS Building Tygerberg Hospital Campus Cape Town Western Cape South Africa
| | - Demetra Mavri-Damelin
- School of Molecular and Cell Biology Faculty of Science University of the Witwatersrand Johannesburg South Africa.
| |
Collapse
|
4
|
Zong Y, Huang R, Bitar M, Drakaki A, Zhang L, Lin DI, Ye H. Molecular Diversity of Embryonic-Type Neuroectodermal Tumors Arising From Testicular Germ Cell Tumors. Mod Pathol 2025; 38:100702. [PMID: 39730027 DOI: 10.1016/j.modpat.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Embryonic-type neuroectodermal tumors (ENTs) arising from testicular germ cell tumors (GCTs) are a relatively common type of somatic transformation in GCTs with poor prognosis and limited therapeutic options, particularly when patients develop disease recurrence or metastasis. Knowledge of key events driving this transformation is limited to the paucity of comprehensive genomic data. We performed a retrospective database search in a Clinical Laboratory Improvement Amendments- and College of American Pathologists-certified laboratory for testicular GCT-derived ENTs that had previously undergone next-generation sequencing-based comprehensive genomic profiling during the course of clinical care. Clinicopathological and genomic data were centrally rereviewed. Here, we report the molecular features of 10 ENTs of testicular GCT origin. All tumors harbored gain of chromosome 12p, often with KRAS, CCND2, and KMD5A coamplification, supporting a germ cell origin. The tumors were microsatellite-stable and exhibited a low tumor mutational burden. Three tumors (30%) exhibited MYCN or MYC amplification with co-occurring inactivation of the p53 pathway via either TP53 mutations or MDM2 amplification in 2 tumors. Three additional tumors (30%) had activation of the PI3K pathway via PIK3CA and PIK3CG mutations or PIK3C2B amplification; 1 tumor with co-occurring CDK4 amplification. Gene rearrangements were detected in 3 tumors (30%), with novel BRD4::MAU2 and BCOR::CLIP2 fusions as well as an internal truncating ATRX rearrangement, respectively. In summary, ENTs arising from GCTs are molecularly heterogeneous; however, a large fraction of testicular ENTs could be stratified by 2 distinct sets of genetic alterations, including MYCN/MYC amplification with concurrent suppression of the p53 pathway, and activation of the PI3K pathway with co-occurring CDK4 amplification. Moreover, the novel gene fusions identified in a subset of testicular GCT-derived ENTs overlap with molecularly defined tumors of embryonic-type neuroectodermal features in the central nervous system, indicating the potential common driving events for tumorigenesis from different anatomical sites.
Collapse
Affiliation(s)
- Yang Zong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California; Now with Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rongrong Huang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Mireille Bitar
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California; Now with Department of Pathology and Laboratory Medicine, The Children's Hospital Los Angeles, Los Angeles, California
| | - Alexandra Drakaki
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | | | - Huihui Ye
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California; Now with Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
5
|
Wolf van der Meer J, Larue A, van der Knaap JA, Chalkley GE, Sijm A, Beikmohammadi L, Kozhevnikova EN, van der Vaart A, Tilly BC, Bezstarosti K, Dekkers DHW, Doff WAS, van de Wetering-Tieleman PJ, Lanko K, Barakat TS, Allertz T, van Haren J, Demmers JAA, Atlasi Y, Verrijzer CP. Hao-Fountain syndrome protein USP7 controls neuronal differentiation via BCOR-ncPRC1.1. Genes Dev 2025; 39:401-422. [PMID: 39919828 PMCID: PMC11875088 DOI: 10.1101/gad.352272.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Pathogenic variants in the ubiquitin-specific protease 7 (USP7) gene cause a neurodevelopmental disorder called Hao-Fountain syndrome. However, it remains unclear which of USP7's pleiotropic functions are relevant for neurodevelopment. Here, we present a combination of quantitative proteomics, transcriptomics, and epigenomics to define the USP7 regulatory circuitry during neuronal differentiation. USP7 activity is required for the transcriptional programs that direct both the differentiation of embryonic stem cells into neural stem cells and the neuronal differentiation of SH-SY5Y neuroblastoma cells. USP7 controls the dosage of the Polycomb monubiquitylated histone H2A lysine 119 (H2AK119ub1) ubiquitin ligase complexes ncPRC1.1 and ncPRC1.6. Loss-of-function experiments revealed that BCOR-ncPRC1.1, but not ncPRC1.6, is a key effector of USP7 during neuronal differentiation. Indeed, BCOR-ncPRC1.1 mediates a major portion of USP7-dependent gene regulation during this process. Besides providing a detailed map of the USP7 regulome during neurodifferentiation, our results suggest that USP7- and ncPRC1.1-associated neurodevelopmental disorders involve dysregulation of a shared epigenetic network.
Collapse
Affiliation(s)
- Joyce Wolf van der Meer
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Axelle Larue
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Jan A van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Gillian E Chalkley
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Elena N Kozhevnikova
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Aniek van der Vaart
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Ben C Tilly
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Wouter A S Doff
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - P Jantine van de Wetering-Tieleman
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Tim Allertz
- Department of Cell Biology, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Jeffrey van Haren
- Department of Cell Biology, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands;
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom;
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands;
| |
Collapse
|
6
|
Fayoumi A. BCOR abnormalities in endometrial stromal sarcoma. Gynecol Oncol Rep 2025; 57:101672. [PMID: 39877469 PMCID: PMC11773205 DOI: 10.1016/j.gore.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Endometrial stromal tumors (ESTs) are uncommon mesenchymal tumors of the reproductive system associated with heterogeneous histomolecular features. According to the World Health Organization (WHO), ESTs are classified into benign endometrial stromal nodules (BESN) and endometrial stromal sarcomas (ESSs), which are further divided into low-grade and high-grade subtypes. High-grade ESS is frequently associated with YWHAE-NUTM2 gene fusions, while a newly recognized subtype with BCOR rearrangements, including fusions, alterations, and internal tandem duplications (ITDs), has recently been incorporated into the molecular classification of ESS. BCOR, a transcriptional corepressor of BCL-6, contributes to tumor progression through its role in polycomb repressive complex 1 (PRC1), underscoring its importance in oncogenesis and potential as a therapeutic target. Advances in molecular diagnostics, such as next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH), have improved the precision of diagnosing BCOR-altered ESS, enabling better prognostic stratification. These findings also support the development of targeted therapies, including CDK4/6 inhibitors and immunotherapies targeting PD-1 and CTLA-4 pathways. Despite these advancements, barriers such as limited access to molecular diagnostics and the high cost of novel therapies remain significant challenges. This review bridges molecular and clinical insights into ESS, emphasizing the diagnostic, prognostic, and therapeutic implications of BCOR rearrangements. By integrating these advances into clinical practice, it aims to improve outcomes for patients with this rare and aggressive malignancy.
Collapse
Affiliation(s)
- Abdulkareem Fayoumi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
7
|
Zhang M, Yao X, Zhang N, Yu Y, Jia C, Guan X, Xu W, Ni X, Guo Y, He L. Development, optimization and application of a universal fluorescence multiplex PCR-based assay to detect BCOR genetic alterations in pediatric tumors. Diagn Pathol 2025; 20:11. [PMID: 39871307 PMCID: PMC11770904 DOI: 10.1186/s13000-025-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis. However, gene fusions are usually detected through reverse transcription-polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization. Methods that analyze these variants simultaneously in a sensitive and convenient manner are lacking in clinical practice. METHODS This study validated a Universal Fluorescence Multiplex PCR-based assay that assessed BCOR ITDs, BCOR::CCNB3, BCOR::MAML3 and YWHAE::NUTM2 fusions simultaneously. RESULTS The assay achieved a detection threshold of 10 copies for fusion genes and 0.32 ng genomic DNA for BCOR ITDs. The performance of this assay was also tested in a cohort of 43 pediatric tumors (17 undifferentiated small round cell sarcomas, and 26 tumors with a histological diagnosis of CCSK). In total, 20 BCOR ITDs, 4 BCOR::CCNB3 and one YWHAE::NUTM2 were detected. When compared with the final diagnosis, the assay achieved 93% sensitivity and 100% specificity. CONCLUSIONS Accordingly, this assay provided an effective and convenient method for detecting BCOR- and YWHAE-related abnormalities in tumors.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xingfeng Yao
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Nan Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chao Jia
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoxing Guan
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
8
|
Yang J, Fang J, Singh S, Wells B, Wu Q, Jin H, Janke L, Wan S, Steele J, Connelly J, Murphy A, Wang R, Davidoff A, Ashcroft M, Pruett-Miller S. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. RESEARCH SQUARE 2025:rs.3.rs-4390765. [PMID: 38853928 PMCID: PMC11160912 DOI: 10.21203/rs.3.rs-4390765/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions for a MYC-driven murine liver cancer model. We identify over 600 shared essential genes and additional context-specific fitness genes and pathways. Knockout of the VHL-HIF1 pathway results in incompatible fitness defects under normoxia vs. 1% oxygen or 3D culture conditions. Moreover, deletion of each of the mitochondrial respiratory electron transport chain complex has distinct fitness outcomes. Notably, multicellular organogenesis signaling pathways including TGFb-SMAD, which is upregulated in 3D culture, specifically constrict the uncontrolled cell proliferation in 3D while inactivation of epigenetic modifiers (Bcor, Kmt2d, METTL3 and METTL14) has opposite outcomes in 2D vs. 3D. We further identify a 3D-dependent synthetic lethality with partial loss of Prmt5 due to a reduction of Mtap expression resulting from 3D-specific epigenetic reprogramming. Our study highlights unique epigenetic, metabolic and organogenesis signaling dependencies under different cellular settings.
Collapse
Affiliation(s)
- Jun Yang
- St. Jude Children's Research Hospital
| | - Jie Fang
- St. Jude Children's Research Hospital
| | | | | | - Qiong Wu
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | - Ruoning Wang
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| | | | | | | |
Collapse
|
9
|
Atiq MA, Balan J, Blackburn PR, Gross JM, Voss JS, Jin L, Fadra N, Davila JI, Pitel BA, Siqueira Parrilha Terra SB, Minn KT, Jackson RA, Hofich CD, Willkomm KS, Peterson BJ, Clausen SN, Rumilla KM, Gupta S, Lo YC, Ida CM, Molligan JF, Thangaiah JJ, Petersen MJ, Sukov WR, Guo R, Giannini C, Schoolmeester JK, Fritchie K, Inwards CY, Folpe AL, Oliveira AM, Torres-Mora J, Kipp BR, Halling KC. SARCP, a Clinical Next-Generation Sequencing Assay for the Detection of Gene Fusions in Sarcomas: A Description of the First 652 Cases. J Mol Diagn 2025; 27:74-95. [PMID: 39521244 DOI: 10.1016/j.jmoldx.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
An amplicon-based targeted next-generation sequencing (NGS) assay for the detection of gene fusions in sarcomas was developed, validated, and implemented. This assay can detect fusions in targeted regions of 138 genes and BCOR internal tandem duplications. This study reviews our experience with testing on the first 652 patients analyzed. Gene fusions were detected in 238 (36.5%) of 652 cases, including 83 distinct fusions in the 238 fusion-positive cases, 10 of which had not been previously described. Among the 238 fusion-positive cases, the results assisted in establishing a diagnosis for 137 (58%) cases, confirmed a suspected diagnosis in 66 (28%) cases, changed a suspected diagnosis in 25 (10%) cases, and were novel fusions with unknown clinical significance in 10 (4%) cases. Twenty-six cases had gene fusions (ALK, ROS1, NTRK1, NTRK3, and COL1A1::PDGFB) for which there are targetable therapies. BCOR internal tandem duplications were identified in 6 (1.2%) of 485 patients. Among the 138 genes in the panel, 66 were involved in one or more fusions, and 72 were not involved in any fusions. There was little overlap between the genes involved as 5'-partners (31 different genes) and 3'-partners (37 different genes). This study shows the clinical utility of a next-generation sequencing gene fusion detection assay for the diagnosis and treatment of sarcomas.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John M Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Numrah Fadra
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jaime I Davila
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Kay T Minn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rory A Jackson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kurt S Willkomm
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brenda J Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sydney N Clausen
- University of Minnesota Medical School, Duluth, Duluth, Minnesota
| | - Kandelaria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cris M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jeremy F Molligan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Petersen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carrie Y Inwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 PMCID: PMC11938328 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
11
|
Xu J, Wang T, Burjonrappa S. Identifying Novel Genetic Markers in Pediatric Rhabdomyosarcoma. J Pediatr Surg 2025; 60:161928. [PMID: 39368853 DOI: 10.1016/j.jpedsurg.2024.161928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND/PURPOSE Rhabdomyosarcoma risk stratification is traditionally determined by tumor histology and staging. Recent studies revealed the importance of molecular features in predicting prognosis. We investigated prognosis by age of onset and mutation incidence in rhabdomyosarcoma tumors. METHODS We retrospectively extracted clinical and genomic data from the Clinomics dataset (n = 641). Inclusion criteria was tumors with at least one gene mutation with >5% mutation incidence. Exclusion criteria were unknown risk stratification and age of onset. Statistical analysis was performed using ANOVA (p < 0.05) and Tukey's HSD to compare mutation incidence, EFS, and OS among age groups. RESULTS Among 641 patients with rhabdomyosarcoma, 8 of 39 screened genes had >5% mutation incidence: NRAS, BCOR, NF1, TP53, FGFR4, KRAS, HRAS, and CTNNB1. The final cohort consisted of 370 patients: 51 (Age: 0-2 Years), 140 (Age: 2-5 Years), 112 (Age: 5-12 Years) and 67 (Age: 12+). Later age of onset is associated with higher incidence of BCOR and HRAS mutations (p < 0.005, p < 0.001) and poorer EFS and OS (p < 0.05, p < 0.001). In patients with BCOR mutations, later age of onset is associated with poorer EFS and OS (p < 0.005, p < 0.001). NF1 mutations are equally distributed among age groups (p = 0.82), but later age of onset is associated with poorer EFS and OS (p < 0.005, p < 0.001). CONCLUSION In patients with at least one mutation in BCOR, NF1, TP53, KRAS, HRAS, or CTNNB1, later age of onset is associated with poorer prognosis. In patients with mutations only in tumor suppressor genes BCOR or NF1, later age of onset is associated with poorer prognosis. TYPE OF STUDY Retrospective Cohort Study. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Joyce Xu
- Rutgers RWJMS, New Brunswick, NJ, USA
| | | | - Sathyaprasad Burjonrappa
- Department of Pediatric Surgery, Rutgers RWJMS, Medical Education Building, Rm 500, New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Pardi E, Poma AM, Torregrossa L, Pierotti L, Borsari S, Della Valentina S, Marcocci C, Cetani F. Whole-exome Sequencing of Atypical Parathyroid Tumors Detects Novel and Common Genes Linked to Parathyroid Tumorigenesis. J Clin Endocrinol Metab 2024; 110:48-58. [PMID: 38940486 DOI: 10.1210/clinem/dgae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
CONTEXT Atypical parathyroid tumor (APT) represents a neoplasm characterized by histological features typical of parathyroid carcinoma (PC) but lacking local infiltration and/or distant metastasis, leading to uncertainty regarding its malignant potential. OBJECTIVE To characterize the molecular landscape and deregulated pathways in APT. METHODS Whole-exome sequencing (WES) was conducted on 16 APTs. DNA from tumors and matched peripheral blood underwent WES using Illumina HiSeq3000. RESULTS A total of 192 nonsynonymous variants were identified. The median number of protein-altering mutations was 9. The most frequently mutated genes included BCOR, CLMN, EZH1, JAM2, KRTAP13-3, MUC16, MUC19, and OR1S1. Seventeen mutated genes belong to the Cancer Gene Census list. The most consistent hub genes identified through STRING network analysis were ATM, COL4A5, EZH2, MED12, MEN1, MTOR, PI3, PIK3CA, PIK3CB, and UBR5. Deregulated pathways included the PI3 K/AKT/mTOR pathway, Wnt signaling, and extracellular matrix organization. Variants in genes such as MEN1, CDC73, EZH2, PIK3CA, and MTOR, previously reported as established or putative/candidate driver genes in benign adenoma (PA) and/or PC, were also identified in APT. CONCLUSION APT does not appear to have a specific molecular signature but shares genomic alterations with both PA and PC. The incidence of CDC73 mutations is low, and it remains unclear whether these mutations are associated with a higher risk of recurrence. Our study confirms that PI3 K/AKT/mTOR and Wnt signaling represents the pivotal pathways in parathyroid tumorigenesis and also revealed mutations in key epigenetic modifier genes (BCOR, KDM2A, MBD4, and EZH2) involved in chromatin remodeling, DNA, and histone methylation.
Collapse
Affiliation(s)
- Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Laura Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filomena Cetani
- Department of Surgery and Endocrine Metabolic and Transplant Medicine, Endocrine Unit, Pisa, University Hospital of Pisa, 56124 Pisa, Italy
| |
Collapse
|
13
|
Sauvestre C, Boileau MJ, Caule C, Griffiths D, Schrub F, Chassaing N, Rooryck C. Radiculomegaly as a key clinical feature in oculo-facio-cardio-dental (OFCD) syndrome: a case report with a novel truncating variant in BCOR gene. Cardiol Young 2024; 34:2606-2609. [PMID: 39390895 DOI: 10.1017/s104795112402660x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radiculomegaly is a rare dental anomaly characterised by the enlargement of the root canals of teeth. It is usually associated with oculo-facio-cardio-dental (OFCD) syndrome due to truncating variants in BCL-6 transcriptional corepressor (BCOR) (MIM*300485). We present the case of a 21-year-old female patient who was referred to genetics for a polymalformative syndrome including bilateral glaucoma and dental anomalies, especially radiculomegaly. Some others dysmorphic features were right superior lip notch, ogival palate, long philtrum, difficulty in pronation, café-au-lait spots, II-III toe bilateral syndactyly, and macrocephaly. Cone-beam CT confirmed radiculomegaly. The genetic analysis identified a heterozygous pathogenic variant NM_001123385.1:c.2093del (p.Pro698Glnfs*17) in the BCOR gene. After genetic diagnosis of OFCD syndrome, cardiac CT-scan revealed a large asymptomatic atrial septal defect that was subsequently surgically closed. Reviews of the literature have previously highlighted the prevalence of radiculomegaly in OFCD syndrome with a positive predictive value of 88.23% and a sensitivity of 75.94%. This case report highlights the importance of radiculomegaly as a clinical sign of OFCD syndrome, emphasising the rarity of non-syndromic radiculomegaly and the benefits of its diagnosis in clinical management, especially in cardiac screening.
Collapse
Affiliation(s)
| | - Marie-José Boileau
- Centre de Compétences des Maladies Rares Orales et Dentaires, CCMR O-Rares, CHU de Bordeaux, Bordeaux, France
| | - Camille Caule
- Centre de Compétences des Maladies Rares Orales et Dentaires, CCMR O-Rares, CHU de Bordeaux, Bordeaux, France
| | | | | | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU de Toulouse, Toulouse, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- Maladies Rares: Génétique et Métabolisme (MRGM), Univ Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Medina-Ceballos E, Niveiro M, Ureña-Horno L, Sesé M, Tasso M, Navarro S, Garrido-Pontnou M. Decoding BCOR-ITD Sarcomas: Case Report of a Rare Pediatric Tumor With Challenges in Diagnosis. Pediatr Dev Pathol 2024; 27:582-586. [PMID: 38762770 DOI: 10.1177/10935266241249344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Sarcomas characterized by BCOR gene alterations, are a distinct clinico-pathological group of high-grade tumors, that represent 5% of small round cell tumors without EWSR or FUS fusion. Diverse genetic alterations characterize this group, including BCOR-CCNB3 gene fusion being the most common alteration and less frequently internal tandem duplications (ITDs). We present a compelling case of a 3-year-old girl diagnosed with a high-grade nasoethmoidal sarcoma exhibiting BCOR-ITD. The diagnostic process illustrates the histological and immunophenotypic spectrum, requiring an extensive immunohistochemical panel and diverse molecular tests for accurate classification. Additionally, this case highlights the challenges in detecting BCOR-ITDs using different NGS panels, advocating for alternative molecular approaches. Our patient after 10 months since diagnosis is alive with progressive disease. This emphasizes the urgency for ongoing research to refine diagnostic methods and develop effective therapeutic strategies for these rare and aggressive tumors.
Collapse
Affiliation(s)
| | - María Niveiro
- Pathology Department, General University Hospital of Alicante, Alicante, Spain
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Laura Ureña-Horno
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Pediatric Oncology Department, General University Hospital of Alicante, Alicante, Spain
| | - Marta Sesé
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María Tasso
- Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Pediatric Oncology Department, General University Hospital of Alicante, Alicante, Spain
| | - Samuel Navarro
- Pathology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Pathology Department, University of Valencia, Valencia, Spain
- Cancer CIBER (CIBERONC), Madrid, Spain
- University of Valencia-INCLIVA, Valencia, Spain
| | | |
Collapse
|
15
|
Villain P, Le Pape C, Mouriaux F. [Orbital hematoma in a newborn as presenting sign of aggressive round cell sarcoma]. J Fr Ophtalmol 2024; 47:104221. [PMID: 38839480 DOI: 10.1016/j.jfo.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024]
Affiliation(s)
- P Villain
- Service d'ophtalmologie, hôpital Pontchaillou, CHU de Rennes, 2, rue Henri-Le-Guilloux, 35000 Rennes, France.
| | - C Le Pape
- Service d'ophtalmologie, hôpital Pontchaillou, CHU de Rennes, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - F Mouriaux
- Service d'ophtalmologie, hôpital Pontchaillou, CHU de Rennes, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| |
Collapse
|
16
|
Vetter VK, Haberecker M, Huber FA, Pauli C. Aberrant positivity for BCOR immunohistochemistry in merkel cell carcinoma - a potential diagnostic pitfall. Diagn Pathol 2024; 19:130. [PMID: 39334415 PMCID: PMC11437883 DOI: 10.1186/s13000-024-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKRGOUND Merkel cell carcinoma (MCC) is a rare, aggressive primary cutaneous neuroendocrine carcinoma, frequently associated with clonal Merkel cell polyomavirus integration. MCC can pose significant diagnostic challenges due to its diverse clinical presentation and its broad histological differential diagnosis. Histologically, MCC presents as a small-round-blue cell neoplasm, where the differential diagnosis includes basal cell carcinoma, melanoma, hematologic malignancies, round cell sarcoma and metastatic small cell carcinoma of any site. We here report strong aberrant immunoreactivity for BCOR in MCC, a marker commonly used to identify round cell sarcomas and other neoplasms with BCOR alterations. METHODS Based on strong BCOR expression in three index cases of MCC, clinically mistaken as sarcoma, a retrospective analysis of three patient cohorts, comprising 31 MCC, 19 small cell lung carcinoma (SCLC) and 5 cases of neoplasms with molecularly confirmed BCOR alteration was conducted. Immunohistochemical staining intensity and localization for BCOR was semi-quantitatively analyzed. RESULTS Three cases, clinically and radiologically mimicking a sarcoma were analyzed in our soft tissue and bone pathology service. Histologically, the cases showed sheets of a small round blue cell neoplasm. A broad panel of immunohistochemistry was used for lineage classification. Positivity for synaptophysin, CK20 and Merkel cell polyoma virus large T-antigen lead to the diagnosis of a MCC. Interestingly, all cases showed strong positive nuclear staining for BCOR, which was included for the initial work-up with the clinical differential of a round cell sarcoma. We analyzed a larger retrospective MCC cohort and found aberrant weak to strong BCOR positivity (nuclear and/or cytoplasmic) in up to 90% of the cases. As a positive control, we compared the expression to a small group of BCOR-altered neoplasms. Furthermore, we investigated a cohort of SCLC as another neuroendocrine neoplasm and found in all cases a diffuse moderate to strong BCOR positivity. CONCLUSIONS This study demonstrates that neuroendocrine neoplasms, such as MCC and SCLC can express strong aberrant BCOR. This might represent a diagnostic challenge or pitfall, in particular when MCC is clinically mistaken as a soft tissue or a bone sarcoma.
Collapse
Affiliation(s)
- Viola Katharina Vetter
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland
| | - Florian Alexander Huber
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland.
- Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Highland B, Morrow WP, Arispe K, Beaty M, Maracaja D. Merkel Cell Carcinoma With Extensive Bone Marrow Metastasis and Peripheral Blood Involvement: A Case Report With Immunohistochemical and Mutational Studies. Appl Immunohistochem Mol Morphol 2024; 32:382-388. [PMID: 38990715 DOI: 10.1097/pai.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive skin cancer of neuroendocrine origin that is typically associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet (UV) light. We report a case of relapsed MCC that presented with new symptoms of fatigue, back pain, and myeloid left shift identified during scheduled follow-up. The patient was found to have circulating neoplastic cells in the peripheral blood and bone marrow metastasis. Immunohistochemistry for synaptophysin, CD56, INSM-1, CK20, CD117 were positive, whereas CD34, TdT, Chromogranin, CD10, myeloperoxidase, CD3 and CD19 were negative. Flow cytometry of the peripheral blood confirmed the presence of an abnormal nonhematopoietic cell population expressing CD56 positivity. A next-generation sequencing (NGS) panel revealed the presence of variants in RB1, TP53, and other genes, some of which have not been previously described in MCC. This rare presentation highlights the challenges in the diagnosis and management of MCC.
Collapse
Affiliation(s)
| | | | - Karen Arispe
- Department of Pathology, Wake Forest School of Medicine
| | - Michael Beaty
- Department of Pathology, Wake Forest School of Medicine
| | | |
Collapse
|
18
|
Corallo S, Lasagna A, Filippi B, Alaimo D, Tortorella A, Serra F, Vanoli A, Pedrazzoli P. Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review. Pathogens 2024; 13:728. [PMID: 39338919 PMCID: PMC11435077 DOI: 10.3390/pathogens13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is a complex disease with various etiologies. While Helicobacter pylori infection is still one of the leading risk factors for GC, increasing evidence suggests a link between GC and other infective agents such as Epstein Bar Virus (EBV). EBV-associated gastric cancer (EBVaGC) is now recognized as a distinct subgroup of GC, and the complex interactions between the virus and gastric mucosa may influence its development. A recent integrative analysis of the genome and proteome of GC tissues by The Cancer Genome Atlas project has identified EBVaGC as a specific subtype characterized by PIK3CA and ARID1A mutations, extensive DNA hyper-methylation, and activation of immune signaling pathways. These molecular characteristics are markers of the unique molecular profile of this subset of GC and are potential targets for therapy. This review aims to provide an overview of the current knowledge on EBVaGC. It will focus on the epidemiology, clinic-pathological features, and genetic characteristics of EBVaGC. Additionally, it will discuss recent data indicating the potential use of EBV infection as a predictive biomarker of response to chemotherapy and immune checkpoint inhibitors. The review also delves into potential therapeutic approaches for EBVaGC, including targeted therapies and adoptive immunotherapy, highlighting the promising potential of EBV as a therapeutic target.
Collapse
Affiliation(s)
- Salvatore Corallo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angioletta Lasagna
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Beatrice Filippi
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Domiziana Alaimo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Anna Tortorella
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Francesco Serra
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Anatomic Pathology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
19
|
Zhang A, Yuan X, Jiang S, Xu D, Huang C, Tang JY, Gao Y. Outcomes of children with clear cell sarcoma of kidney following NWTS strategies in Shanghai China (2003-2021). PLoS One 2024; 19:e0306863. [PMID: 38980838 PMCID: PMC11233012 DOI: 10.1371/journal.pone.0306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Although clear cell sarcoma of kidney (CCSK) is rare, it is the second most common renal tumor in children after Wilms' tumor. NWTS and SIOP are two major groups which had made tremendous efforts on renal tumors, but the strategies are different, for NWTS follows the upfront surgery principle providing definite pathology and the SIOP follows the upfront chemotherapy principle, each has its own advantages. Here we aimed to evaluate the outcomes of CCSK in China following NWTS strategies to analyze the prognostic factors. METHODS For this multicenter retrospective study, a total of 54 patients were enrolled from three children's hospitals, between April 2003 and December 2021. Treatment comprised upfront radical nephrectomy, followed by radiotherapy and intensive chemotherapy. Clinical records were regularly updated. Prognostic factors and survival rates were evaluated. RESULTS The 54 enrolled patients had a median age of 37 months (range, 4 months to 11.4 years). The stage distribution was 16% stage I (n = 9), 30% stage II (n = 16), 39% stage III (n = 21), and 15% stage IV (n = 8). Among stage IV, metastasis sites included the lung (n = 6), bone (n = 1), and intra-orbital/cervical lymph node (n = 1). After a median follow-up of 5.6 years, the 5-year event-free survival (EFS) was 82.4±5.4%, and overall survival was 88.1±4.6%. The EFS was 100% for stage I, 93.8 ±6.1% for stage II, 71.1±10.0% for stage III, and 68.6±18.6% for stage IV. Univariate analysis revealed that staging (III/IV), tumor rupture, and inferior vena cava tumor thrombus were inferior prognostic factors. Multivariate analysis revealed that tumor rupture was independent poor prognostic factor (P = 0.01, HR 5.9). Among relapsed patients, relapse occurred a median of 11 months after diagnosis (range, 4-41 months), and 50% (4/8) achieved a second complete remission after multiple treatment. None of the six lung metastasis patients received lung RT, only one patient developed a relapse and was salvaged by RT after relapse. CONCLUSIONS Tumor rupture was independent poor prognostic factor. Upfront surgery of NWTS strategies can make a definite pathology diagnosis, but how to reduce tumor rupture during surgery is important especially in developing countries. The outcomes of patients with stage I-III CCSK in China were comparable to findings in other developed countries. Better outcomes were achieved in stage IV CCSK by using an intensive chemotherapy regimen including carboplatin, which require further confirmation by AREN0321. Lung RT may be safely omitted in selected patients who achieve a compete radiographic response after 6 weeks of systemic treatment (including surgery). Treatment should be encouraged even in CCSK cases with metastasis and relapse.
Collapse
Affiliation(s)
- Anan Zhang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Yuan
- Department of Pediatric Hematology and Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shayi Jiang
- Department of Hematology and Oncology, Children's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Xu
- Department of Pediatric Hematology and Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can Huang
- Department of Hematology and Oncology, Children's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yan Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gao
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Wang W, Zhang A, Li Y, Wang D, Chen L, Li Q, Chen J, Li H, Sun S, Pan M, Zhou W, Wu H. Clinical, pathological, and molecular features of central nervous system tumors with BCOR internal tandem duplication. Pathol Res Pract 2024; 259:155367. [PMID: 38797130 DOI: 10.1016/j.prp.2024.155367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Central nervous system tumor with BCOR internal tandem duplication (CNS tumor with BCOR-ITD) constitutes a molecularly distinct entity, characterized by internal tandem duplication within exon 15 of the BCOR transcriptional co-repressor gene (BCOR-ITD). The current study aimed to elucidate the clinical, pathological, and molecular attributes of CNS tumors with BCOR-ITD and explore their putative cellular origin. This study cohort comprised four pediatric cases, aged 23 months to 13 years at initial presentation. Magnetic resonance imaging revealed large, well-circumscribed intra-CNS masses localized heterogeneously throughout the CNS. Microscopically, tumors were composed of spindle to ovoid cells, exhibiting perivascular pseudorosettes and palisading necrosis, but lacking microvascular proliferation. Immunohistochemical staining showed diffuse tumor cell expression of BCOR, CD56, CD99, vimentin, and the stem cell markers PAX6, SOX2, CD133 and Nestin, alongside focal positivity for Olig-2, S100, SOX10, Syn and NeuN. Molecularly, all cases harbored BCOR-ITDs ranging from 87 to 119 base pairs in length, including one case with two distinct ITDs. Notably, the ITDs were interrupted by unique 1-3 bp insertions in all cases. In summary, CNS tumors with BCOR-ITD exhibit characteristic clinical, pathological, and molecular features detectable through BCOR immunohistochemistry and confirmatory molecular analyses. Their expression of stem cell markers raises the possibility of an origin from neuroepithelial stem cells rather than representing true embryonal neoplasms.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Anli Zhang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Daizhong Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Qianqian Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Sibai Sun
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minhong Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wenchao Zhou
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haibo Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
21
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 PMCID: PMC11936478 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
Ramil G, Pratcorona M, Nomdedéu JF. Be aware of the X: BCOR mutations in myeloid neoplasms. Haematologica 2024; 109:1646-1647. [PMID: 38328862 PMCID: PMC11141666 DOI: 10.3324/haematol.2023.284748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Guillermo Ramil
- Department of Hematology. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona and IIB sant Pau. Institut Josep Carreras(IJC). C/ Sant Quintí, 89. 08041 Barcelona
| | - Marta Pratcorona
- Department of Hematology. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona and IIB sant Pau. Institut Josep Carreras(IJC). C/ Sant Quintí, 89. 08041 Barcelona
| | - Josep F Nomdedéu
- Department of Hematology. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona and IIB sant Pau. Institut Josep Carreras(IJC). C/ Sant Quintí, 89. 08041 Barcelona.
| |
Collapse
|
23
|
Piques F, Penicaud M, Essamet W, Cabello-Aguilar S, Trinquet A, Vendrell JA, Costes V, Solassol J. Expanding the Spectrum of Sarcoma with an Internal Tandem Duplication of BCOR: A Non-Pediatric Nasosinusal Case. Pathobiology 2024; 91:370-374. [PMID: 38718771 DOI: 10.1159/000539239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Undifferentiated small round-cell sarcomas with BCL6 corepressor (BCOR) alterations, such as an internal tandem duplication (ITD) within exon 15, are typically described as a pediatric group of Ewing-like small round-cell sarcomas. CASE PRESENTATION In contrast to this notion, we report the case of a 71-year-old woman with a nasosinusal sarcoma featuring a BCOR ITD. To the best of our knowledge, this presence had not been previously documented in a sarcoma of the nasal and sinus cavities in an elderly patient. The identified duplication shares a similar minimal critical region as described in clear-cell sarcomas of the kidney in children. This alteration, located within the PCGF1 binding domain, is believed to disrupt the activity of PRC1.1. CONCLUSION This case underscores the need for in-depth research into the molecular biology of these rare tumors and explores potential alternative treatment options. The patient achieved remission after two cycles of doxorubicin and cyclophosphamide chemotherapy, highlighting the promise of potential therapeutic options for BCOR ITD sarcomas.
Collapse
Affiliation(s)
- Florian Piques
- Laboratoire de Biologie des Tumeurs Solides, University Hospital of Montpellier, Université de Montpellier, Montpellier, France
| | - Martin Penicaud
- Service d'Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital de la Conception, APHM, Université Aix-Marseille, Marseille, France
| | - Wassim Essamet
- Service d'Anatomie et Cytologie Pathologiques, Hôpital de la Timone, Université Aix-Marseille, Marseille, France
| | - Simon Cabello-Aguilar
- Laboratoire de Biologie des Tumeurs Solides, University Hospital of Montpellier, Université de Montpellier, Montpellier, France
| | - Aude Trinquet
- Laboratoire d'Anatomie et de Cytologie Pathologiques, University Hospital of Montpellier, Université de Montpellier, Montpellier, France
| | - Julie A Vendrell
- Laboratoire de Biologie des Tumeurs Solides, University Hospital of Montpellier, Université de Montpellier, Montpellier, France
| | - Valérie Costes
- Laboratoire d'Anatomie et de Cytologie Pathologiques, University Hospital of Montpellier, Université de Montpellier, Montpellier, France
| | - Jérôme Solassol
- Laboratoire de Biologie des Tumeurs Solides, University Hospital of Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Ebrahimi A, Waha A, Schittenhelm J, Gohla G, Schuhmann MU, Pietsch T. BCOR::CREBBP fusion in malignant neuroepithelial tumor of CNS expands the spectrum of methylation class CNS tumor with BCOR/BCOR(L1)-fusion. Acta Neuropathol Commun 2024; 12:60. [PMID: 38637838 PMCID: PMC11025138 DOI: 10.1186/s40478-024-01780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.
Collapse
Affiliation(s)
- Azadeh Ebrahimi
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany.
| | - Andreas Waha
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Jens Schittenhelm
- Institute of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Georg Gohla
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| |
Collapse
|
25
|
Murphy J, Resch EE, Leland C, Meyer CF, Llosa NJ, Gross JM, Pratilas CA. Clinical outcomes of patients with CIC-rearranged sarcoma: a single institution retrospective analysis. J Cancer Res Clin Oncol 2024; 150:112. [PMID: 38436779 PMCID: PMC10912249 DOI: 10.1007/s00432-024-05631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE CIC-rearranged sarcomas represent a type of undifferentiated small round cell sarcoma (USRCS) characterized by poor survival, rapid development of chemotherapy resistance, and high rates of metastasis. We aim to contribute to the growing body of knowledge regarding diagnosis, treatment, clinical course, and outcomes for these patients. METHODS This case series investigates the clinical courses of ten patients with CIC-rearranged sarcoma treated at the Johns Hopkins Hospital from July 2014 through January 2024. Clinical data were retrospectively extracted from electronic medical records. RESULTS Patients ranged from 10 to 67 years of age at diagnosis, with seven patients presenting with localized disease and three with metastatic disease. Tumors originated from soft tissues of various anatomic locations. Mean overall survival (OS) was 22.1 months (10.6-52.2), and mean progression-free survival (PFS) was 16.7 months (5.3-52.2). Seven patients received intensive systemic therapy with an Ewing sarcoma-directed regimen or a soft tissue sarcoma-directed regimen. Three patients experienced prolonged disease-free survival without systemic treatment. CONCLUSION Most patients in this case series demonstrated aggressive clinical courses consistent with those previously described in the literature, although we note a spectrum of clinical outcomes not previously reported. The diversity of clinical courses underscores the need for an improved understanding of individual tumor biology to enhance clinical decision-making and patient prognosis. Despite its limitations, this article broadens the spectrum of reported clinical outcomes, providing a valuable addition to the published literature on this rare cancer.
Collapse
Affiliation(s)
- Jacob Murphy
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Erin E Resch
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - Christopher Leland
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, USA
| | - Christian F Meyer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - Nicolas J Llosa
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Christine A Pratilas
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
| |
Collapse
|
26
|
Cocchi S, Gambarotti M, Gamberi G, Magagnoli G, Maioli M, Stevanin M, Samperi F, Righi A, Benini S. The utility of FISH analysis in the diagnosis of BCOR-rearranged sarcomas. Pathol Res Pract 2024; 255:155209. [PMID: 38422910 DOI: 10.1016/j.prp.2024.155209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND A BCL6 corepressor (BCOR) gene alteration is a genetic signature of rare subsets of sarcomas. The identification of this alteration has recently contributed to the definition of new entities in the current WHO (2020) classification of soft tissue and bone tumours. We retrospectively examined cases of BCOR-rearranged sarcoma (BRS) to assess the reliability of the BCOR FISH analysis using an IVD (in vitro diagnostic) probe. METHODS We investigated and compared the molecular diagnostic strategies and features by collecting 17 data from patients with a BCOR gene rearrangement detected using quantitative-Reverse Transcription-Polymerase Chain Reaction (qRTPCR), Next-Generation Sequencing (NGS) and Fluorescence in situ hybridization (FISH). RESULTS We describe fourteen BCOR::CCNB3 sarcomas, one spindle cell sarcoma with a novel BCOR::MAML1 fusion, one spindle cell sarcoma with a novel BCOR::AHR fusion, and one ossifying fibromyxoid tumour with a BCOR::ZC3H7B fusion. FISH analysis of all, except one, BCOR::CCNB3 sarcoma, showed a FISH break-apart pattern with mild signal separation. The MAML1::BCOR sarcoma showed large-space split signals, while in the two patients with AHR::BCOR and ZC3H7B::BCOR fusions, no BCOR rearrangement was observed using FISH. CONCLUSIONS Our study indicates that BCOR FISH analysis using an IVD probe, may be useful to detect the presence of a BCOR rearrangement, including both translocations and inversions; however, negative results, in some cases, can occur.
Collapse
Affiliation(s)
- Stefania Cocchi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriella Gamberi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giovanna Magagnoli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Margherita Maioli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Stevanin
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Federica Samperi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Benini
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
27
|
Kim D, Kim SH, Yoon C, Lee GM. Genome-wide CRISPR/Cas9 knockout screening to mitigate cell growth inhibition induced by histone deacetylase inhibitors in recombinant CHO cells. Biotechnol Bioeng 2024; 121:931-941. [PMID: 38013500 DOI: 10.1002/bit.28611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Histone deacetylase inhibitors (iHDACs) have been extensively studied as enhancers of therapeutic protein production in recombinant Chinese hamster ovary (CHO) (rCHO) cell cultures. However, the addition of iHDACs reduces the viable cell concentration (VCC) in rCHO cell cultures, thereby reducing their potential to enhance therapeutic protein production. To mitigate the negative effects of iHDACs on VCC, screening using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based single-gene knockout (KO) library in rCHO cells was performed in the presence of CI994, a member of iHDACs, and 10 potential KO genes that enhanced the VCC of CI994-treated rCHO cells were identified. Among these, Bcor was validated as a promising KO target that improved VCC without negatively affecting the specific productivity in the presence of CI994. Bcor KO increased the VCC and therapeutic protein concentrations in both batch and fed-batch cultures in the presence of CI994. Taken together, these findings highlight the potential of the whole-genome CRISPR/Cas9-based single-gene KO cell library to identify KO target genes for the development of iHDAC-resistant rCHO cells for enhanced therapeutic protein production.
Collapse
Affiliation(s)
- Dongil Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Chansik Yoon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Aw SJ, Tan EEK, Low SYY, Kuick CH, Goh JY, Chang KTE. CNS embryonal tumour with concomitant novel BRD4::CTRC1 fusion and BCOR internal tandem duplication - evidence for synergism and non-mutually exclusive alterations in CNS embryonal tumours. Acta Neuropathol Commun 2024; 12:33. [PMID: 38409021 PMCID: PMC10898127 DOI: 10.1186/s40478-024-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- Sze Jet Aw
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Enrica Ee Kar Tan
- Paediatric Haematology/Oncology Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Sharon Yin Yee Low
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Jian Yuan Goh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| |
Collapse
|
29
|
Stan A, Bosart K, Kaur M, Vo M, Escorcia W, Yoder RJ, Bouley RA, Petreaca RC. Detection of driver mutations and genomic signatures in endometrial cancers using artificial intelligence algorithms. PLoS One 2024; 19:e0299114. [PMID: 38408048 PMCID: PMC10896512 DOI: 10.1371/journal.pone.0299114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular signatures, which enable the classification, and sometimes prognostication, of these cancers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver and passenger based on a variety of parameters, including gene function and frequency of mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are driver and cause cellular transformation and immortalization. We also characterized nucleotide level mutation signatures, gross chromosomal re-arrangements, and gene expression profiles. We observed that endometrial cancers show distinct nucleotide substitution and chromosomal re-arrangement signatures compared to other cancers. We also identified high expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metastasis and proliferation. We then used in silico protein structure analysis to examine the effect of certain previously uncharacterized driver mutations on protein structure. We found that certain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellular transformation. While our analysis retrieved previously classified mutations and genomic alterations, which is to be expected, this study also identified new signatures. Additionally, we show that artificial intelligence algorithms can be effectively leveraged to accurately predict key drivers of cancer. This analysis will expand our understanding of ECs and improve the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.
Collapse
Affiliation(s)
- Anda Stan
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Korey Bosart
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Mehak Kaur
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Martin Vo
- Biology Department, Xavier University, Cincinnati, Ohio, United States of America
| | - Wilber Escorcia
- Biology Department, Xavier University, Cincinnati, Ohio, United States of America
| | - Ryan J Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, Ohio, United States of America
| | - Renee A Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, Ohio, United States of America
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, Ohio, United States of America
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, Ohio, United States of America
| |
Collapse
|
30
|
Park JW, Bae SJ, Yun JH, Kim S, Park M. Assessment of Genetic Stability in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Using Droplet Digital PCR. Int J Mol Sci 2024; 25:1101. [PMID: 38256178 PMCID: PMC10815998 DOI: 10.3390/ijms25021101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Unintended genetic modifications that occur during the differentiation and proliferation of human induced pluripotent stem cells (hiPSCs) can lead to tumorigenicity. This is a crucial concern in the development of stem cell-based therapies to ensure the safety and efficacy of the final product. Moreover, conventional genetic stability testing methods are limited by low sensitivity, which is an issue that remains unsolved. In this study, we assessed the genetic stability of hiPSCs and hiPSC-derived cardiomyocytes using various testing methods, including karyotyping, CytoScanHD chip analysis, whole-exome sequencing, and targeted sequencing. Two specific genetic mutations in KMT2C and BCOR were selected from the 17 gene variants identified by whole-exome and targeted sequencing methods, which were validated using droplet digital PCR. The applicability of this approach to stem cell-based therapeutic products was further demonstrated with associated validation according to the International Council for Harmonisation (ICH) guidelines, including specificity, precision, robustness, and limit of detection. Our droplet digital PCR results showed high sensitivity and accuracy for quantitatively detecting gene mutations, whereas conventional qPCR could not avoid false positives. In conclusion, droplet digital PCR is a highly sensitive and precise method for assessing the expression of mutations with tumorigenic potential for the development of stem cell-based therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Misun Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (J.W.P.); (S.J.B.); (J.H.Y.); (S.K.)
| |
Collapse
|
31
|
Moghaddam PA, Young RH, Ismiil ND, Bennett JA, Oliva E. An Unusual Endometrial Stromal Neoplasm With JAZF1-BCORL1 Rearrangement. Int J Gynecol Pathol 2024; 43:33-40. [PMID: 36811828 DOI: 10.1097/pgp.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Endometrial stromal tumors represent the second most common category of uterine mesenchymal tumors. Several different histologic variants and underlying genetic alterations have been recognized, one such being a group associated with BCORL1 rearrangements. They are usually high-grade endometrial stromal sarcomas, often associated with prominent myxoid background and aggressive behavior. Here, we report an unusual endometrial stromal neoplasm with JAZF1-BCORL1 rearrangement and briefly review the literature. The neoplasm formed a well-circumscribed uterine mass in a 50-yr-old woman and had an unusual morphologic appearance that did not warrant a high-grade categorization. It was characterized by a predominant population of epithelioid cells with clear to focally eosinophilic cytoplasm growing in interanastomosing cords and trabeculae set in a hyalinized stroma as well as nested and fascicular growths imparting focal resemblance to a uterine tumor resembling ovarian sex-cord tumor, PEComa, and a smooth muscle neoplasm. A minor storiform growth of spindle cells reminiscent of the fibroblastic variant of low-grade endometrial stromal sarcoma was also noted but conventional areas of low-grade endometrial stromal neoplasm were not identified. This case expands the spectrum of morphologic features seen in endometrial stromal tumors, especially when associated with a BCORL1 fusion and highlights the utility of immunohistochemical and molecular techniques in the diagnosis of these tumors, not all of which are high grade.
Collapse
|
32
|
Furtado LV, Santiago T, Shi Z, Wang L, Liu YC, Gartrell J, Ruiz RE. Novel HNRNPM::LEUTX fusion resulting from chromothripsis of chromosome 19 in a pediatric undifferentiated small round cell neoplasm. Genes Chromosomes Cancer 2023; 62:740-745. [PMID: 37366242 DOI: 10.1002/gcc.23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Small round cell neoplasms comprise a diverse group of tumors characterized by a primitive/undifferentiated appearance. Although several entities are associated with recurrent gene fusions, many of these neoplasms have not been fully characterized, and novel molecular alterations are being discovered. Here, we report an undifferentiated small round cell neoplasm arising in the anterior mediastinum of a 17-month-old female. The tumor harbored a novel HNRNPM::LEUTX fusion resulting from chromothripsis of chromosome 19, which was identified by whole transcriptome sequencing, but not by targeted sequencing. The structural variations caused by the chromothripsis event also challenged the interpretation of the targeted sequencing findings. This report expands the spectrum of gene partners involved in LEUTX fusions and underscores the value of whole transcriptome sequencing in the diagnostic workup of undifferentiated small round cell tumors. It also highlights the interpretive challenges associated with complex genomic alterations. A careful evidence-based analysis of sequencing data along with histopathologic correlation is essential to ensure correct categorization of fusions.
Collapse
Affiliation(s)
- Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zonggao Shi
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica Gartrell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert E Ruiz
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Huntzinger E, Sinteff J, Morlet B, Séraphin B. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic Acids Res 2023; 51:9279-9293. [PMID: 37602378 PMCID: PMC10516660 DOI: 10.1093/nar/gkad673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.
Collapse
Affiliation(s)
- Eric Huntzinger
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jordan Sinteff
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| |
Collapse
|
34
|
Pardini E, Cucchiara F, Palumbo S, Tarrini G, Di Vita A, Coppedè F, Nicolì V, Guida M, Maestri M, Ricciardi R, Aprile V, Ambrogi MC, Barachini S, Lucchi M, Petrini I. Somatic mutations of thymic epithelial tumors with myasthenia gravis. Front Oncol 2023; 13:1224491. [PMID: 37671056 PMCID: PMC10475716 DOI: 10.3389/fonc.2023.1224491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Background Thymic epithelial tumors are rare malignant neoplasms that are frequently associated with paraneoplastic syndromes, especially myasthenia gravis. GTF2I is an oncogene mutated in a subgroup of thymomas that is reputed to drive their growth. However, for GTF2I wild-type tumors, the relevant mutations remain to be identified. Methods We performed a meta-analysis and identified 4,208 mutations in 339 patients. We defined a panel of 63 genes frequently mutated in thymic epithelial tumors, which we used to design a custom assay for next-generation sequencing. We sequenced tumor DNA from 67 thymomas of patients with myasthenia gravis who underwent resection in our institution. Results Among the 67 thymomas, there were 238 mutations, 83 of which were in coding sequences. There were 14 GTF2I mutations in 6 A, 5 AB, 2 B2 thymomas, and one in a thymoma with unspecified histology. No other oncogenes showed recurrent mutations, while sixteen tumor suppressor genes were predicted to be inactivated. Even with a dedicated assay for the identification of specific somatic mutations in thymic epithelial tumors, only GTF2I mutations were found to be significantly recurrent. Conclusion Our evaluation provides insights into the mutational landscape of thymic epithelial tumors, identifies recurrent mutations in different histotypes, and describes the design and implementation of a custom panel for targeted resequencing. These findings contribute to a better understanding of the genetic basis of thymic epithelial tumors and may have implications for future research and treatment strategies.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Sara Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Tarrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Alessia Di Vita
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Coppedè
- Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vanessa Nicolì
- Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Melania Guida
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vittorio Aprile
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Marcello C. Ambrogi
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Merjaneh N, Kim H, Escoto H, Metts J, Ray A, Bukowinski A, LeBlanc Z, Fair D, Watanbe M, Alva E, Todd K, Daley J, Hartt D, Cramer SL, Szabo S, Pressey JG. Strategies for the Treatment of Infantile Soft Tissue Sarcomas With BCOR Alterations. J Pediatr Hematol Oncol 2023; 45:315-321. [PMID: 36706311 PMCID: PMC11225610 DOI: 10.1097/mph.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 01/29/2023]
Abstract
BCOR alterations are described in ultra-rare infantile soft tissue sarcomas including primitive myxoid mesenchymal tumor of infancy and undifferentiated round cell sarcoma (URCS). Previous reports often describe dismal outcomes. Thus, we undertook a retrospective, multi-institutional study of infants with BCOR -rearranged soft tissue sarcomas. Nine patients aged 6 weeks to 15 months were identified. One tumor carried a BCOR :: CCNB3 fusion, whereas 7 tumors harbored internal tandem duplication of BCOR , including 4 cases classified as primitive myxoid mesenchymal tumor of infancy, 1 case as URCS, and 2 cases characterized by a "hybrid morphology" in our evaluation. Four patients underwent upfront surgery with residual disease that progressed locally after a median of 2.5 months. Locoregional recurrences were observed in hybrid patients, and the URCS case recurred with brain metastases. Complete radiographic responses after chemotherapy were achieved in patients treated with vincristine/doxorubicin/cyclophosphamide alternating with ifosfamide/etoposide, vincristine/doxorubicin/cyclophosphamide alternating with cyclophosphamide/etoposide (regimen I), and ifosfamide/carboplatin/etoposide. Seven patients received radiotherapy. With a median of 23.5 months off therapy, 8 patients are with no evidence of disease. In our study, observation was inadequate for the management of untreated postsurgical residual disease. Tumors demonstrated chemosensitivity with anthracycline-based regimens and ifosfamide/carboplatin/etoposide. Radiotherapy was required to achieve durable response in most patients.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
| | - Hee Kim
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
| | | | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St Petersburg, FL
| | - Anish Ray
- Cook Children’s Hospital, Fort Worth, TX
| | | | | | - Douglas Fair
- Primary Children’s Hospital, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | | - Kevin Todd
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
| | - Jessica Daley
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Duncan Hartt
- Primary Children’s Hospital, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Stuart L. Cramer
- Division of Hematology & Oncology, University of South Carolina, Columbia, SC
| | - Sara Szabo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph G. Pressey
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
36
|
Chang M, Gao F, Pontigon D, Gnawali G, Xu H, Wang W. Bioorthogonal PROTAC Prodrugs Enabled by On-Target Activation. J Am Chem Soc 2023; 145:14155-14163. [PMID: 37327395 PMCID: PMC11249063 DOI: 10.1021/jacs.3c05159] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although proteolysis targeting chimeras (PROTACs) have become promising therapeutic modalities, important concerns exist about the potential toxicity of the approach owing to uncontrolled degradation of proteins and undesirable ligase-mediated off-target effects. Precision manipulation of degradation activity of PROTACs could minimize potential toxicity and side effects. As a result, extensive efforts have been devoted to developing cancer biomarker activating prodrugs of PROTACs. In this investigation, we developed a bioorthogonal on-demand prodrug strategy (termed click-release "crPROTACs") that enables on-target activation of PROTAC prodrugs and release of PROTACs in cancer cells selectively. Inactive PROTAC prodrugs TCO-ARV-771 and TCO-DT2216 are rationally designed by conjugating a bioorthogonal trans-cyclooctenes (TCO) group into the ligand of the VHL E3 ubiquitin ligase. The tetrazine (Tz)-modified RGD peptide, c(RGDyK)-Tz, which targets integrin αvβ3 biomarker in cancer cells, serves as the activation component for click-release of the PROTAC prodrugs to achieve targeted degradation of proteins of interest (POIs) in cancer cells versus noncancerous normal cells. The results of studies accessing the viability of this strategy show that the PROTAC prodrugs are selectively activated in an integrin αvβ3-dependent manner to produce PROTACs, which degrade POIs in cancer cells. The crPROTAC strategy might be a general, abiotic approach to induce selective cancer cell death through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Devin Pontigon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
37
|
Nischwitz E, Schoonenberg VA, Fradera-Sola A, Dejung M, Vydzhak O, Levin M, Luke B, Butter F, Scheibe M. DNA damage repair proteins across the Tree of Life. iScience 2023; 26:106778. [PMID: 37250769 PMCID: PMC10220248 DOI: 10.1016/j.isci.2023.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Genome maintenance is orchestrated by a highly regulated DNA damage response with specific DNA repair pathways. Here, we investigate the phylogenetic diversity in the recognition and repair of three well-established DNA lesions, primarily repaired by base excision repair (BER) and ribonucleotide excision repair (RER): (1) 8-oxoguanine, (2) abasic site, and (3) incorporated ribonucleotide in DNA in 11 species: Escherichia coli, Bacillus subtilis, Halobacterium salinarum, Trypanosoma brucei, Tetrahymena thermophila, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Zea mays. Using quantitative mass spectrometry, we identified 337 binding proteins across these species. Of these proteins, 99 were previously characterized to be involved in DNA repair. Through orthology, network, and domain analysis, we linked 44 previously unconnected proteins to DNA repair. Our study presents a resource for future study of the crosstalk and evolutionary conservation of DNA damage repair across all domains of life.
Collapse
Affiliation(s)
| | | | | | - Mario Dejung
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Olga Vydzhak
- Institute of Developmental Biology and Neurobiology (IDN), Johannes-Gutenberg-University, 55128 Mainz, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes-Gutenberg-University, 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Marion Scheibe
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
38
|
Hogrebe NJ, Ishahak M, Millman JR. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell 2023; 30:530-548. [PMID: 37146579 PMCID: PMC10167558 DOI: 10.1016/j.stem.2023.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
The generation of islet-like endocrine clusters from human pluripotent stem cells (hPSCs) has the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. In order for this cell therapy to become widely adopted, highly functional and well-characterized stem cell-derived islets (SC-islets) need to be manufactured at scale. Furthermore, successful SC-islet replacement strategies should prevent significant cell loss immediately following transplantation and avoid long-term immune rejection. This review highlights the most recent advances in the generation and characterization of highly functional SC-islets as well as strategies to ensure graft viability and safety after transplantation.
Collapse
Affiliation(s)
- Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA.
| | - Matthew Ishahak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
39
|
Puigdevall P, Jerber J, Danecek P, Castellano S, Kilpinen H. Somatic mutations alter the differentiation outcomes of iPSC-derived neurons. CELL GENOMICS 2023; 3:100280. [PMID: 37082143 PMCID: PMC10112289 DOI: 10.1016/j.xgen.2023.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
The use of induced pluripotent stem cells (iPSC) as models for development and human disease has enabled the study of otherwise inaccessible tissues. A remaining challenge in developing reliable models is our limited understanding of the factors driving irregular differentiation of iPSCs, particularly the impact of acquired somatic mutations. We leveraged data from a pooled dopaminergic neuron differentiation experiment of 238 iPSC lines profiled with single-cell RNA and whole-exome sequencing to study how somatic mutations affect differentiation outcomes. We found that deleterious somatic mutations in key developmental genes, notably the BCOR gene, are strongly associated with failure in dopaminergic neuron differentiation and a larger proliferation rate in culture. We further identified broad differences in cell type composition between incorrectly and successfully differentiating lines, as well as significant changes in gene expression contributing to the inhibition of neurogenesis. Our work calls for caution in interpreting differentiation-related phenotypes in disease-modeling experiments.
Collapse
Affiliation(s)
- Pau Puigdevall
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
| | - Julie Jerber
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sergi Castellano
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Helena Kilpinen
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
40
|
Taimur F, Akbar M, Manzoor A, Afghani T, Asif M. Primitive myxoid mesenchymal tumours of infancy: first case surrounding the optic nerve. CANADIAN JOURNAL OF OPHTHALMOLOGY 2023; 58:e90-e92. [PMID: 35940210 DOI: 10.1016/j.jcjo.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022]
Affiliation(s)
| | - Maheen Akbar
- Al-Shifa Trust Eye Hospital Rawalpindi, Pakistan
| | - Amna Manzoor
- Al-Shifa Trust Eye Hospital Rawalpindi, Pakistan
| | | | - Muhammad Asif
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| |
Collapse
|
41
|
Comitani F, Nash JO, Cohen-Gogo S, Chang AI, Wen TT, Maheshwari A, Goyal B, Tio ES, Tabatabaei K, Mayoh C, Zhao R, Ho B, Brunga L, Lawrence JEG, Balogh P, Flanagan AM, Teichmann S, Huang A, Ramaswamy V, Hitzler J, Wasserman JD, Gladdy RA, Dickson BC, Tabori U, Cowley MJ, Behjati S, Malkin D, Villani A, Irwin MS, Shlien A. Diagnostic classification of childhood cancer using multiscale transcriptomics. Nat Med 2023; 29:656-666. [PMID: 36932241 PMCID: PMC10033451 DOI: 10.1038/s41591-023-02221-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/13/2023] [Indexed: 03/19/2023]
Abstract
The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.
Collapse
Affiliation(s)
- Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua O Nash
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sarah Cohen-Gogo
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Astra I Chang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Timmy T Wen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anant Maheshwari
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bipasha Goyal
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Earvin S Tio
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin Tabatabaei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Regis Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ben Ho
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Petra Balogh
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
| | - Adrienne M Flanagan
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
- Research Department of Pathology, University College London Cancer Institute, London, UK
| | | | - Annie Huang
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jonathan D Wasserman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Rebecca A Gladdy
- Department of Surgical Oncology, Princess Margaret Cancer Centre/Mount Sinai Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David Malkin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anita Villani
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
Molecular Signature of Biological Aggressiveness in Clear Cell Sarcoma of the Kidney (CCSK). Int J Mol Sci 2023; 24:ijms24043743. [PMID: 36835166 PMCID: PMC9964999 DOI: 10.3390/ijms24043743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.
Collapse
|
43
|
Danishevich AM, Pospehova NI, Stroganova AM, Golovina DA, Nikulin MP, Kalinin AE, Nikolaev SE, Stilidi IS, Lyubchenko LN. Landscape of KRAS, BRAF, and PIK3CA Mutations and Clinical Features of EBV-Associated and Microsatellite Unstable Gastric Cancer. Mol Biol 2023. [DOI: 10.1134/s0026893323010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
44
|
Salgado CM, Alaggio R, Ciolfi A, Zin A, Diomedi Camassei F, Pedace L, Milano GM, Serra A, Di Giannatale A, Mastronuzzi A, Gianatti A, Bisogno G, Ferrari A, Tartaglia M, Reyes-Múgica M, Locatelli F, Miele E. Pediatric BCOR-Altered Tumors From Soft Tissue/Kidney Display Specific DNA Methylation Profiles. Mod Pathol 2023; 36:100039. [PMID: 36853789 DOI: 10.1016/j.modpat.2022.100039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
In the pediatric population, BCL6-correpresor gene (BCOR)-upregulated tumors include primitive myxoid mesenchymal tumors/undifferentiated sarcomas (PMMTI/UND), clear cell sarcomas of the kidney (CCSK), and high-grade neuroepithelial tumors (HG-NET). We investigated DNA methylation (DNAm) and copy number variation (CNV) profiling in these tumors (N = 34) using an Illumina EPIC BeadChip to better define the potential use of these tools to confirm diagnosis and predict outcomes. Twenty-seven tumors from 25 patients (age range, 0-10 years), showed molecular confirmation of genetic abnormalities as follows: BCOR internal tandem duplication in 14 PMMTI/UND, 8 CCSK, and 3 HG-NET and YWHAE fusions in 2 PMMTI/UND. The remaining 7 cases lacking informative molecular data were analyzed by immunophenotyping and were included in the study as a training cohort, clearly separated from the main study group. These were 4 PMMTI, 1 HG-NET, and 1 CCSK in which poor RNA preservation precluded the confirmation of BCOR rearrangements and 1 CCSK in which no rearrangements were found. DNAm data were compared with those of brain tumor and/or sarcoma classifier. Differentially methylated regions (DMRs) were analyzed in the 3 groups. Twenty-two cases of the 24 molecularly confirmed PMMTI/UND and CCSK and 3 of 6 of those with only immunophenotyping were classified within the methylation class "BCOR-altered sarcoma family" with optimal calibrated scores. PMMTI/UND and CCSK showed similar methylation profiles, whereas thousands of DMRs and significantly enriched pathways were evident between soft tissue/kidney tumors and HG-NET. The CNV analysis showed an overall flat profile in 19 of the 31 evaluable tumors (8/10 CCSK; 9/18 PMMTI/UND; 2/4 HG-NET). The most frequent CNVs were 1q gain and 9p and 10q loss. Follow-up time data were available for 20 patients: ≥2 CNV significantly correlated with a worse overall survival rate. In conclusion, soft tissue and kidney BCOR sarcomas matched with BCOR-altered sarcoma methylation class, whereas those from the brain matched with the central nervous system tumor classifier HG-NET BCOR, supporting the notion that DNAm profiling is an informative diagnostic tool. CNV alterations were associated with a more aggressive clinical behavior.
Collapse
Affiliation(s)
- Claudia M Salgado
- Division of Pathology, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Angelica Zin
- Clinica di Oncoematologia Pediatrica Azienda Ospedaliera, Università di Padova, Padova, Italy
| | - Francesca Diomedi Camassei
- Pathology Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Annalisa Serra
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Gianatti
- Department of Pathology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Gianni Bisogno
- Department of Pediatric Hematology-Oncology, Università di Padova, Padova, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Medical Oncology and Hematology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Tumori, Milano, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Miguel Reyes-Múgica
- Division of Pathology, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| |
Collapse
|
45
|
Molecular Identification and In Silico Protein Analysis of a Novel BCOR-CLGN Gene Fusion in Intrathoracic BCOR-Rearranged Sarcoma. Cancers (Basel) 2023; 15:cancers15030898. [PMID: 36765856 PMCID: PMC9913298 DOI: 10.3390/cancers15030898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BCOR (BCL6 corepressor)-rearranged sarcomas (BRSs) are a heterogeneous group of sarcomas previously classified as part of the group of "atypical Ewing" or "Ewing-like" sarcomas, without the prototypical ESWR1 gene translocation. Due to their similar morphology and histopathological features, diagnosis is challenging. The most common genetic aberrations are BCOR-CCNB3 fusion and BCOR internal tandem duplication (ITD). Recently, various new fusion partners of BCOR have been documented, such as MAML3, ZC3H7B, RGAG1, and KMT2D, further increasing the complexity of such tumor entities, although the molecular pathogenetic mechanism remains to be elucidated. Here, we present an index case of intrathoracic BRS that carried a novel BCOR-CLGN (calmegin) gene fusion, exhibited by a 52-year-old female diagnosed initially by immunohistochemistry due to the positivity of a BCOR stain; the fusion was identified by next-generation sequencing and was confirmed by Sanger sequencing. In silico protein analysis was performed to demonstrate the 3D structure of the chimera protein. The physicochemical properties of the fusion protein sequence were calculated using the ProtParam web-server tool. Our finding further broadens the fusion partner gene spectrum of BRS. Due to the heterogeneity, molecular ancillary tests serve as powerful tools to discover these unusual variants, and an in silico analysis of the fusion protein offers an appropriate approach toward understanding the exact pathogenesis of such a rare variant.
Collapse
|
46
|
Ochoa S, Hernández-Lemus E. Functional impact of multi-omic interactions in breast cancer subtypes. Front Genet 2023; 13:1078609. [PMID: 36685900 PMCID: PMC9850112 DOI: 10.3389/fgene.2022.1078609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Multi-omic approaches are expected to deliver a broader molecular view of cancer. However, the promised mechanistic explanations have not quite settled yet. Here, we propose a theoretical and computational analysis framework to semi-automatically produce network models of the regulatory constraints influencing a biological function. This way, we identified functions significantly enriched on the analyzed omics and described associated features, for each of the four breast cancer molecular subtypes. For instance, we identified functions sustaining over-representation of invasion-related processes in the basal subtype and DNA modification processes in the normal tissue. We found limited overlap on the omics-associated functions between subtypes; however, a startling feature intersection within subtype functions also emerged. The examples presented highlight new, potentially regulatory features, with sound biological reasons to expect a connection with the functions. Multi-omic regulatory networks thus constitute reliable models of the way omics are connected, demonstrating a capability for systematic generation of mechanistic hypothesis.
Collapse
Affiliation(s)
- Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico,*Correspondence: Enrique Hernández-Lemus,
| |
Collapse
|
47
|
Primitive Myxoid Mesenchymal Tumor of Infancy With Fatal Hemorrhage In Utero: A Case Report and Literature Review. J Pediatr Hematol Oncol 2023; 45:e135-e138. [PMID: 35536997 DOI: 10.1097/mph.0000000000002474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/17/2022] [Indexed: 02/03/2023]
Abstract
Primitive myxoid mesenchymal tumor of infancy (PMMTI) is a rare soft tissue sarcoma in childhood. We present the case of a newborn male who experienced a severe hemorrhage in utero from the tumor on the scalp. He died at the age of 24 hours owing to hemorrhagic shock. The tumor was posthumously diagnosed as PMMTI. A literature search indicated that cases of severe hemorrhage from soft tissue sarcomas in utero or at birth are limited to infantile fibrosarcoma. This is the first case of PMMTI with massive hemorrhage. Clinicians must be aware of hemorrhagic complications of PMMTI.
Collapse
|
48
|
Jabbari S, Salari B, He M, Dehner LP. Infantile Fibrosarcoma and Other Spindle Cell Neoplasms of Infancy. A Review of Morphologically Overlapping yet Molecularly Distinctive Entities. Fetal Pediatr Pathol 2022; 41:996-1014. [PMID: 35044292 DOI: 10.1080/15513815.2021.2024631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Regardless of age at presentation, many soft tissue neoplasms have overlapping histopathologic and immunophenotypic features to serve as a diagnostic challenge. CASE REPORT We reported a case of a spindle cell neoplasm in an infant, which was initially considered a vascular anomaly clinically and an eventual biopsy revealed marked inflammation with a spindle cell component that was resolved as an infantile fibrosarcoma with an ETV6 break-apart. CONCLUSION The context of this case lead to a further consideration of various other spindle cell neoplasms arising predominantly in the soft tissues during the infancy period as defined by the first two years of age. Though sharing similar morphologic features, these tumors can be categorized into several molecular genetic groups, which have provided both diagnostic and pathogenetic insights as well as treatment options in some cases.
Collapse
Affiliation(s)
- Shiva Jabbari
- Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University Medical Center, St. Louis, MO, USA
| | - Behzad Salari
- Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University Medical Center, St. Louis, MO, USA
| | - Mai He
- Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University Medical Center, St. Louis, MO, USA.,St. Louis Children's Hospitals, Washington University Medical Center, St. Louis, MO, USA
| | - Louis P Dehner
- Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University Medical Center, St. Louis, MO, USA.,St. Louis Children's Hospitals, Washington University Medical Center, St. Louis, MO, USA
| |
Collapse
|
49
|
Pizzimenti C, Gianno F, Gessi M. Expanding the spectrum of "mesenchymal" tumors of the central nervous system. Pathologica 2022; 114:455-464. [PMID: 36534424 PMCID: PMC9763981 DOI: 10.32074/1591-951x-826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
In this review, we summarize the clinical, histopathological, and molecular features of central nervous system (CNS) tumors with BCOR internal tandem duplication, intracranial mesenchymal tumor with FET/CREB fusion, CNS CIC-rearranged sarcomas and primary intracranial sarcoma DICER1-mutant, now included in the 2021 WHO classification of CNS tumors. Possible relationships between tumors occurring in the CNS and their systemic counterparts are discussed.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Pathological sciences, University of Rome “la Sapienza”Rome Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy,Correspondence Marco Gessi Neuropathology Unit, Div. of Pathology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore Largo A. Gemelli 8, 00168 Roma, Italy Tel.: +39-06-30154433 E-mail: ;
| |
Collapse
|
50
|
Wu Z, Rajan S, Chung HJ, Raffeld M, Panneer Selvam P, Schweizer L, Perry A, Samuel D, Giannini C, Ragunathan A, Frosch MP, Marshall MS, Boué DR, Donev K, Neill SG, Fernandes I, Resnick A, Rood B, Cummings TJ, Buckley AF, Szymanski L, Neto OLA, Zach L, Colman H, Cheshier S, Ziskin J, Tyagi M, Capper D, Abdullaev Z, Cimino PJ, Quezado M, Pratt D, Aldape K. Molecular and clinicopathologic characteristics of gliomas with EP300::BCOR fusions. Acta Neuropathol 2022; 144:1175-1178. [PMID: 36201019 PMCID: PMC10673683 DOI: 10.1007/s00401-022-02508-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Zhichao Wu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharika Rajan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hye-Jung Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pavalan Panneer Selvam
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leonille Schweizer
- Department of Neuropathology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David Samuel
- Department of Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Caterina Giannini
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aditya Ragunathan
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael S Marshall
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel R Boué
- Departments of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University Columbus, Columbus, OH, USA
| | - Kliment Donev
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Adam Resnick
- Center for Data Driven Discovery in Biomedicine (D3B), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian Rood
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC, USA
| | - Thomas J Cummings
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Linda Szymanski
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Leor Zach
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Howard Colman
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Samuel Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Intermountain Primary Children's Hospital, Salt Lake City, UT, USA
| | - Jennifer Ziskin
- Kaiser Permanente Hospital, Redwood City Medical Center, Redwood City, CA, USA
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Capper
- Department of Neuropathology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|