1
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
3
|
Puspadewi R, Milanda T, Muhaimin M, Chaerunisaa AY. Nanoparticle-Encapsulated Plant Polyphenols and Flavonoids as an Enhanced Delivery System for Anti-Acne Therapy. Pharmaceuticals (Basel) 2025; 18:209. [PMID: 40006023 PMCID: PMC11858878 DOI: 10.3390/ph18020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
This study conducted a literature review by searching for articles related to the treatment of skin infections/wrinkles using nano-delivery systems containing natural compounds. The search was conducted in various databases for articles published in the last 10 years, with strict inclusion and exclusion criteria. Of the 490 articles found, 40 were considered relevant. Acne vulgaris is a common dermatological disorder characterised by inflammation of the sebaceous glands, often resulting in the development of pimples, cysts, and scarring. Conventional treatments, including antibiotics and topical retinoids, frequently demonstrate limitations such as side effects, resistance, and insufficient skin absorption. Recent advancements in nanotechnology have enabled the creation of innovative drug-delivery systems that enhance the effectiveness and reduce the adverse effects of anti-acne medications. Polyphenols and flavonoids, natural bioactive compounds with notable anti-inflammatory, antioxidant, and antibacterial properties, are recognised for their therapeutic effectiveness in acne treatment. However, their practical application is hindered by insufficient solubility, stability, and bioavailability. The incorporation of these compounds into nanoparticle-based delivery systems has shown promise in resolving these challenges. Various nanoparticle platforms, including lipid-based nanoparticles, polymeric nanoparticles, and solid lipid nanoparticles, are evaluated for their ability to improve the stability, controlled release, and targeted delivery of polyphenols and flavonoids to the skin. The advent of polyphenol and flavonoid-loaded nanoparticles marks a new acne therapy era.
Collapse
Affiliation(s)
- Ririn Puspadewi
- Doctoral Program of Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia;
- Faculty of Pharmacy, Jenderal Achmad Yani University, Cimahi 40531, Indonesia
| | - Tiana Milanda
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
- Center of Herbal Studies, Padjadjaran University, Sumedang 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Saeed N, Atiq A, Rafiq F, Khan I, Atiq M, Saleem M, Anjum DH, Usman Z, Abbas M. Engineering of self-assembled silver-peptide colloidal nanohybrids with enhanced biocompatibility and antibacterial activity. Sci Rep 2024; 14:26398. [PMID: 39488657 PMCID: PMC11531511 DOI: 10.1038/s41598-024-78320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
Several bacterial strains have developed resistance against commercial antibiotics, and interestingly, supramolecular nanomaterials have shown considerable advantages for antibacterial applications. However, the main challenges in adopting nanotechnology for antibacterial studies are random aggregation, compromised toxicity, multi-step preparation approaches, and unclear structure-function properties. Herein, we designed the amphiphilic tripeptide that acts as a reducing and capping agent for silver metal to form silver-peptide colloidal nanohybrids with the mild assistance of UV light (254 nm) through the photochemical reduction method. The nanohybrids are characterized by different spectroscopic and microscopic techniques, and non-covalent molecular interactions between metal and peptide building blocks confirm their central role in the formation of nanohybrids. The tripeptide is biocompatible and can reduce the toxicity of silver ions (Ag+) by reducing to Ag0. These colloidal nanohybrids showed antibacterial activity against gram-negative and gram-positive bacterial strains, and the possible mechanism of killing bacterial cells could be membrane disruption. This synthetic strategy is facile and green, which helps avoid using toxic chemicals or reagents and complicated methods for colloidal nanohybrid preparation for biomedical applications.
Collapse
Affiliation(s)
- Nyla Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Atia Atiq
- Division of Science and Technology, Department of Physics, University of Education, Lahore, Pakistan
| | - Farhat Rafiq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Iliyas Khan
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maria Atiq
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Dalaver H Anjum
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Zahid Usman
- Division of Science and Technology, Department of Physics, University of Education, Lahore, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
- Functional Biomaterial Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
He Y, Wu S, Rietveld M, Vermeer M, Cruz LJ, Eich C, El Ghalbzouri A. Application of Doxorubicin-loaded PLGA nanoparticles targeting both tumor cells and cancer-associated fibroblasts on 3D human skin equivalents mimicking melanoma and cutaneous squamous cell carcinoma. BIOMATERIALS ADVANCES 2024; 160:213831. [PMID: 38552501 DOI: 10.1016/j.bioadv.2024.213831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024]
Abstract
Nanoparticle (NP) use in cancer therapy is extensively studied in skin cancers. Cancer-associated fibroblasts (CAFs), a major tumor microenvironment (TME) component, promote cancer progression, making dual targeting of cancer cells and CAFs an effective therapy. However, dual NP-based targeting therapy on both tumor cells and CAFs is poorly investigated in skin cancers. Herein, we prepared and characterized doxorubicin-loaded PLGA NPs (DOX@PLGA NPs) and studied their anti-tumor effects on cutaneous melanoma (SKCM)(AN, M14) and cutaneous squamous cell carcinoma (cSCC) (MET1, MET2) cell lines in monolayer, as well as their impact on CAF deactivation. Then, we established 3D full thickness models (FTM) models of SKCM and cSCC using AN or MET2 cells on dermis matrix populated with CAFs respectively, and assessed the NPs' tumor penetration, tumor-killing ability, and CAF phenotype regulation through both topical administration and intradermal injection. The results show that, in monolayer, DOX@PLGA NPs inhibited cancer cell growth and induced apoptosis in a dose- and time-dependent manner, with a weaker effect on CAFs. DOX@PLGA NPs reduced CAF-marker expression and had successful anti-tumor effects in 3D skin cancer FTMs, with decreased tumor-load and invasion. DOX@PLGA NPs also showed great delivery potential in the FTMs and could be used as a platform for future functional study of NPs in skin cancers using human-derived skin equivalents. This study provides promising evidence for the potential of DOX@PLGA NPs in dual targeting therapy for SKCM and cSCC.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Shidi Wu
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Maarten Vermeer
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | | |
Collapse
|
7
|
Iungin O, Shydlovska O, Moshynets O, Vasylenko V, Sidorenko M, Mickevičius S, Potters G. Metal-based nanoparticles: an alternative treatment for biofilm infection in hard-to-heal wounds. J Wound Care 2024; 33:xcix-cx. [PMID: 38588056 DOI: 10.12968/jowc.2024.33.sup4a.xcix] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.
Collapse
Affiliation(s)
- Olga Iungin
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Shydlovska
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
| | - Olena Moshynets
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Vasylenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Marina Sidorenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Saulius Mickevičius
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Geert Potters
- 4 Antwerp Maritime Academy, Antwerp, Belgium
- 5 University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Almalki WH. An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer. Curr Drug Deliv 2024; 21:509-524. [PMID: 37165498 DOI: 10.2174/1567201820666230509101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND A big health issue facing the world's population is cancer. An alarming increase in cancer patients was anticipated by worldwide demographic statistics, which showed that the number of patients with different malignancies was rapidly increasing. By 2025, probably 420 million cases were projected to be achieved. The most common cancers diagnosed are breast, colorectal, prostate, and lung. Conventional treatments, such as surgery, chemotherapy, and radiation therapy, have been practiced. OBJECTIVE In recent years, the area of cancer therapy has changed dramatically with expanded studies on the molecular-level detection and treatment of cancer. Recent advances in cancer research have seen significant advances in therapies such as chemotherapy and immunotherapy, although both have limitations in effectiveness and toxicity. METHODS The development of nanotechnology for anticancer drug delivery has developed several potentials as nanocarriers, which may boost the pharmacokinetic and pharmacodynamic effects of the drug product and substantially reduce the side effects. RESULTS The advancement in non-viral to viral-based protein-based nanocarriers for treating cancer has earned further recognition in this respect. Many scientific breakthroughs have relied on protein-based nanocarriers, and proteins are essential organic macromolecules for life. It allows targeted delivery of passive or active tumors using non-viral-based protein-based nanocarriers to viral-based protein nanocarriers. When targeting cancer cells, both animal and plant proteins may be used in a formulation process to create self-assembled viruses and platforms that can successfully eradicate metastatic cancer cells. CONCLUSION This review, therefore, explores in depth the applications of non-viral to viral proteinbased noncarriers with a specific focus on intracellular drug delivery and anti-cancer drug targeting ability.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Aal-qura University, Saudi Arabia
| |
Collapse
|
9
|
de Cristo Soares Alves A, Rosane Dallemole D, Medeiro Ciocheta T, Ferreira Weber A, da Silva Gündel S, Visioli F, Figueiró F, Stanisçuaski Guterres S, Raffin Pohlmann A. Chicken embryo model for in vivo acute toxicological and antitumor efficacy evaluation of lipid nanocarrier containing doxorubicin. Int J Pharm X 2023; 6:100193. [PMID: 38204452 PMCID: PMC10777201 DOI: 10.1016/j.ijpx.2023.100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Nanoencapsulation of chemotherapeutics, including doxorubicin, can endow the formulations with unique properties, such as a decrease in adverse effects and toxicity. The chicken embryo model is an alternative and well-accepted strategy for evaluating the toxicity and efficacy of drugs and nanoformulations. Therefore, this study proposes the development of a new lipid nanocarrier for doxorubicin delivery (NanoLip-Dox) and posterior evaluation of toxicological profile and antitumoral efficacy against a breast tumor in chicken embryos. NanoLip-Dox showed a unimodal particle size (< 150 nm), negative zeta potential (-19.5 mV), absence of drug crystals, drug content of 0.099 mg·mL-1, and high entrapment efficiency (95%). NanoLip-Dox did not cause toxicity in the chicken embryos; in contrast, doxorubicin hydrochloride induced moderate irritation in the chorioallantoic membrane (at 862.1 μmol·L-1), a survival rate of 50% (at 1.7 μmol·L-1), and an increase in aspartate aminotransferase (at 862.1, 344.8, and 172.4 μmol·L-1). In addition, NanoLip-Dox (at 1.7 μmol·L-1) showed potent antitumor efficacy with a high tumor remission percentage (40.9 ± 9.7%) compared to the control group (8.6 ± 14.8%). These findings together with the absence of toxicity concerning morphological characteristics, weights of embryos and organs, hematologic parameters, and enzymatic activity (alanine aminotransferase, aspartate aminotransferase, and creatinine) suggest the safety and efficacy of NanoLip-Dox.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Danieli Rosane Dallemole
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Taiane Medeiro Ciocheta
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Samanta da Silva Gündel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Fernanda Visioli
- Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS 90035-003, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Fabricio Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| |
Collapse
|
10
|
Yasuda K, Maeda H, Kinoshita R, Minayoshi Y, Mizuta Y, Nakamura Y, Imoto S, Nishi K, Yamasaki K, Sakuragi M, Nakamura T, Ikeda-Imafuku M, Iwao Y, Ishima Y, Ishida T, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Encapsulation of an Antioxidant in Redox-Sensitive Self-Assembled Albumin Nanoparticles for the Treatment of Hepatitis. ACS NANO 2023; 17:16668-16681. [PMID: 37579503 DOI: 10.1021/acsnano.3c02877] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hepatitis is an inflammation of the liver caused by the inadequate elimination of reactive oxygen species (ROS) derived from Kupffer cells. Edaravone is clinically used as an antioxidant but shows poor liver distribution. Herein, we report on the design of a Kupffer cell-oriented nanoantioxidant based on a disulfide cross-linked albumin nanoparticle containing encapsulated edaravone (EeNA) as a therapeutic for the treatment of hepatitis. Since the edaravone is bound to albumin, this results in a soluble and stable form of edaravone in water. Exchanging the intramolecular disulfide bonds to intermolecular disulfide bridges of albumin molecules allowed the preparation of a redox responsive albumin nanoparticle that is stable in the blood circulation but can release drugs into cells. Consequently, EeNA was fabricated by the nanoscale self-assembly of edaravone and albumin nanoparticles without the additives that are contained in commercially available edaravone preparations. EeNA retained its nanostructure under serum conditions, but the encapsulated edaravone was released efficiently under intracellular reducing conditions in macrophages. The EeNA was largely distributed in the liver and subsequently internalized into Kupffer cells within 60 min after injection in a concanavalin-A-induced hepatitis mouse. The survival rate of the hepatitis mice was significantly improved by EeNA due to the suppression of liver necrosis and oxidative stress by scavenging excessive ROS. Moreover, even through the postadministration, EeNA showed an excellent hepatoprotective action as well. In conclusion, EeNA has the potential for use as a nanotherapeutic against various types of hepatitis because of its Kupffer cell targeting ability and redox characteristics.
Collapse
Affiliation(s)
- Kengo Yasuda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryo Kinoshita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Minayoshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Mizuta
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuka Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayumi Ikeda-Imafuku
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
11
|
Boratto FA, Lages EB, Loures CMC, Sabino AP, Malachias A, Townsend DM, Branco De Barros AL, Miranda Ferreira LA, Amaral Leite E. Alpha-tocopheryl succinate and doxorubicin-loaded liposomes improve drug uptake and tumor accumulation in a murine breast tumor model. Biomed Pharmacother 2023; 165:115034. [PMID: 37356372 PMCID: PMC10720879 DOI: 10.1016/j.biopha.2023.115034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Liposomes composed of a rigid bilayer have high plasma stability; however, they can be challenged in efficacy due to complications in releasing the encapsulated drug as well as being internalized by the tumor cell. On the other hand, fusogenic liposomes may fuse with the plasmatic membrane and release encapsulated material directly into the cytoplasm. In a previous study, fusogenic liposomes composed of alpha-tocopheryl succinate (TS) and doxorubicin (DOX) were developed (pHSL-TS-DOX). These stabilized tumor growth and reduced toxicity compared to a commercial formulation. In the present study, we investigated whether cellular uptake or DOX accumulation in the tumor could justify the better performance of the pHSL-TS-DOX formulation. Release, deformability, and DOX plasmatic concentration studies were also carried out. pHSL-TS-DOX showed an adequate release profile and demonstrated characteristics of a deformable formulation. Data from apoptosis, cell cycle, and nuclear morphology studies have shown that the induction of cell death caused by pHSL-TS-DOX occurred more quickly. Higher DOX cellular uptake and tumor accumulation were observed when pHSL-TS-DOX was administered, demonstrating better drug delivery capacity. Therefore, better DOX uptake as well as tumor accumulation explain the great antitumor activity previously demonstrated for this formulation.
Collapse
Affiliation(s)
- Fernanda A Boratto
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo B Lages
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina M C Loures
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano P Sabino
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelo Malachias
- Department of Physics, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Andre Luis Branco De Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Lucas Antonio Miranda Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Zhou S, Zhu H, Xiong P, Shi L, Bai W, Li X. Spore Oil-Functionalized Selenium Nanoparticles Protect Pancreatic Beta Cells from Palmitic Acid-Induced Apoptosis via Inhibition of Oxidative Stress-Mediated Apoptotic Pathways. Antioxidants (Basel) 2023; 12:antiox12040840. [PMID: 37107215 PMCID: PMC10135144 DOI: 10.3390/antiox12040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Oxidative stress damage of pancreatic β-cells is a key link in the pathogenesis of type 2 diabetes mellitus. A long-term increase of free fatty acids induces the increase of reactive oxygen species (ROS) in β-cells, leading to apoptosis and dysfunction of β-cells. Ganoderma lucidum spore oil (GLSO) is a functional food complex with strong antioxidant activity, but its solubility and stability are poor. In the present study, GLSO-functionalized selenium nanoparticles (GLSO@SeNPs) with high stability and uniform particle size were synthesized by a high-pressure homogeneous emulsification method. The aim of this study was to investigate the protective effects of GLSO@SeNPs on INS-1E rat insulinoma β-cells against palmitic-acid (PA)-induced cell death, as well as the underlying mechanisms. Our results showed that GLSO@SeNPs had good stability and biocompatibility, and they significantly inhibited the PA-induced apoptosis of INS-1E pancreatic cells by regulating the activity of related antioxidant enzymes, including thioredoxin reductase (TrxR), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Western blot analysis showed that GLSO@SeNPs reversed the PA-induced changes in MAPK pathway protein expression levels. Thus, the present findings provided a new theoretical basis for utilizing GLSO@SeNPs as a treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Hongyan Zhu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Piaopiao Xiong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
13
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
14
|
Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023; 355:552-578. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Maurya S, Srivastava R, Arfin S, Hawthorne S, Jha NK, Agrawal K, Raj S, Rathi B, Kumar A, Raj R, Agrawal S, Paiva-Santos AC, Malik AA, Dua K, Rana R, Ojha S, Jha SK, Sharma A, Kumar D, El-Zahaby SA, Nagar A. Exploring state-of-the-art advances in targeted nanomedicines for managing acute and chronic inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:2245-2264. [PMID: 36975758 DOI: 10.2217/nnm-2021-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Diagnosis and treatment of lung diseases pose serious challenges. Currently, diagnostic as well as therapeutic methods show poor efficacy toward drug-resistant bacterial infections, while chemotherapy causes toxicity and nonspecific delivery of drugs. Advanced treatment methods that cure lung-related diseases, by enabling drug bioavailability via nasal passages during mucosal formation, which interferes with drug penetration to targeted sites, are in demand. Nanotechnology confers several advantages. Currently, different nanoparticles, or their combinations, are being used to enhance targeted drug delivery. Nanomedicine, a combination of nanoparticles and therapeutic agents, that delivers drugs to targeted sites increases the bioavailability of drugs at these sites. Thus, nanotechnology is superior to conventional chemotherapeutic strategies. Here, the authors review the latest advancements in nanomedicine-based drug-delivery methods for managing acute and chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Sujata Maurya
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Rashi Srivastava
- Chemical & Biochemical Engineering, Indian Institute of Technology, Patna, 801106, India
| | - Saniya Arfin
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Susan Hawthorne
- SAAD Building, School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kirti Agrawal
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Sibi Raj
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College, Delhi University, New Delhi, 110007, Delhi, India
| | - Arun Kumar
- Mahavir Cancer Institute & Research Centre Patna, Bihar, 800002, India
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Bangalore, 560056, Karnataka, India
| | - Sharad Agrawal
- Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Rakesh Rana
- MSD, HILLEMAN LABS, Analytical Division, New Delhi, 110062, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology Engineering & Food Technology, Chandigarh University, Mohali, 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, G10RE, Scotland, UK
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amka Nagar
- Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
16
|
Cutting-Edge Developments in Oncology Research. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractThe field of oncology research has made many successful advances, and new discoveries have started making headlines. As an example, the identification of immune checkpoint inhibition mechanisms in carcinogenic cells led to the development of immunoassays, which have helped many cancer convalescents recover. This article covers the most advanced cutting-edge areas of cancer research: exosomes, microbiomes, immunotherapy, nanocarriers, and organoids. Research on exosomes advances cancer detection and treatment modalities, as well as further understanding of mechanisms that regulate carcinogen cell division, proliferation, invasion, and metastasis. Microbiome consents the researchers to understand the disease cancer. Immunotherapy is the third method in the treatment of cancer. Organoid biology will be further expanded with the aim of translating research into customized therapeutic therapies. Nanocarriers enable cancer specific drug delivery by inherent unreceptive targeting phenomena and implemented active targeting strategies. These areas of research may also bring about the advent of the latest cancer treatments in the future. Malignant infections are one of the leading grounds for demise in the society. Patients are treated with surgery, radiation, and chemotherapy. In chemotherapy, the malignant cells are destroyed and the tumor burden is reduced. However, in most cases, resistance to chemotherapy develops. Therefore, there is a constant need for new additional treatment modalities and chemotherapeutic complex rules. Due to the rapid development in cancer research, I can only mention a few goals and treatment options that I have chosen; However, this review specializes in new and admirable significant strategies and compounds.
Collapse
|
17
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
18
|
Deng YH, Ricciardulli T, Won J, Wade MA, Rogers SA, Boppart SA, Flaherty DW, Kong H. Self-locomotive, antimicrobial microrobot (SLAM) swarm for enhanced biofilm elimination. Biomaterials 2022; 287:121610. [PMID: 35696784 PMCID: PMC9763052 DOI: 10.1016/j.biomaterials.2022.121610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/29/2022] [Indexed: 12/20/2022]
Abstract
Biofilm is a major cause of infections and infrastructure deterioration, largely due to molecular diffusion restrictions that hamper the antimicrobial activity of traditional antibiotics and disinfectants. Here, we present a self-locomotive, antimicrobial microrobot (SLAM) swarm that can penetrate, fracture, and detach biofilm and, in turn, nullify bacterial resistance to antibiotics. The SLAM is assembled by loading a controlled mass of manganese oxide nanosheets on diatoms with the polydopamine binder. In hydrogen peroxide solution, SLAMs produce oxygen bubbles that generate thrust to penetrate the rigid and dense Pseudomonas aeruginosa biofilm and self-assemble into a swarm that repeatedly surrounds, expands, and bursts oxygen bubbles. The resulting cavities continue to deform and fracture extracellular polymeric substances from microgrooved silicone substrates and wounded skin explants while decreasing the number of viable bacterial cells. Additionally, SLAM allows irrigating water or antibiotics to access the residual biofilm better, thus enhancing the synergistic efficacy in killing up to 99.9% of bacterial cells.
Collapse
Affiliation(s)
- Yu-Heng Deng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA
| | - Tomas Ricciardulli
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA
| | - Jungeun Won
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew A Wade
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
19
|
Chen L, Cao L, Zhan M, Li J, Wang D, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules 2022; 23:2827-2837. [PMID: 35694854 DOI: 10.1021/acs.biomac.2c00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, Paris 75006, France.,CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| |
Collapse
|
20
|
Pandey RP, Mukherjee R, Chang CM. Emerging Concern with Imminent Therapeutic Strategies for Treating Resistance in Biofilm. Antibiotics (Basel) 2022; 11:476. [PMID: 35453227 PMCID: PMC9032911 DOI: 10.3390/antibiotics11040476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Biofilm production by bacteria is presumed to be a survival strategy in natural environments. The production of biofilms is known to be influenced by a number of factors. This paper has precisely elaborated on the different factors that directly influence the formation of biofilm. Biofilm has serious consequences for human health, and a variety of infections linked to biofilm have emerged, rapidly increasing the statistics of antimicrobial resistance, which is a global threat. Additionally, to combat resistance in biofilm, various approaches have been developed. Surface modifications, physical removal, and the use of nanoparticles are the recent advances that have enabled drug discovery for treating various biofilm-associated infections. Progress in nanoparticle production has led to the development of a variety of biofilm-fighting strategies. We focus on the present and future therapeutic options that target the critical structural and functional characteristics of microbial biofilms, as well as drug tolerance mechanisms, such as the extracellular matrix, in this review.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India; (R.P.P.); (R.M.)
| | - Riya Mukherjee
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India; (R.P.P.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Road, Guishan District, Taoyuan 33302, Taiwan
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Road, Guishan District, Taoyuan 33302, Taiwan
| |
Collapse
|
21
|
Song Y, Sun Q, Luo J, Kong Y, Pan B, Zhao J, Wang Y, Yu C. Cationic and Anionic Antimicrobial Agents Co-Templated Mesostructured Silica Nanocomposites with a Spiky Nanotopology and Enhanced Biofilm Inhibition Performance. NANO-MICRO LETTERS 2022; 14:83. [PMID: 35348927 PMCID: PMC8964905 DOI: 10.1007/s40820-022-00826-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 05/13/2023]
Abstract
HIGHLIGHTS A ‘dual active templating’ strategy is firstly reported, using cationic and anionic bactericidal agents as co-templates for the preparation of antibacterial silica nanocomposite with spiky nanotopography. The spiky nanocomposite exhibited enhanced antibacterial and biofilm inhibition performance, compared to pure antimicrobial cationic agent templated smooth silica nanocomposite. ABSTRACT Silica-based materials are usually used as delivery systems for antibacterial applications. In rare cases, bactericidal cationic surfactant templated silica composites have been reported as antimicrobial agents. However, their antibacterial efficacy is limited due to limited control in content and structure. Herein, we report a “dual active templating” strategy in the design of nanostructured silica composites with intrinsic antibacterial performance. This strategy uses cationic and anionic structural directing agents as dual templates, both with active antibacterial property. The cationic-anionic dual active templating strategy further contributes to antibacterial nanocomposites with a spiky surface. With controllable release of dual active antibacterial agents, the spiky nanocomposite displays enhanced anti-microbial and anti-biofilm properties toward Staphylococcus epidermidis. These findings pave a new avenue toward the designed synthesis of novel antibacterial nanocomposites with improved performance for diverse antibacterial applications. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-022-00826-4.
Collapse
Affiliation(s)
- Yaping Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yueqi Kong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bolin Pan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Zhao
- Australia Centre for Water and Environmental Biotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
22
|
Pinsino A, Di Bernardo M. Immunosafe(r)-by-design nanoparticles: Molecular targets and cell signaling pathways in a next-generation model proxy for humans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:325-350. [PMID: 35534111 DOI: 10.1016/bs.apcsb.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotechnology research covers a wide field of studies pointing to design and shape complex matter in a scale between 1 and 100nm, with unique size-depending properties and applications. The value and potential of engineered nanoparticles in human diagnostics and therapies essentially relay on their safety and biocompatibility. Entering a cell, in fact, these particles take complex interactions with the surrounding biological environment, dramatically changing their own identity. The formation of a custom-made protein corona is the first signal of their interplay with the cell defensive mechanisms, and a major issue in their application in medicine. Preliminary in-depth studies in model organisms have been developed to assess immunological safety and competence in facing the host immune system and its defensive response. New affordable animal models are emerging in pilot nano-response and safety studies. Sea urchins, benthic marine Echinoderms, have a wide and very efficient immune system working with innate defense mechanisms and are widely used in immune studies. Nano-safety studies have been showing that the sea urchin Paracentrotus lividus displays an excellent sensing system and high defensive capability, joined to the availability of easily accessible immune cells. As in mammals, nanoparticle recognition and interaction activate specific signaling pathways, metabolic rewiring and homeostasis maintenance. In this chapter, we point to the value of planning new research and developing nano-immune studies using an easy nonmammalian next-generation model, able to unravel new specific response mechanisms to nanoparticles.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale (IFT), Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy.
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy
| |
Collapse
|
23
|
Rozenberg JM, Filkov GI, Trofimenko AV, Karpulevich EA, Parshin VD, Royuk VV, Sekacheva MI, Durymanov MO. Biomedical Applications of Non-Small Cell Lung Cancer Spheroids. Front Oncol 2021; 11:791069. [PMID: 34950592 PMCID: PMC8688758 DOI: 10.3389/fonc.2021.791069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Lung malignancies accounted for 11% of cancers worldwide in 2020 and remained the leading cause of cancer deaths. About 80% of lung cancers belong to non-small cell lung cancer (NSCLC), which is characterized by extremely high clonal and morphological heterogeneity of tumors and development of multidrug resistance. The improvement of current therapeutic strategies includes several directions. First, increasing knowledge in cancer biology results in better understanding of the mechanisms underlying malignant transformation, alterations in signal transduction, and crosstalk between cancer cells and the tumor microenvironment, including immune cells. In turn, it leads to the discovery of important molecular targets in cancer development, which might be affected pharmaceutically. The second direction focuses on the screening of novel drug candidates, synthetic or from natural sources. Finally, "personalization" of a therapeutic strategy enables maximal damage to the tumor of a patient. The personalization of treatment can be based on the drug screening performed using patient-derived tumor xenografts or in vitro patient-derived cell models. 3D multicellular cancer spheroids, generated from cancer cell lines or tumor-isolated cells, seem to be a helpful tool for the improvement of current NSCLC therapies. Spheroids are used as a tumor-mimicking in vitro model for screening of novel drugs, analysis of intercellular interactions, and oncogenic cell signaling. Moreover, several studies with tumor-derived spheroids suggest this model for the choice of "personalized" therapy. Here we aim to give an overview of the different applications of NSCLC spheroids and discuss the potential contribution of the spheroid model to the development of anticancer strategies.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.,Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia
| | - Gleb I Filkov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexander V Trofimenko
- Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Evgeny A Karpulevich
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir D Parshin
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valery V Royuk
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina I Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail O Durymanov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
24
|
Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H. Emerging Nano-Based Strategies Against Drug Resistance in Tumor Chemotherapy. Front Bioeng Biotechnol 2021; 9:798882. [PMID: 34950650 PMCID: PMC8688801 DOI: 10.3389/fbioe.2021.798882] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is the most significant causes of cancer chemotherapy failure. Various mechanisms of drug resistance include tumor heterogeneity, tumor microenvironment, changes at cellular levels, genetic factors, and other mechanisms. In recent years, more attention has been paid to tumor resistance mechanisms and countermeasures. Nanomedicine is an emerging treatment platform, focusing on alternative drug delivery and improved therapeutic effectiveness while reducing side effects on normal tissues. Here, we reviewed the principal forms of drug resistance and the new possibilities that nanomaterials offer for overcoming these therapeutic barriers. Novel nanomaterials based on tumor types are an excellent modality to equalize drug resistance that enables gain more rational and flexible drug selectivity for individual patient treatment. With the emergence of advanced designs and alternative drug delivery strategies with different nanomaterials, overcome of multidrug resistance shows promising and opens new horizons for cancer therapy. This review discussed different mechanisms of drug resistance and recent advances in nanotechnology-based therapeutic strategies to improve the sensitivity and effectiveness of chemotherapeutic drugs, aiming to show the advantages of nanomaterials in overcoming of drug resistance for tumor chemotherapy, which could accelerate the development of personalized medicine.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuqin Zhu
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Weiju Wang
- Department of Pathology, Qingyuan Maternal and Child Health Hospital, Qingyuan, China
| | - Gaoxiong Wang
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Sohail M, Sun Z, Li Y, Gu X, Xu H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Rev Anticancer Ther 2021; 21:1385-1398. [PMID: 34636282 DOI: 10.1080/14737140.2021.1991316] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION DOX exerts strong anticancer activity and is commonly used to treat different cancers, including bone sarcomas, soft tissues, bladder, ovary, stomach, thyroid, breast, acute lymphoblastic leukemia, Hodgkin lymphoma, lung cancer, and myeloblastic leukemia. However, the cumulative doses of DOX above 550mg/m2 cause irreversible cardiotoxicity and other severe adverse effects. In this context, concerning DOX, several patents have been published in the last two decades. This activity highlights various aspects of DOX, such as registered patent analysis, pharmacological action, toxicityminimization, formulation development such as those approved by FDA, under clinical trials, and newly developed nano-delivery systems. AREAS COVERED This review analyzes the different aspects of DOX-based chemotherapeutics and the development of drug delivery systems in theliterature published from 2000 to early 2020. EXPERT OPINION DOX-based chemotherapy is still few steps away from being "perfect and safe" therapy. Certain severe systemic side effects are associated with DOX therapy. It is expected that, in the near future, DOX therapy can be much effective by selecting an ideal nanocarrier system, DOX conjugates, proper structural modifications, DOX-immunotherapy, and combination therapy. The advanced formulationsof DOX from the registered patents and recent research articles need clinical trials to bring safe treatment for cancer patients.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Xuejing Gu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| |
Collapse
|
26
|
García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021; 177:113953. [PMID: 34474094 DOI: 10.1016/j.addr.2021.113953] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Over the last years, respiratory diseases represent a clinical concern, being included among the leading causes of death in the world due to the lack of effective lung therapies, mainly ascribed to the pulmonary barriers affecting the delivery of drugs to the lungs. In this way, nanomedicine has arisen as a promising approach to overcome the limitations of current therapies for pulmonary diseases. The use of nanoparticles allows enhancing drug bioavailability at the target site while minimizing undesired side effects. Despite different approaches have been developed for pulmonary delivery of drugs, including the use of polymers, lipid-based nanoparticles, and inorganic nanoparticles, more efforts are required to achieve effective pulmonary drug delivery. This review provides an overview of the clinical challenges in main lung diseases, as well as highlighted the role of nanomedicine in achieving efficient pulmonary drug delivery. Drug delivery into the lungs is a complex process limited by the anatomical, physiological and immunological barriers of the respiratory system. We discuss how nanomedicine can be useful to overcome these pulmonary barriers and give insights for the rational design of future nanoparticles for enhancing lung treatments. We also attempt herein to display more in detail the potential of mesoporous silica nanoparticles (MSNs) as promising nanocarrier for pulmonary drug delivery by providing a comprehensive overview of their application in lung delivery to date while discussing the use of these particles for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
27
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
28
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
29
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
30
|
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19543-19571. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular organelles are the cornerstones of cells, and destroying them will cause cell dysfunction and even death. Therefore, realizing precise organelle targeting of photosensitizers (PSs) can help reduce PS dosage, minimize side effects, avoid drug resistance, and enhance therapeutic efficacy in photodynamic therapy (PDT). Organelle-targeted PSs provide a new paradigm for the construction of the next generation of PSs and may provide implementable strategies for future precision medicine. In this Review, the recent targeting strategies of different organelles and the corresponding design principles of molecular and nanostructured PSs are summarized and discussed. The current challenges and opportunities in organelle-targeted PDT are also presented.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
31
|
Manchanda R, Fernandez-Fernandez A, Paluri SLA, Smith BR. Nanomaterials to target immunity. ADVANCES IN PHARMACOLOGY 2021; 91:293-335. [PMID: 34099112 DOI: 10.1016/bs.apha.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Critical advances have recently been made in the field of immunotherapy, contributing to an improved understanding of how to harness and balance the power of immune responses in the treatment of diseases such as cancer, cardiovascular disease, infectious diseases, and autoimmune diseases. Combining nanomedicine with immunotherapy provides the opportunity for customization, rational design, and targeting to minimize side effects and maximize efficacy. This review highlights current developments in the design and utilization of nano-based immunotherapy systems, including how rationally-designed nanosystems can target and modify immune cells to modulate immune responses in a therapeutic manner. We discuss the following topics: targeted immuno-engineered nanoformulations, commercial formulations, clinical applicability, challenges associated with current approaches, and future directions.
Collapse
Affiliation(s)
- Romila Manchanda
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Alicia Fernandez-Fernandez
- Dr. Pallavi Patel College of Health Care Sciences, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sesha Lakshmi Arathi Paluri
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
32
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
34
|
Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E137. [PMID: 33435597 PMCID: PMC7826792 DOI: 10.3390/nano11010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases hold third place in the top 10 causes of death worldwide and were responsible for more than 6.7 million deaths in 2016. Nanomedicine is a multidisciplinary field which is based on the application of nanotechnology for medical purposes and can be defined as the use of nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases, including infectious diseases. One of the most used nanomaterials in nanomedicine are nanoparticles, particles with a nano-scale size that show highly tunable physical and optical properties, and the capacity to a wide library of compounds. This manuscript is intended to be a comprehensive review of the available recent literature on nanoparticles used for the prevention and treatment of human infectious diseases caused by different viruses, and bacteria from a clinical point of view by basing on original articles which talk about what has been made to date and excluding commercial products, but also by highlighting what has not been still made and some clinical concepts that must be considered for futures nanoparticles-based technologies applications.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
35
|
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020; 22:ijms22010385. [PMID: 33396561 PMCID: PMC7794803 DOI: 10.3390/ijms22010385] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
The field of nanotechnology has grown over the last two decades and made the transition from the benchtop to applied technologies. Nanoscale-sized particles, or nanoparticles, have emerged as promising tools with broad applications in drug delivery, diagnostics, cosmetics and several other biological and non-biological areas. These advances lead to questions about nanoparticle safety. Despite considerable efforts to understand the toxicity and safety of these nanoparticles, many of these questions are not yet fully answered. Nevertheless, these efforts have identified several approaches to minimize and prevent nanoparticle toxicity to promote safer nanotechnology. This review summarizes our current knowledge on nanoparticles, their toxic effects, their interactions with mammalian cells and finally current approaches to minimizing their toxicity.
Collapse
Affiliation(s)
- Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Correspondence: ; Tel.: +1-706-542-6552; Fax: +70-6542-5358
| | - Robert D. Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Nakhla S, Rahawy A, Salam MAE, Shalaby T, Zaghloul M, El-Abd E. Radiosensitizing and Phototherapeutic Effects of AuNPs are Mediated by Differential Noxa and Bim Gene Expression in MCF-7 Breast Cancer Cell Line. IEEE Trans Nanobioscience 2020; 20:20-27. [PMID: 33017288 DOI: 10.1109/tnb.2020.3028562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To compare the apoptotic efficiency of AuNPs, ionizing and non-ionizing radiotherapy, phototherapy, and AuNPs-ionizing-radiotherapy), MCF-7 cells were used as a model for luminal B subtypes of breast carcinoma. A mixture of AuNPs [66% of Au-nanospheres (AuNSs) and 34% of Au-nanorods (AuNRs)] was synthesized and characterized by optical spectroscopy, zeta potential, and transmission electron microscopy (TEM). MCF-7 were divided into six groups (triplicates); after each treatment, cell viability was tested by MTT assay and relative gene expression levels of Bim and Noxa proapoptotic markers were assayed by qRT-PCR. A dose-dependent significant reduction in cell viability of MCF-7 was detected by all examined treatment protocols. Lower viability detected at extended exposure (48 hours) to AuNPs ( [Formula: see text]/ml) was mediated by the upregulation of Noxa gene expression. AuNS and AuNR in vitro PTTs were mediated by differential expression of Bim and Noxa while AuNPs mixture had a combined effect on both Bim and Noxa. Cellular recovery was observed two days-post x-rays irradiation at does < 3 Gy. AuNPs showed dose enhancement factor (DEF) > 12 indicating a high radiosensitizing effect that was partially mediated by Noxa. In conclusion, AuNPs combined therapies exert better anti-proliferative effects via differential regulation of Noxa and Bim gene expressions.
Collapse
|
37
|
Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, Pajuste K, Rucins M, Yamani NE, Longhin EM, Sobolev A, Freixanet M, Puntes V, Plotniece A, Dusinska M, Cimpan MR, Gabelova A, Smolkova B. Epigenetics in Breast Cancer Therapy-New Strategies and Future Nanomedicine Perspectives. Cancers (Basel) 2020; 12:E3622. [PMID: 33287297 PMCID: PMC7761669 DOI: 10.3390/cancers12123622] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been recognized as a critical factor contributing to the development of resistance against standard chemotherapy and to breast cancer progression via epithelial-to-mesenchymal transition. Although the efficacy of the first-generation epigenetic drugs (epi-drugs) in solid tumor management has been disappointing, there is an increasing body of evidence showing that epigenome modulation, in synergy with other therapeutic approaches, could play an important role in cancer treatment, reversing acquired therapy resistance. However, the epigenetic therapy of solid malignancies is not straightforward. The emergence of nanotechnologies applied to medicine has brought new opportunities to advance the targeted delivery of epi-drugs while improving their stability and solubility, and minimizing off-target effects. Furthermore, the omics technologies, as powerful molecular epidemiology screening tools, enable new diagnostic and prognostic epigenetic biomarker identification, allowing for patient stratification and tailored management. In combination with new-generation epi-drugs, nanomedicine can help to overcome low therapeutic efficacy in treatment-resistant tumors. This review provides an overview of ongoing clinical trials focusing on combination therapies employing epi-drugs for breast cancer treatment and summarizes the latest nano-based targeted delivery approaches for epi-drugs. Moreover, it highlights the current limitations and obstacles associated with applying these experimental strategies in the clinics.
Collapse
Affiliation(s)
- Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Ivan Rios-Mondragon
- Department of Clinical Dentistry, University of Bergen, Aarstadveien 19, 5009 Bergen, Norway; (I.R.-M.); (M.R.C.)
| | - Eleftherios Pilalis
- e-NIOS Applications Private Company, Alexandrou Pantou 25, 17671 Kallithea, Greece; (E.P.); (A.C.)
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aristotelis Chatziioannou
- e-NIOS Applications Private Company, Alexandrou Pantou 25, 17671 Kallithea, Greece; (E.P.); (A.C.)
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Muriel Freixanet
- Vall d Hebron, Institut de Recerca (VHIR), 08035 Barcelona, Spain; (M.F.); (V.P.)
| | - Victor Puntes
- Vall d Hebron, Institut de Recerca (VHIR), 08035 Barcelona, Spain; (M.F.); (V.P.)
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, University of Bergen, Aarstadveien 19, 5009 Bergen, Norway; (I.R.-M.); (M.R.C.)
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| |
Collapse
|
38
|
Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci Rep 2020; 39:220729. [PMID: 31652460 PMCID: PMC6822533 DOI: 10.1042/bsr20193220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules, thereby activating CD8+ T cells, contributing to tumor elimination through a mechanism known as antigen cross-presentation. A variety of factors such as maturation state of DCs, co-stimulatory signals, T-cell microenvironment, antigen internalization routes and adjuvants regulate the process of DC-mediated antigen cross-presentation. Recently, the development of successful cancer immunotherapies may be attributed to the ability of DCs to cross-present tumor antigens. In this review article, we focus on the underlying mechanism of antigen cross-presentation and ways to improve antigen cross-presentation in different DC subsets. We have critically summarized the recent developments in the generation of novel nanovaccines for robust CD8+ T-cell response in cancer. In this context, we have reviewed nanocarriers that have been used for cancer immunotherapeutics based on antigen cross-presentation mechanism. Additionally, we have also expressed our views on the future applications of this mechanism in curing cancer.
Collapse
|
39
|
Sadeghi S, Lee WK, Kong SN, Shetty A, Drum CL. Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacol Res 2020; 158:104685. [DOI: 10.1016/j.phrs.2020.104685] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/20/2023]
|
40
|
Riediker M. Nano-safety research lessons for dealing with aerosol transmissions of COVID-19. Nanotoxicology 2020; 14:866-868. [PMID: 32594814 DOI: 10.1080/17435390.2020.1786185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland
| |
Collapse
|
41
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
42
|
Shi C, Li Y, Gu N. Iron-Based Nanozymes in Disease Diagnosis and Treatment. Chembiochem 2020; 21:2722-2732. [PMID: 32315111 DOI: 10.1002/cbic.202000094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/21/2020] [Indexed: 12/15/2022]
Abstract
Iron-based nanozymes are currently one of the few clinical inorganic nanoparticles for disease diagnosis and treatment. Overcoming the shortcomings of natural enzymes, such as easy inactivation and low yield, combined with their special nanometer properties and magnetic functions, iron-based nanozymes have broad prospects in biomedicine. This minireview summarizes their preparation, biological activity, catalytic mechanism, and applications in diagnosis and treatment of diseases. Finally, challenges to their future development and the trends of iron-based nanozymes are discussed. The purpose of this minireview is to better understand and reasonably speculate on the rational design of iron-based nanozymes as an increasingly important new paradigm for diagnostics.
Collapse
Affiliation(s)
- Chu Shi
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yan Li
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
43
|
Uzair B, Akhtar N, Sajjad S, Bano A, Fasim F, Zafar N, Leghari SAK. Targeting microbial biofilms: by Arctium lappa l. synthesised biocompatible CeO 2-NPs encapsulated in nano-chitosan. IET Nanobiotechnol 2020; 14:217-223. [PMID: 32338630 PMCID: PMC8675978 DOI: 10.1049/iet-nbt.2019.0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
This study is planned to synthesise new biocompatible, nano antimicrobial formulation against biofilm producing strains. Aqueous root extract of Arctium lappa l. was used to synthesise ceria nanoparticles (CeO2-NPs). The synthesised nanoparticles were encapsulated with nano-chitosan by sol-gel method and characterised using standard techniques. Gas chromatography-mass spectrometer of Arctium lappa l. revealed the presence of ethanol, acetone, 1- propanol, 2-methylethane, 1,1-di-ethoxy, 1-Butanol, and oleic acid acted as reducing and surface stabilising agents for tailoring morphology of CeO2-NPs. Erythrocyte integrity after treatment with synthesised nanomaterials was evaluated by spectrophotometer measurement of haemoglobin release having biocompatibility. Scanning electron microscopy revealed the formation of mono dispersed beads shaped particles with mean particle size of 26.2 nm. X-ray diffractometry revealed cubic crystalline structure having size of 28.0 nm. After encapsulation by nano-chitosan, the size of CeO2-NPs enhances to 48.8 nm making average coverage of about 22.6 nm. The synthesised nanomaterials were found effective to disrupt biofilm of S. aureus and P. aeruginosa. Interestingly, encapsulated CeO2-NPs revealed powerful antibacterial and biofilm disruption activity examined by fluorescent live/dead staining using confocal laser scanning microscopy. The superior antibacterial activities exposed by encapsulated CeO2-NPs lead to the conclusion that they could be useful for controlling biofilm producing multidrug resistance pathogens.
Collapse
Affiliation(s)
- Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan.
| | - Nousheen Akhtar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Shamaila Sajjad
- Department of Physics, International Islamic University, Islamabad, Pakistan
| | - Asma Bano
- Department of Microbiology, University of Haripur, Haripur, Pakistan
| | - Fehmida Fasim
- Discipline of Biomedical Science, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Naheed Zafar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | | |
Collapse
|
44
|
Chen S, Xing C, Huang D, Zhou C, Ding B, Guo Z, Peng Z, Wang D, Zhu X, Liu S, Cai Z, Wu J, Zhao J, Wu Z, Zhang Y, Wei C, Yan Q, Wang H, Fan D, Liu L, Zhang H, Cao Y. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. SCIENCE ADVANCES 2020; 6:eaay6825. [PMID: 32284997 PMCID: PMC7141822 DOI: 10.1126/sciadv.aay6825] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/14/2020] [Indexed: 05/05/2023]
Abstract
Two-dimensional nanomaterial-based photothermal therapy (PTT) is currently under intensive investigation as a promising approach toward curative cancer treatment. However, high toxicity, moderate efficacy, and low uniformity in shape remain critical unresolved issues that hamper their clinical application. Thus, there is an urgent need for developing versatile nanomaterials to meet clinical expectations. To achieve this goal, we developed a stable, highly uniform in size, and nontoxic nanomaterials made of tellurium-selenium (TeSe)-based lateral heterojunction. Systemic delivery of TeSe nanoparticles in mice showed highly specific accumulation in tumors relative to other healthy tissues. Upon exposure to light, TeSe nanoparticles nearly completely eradicated lung cancer and hepatocellular carcinoma in preclinical models. Consistent with tumor suppression, PTT altered the tumor microenvironment and induced immense cancer cell apoptosis. Together, our findings demonstrate an exciting and promising PTT-based approach for cancer eradication.
Collapse
Affiliation(s)
- Shiyou Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Chenyang Xing
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Center for Stretchable Electronics and Nanoscale Systems, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Dazhou Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chuanhong Zhou
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bo Ding
- Department of Respiratory Disease, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Ziheng Guo
- Department Pancreatic Surgery, West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nanoscale Systems, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Dou Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P.R. China
| | - Shuzhen Liu
- Weifang People’s Hospital, Weifang 261041, P.R. China
| | - Zhen Cai
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen 518000, Guangdong Province, P.R. China
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jiaqi Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Zongze Wu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Yuhua Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Chaoying Wei
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Qiaoting Yan
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Hongzhong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Dianyuan Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
- Corresponding author. (Y.C.); (H.Z.); (L.L.)
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Corresponding author. (Y.C.); (H.Z.); (L.L.)
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Corresponding author. (Y.C.); (H.Z.); (L.L.)
| |
Collapse
|
45
|
Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020; 321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy of orally administered drugs is often restricted by their inherent limited oral bioavailability. Low water solubility, limited permeability through the intestinal barrier, instability in harsh environment of the gastrointestinal (GI) tract and being substrate of the efflux pumps and the cytochrome P450 (CYP) can impair oral drug bioavailability resulting in erratic and variable plasma drug profile. As more drugs with low membrane permeability are developed, new interest is growing to enhance their intestinal permeability and bioavailability. A wide variety of nanosystems have been developed to improve drug transport and absorption. Sufficient evidence exists to suggest that nanoparticles are able to increase the transepithelial transport of drug molecules. However, key questions remained unanswered. What types of nanoparticles are more efficient? What are preclinical (or clinical) achievements of each type of nanoformulation in terms of pharmacokinetic (PK) parameters? Addressing this issue in this paper, we have reviewed the current literature regarding permeability enhancement, permeability assessment methods and changes in PK parameters following administration of various nanoformulations. Although permeability enhancement by various nanoformulations holds great promise for oral drug delivery, many challenges still need to be addressed before development of more clinically successful nanoproducts.
Collapse
Affiliation(s)
- Delaram Babadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Zhang P, Guo H, Liu C. Fabrication of Carboxylmethyl Chitosan Nanocarrier via Self-Assembly for Efficient Delivery of Phenylethyl Resorcinol in B16 Cells. Polymers (Basel) 2020; 12:E408. [PMID: 32054046 PMCID: PMC7077707 DOI: 10.3390/polym12020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Micro-molecular drugs have special advantages to cope with challenging diseases, however their structure, physical and chemical properties, stability, and pharmacodynamics have more requirements for the way they are delivered into the body. Carrier-based drug delivery systems can circumvent many limited factors of drug delivery and increase their bioavailability. In this context, stable drug nanocarriers of alkaline amino acids (arginine, Arg) modified conjugated linoleic acid-carboxymethyl chitosan (CLA-CMCS) conjugate were developed, which could generate supramolecular micelles to effectively encapsulate the tyrosinase inhibitor phenylethyl resorcinol (PR). The resulting CCA-NPs were spherical nanoparticles with a mean size around 175 nm. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and cellular uptake investigation demonstrated that the CCA-NPs were non-cytotoxic and had excellent cell transport ability. In addition, these CCA-NPs were able to effectively deliver PR and inhibited melanin formation to reduce pigmentation by enhancing cellular uptake. In conclusion, our research indicated that nanocarriers based on self-assembly amphiphilic polymers constituted a promising and effective drug delivery system in hyperpigmentation targeting.
Collapse
Affiliation(s)
- Pei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Life Science, Luoyang Normal University, Luoyang 471022, China;
| | - Huixia Guo
- Department of Life Science, Luoyang Normal University, Luoyang 471022, China;
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
47
|
Guggenheim EJ, Rappoport JZ, Lynch I. Mechanisms for cellular uptake of nanosized clinical MRI contrast agents. Nanotoxicology 2020; 14:504-532. [PMID: 32037933 DOI: 10.1080/17435390.2019.1698779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered Nanomaterials (NMs), such as Superparamagnetic Iron Oxide Nanoparticles (SPIONs), offer significant benefits in a wide range of applications, including cancer diagnostic and therapeutic strategies. However, the use of NMs in biomedicine raises safety concerns due to lack of knowledge on possible biological interactions and effects. The initial basis for using SPIONs as biomedical MRI contrast enhancement agents was the idea that they are selectively taken up by macrophage cells, and not by the surrounding cancer cells. To investigate this claim, we analyzed the uptake of SPIONs into well-established cancer cell models and benchmarked this against a common macrophage cell model. In combination with fluorescent labeling of compartments and siRNA silencing of various proteins involved in common endocytic pathways, the mechanisms of internalization of SPIONs in these cell types has been ascertained utilizing reflectance confocal microscopy. Caveolar mediated endocytosis and macropinocytosis are both implicated in SPION uptake into cancer cells, whereas in macrophage cells, a clathrin-dependant route appears to predominate. Colocalization studies confirmed the eventual fate of SPIONs as accumulation in the degradative lysosomes. Dissolution of the SPIONs within the lysosomal environment has also been determined, allowing a fuller understanding of the cellular interactions, uptake, trafficking and effects of SPIONs within a variety of cancer cells and macrophages. Overall, the behavior of SPIONS in non-phagocytotic cell lines is broadly similar to that in the specialist macrophage cells, although some differences in the uptake patterns are apparent.
Collapse
Affiliation(s)
- Emily J Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Core Technologies for Life Sciences, Boston College, MA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
48
|
Wang Z, Zhi K, Ding Z, Sun Y, Li S, Li M, Pu K, Zou J. Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force. Semin Cancer Biol 2020; 69:77-90. [PMID: 31962173 DOI: 10.1016/j.semcancer.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
Cancer has thwarted as a major health problem affecting the global population. With an alarming increase in the patient population suffering from diverse varieties of cancers, the global demographic data predicts sharp escalation in the number of cancer patients. This can be expected to reach 420 million cases by 2025. Among the diverse types of cancers, the most frequently diagnosed cancers are the breast, colorectal, prostate and lung cancer. From years, conventional treatment approaches like surgery, chemotherapy and radiation therapy have been practiced. In the past few years, increasing research on molecular level diagnosis and treatment of cancers have significantly changed the realm of cancer treatment. Lately, uses of advanced chemotherapy and immunotherapy like treatments have gained significant progress in the cancer therapy, but these approaches have several limitations on their safety and toxicity. This has generated lot of momentum for the evolution of new drug delivery approaches for the effective delivery of anticancer therapeutics, which may improve the pharmacokinetic and pharmacodynamic effect of the drugs along with significant reduction in the side effects. In this regard, the protein-based nano-medicines have gained wider attention in the management of cancer. Proteins are organic macromolecules essential, for life and have quite well explored in developing the nano-carriers. Furthermore, it provides passive or active tumour cell targeted delivery, by using protein based nanovesicles or virus like structures, antibody drug conjugates, viral particles, etc. Moreover, by utilizing various formulation strategies, both the animal and plant derived proteins can be converted to produce self-assembled virus like nano-metric structures with high efficiency in targeting the metastatic cancer cells. Therefore, the present review extensively discusses the applications of protein-based nano-medicine with special emphasis on intracellular delivery/drug targeting ability for anticancer drugs.
Collapse
Affiliation(s)
- Zhenchang Wang
- Department of Spleen, Stomach and Liver Diseases, Guangxi International Zhuang Medical Hospital, Guangxi, Nanning, 530201, China
| | - Kangkang Zhi
- Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhongyang Ding
- General Surgery, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, Nanjing, 214023, China
| | - Yi Sun
- Oncology Department, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Jiamusi University, Heilongjiang, Jiamu, 154003, China
| | - Manyuan Li
- Laboratory Department, Jinzhou Maternal and Infant Hospital, Liaoning, Jinzhou, 121000, China
| | - Kefeng Pu
- Suzhou Institute of Nanotechnology and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
49
|
Sergeeva TY, Mukhitova RK, Bakhtiozina LR, Nizameev IR, Kadirov MK, Sapunova AS, Voloshina AD, Ziganshina AY, Antipin IS. Doxorubicin delivery by polymer nanocarrier based on N-methylglucamine resorcinarene. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1714620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tatiana Yu. Sergeeva
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Rezeda K. Mukhitova
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Leysan R. Bakhtiozina
- Department of Organic Chemistry, Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| | - Irek R. Nizameev
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named after A.N. Tupolev - KAI, Kazan, Russia
| | - Marsil K. Kadirov
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Anastasia S. Sapunova
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Alexandra D. Voloshina
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Albina Y. Ziganshina
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Igor S. Antipin
- Department of Organic Chemistry, Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| |
Collapse
|
50
|
Mahaling B, Verma M, Mishra G, Chaudhuri S, Dutta D, Sivakumar S. Fate of GdF 3 nanoparticles-loaded PEGylated carbon capsules inside mice model: a step toward clinical application. Nanotoxicology 2020; 14:577-594. [PMID: 31928284 DOI: 10.1080/17435390.2019.1708494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The successful translation of nanostructure-based bioimaging and/or drug delivery system needs extensive in vitro and in vivo studies on biocompatibility, biodistribution, clearance, and toxicity for its diagnostic applications. Herein, we have investigated the in vitro cyto-hemocompatibility, in vivo biodistribution, clearance, and toxicity in mice after systemic administration of GdF3 nanoparticles loaded PEGylated mesoporous carbon capsule (GdF3-PMCC)-based theranostic system. In vitro cyto-hemocompatibility study showed a very good biocompatibility up to concentration of 500 µg/ml. Biodistribution studies carried out from 1 h to 8 days showed that GdF3-PMCC was found in major organs, such as liver, kidney, spleen, and muscle till 4th day and it was negligible in any tissue after 8th day. The clearance study was carried out for a period of 8 days and it was observed that the urinary system is the main route of excretion of GdF3-PMCC. The tissue toxicity study was done for 15 days and histopathological analysis indicated that the GdF3-PMCC based theranostic system does not have any adverse effect in tissues. Thus, PMCCs are nontoxic and can be applied as theranostic agents in contrast to the other carbon-based systems (PEGylated carbon nanotubes and PEGylated graphene oxide) which showed significant toxicity.
Collapse
Affiliation(s)
- Binapani Mahaling
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Madhu Verma
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Gargi Mishra
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Material Science Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|