1
|
Huang L, Wei M, Li H, Yu M, Wan L, Zhao R, Gao Q, Sun L, Hou X, Mo Y, Huang Q, Zhen L, Yang X, Li J, Wang N, Zhang C, Jin H, Zhou L, Xu Y, Lin H, Zhang X, Li B, Han Y, Yuan J, Zhang R, Wu F, Zhong H, Wei C. GP73-dependent regulation of exosome biogenesis promotes colorectal cancer liver metastasis. Mol Cancer 2025; 24:151. [PMID: 40414849 DOI: 10.1186/s12943-025-02350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Colorectal cancer (CRC) liver metastasis is the main cause of cancer-related mortality. How liver influences intercellular communication to support CRC liver metastasis remains unknown. Herein, we link GP73, whose chronic upregulation in hepatocytes triggers non-obese metabolic-dysfunction associated steatotic liver disease (MASLD) in mice, with exosome biogenesis and CRC liver metastasis. Mice with high liver GP73 expression exhibited increased CRC liver metastasis in an exosome-dependent manner. GP73 modulated the cholesterol contents in endosomal compartments to promote exosome production. Quantitative proteomics revealed GP73 reshaped hepatocyte exosomal proteome and produced NAV2-rich exosomes. Clinically, serum GP73 levels positively correlated with exosomal NAV2 levels in CRC patients with liver metastasis. Knockdown of liver NAV2 suppressed enhanced CRC liver metastasis in GP73-induced non-obese mice, and GP73 blockade mitigated the increased CRC liver metastasis in obese mice fed by high-fat diet or high-fructose diet. Our findings suggest GP73 blockade as a potential therapeutic strategy for mitigating CRC liver metastasis.
Collapse
Affiliation(s)
- Linfei Huang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Meng Wei
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Huilong Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Mingxin Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, State Key Laboratory of Digestive Health, Beijing Key Laboratory of Early Gastrointestinal Cancer Medicine and Medical Devices, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Luming Wan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Ruzhou Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Qi Gao
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Lijuan Sun
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Xufeng Hou
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Yunhai Mo
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Qing Huang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Lan Zhen
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Xiaopan Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Jingfei Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Nan Wang
- Department of Radiotherapy, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, Shanxi, 046000, China
| | - Chundong Zhang
- Department of Surgical Oncology and Central Laboratory, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning, 110032, China
| | - Haoran Jin
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China
| | - Li Zhou
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Yixin Xu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Haotian Lin
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Xuhui Zhang
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Boan Li
- Clinical Laboratory, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, No. 100 Xisihuan Middle Road, Beijing, 100039, China.
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan South Road, Chaoyang District, Beijing, 100021, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Capital Center for Children's Health, Capital Medical University, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China.
| | - Feixiang Wu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China.
| | - Hui Zhong
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China.
| | - Congwen Wei
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
2
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
3
|
Ronzoni L, Pelusi S, Moretti V, Malvestiti F, Eidgah Torghabehei H, Jamialahmadi O, Rondena J, Bianco C, Periti G, Filippo MRD, Romeo S, Prati D, Valenti L. Diagnostic Uptake of Targeted Sequencing in Adults With Steatotic Liver Disease and a Suspected Genetic Contribution. Liver Int 2025; 45:e70010. [PMID: 39945383 PMCID: PMC11822878 DOI: 10.1111/liv.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND AND AIMS In patients with steatotic liver diseases (SLD), genetic factors may account for severe liver involvement despite mild or absence of triggering factors or a strong family history. Aim of this study was to examine the diagnostic uptake of targeted sequencing (TS), covering both coding and non-coding regions, of a broad panel of 82 liver and lipid metabolism genes in patients with unexplained SLD. METHODS We enrolled 49 adult patients with SLD and a suspected genetic contribution. Genetic variants were detected through a customised TS panel, whereas the contribution of common genetic variation to the individual susceptibility to SLD was captured by a polygenic risk score (SLD-PRS). RESULTS A diagnosis of rare Mendelian disorder was established in 11 patients (22%), independently of age or family history. Rare variants possibly contributing to clinical phenotype were detected in additional 29 patients (59%). Increased SLD-PRS values were detected in 17 patients (35%), enabling an increase in diagnostic uptake of 24%, especially in those without a strong family history (p = 0.03). Genetic diagnosis allowed refinement of clinical management in 23 (47%) patients. CONCLUSIONS The diagnostic uptake of TS was 22% for Mendelian disorder and 59% for possible contribution to clinical phenotype in selected adult patients with SLD. Evaluation of common variants, as captured by SLD-PRS, yields complementary information increasing the overall utility of the genetic examination.
Collapse
Grants
- 777377 Innovative Medicines Initiative 2 joint undertaking of European Union's Horizon 2020 research and innovation program and EFPIA European Union (EU) Program Horizon 2020 for the project LITMUS
- Gilead Sciences Inc.
- 101016726-REVEAL The European Union, H2020-ICT-2018-20/H2020-ICT-2020-2 program "Photonics"
- Italian ministry of Research (MUR) PNRR - M4 - C2 "National Center for Gene Therapy and Drugs based on RNA Technology" CN3, Spoke 4
- 101096312 The European Union, HORIZON-MISS-2021-CANCER-02-03 program "Genial"
- RF-2016-02364358 The Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016
- Italian ministry of Research (MUR) PRIN 2022
- PNRR-MAD-2022-12375656 The Italian Ministry of Health, Ricerca Finalizzata PNRR 2022
- RF-2021-12373889 The Italian Ministry of Health, Ricerca Finalizzata 2021
- PR-0361 Fondazione Patrimonio Ca' Granda, "Liver BIBLE"
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Ricerca Corrente
- Innovative Medicines Initiative 2 joint undertaking of European Union’s Horizon 2020 research and innovation program and EFPIA European Union (EU) Program Horizon 2020 for the project LITMUS
- The European Union, H2020‐ICT‐2018‐20/H2020‐ICT‐2020‐2 program “Photonics”
- Italian ministry of Research (MUR) PNRR ‐ M4 ‐ C2 “National Center for Gene Therapy and Drugs based on RNA Technology” CN3, Spoke 4
- The European Union, HORIZON‐MISS‐2021‐CANCER‐02‐03 program “Genial”
- The Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016
- Italian ministry of Research (MUR) PRIN 2022
- The Italian Ministry of Health, Ricerca Finalizzata PNRR 2022
- The Italian Ministry of Health, Ricerca Finalizzata 2021
- Fondazione Patrimonio Ca’ Granda, “Liver BIBLE”
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Ricerca Corrente
Collapse
Affiliation(s)
- Luisa Ronzoni
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Serena Pelusi
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Vittoria Moretti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Francesco Malvestiti
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| | - Hadi Eidgah Torghabehei
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Academy, Wallenberg LaboratoryUniversity of GothenburgGothenburgSweden
| | - Jessica Rondena
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Cristiana Bianco
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Giulia Periti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Maria Rosaria De Filippo
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Academy, Wallenberg LaboratoryUniversity of GothenburgGothenburgSweden
- Department of CardiologySahlgrenska University HospitalGothenburgSweden
- Clinical Nutrition Unit, Department of Medical and Surgical SciencesUniversity Magna GraeciaCatanzaroItaly
| | - Daniele Prati
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Luca Valenti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| |
Collapse
|
4
|
Rayapati D, McGlynn KA, Groopman JD, Kim AK. Environmental exposures and the risk of hepatocellular carcinoma. Hepatol Commun 2025; 9:e0627. [PMID: 39813595 PMCID: PMC11737496 DOI: 10.1097/hc9.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
The global epidemiology of HCC is shifting due to changes in both established and emerging risk factors. This transformation is marked by an emerging prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes, alongside traditional risks such as viral hepatitis (HBV and HCV), and exposure to chemical agents like aflatoxin, alcohol, tobacco, and air pollution. This review examines how environmental exposures and evolving liver pathology, exacerbated by lifestyle and metabolic conditions, are contributing to the rising worldwide incidence of HCC. Effective prevention strategies must not only address traditional risk factors through vaccination and therapeutic measures but also confront metabolic and socioeconomic disparities through comprehensive public health efforts. As the burden of liver cancer continues to grow, particularly in resource-limited settings, an expansive and inclusive approach is vital for mitigating its impact across diverse populations.
Collapse
Affiliation(s)
- Divya Rayapati
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John D. Groopman
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Amy K. Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Njei B, Mezzacappa C, John BV, Serper M, Kaplan DE, Taddei TH, Mahmud N. Mortality, Hepatic Decompensation, and Cardiovascular Outcomes in Lean vs. Non-lean MASLD Cirrhosis: A Veterans Affairs Cohort Study. Dig Dis Sci 2025; 70:802-813. [PMID: 39779587 PMCID: PMC11839701 DOI: 10.1007/s10620-024-08764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) has a global prevalence of 25%. Studies on incident liver and cardiovascular outcomes in lean (Body mass index: BMI < 25 kg/m2, or < 23 kg/m2 for Asians) vs. non-lean individuals with MASLD have reported mixed results. We aimed to compare incident clinical outcomes and mortality between lean and non-lean individuals with compensated MASLD cirrhosis in a large national cohort. METHODS This was a retrospective cohort study of patients with newly diagnosed compensated MASLD cirrhosis in the Veterans Health Administration between 01/2008 and 05/2021. The primary outcome was incident hepatic decompensation, and secondary outcomes were incident major adverse cardiovascular events (MACE) and all-cause mortality. Multivariable Cox proportional hazard models were used to assess association. Fine and Gray competing risk regression was used where applicable. RESULTS The study included 15155 patients with MASLD cirrhosis: 1,597 lean and 13558 non-lean patients. Included patients were mostly male (95%), median age was 67 years, and 72.8% were non-Hispanic white. At baseline, the prevalence of diabetes was lower in lean vs. non-lean individuals (46.7 vs. 73.9%, p < 0.001). In multivariable models, lean status was associated with a 64% increased risk of all-cause mortality (aHR = 1.64) but decreased risk of hepatic decompensation (aSHR = 0.67). Lean individuals experienced significantly higher rates of cardiovascular-related mortality (aHR = 1.40). CONCLUSION Lean MASLD patients with compensated cirrhosis had a higher mortality risk but a lower risk of hepatic decompensation than non-lean patients. Despite having a better baseline cardiometabolic profile and similar rates of MACE, lean individuals with MASLD cirrhosis have a higher risk of cardiovascular mortality.
Collapse
Affiliation(s)
- Basile Njei
- Section of Digestive Diseases, Yale University School of Medicine/VA Connecticut Healthcare System, New Haven, CT, USA
| | - Catherine Mezzacappa
- Section of Digestive Diseases, Yale University School of Medicine/VA Connecticut Healthcare System, New Haven, CT, USA
| | - Binu V John
- University of Miami and Miami VA Health System, Miami, FL, USA
| | | | - David E Kaplan
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar H Taddei
- Section of Digestive Diseases, Yale University School of Medicine/VA Connecticut Healthcare System, New Haven, CT, USA
| | - Nadim Mahmud
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
You Y, Pei X, Jiang W, Zeng Q, Bai L, Zhou T, Lv X, Tang H, Wu D. Non-obese non-alcoholic fatty liver disease and the risk of chronic kidney disease: a systematic review and meta-analysis. PeerJ 2024; 12:e18459. [PMID: 39713133 PMCID: PMC11660860 DOI: 10.7717/peerj.18459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/14/2024] [Indexed: 12/24/2024] Open
Abstract
Background Data on risk of developing chronic kidney disease (CKD) between non-obese and obese non-alcoholic fatty liver disease (NAFLD) patients are limited. We aimed to reveal the risk difference of incident CKD between non-obese and obese NAFLD patients. Methods We searched PubMed, Embase, and Web of Science databases for studies which reported the incidence of CKD in non-obese and obese NAFLD from inception to 10 March 2024. The primary and secondary outcomes were pooled. Subgroup analysis was used to examine the heterogeneity. Results A total of 15 studies were incorporated. The incidence of CKD in non-obese and obese NAFLD were 1,450/38,720 (3.74%) and 3,067/84,154 (3.64%), respectively. Non-obese NAFLD patients had a comparable risk of CKD as obese NAFLD (odds ratio [OR] 0.92, 95% confidence interval [95% CI] [0.72-1.19], I2 = 88%). No differences in estimated glomerular filtration rate and serum creatinine between non-obese and obese NAFLD were found. The mean differences (MD) and 95% CI were 0.01 [-0.02 to 0.04] and 0.50 [-0.90 to 1.90], respectively. In subgroup analyses, non-obese NAFLD had higher eGFR when diagnosed with ultrasound (MD 1.45, 95% CI [0.11-2.79], I2 = 21%). Non-obese NAFLD had higher creatinine in non-Asian (MD 0.06, 95% CI [0.01-0.11], I2 = 55%) and when taking BMI > 30 as the criterion for obesity (MD 0.06, 95% CI [0.00-0.12], I2 = 76%). The occurrence of CKD did not differ when non-obese NAFLD were categorized into overweight and normal-weight types. Conclusions Non-obese NAFLD patients experienced the same risk of CKD compared to obese NAFLD.
Collapse
Affiliation(s)
- Yixian You
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiong Pei
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Yang L. Nonalcoholic fatty liver disease and colorectal cancer: a two-sample bidirectional Mendelian randomization analysis. Eur J Gastroenterol Hepatol 2024; 36:1447-1452. [PMID: 39475784 PMCID: PMC11527373 DOI: 10.1097/meg.0000000000002859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE Observational studies suggest a connection between nonalcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC) risk. It, however, remains unclear whether such a connection is causal. This study aims to examine the association between NAFLD and CRC using a two-sample bidirectional Mendelian randomization (MR) method. METHODS Summary statistics for NAFLD were obtained from four genome-wide association studies, including 8434 cases and 770 180 controls. Meanwhile, CRC and controls (1803 vs. 174 006) were collected from the FinnGen. The inverse variance weighted (IVW) method was used primarily, while sensitivity analyses were conducted via the weighted median, MR Egger method, simple mode, and weighted mode to enhance result reliability. RESULTS We found a positive correlation between NAFLD and CRC by IVW method in the forward MR analysis (odds ratio = 1.270, 95% confidence interval: 1.154-1.398, P = 1.092 × 10-6). Inverse MR analysis, however, suggested that CRC may not have a causal effect on NAFLD. Besides, we observed an absence of horizontal pleiotropy and heterogeneity in this MR analysis. CONCLUSION Our forward MR study found that NAFLD may increase CRC risk. In contrast, CRC may not have a causal relationship with NAFLD. This study provides genetic evidence supporting a cause-and-effect association between NAFLD and CRC.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Shapingba Hospital affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Cheng YM, Wang SW, Wang CC, Kao JH. Clinical characteristics of lean metabolic-associated fatty liver disease and the impact of concurrent diabetes mellitus. Tzu Chi Med J 2024; 36:425-432. [PMID: 39421499 PMCID: PMC11483085 DOI: 10.4103/tcmj.tcmj_253_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives Metabolic-associated fatty liver disease (MAFLD) was proposed in 2020 to replace the original term nonalcoholic fatty liver disease (NAFLD) with new diagnostic criteria. The disease risks of lean and overweight/obese MAFLD patients remain controversial. Materials and Methods The participants from the Taiwan biobank cohort were included. Advanced liver fibrosis is defined as NAFLD fibrosis score (NFS) >0.675. We use carotid plaques of duplex ultrasounds to diagnose atherosclerosis. Results A total of 20,058 participants (age 55.67 ± 10.32; males 37.6%) were included in the final analysis. Seven thousand eight hundred and forty-three (39.1%) participants were diagnosed with MAFLD. Of them, 965 (12.3%) were lean MAFLD patients. Among lean MAFLD patients, 25.6% were comorbid with diabetes mellitus (DM). Lean MAFLD patients were older and had higher percentages of females and DM than overweight/obese MAFLD patients. After propensity score matching for age and sex, they had lower levels of NFS but a higher percentage of carotid plaques. Among four subtypes of MAFLD including "lean with DM," "lean without DM," "overweight/obese with DM," and "overweight/obese without DM," logistic regression showed that "lean with DM" subjects had the highest risk of atherosclerosis and "overweight/obese with DM" subjects had the highest risk of advanced liver fibrosis in MAFLD patients. Conclusion The population-based study revealed that lean MAFLD patients make up 12.3% of all MAFLD patients, and they have a higher proportion of coexisting diabetes. Among lean MAFLD patients concurrent with diabetes, they have the highest risk of atherosclerosis and should receive special attention clinically.
Collapse
Affiliation(s)
- Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung’s Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shao-Wen Wang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
Njei B, Ameyaw P, Al-Ajlouni Y, Njei LP, Boateng S. Diagnosis and Management of Lean Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review. Cureus 2024; 16:e71451. [PMID: 39544615 PMCID: PMC11560387 DOI: 10.7759/cureus.71451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Lean metabolic dysfunction-associated steatotic liver disease (MASLD) defies traditional views of fatty liver diseases by manifesting in nonobese individuals. The renaming from nonalcoholic fatty liver disease to MASLD underscores a broader understanding of its pathophysiology, highlighting the complex interplay of metabolic factors beyond obesity. Despite its clinical importance, diagnosing and managing lean MASLD remains challenging due to its historical ties to obesity and a general lack of awareness about its unique characteristics. On December 4, 2023, a systematic literature search was conducted across six databases, focusing on peer-reviewed studies in English related to the diagnosis and management of lean MASLD. This study was registered with the International Prospective Register of Systematic Reviews (CRD42023489308). Out of 95 studies following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 43 addressed diagnosis and surveillance, whereas 52 explored management strategies. The results revealed the difficulties in diagnosing lean MASLD, pointing out the limitations of traditional markers and the potential of advanced imaging techniques. Management strategies discussed included lifestyle changes and possible pharmacological treatments tailored to the specific metabolic features of this patient group. The study highlights the necessity for increased clinical awareness, regular monitoring, and personalized therapeutic approaches for lean MASLD. It calls for further research to refine diagnostic criteria and develop targeted treatments, aiming to enhance care for individuals with lean MASLD.
Collapse
Affiliation(s)
- Basile Njei
- Department of Medicine, Yale School of Medicine, New Haven, USA
| | - Prince Ameyaw
- Department of Internal Medicine, Bridgeport Hospital, Yale New Haven Health, Bridgeport, USA
| | | | - Lea-Pearl Njei
- Department of Medicine, University of Maryland, Baltimore, USA
| | - Sarpong Boateng
- Department of Medicine, Yale Affiliated Hospitals Program, New Haven, USA
| |
Collapse
|
10
|
Wang B, Zhang F, Qiu H, He Y, Shi H, Zhu Y. Analysis of Serum Bile Acid Profile Characteristics and Identification of New Biomarkers in Lean Metabolic Dysfunction-Associated Fatty Liver Disease Based on LC-MS/MS. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241282253. [PMID: 39328906 PMCID: PMC11425727 DOI: 10.1177/11795514241282253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Objectives Plasma bile acid (BA) has been widely studied as pathophysiological factors in chronic liver disease. But the changes of plasma BA level in lean metabolic dysfunction-associated fatty liver disease (MAFLD) remains unclear. Here, we clarified the BA metabolic characteristics of lean MAFLD and explored its significance and mechanism as a marker. Methods We employed ultra-performance liquid chromatography tandem mass spectrometry based on BA metabonomics to characterize circulating bile acid in lean MAFLD patients. Explore its significance as serum biomarkers by further cluster analysis, functional enrichment analysis, and serum concentration change analysis of differential BAs. Evaluation of diagnostic value of differential BAs by ROC analysis. Results A total of 65 BAs were detected and 17 BAs were identified which showed different expression in the lean-MAFLD group compared with the normal group. Functional annotation and enrichment analysis of KEGG and HMDB showed that differential BAs were mainly related to bile acid biosynthesis, bile secretion, cholesterol metabolism, and familial hypercholangitis, involving diseases including but not limited to cirrhosis, hepatocellular carcinoma, chronic active hepatitis, colorectal cancer, acute liver failure, and portal vein obstruction. ROC analysis displayed that the 6 BA metabolites (GCDCA-3S, GUDCA-3S, CDCA-3S, NCA, TCDCA, and HDCA) exhibited well differential diagnostic ability in discriminating between lean MAFLD patients and normal individuals with an area under the curve (AUC) ⩾0.85. Conclusions We delineated the characteristics of BA level in patients with lean MAFLD, and identified 6 potential plasma BA biomarkers of lean MAFLD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fei Zhang
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hong Qiu
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yujie He
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haotian Shi
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Yuerong Zhu
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Provera A, Vecchio C, Sheferaw AN, Stoppa I, Pantham D, Dianzani U, Sutti S. From MASLD to HCC: What's in the middle? Heliyon 2024; 10:e35338. [PMID: 39170248 PMCID: PMC11336632 DOI: 10.1016/j.heliyon.2024.e35338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a progressive pathological condition characterized by the accumulation of triglycerides within hepatocytes that causes histological changes, which, in the long run, might compromise liver functional capacities. MASLD predisposes to metabolic dysfunction-associated steatohepatitis (MASH), in which the persistence of inflammatory reactions perpetuates tissue injury and induces alterations of the extracellular matrix, leading to liver fibrosis and cirrhosis. Furthermore, these processes are also fertile ground for the development of hepatocellular carcinoma (HCC). In this latter respect, growing evidence suggests that chronic inflammation not only acts as the primary stimulus for hepatocellular malignant transformation, cell proliferation and cancer cell progression but also reshapes the immune landscape, inducing immune system exhaustion and favoring the loss of cancer immune surveillance. Therefore, a thorough understanding of the cellular and molecular mechanisms orchestrating hepatic inflammatory responses may open the way for fine-tuning therapeutic interventions that could, from one side, counteract MASLD progression and, on the other one, effectively treat HCCs.
Collapse
Affiliation(s)
- Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Cristina Vecchio
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Anteneh Nigussie Sheferaw
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
12
|
Martínez-Domínguez SJ, García-Mateo S, Gargallo-Puyuelo CJ, Gallego-Llera B, Callau P, Mendi C, Arroyo-Villarino MT, Simón-Marco MÁ, Ampuero J, Gomollón F. Inflammatory Bowel Disease Is an Independent Risk Factor for Metabolic Dysfunction-Associated Steatotic Liver Disease in Lean Individuals. Inflamm Bowel Dis 2024; 30:1274-1283. [PMID: 37607330 PMCID: PMC11291618 DOI: 10.1093/ibd/izad175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Despite classical association between metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity, there is increasing evidence on the development of MASLD in lean individuals. The aim of the study was to assess the prevalence and risk factors of MASLD and significant liver fibrosis in lean participants with inflammatory bowel disease (IBD). METHODS This was a cross-sectional, case-control study including 300 lean cases with IBD and 80 lean controls without IBD, matched by sex and age. All participants underwent a liver ultrasound, transient elastography, and laboratory tests. RESULTS The lean IBD group showed a significantly higher prevalence of MASLD compared with lean non-IBD group (21.3% vs 10%; P = .022), but no differences were observed in the prevalence of significant liver fibrosis (4.7% vs 0.0%; P = 1.000). No differences were found between the prevalence of MASLD in IBD and non-IBD participants who were overweight/obese (66.8% vs 70.8%; P = .442). In addition, the prevalence of MASLD was significantly higher in the overweight/obese IBD group compared with the lean IBD group (P < .001). IBD was an independent risk factor for MASLD in lean participants (odds ratio [OR], 2.71; 95% confidence interval [CI], 1.05-7.01; P = .04), after adjusting for classic metabolic risk factors and prior history of systemic steroid use. Nevertheless, no association between IBD related factors and MASLD was identified in lean IBD participants. When the overweight/obese and lean IBD groups with MASLD were compared, the overweight/obese IBD group with MASLD showed higher levels of the homeostatic model assessment of insulin resistance (OR, 1.49; 95% CI, 1.11-1.98; P = .007) and history of smoking (OR, 4.66; 95% CI, 1.17-18.49; P = .029). CONCLUSIONS MASLD prevalence was higher in the lean IBD group compared with lean non-IBD group, independent of classic metabolic risk factors.
Collapse
Affiliation(s)
- Samuel J Martínez-Domínguez
- Department of Gastroenterology, Lozano Blesa University Hospital, Zaragoza, Spain
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
- Department of Medicine, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sandra García-Mateo
- Department of Gastroenterology, Lozano Blesa University Hospital, Zaragoza, Spain
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
- Department of Medicine, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Carla J Gargallo-Puyuelo
- Department of Gastroenterology, Lozano Blesa University Hospital, Zaragoza, Spain
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
- Department of Medicine, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Beatriz Gallego-Llera
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
| | - Pilar Callau
- Primary care center Delicias Sur, Zaragoza, Spain
| | | | - María Teresa Arroyo-Villarino
- Department of Gastroenterology, Lozano Blesa University Hospital, Zaragoza, Spain
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
- Department of Medicine, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Miguel Ángel Simón-Marco
- Department of Gastroenterology, Lozano Blesa University Hospital, Zaragoza, Spain
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
- Department of Medicine, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Javier Ampuero
- Department of Digestive Diseases, Virgen del Rocío University Hospital, Sevilla, Spain
- Department of Medicine, University of Sevilla, Sevilla, Spain
- Clinical and Translational Research Group in Liver and Digestive Diseases, Biomedicine Institute of Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Fernando Gomollón
- Department of Gastroenterology, Lozano Blesa University Hospital, Zaragoza, Spain
- Digestive Pathology Translational Research Group, Aragón Health Research Institute, Zaragoza, Spain
- Department of Medicine, School of Medicine, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
13
|
Jeon YJ, Han K, Lee SW, Lee JE, Park J, Cho IY, Cho JH, Shin DW. Metabolic dysfunction-associated steatotic liver disease and risk of esophageal cancer in patients with diabetes mellitus: a nationwide cohort study. Dis Esophagus 2024; 37:doae029. [PMID: 38587429 DOI: 10.1093/dote/doae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Indexed: 04/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with type 2 diabetes and a developing several cancers including esophageal cancer (EC). However, the association between MASLD and EC in diabetic patients has not been investigated. Therefore, we aimed to investigate the relation between MASLD and developing EC in diabetic patients. This was a population-based retrospective cohort study of data from the Korean National Health Insurance Service (NHIS). A total of 1,904,468 subjects diagnosed with diabetes who underwent NHIS-provided health checkups from 2009 to 2012 were included. We constructed a Cox proportional hazard model for the association of fatty liver index (FLI) and the risk of EC stratified by potential confounders. Over a mean follow-up duration of 6.9 years, the incidence of EC was higher in the high (≥60) FLI group compared to the low (<30) FLI group (14.4 vs. 13.7 event per 100,000 person-years). The risk of EC correlated with the degree of FLI, particularly in older (P = 0.002), female (P = 0.033), non-smoking (P = 0.002), and non-drinking patients (P = 0.025). Among obese patients, the risk of EC was not associated with FLI; however, the risk of EC was higher in the high FLI group in non-obese patients. Lean MASLD patients had the highest risk of EC (adjusted hazard ratio 1.78; 95% confidence interval, 1.5-2.13). MASLD was associated with an increased risk of EC in diabetic patients, and lean MASLD has the highest risk. Further studies are required to determine the causal relationship between MASLD and EC.
Collapse
Affiliation(s)
- Yeong Jeong Jeon
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Seung Woo Lee
- Department of Biostatistics, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Eun Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul
| | - Junhee Park
- University School of Medicine, Seoul, Republic of Korea
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Young Cho
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Latif S, Ahsan T. Prevalence of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) in Persons with Obesity and Type 2 Diabetes Mellitus: A Cross-sectional Study. Euroasian J Hepatogastroenterol 2024; 14:129-133. [PMID: 39802849 PMCID: PMC11714111 DOI: 10.5005/jp-journals-10018-1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 01/16/2025] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD) is an important entity in patients with type-2 diabetes (T2D). Exploring the prevalence and related factors of MASLD is vital toward developing effective methods of diagnosis and treatment. The objective of this study was to determine the prevalence of MASLD in persons with obesity and T2D. Materials and methods This cross-sectional study was conducted at a private healthcare facility (Medicell Clinics) in Karachi, Pakistan, reviewing records from January to December 2022. Persons of either gender aged 18 or above with a diagnosis of T2D and/or obesity were analyzed. Results Of a total of 646 persons, 430 (66.6%) were females. The mean age was 48.58 ± 13.88 years, ranging between 18 and 85 years. T2D was noted in 351 (54.3%) patients, while obesity was observed in 593 (91.8%) persons, 396 (61.3%) had MASLD. Persons having MASLD had significantly higher body mass index (31.16 ± 5.13 vs 28.14 ± 4.76 kg/m2, p < 0.001). Likewise, obesity was significantly associated with MASLD (94.9 vs 86.8%, p < 0.001). The odds ratios (OR) and 95% confidence intervals (CIs) are reported in multivariate logistic regression table. Persons with T2DM (OR = 1.519, p = 0.009), and obesity (OR = 2.651, p = 0.001) showed significantly increased odds of having MASLD. The analysis revealed that individuals in the age-group of 18-40 (OR = 1.627, p = 0.014) had increased odds of having MASLD. Conclusion The prevalence of MASLD was very high in persons with T2D, and obesity. Type-2 diabetes with or without obesity, or the other way around, significantly increases the risk of MASLD. Therefore, these persons should be screened for MASLD to improve clinical outcomes in the affected people. How to cite this article Latif S, Ahsan T. Prevalence of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) in Persons with Obesity and Type 2 Diabetes Mellitus: A Cross-sectional Study. Euroasian J Hepato-Gastroenterol 2024;14(2):129-133.
Collapse
Affiliation(s)
- Saba Latif
- Department of Endocrinology, Medicell Institute of Diabetes Endocrinology and Metabolism (MIDEM), Karachi, Sindh, Pakistan
| | - Tasnim Ahsan
- Department of Endocrinology, Medicell Institute of Diabetes Endocrinology and Metabolism (MIDEM), Karachi, Sindh, Pakistan
| |
Collapse
|
15
|
Huang S, Bao Y, Zhang N, Niu R, Tian L. Long-term outcomes in lean and non-lean NAFLD patients: a systematic review and meta-analysis. Endocrine 2024; 85:134-141. [PMID: 37253855 DOI: 10.1007/s12020-023-03351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Although nonalcoholic fatty liver disease (NAFLD) commonly occurs in overweight or obese individuals, it is increasingly being identified in the lean population. The association between lean and an increased risk of all-cause mortality among patients with NAFLD remains controversial. We aimed to perform a systematic review and meta-analysis of the literature to evaluate this association and compare the long-term outcomes of lean NAFLD patients and non-lean NAFLD patients. METHODS For this systematic review and meta-analysis, we searched PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), Wan Fang, and Chinese Biomedical Literature Database (CBM) from inception to October 15, 2021, for relevant original research articles without any language restrictions. Our primary outcome was to compare the all-cause mortality in lean NAFLD patients and non-lean NAFLD patients by qualitative synthesis. Relative risks (RRs) and corresponding 95% confidential intervals (CIs) were pooled with a random effect model. Heterogeneity was evaluated using I-squared (I²) statistics while publication bias was determined using Egger's tests. Subgroup and sensitivity analyses were performed. As for secondary outcomes, we estimated total, cardiovascular, and liver-related mortality, as well as the incidence of diabetes, hypertension, cirrhosis, and cancer in lean and non-lean individuals with NAFLD by quantitative synthesis. Person-years of follow-up were used as the denominator to estimate the mortality and incidence. RESULTS We identified 12 studies (n = 26,329), 7 of which (n = 7924) were used to evaluate the risk of all-cause mortality between lean and non-lean NAFLD patients. Lean patients with NAFLD were found to be at an elevated risk of death compared to non-lean patients (RR = 1.39, 95% CI 1.08-1.82, heterogeneity: I² = 43%). Among the lean NAFLD population, all-cause mortality was 13.3 (95% CI: 6.7-26.1) per 1000 person-years, 3.6 (95% CI: 1.0-11.7) for liver-related mortality, and 7.7 (95% CI: 6.4-9.2) for cardiovascular-related mortality. The incidence of new-onset diabetes was 13.7 (95% CI 8·2-22.7) per 1000 person-years, new-onset hypertension was 56.1 (95% CI: 40.2-77.9), cirrhosis was 2.3 (95% CI: 1.0-5.0), and cancer was 25.7 (95% CI: 20.3-32.4). CONCLUSIONS Lean patients with NAFLD had a higher risk of all-cause death than non-lean patients. Body mass index (BMI) should not be used as a criterion to determine whether further observation and therapy of patients with NAFLD are warranted.
Collapse
Affiliation(s)
- Shaomin Huang
- The first Clinical Medical College of Gansu University of Traditional Chinese Medicine, 730000, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
- Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, 730000, Gansu Province, China
| | - Yun Bao
- Institute of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Nawen Zhang
- The first Clinical Medical College of Gansu University of Traditional Chinese Medicine, 730000, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
- Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, 730000, Gansu Province, China
| | - Ruilan Niu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
- Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, 730000, Gansu Province, China
| | - Limin Tian
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China.
- Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
16
|
Nso N, Mergen D, Ikram M, Macrinici V, Hussain K, Lee K, Ugwendum D, Trimingham M, Balasubramanian S, Sam R, Njei B. Cardiovascular morbidity and mortality in lean vs. non-lean MASLD: A comprehensive meta-analysis. Curr Probl Cardiol 2024; 49:102569. [PMID: 38599554 DOI: 10.1016/j.cpcardiol.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Lean metabolic dysfunction-associated steatotic liver disease (MASLD), characterized by a BMI < 25 kg/m² (or < 23 kg/m² in Asians), presents a challenging prognosis compared to non-lean MASLD. This study examines cardiovascular outcomes in both lean and non-lean MASLD cohorts. METHODS In this meta-analysis, pooled odds ratios (ORs) within 95 % confidence intervals (CIs) were calculated for primary outcomes (cardiovascular mortality and major adverse cardiovascular events [MACE]) and secondary outcomes (cardiovascular disease [CVD], all-cause mortality, hypertension, and dyslipidemia). Studies comparing lean and non-lean MASLD within the same cohorts were analyzed, prioritizing those with larger sample sizes or recent publication dates. RESULTS Twenty-one studies were identified, encompassing lean MASLD patients (n = 7153; mean age 52.9 ± 7.4; 56 % male) and non-lean MASLD patients (n = 23,514; mean age 53.2 ± 6.8; 63 % male). Lean MASLD exhibited a 50 % increase in cardiovascular mortality odds compared to non-lean MASLD (OR: 1.5, 95 % CI 1.2-1.8; p < 0.0001). MACE odds were 10 % lower in lean MASLD (OR: 0.9, 95 % CI 0.7-1.2; p = 0.7), while CVD odds were 40 % lower (p = 0.01). All-cause mortality showed a 40 % higher odds in lean MASLD versus non-lean MASLD (p = 0.06). Lean MASLD had 30 % lower odds for both hypertension (p = 0.01) and dyslipidemia (p = 0.02) compared to non-lean MASLD. CONCLUSION Despite a favorable cardiometabolic profile and comparable MACE rates, lean individuals with MASLD face elevated cardiovascular mortality risk.
Collapse
Affiliation(s)
- Nso Nso
- Division of cardiovascular disease, University of Chicago (Endearvor Health), IL, USA
| | - Damla Mergen
- Department of Medicine, Icahn School of Medicine at Mount Sinai/Queens, NY, USA
| | - Mashaal Ikram
- Division of cardiovascular disease, University of Chicago (Endearvor Health), IL, USA
| | - Victor Macrinici
- Division of cardiovascular disease, University of Chicago (Endearvor Health), IL, USA
| | - Kifah Hussain
- Division of cardiovascular disease, University of Chicago (Endearvor Health), IL, USA
| | - Kevin Lee
- Division of cardiovascular disease, University of Chicago (Endearvor Health), IL, USA
| | - Derek Ugwendum
- Department of Medicine, Loyola University School of Medicine, Illinois, USA
| | - Mia Trimingham
- Department of Medicine, Richmond University Medical Center, Staten Island, NY, USA
| | | | - Riya Sam
- Division of cardiovascular disease, University of Chicago (Endearvor Health), IL, USA
| | - Basile Njei
- Section of Digestive Diseases, Yale School of Medicine, CT, USA.
| |
Collapse
|
17
|
Wang S, Zhang Y, Qi X, Xu X. Cardiometabolic and Metabolic Profiles of Lean/Normal, Overweight and Obese Patients with Nonalcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:2027-2036. [PMID: 38765467 PMCID: PMC11100970 DOI: 10.2147/dmso.s462003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Disagreements about the risk of non-obese, non-alcoholic fatty liver disease for cardiometabolic outcomes occurred widely. This study aims to characterize the cardiometabolic and metabolic profile of lean/normal, overweight and obese patients with nonalcoholic fatty liver disease on a big sample. Patients and methods Appeared healthy adults who participated in health examinations during the year of 2019-2022 were screened for fatty liver diagnosis. BMI classified fatty livers as lean, overweight and obese. Eleven cardiometabolic metrics (SBP: systolic blood pressure; DBP: diastolic blood pressure; TC: total cholesterol; TG: triglycerides; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol) and metabolic metrics (GLU: blood glucose; GHB: glycated haemoglobin; UA: uric acid; AST: aspartate aminotransferase; ALT: alanine aminotransferase) were included, described and compared among BMI categories. Results There were 56,496 fatty livers diagnosed by ultrasound in this study. In total, the lean fatty liver had lowest mean SBP, DBP, GLU, TG, UA, AST, and ALT but highest TC and HDL among BMI categories (all p < 0.001). The number of abnormal metrics in total was 2.5, 2.9 and 3.4 in lean, overweight, and obesity, respectively (p < 0.001, p_trend < 0.001). Visualized data showed that lean fatty liver was similar but milder in all metabolic metrics than overweight and obesity at the young ages. However, lean fatty liver had higher coefficients of age and risk of metabolic abnormality regression (p <0.001 for SBP, DBP, GLU, GHB, TC). Conclusion The lean type of fatty livers at a younger age has a relatively favourable cardiometabolic and metabolic profile compared to overweight and obese fatty livers. Due to the possible catch-up effect of metabolic dysfunctions in young lean fatty liver, lean fatty liver may have the same health outcomes as overweight/obesity fatty liver in long term. The evaluation and intervention may be critical for young lean fatty liver management to slowdown the rapid progress of metabolic dysfunction.
Collapse
Affiliation(s)
- Siyao Wang
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yong Zhang
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
- School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoya Qi
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoyang Xu
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Ezeani C, Omaliko C, Al-Ajlouni YA, Njei B. Mortality, Hepatic Decompensation, and Cardiovascular- and Renal-Related Outcomes in Lean Versus Non-lean Patients Hospitalized With Metabolic Dysfunction-Associated Steatohepatitis (MASH). Cureus 2024; 16:e60968. [PMID: 38915982 PMCID: PMC11194143 DOI: 10.7759/cureus.60968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatohepatitis (MASH) is an important cause of cirrhosis and end-stage liver disease. In addition, there have been reports of worse extrahepatic outcomes, especially cardiovascular events, in patients with lean patients' fatty liver disease compared to the non-lean group. There is limited data on hepatic, cardiac, and renal outcomes in lean compared to non-lean patients with MASH. This study aims to evaluate the cardiovascular, renal, and hepatic outcomes in hospitalized US adults with MASH, focusing on a comprehensive comparison between lean and non-lean patients. METHODS The National Inpatient Sample (NIS) database was queried from 2016 to 2020 to identify hospitalizations with MASH. Hospitalizations with a history of overweight and obesity (lean body mass index (BMI) <25 vs. lean BMI >25) were also identified. The primary outcome was in-hospital mortality. Secondary outcomes were major adverse cardiovascular outcomes (MACE: a composite of acute myocardial infarction, cardiac arrest, stroke, heart failure, and atrial fibrillation); major adverse kidney outcome (MAKE: a composite outcome of acute kidney injury (AKI), renal replacement therapy, and renal cancer), and hepatic decompensation (esophageal varices with bleeding, ascites, spontaneous bacterial peritonitis (SBP), hepatic encephalopathy, and hepatorenal syndrome) Multivariate logistic regression analysis was used to derive risk ratios for clinical outcomes. RESULTS We included 539,275 MASH patients in our sample; 324,330 (60%) were lean. The included patients were mostly female (61%), the mean age was 64 years, and 76% were White. At baseline, non-lean patients had a higher prevalence of heart failure, hypertension, and hyperlipidemia. There was no difference in the prevalence of smoking among both groups. In a multivariate analysis, with adjustment for age, sex, race, sarcopenia, cardiometabolic risk factors, hospital characteristics, admission type, socioeconomic factors, and all comorbidities (including 31 Elixhauser comorbidities), lean status was associated with a 40% increased risk of mortality (adjusted odds ratio (aOR) 1.40, confidence interval (CI) 1.29-1.53), 19% increased risk of MACE (aOR 1.19; 95% CI 1.14-1.24), 20% increased risk of renal decompensation (aOR 1.25; 95% CI 1.20-1.30), and 33% increased risk of hepatic decompensation (aOR 1.33 CI 1.28-1.38). CONCLUSION Lean patients with MASH are at higher risk of cardiovascular and renal outcomes and may benefit from enhanced screening for early identification and treatment to improve outcomes.
Collapse
Affiliation(s)
- Chukwunonso Ezeani
- Department of Internal Medicine, Baton Rouge General Medical Center, Baton Rouge, USA
| | - Chidiebele Omaliko
- Department of Internal Medicine, Brookdale University Hospital and Medical Center, New York, USA
| | - Yazan A Al-Ajlouni
- Department of Rehabilitation, Montefiore Medical Center, Wakefield Campus, New York, USA
| | - Basile Njei
- Department of Medicine, Yale School of Medicine, New Haven, USA
| |
Collapse
|
19
|
Tang N, Ji L, Shi X, Xiong Y, Xiong X, Zhao H, Song H, Wang J, Zhang L, You S, Ji G, Liu B, Wu N. Effects of Ganjianglingzhu Decoction on Lean Non-Alcoholic Fatty Liver Disease in Mice Based on Untargeted Metabolomics. Pharmaceuticals (Basel) 2024; 17:502. [PMID: 38675462 PMCID: PMC11053674 DOI: 10.3390/ph17040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is usually associated with obesity. However, it is crucial to recognize that NAFLD can also occur in lean individuals, which is frequently overlooked. Without an approved pharmacological therapy for lean NAFLD, we aimed to investigate whether the Ganjianglingzhu (GJLZ) decoction, a representative traditional Chinese medicine (TCM), protects against lean NAFLD and explore the potential mechanism underlying these protective effects. The mouse model of lean NAFLD was established with a methionine-choline-deficient (MCD) diet in male C57BL/6 mice to be compared with the control group fed the methionine-choline-sufficient (MCS) diet. After four weeks, physiological saline, a low dose of GJLZ decoction (GL), or a high dose of GJLZ decoction (GH) was administered daily by gavage to the MCD group; the MCS group was given physiological saline by gavage. Untargeted metabolomics techniques were used to explore further the potential mechanism of the effects of GJLZ on lean NAFLD. Different doses of GJLZ decoction were able to ameliorate steatosis, inflammation, fibrosis, and oxidative stress in the liver; GL performed a better effect on lean NAFLD. In addition, 78 candidate differential metabolites were screened and identified. Combined with metabolite pathway enrichment analysis, GL was capable of regulating the glucose and lipid metabolite pathway in lean NAFLD and regulating the glycerophospholipid metabolism by altering the levels of sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0). GJLZ may protect against the development of lean NAFLD by regulating glucose and lipid metabolism, inhibiting the levels of sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) in glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Nan Tang
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Xinyu Shi
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Yalan Xiong
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Xinying Xiong
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Hanhua Zhao
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou 310058, China;
| | - Hualing Song
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Jianying Wang
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Lei Zhang
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
| | - Shengfu You
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;
| | - Guang Ji
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Baocheng Liu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Na Wu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (N.T.); (X.S.); (Y.X.); (X.X.); (H.S.); (J.W.); (L.Z.); (G.J.)
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Tsygankov DA, Polikutina OM. Non-alcoholic fatty liver disease and ultrasound markers of obesity as unfavorable factors in the course of coronary artery disease. RUSSIAN JOURNAL OF CARDIOLOGY 2024; 29:5894. [DOI: 10.15829/1560-4071-2024-5894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. To evaluate the association of non-alcoholic fatty liver disease (NAFLD) with markers of visceral obesity in patients with coronary artery disease (CAD).Material and methods. We examined 125 patients hospitalized in the emergency cardiology department with CAD (female — 41,6%, male — 58,4%) and body mass index of 18,5-35,0 kg/m2. The median age of the subjects was 68 [61,0;74,0] years. We assessed following ultrasound parameters of visceral obesity: intraabdominal fat thickness (IAFT), abdominal wall fat index (WFI), preperitoneal fat thickness (PFT), subcutaneous adipose tissue (SAT), represented by MinSAT and MaxSAT. The following liver parameters were assessed: anteroposterior dimension of the left lobe and oblique-vertical dimension of the right lobe. Statistical data processing was carried out using the Statistica 6.0 program. Quantitative variables are presented as median (Me). Percentiles (25%; 75%) were used as dispersion measures. The influence of several predictors was assessed using linear regression analysis.Results. In patients without echographic signs of hepatic steatosis, the IAFT was 50,5 [30,7;65,0] mm and significantly increased with increasing hepatosis degree: from 45,0 [24,0;63,0] mm in respondents with grade 1 to 67,5 [34,0;76,0] mm with grade 3 (p=0,010). PFT also significantly increased from 11,5 [8,9;13,3] mm in individuals without hepatic steatosis to 13,8 [10,7;15,6] mm in those with grade 1, 18,5 [13,0;22,4] mm in those with grade 2 and 23,5 [13,0;29,4] mm in those with grade 3 hepatic steatosis (p=0,001). MinSAT and MaxSAT also increased, but not significantly (from 11,5 [8,8;15,9] to 20,4 [10,1;27,3] mm, p=0,151 and from 14,0 [11,4;25,4] mm to 22,4 [15,0;25,0] mm, p=0,576, respectively). The increase in WFI was also not significant. Linear regression analysis confirmed that hepatic steatosis was associated with IAFT increase (b=9,3, p=0,012).Conclusion. NAFLD is associated with factors influencing the CAD course — hyperglycemia, lipid metabolism disorders, as well as ultrasound markers of obesity. An increase in liver size was associated with an increase in BMI, glucose, triglycerides, high-density lipoproteins and ultrasound markers of obesity — IAFT and PFT. NAFLD in patients with CAD was associated with increased IAFT and PFT. In addition, 52,5% of people with normal body weight had NAFLD, which once again indicates the ineffectiveness of this indicator for stratifying the risk of development and progression of cardiovascular disease and the need for routine screening of NAFLD in people with cardiovascular diseases, regardless of BMI.
Collapse
Affiliation(s)
- D. A. Tsygankov
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - O. M. Polikutina
- Research Institute for Complex Issues of Cardiovascular Diseases
| |
Collapse
|
21
|
Younossi ZM, Henry L. Epidemiology of NAFLD - Focus on diabetes. Diabetes Res Clin Pract 2024; 210:111648. [PMID: 38569945 DOI: 10.1016/j.diabres.2024.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
There is increasing appreciation of the complex interaction between nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes (T2D) and insulin resistance. Not only is the prevalence of NAFLD disease high among patients with T2D, the liver disease is also more progressive. Currently, the global prevalence of NAFLD in the general population (2016-2019) is 38 %. The prevalence of T2D among those with NAFLD is approximately 23 % while the prevalence of NAFLD among those with T2D can be as high as 70 %. The prevalence of nonalcoholic steatohepatitis (NASH) is approximately 7 % in the general population and 37 % among patients with T2D. Globally, the MENA and Latin America regions of the world appear to have the highest burden of both NAFLD and T2D. Compared to those with NAFLD but without T2D, those with NAFLD and T2D are at a much higher risk for disease progression to cirrhosis and for decompensated cirrhosis, hepatocellular carcinoma, and all-cause mortality. Given that highly effective new treatments are available for T2D, high risk NAFLD with T2D should be considered for these regimens. This requires implementation of risk stratification algorithms in the primary care and endocrinology practices to identify those patients at highest risk for adverse outcomes.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States; Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, United States; Center for Outcomes Research In Liver Diseases, Washington, DC, United States.
| | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States; Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, United States; Center for Outcomes Research In Liver Diseases, Washington, DC, United States
| |
Collapse
|
22
|
Sato-Espinoza K, Chotiprasidhi P, Huaman MR, Díaz-Ferrer J. Update in lean metabolic dysfunction-associated steatotic liver disease. World J Hepatol 2024; 16:452-464. [PMID: 38577539 PMCID: PMC10989317 DOI: 10.4254/wjh.v16.i3.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND A new nomenclature consensus has emerged for liver diseases that were previously known as non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD). They are now defined as metabolic dysfunction-associated steatotic liver disease (MASLD), which includes cardiometabolic criteria in adults. This condition, extensively studied in obese or overweight patients, constitutes around 30% of the population, with a steady increase worldwide. Lean patients account for approximately 10%-15% of the MASLD population. However, the pathogenesis is complex and is not well understood. AIM To systematically review the literature on the diagnosis, pathogenesis, characteristics, and prognosis in lean MASLD patients and provide an interpretation of these new criteria. METHODS We conducted a comprehensive database search on PubMed and Google Scholar between January 2012 and September 2023, specifically focusing on lean NAFLD, MAFLD, or MASLD patients. We include original articles with patients aged 18 years or older, with a lean body mass index categorized according to the World Health Organization criteria, using a cutoff of 25 kg/m2 for the general population and 23 kg/m2 for the Asian population. RESULTS We include 85 studies in our analysis. Our findings revealed that, for lean NAFLD patients, the prevalence rate varied widely, ranging from 3.8% to 34.1%. The precise pathogenesis mechanism remained elusive, with associations found in genetic variants, epigenetic modifications, and adaptative metabolic response. Common risk factors included metabolic syndrome, hypertension, and type 2 diabetes mellitus, but their prevalence varied based on the comparison group involving lean patients. Regarding non-invasive tools, Fibrosis-4 index outperformed the NAFLD fibrosis score in lean patients. Lifestyle modifications aided in reducing hepatic steatosis and improving cardiometabolic profiles, with some medications showing efficacy to a lesser extent. However, lean NAFLD patients exhibited a worse prognosis compared to the obese or overweight counterpart. CONCLUSION MASLD is a complex disease comprising epigenetic, genetic, and metabolic factors in its pathogenesis. Results vary across populations, gender, and age. Limited data exists on clinical practice guidelines for lean patients. Future studies employing this new nomenclature can contribute to standardizing and generalizing results among lean patients with steatotic liver disease.
Collapse
Affiliation(s)
- Karina Sato-Espinoza
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902, United States.
| | - Perapa Chotiprasidhi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902, United States
| | - Mariella R Huaman
- Obesity and Metabolic, Center for Obesity and Metabolic Health, Lima 02002, Lima, Peru
| | - Javier Díaz-Ferrer
- Hepatology Service, Department of Digestive Diseases, Hospital Nacional Edgardo Rebagliati Martins, Lima 02002, Lima, Peru
- Medicine Faculty, Universidad San Martin de Porres, Lima 02002, Lima, Peru
- Gastroenterology Service, Clinica Internacional, Lima 02002, Lima, Peru
| |
Collapse
|
23
|
Ruan S, Yuan X, Liu J, Zhang Q, Ye X. Predictors of High Cardiovascular Risk Among Nonobese Patients with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease in a Chinese Population. Diabetes Metab Syndr Obes 2024; 17:493-506. [PMID: 38318450 PMCID: PMC10840557 DOI: 10.2147/dmso.s441641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose This study aims to investigate cardiovascular risk factors in nonobese patients with type 2 diabetes (T2DM) and non-alcoholic fatty liver disease (NAFLD) and to determine whether they might be used to predict high-risk individuals effectively. Patients and Methods This cross-sectional study included 245 nonobese patients with T2DM who underwent FibroTouch in the National Metabolic Management Center of the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University from January 2021 to December 2022. All individuals were divided into NAFLD and non-NAFLD groups. Patients with NAFLD were further grouped by UAP tertiles (T1, T2 and T3). We created a Cardiovascular Score (total scale: 0-5 points; ≥3 points was defined as high-risk individual) based on baPWV, carotid ultrasound, and urinary microalbumin creatinine ratio (UA/CR) to assess the risk of cardiovascular disease in non-obese T2DM patients with NAFLD. Risk factors were evaluated using univariate and multivariate analysis. The performance of risk factors was compared according to the area under the receiver operating characteristic (ROC) curve. Results Atherogenic index of plasma (AIP), atherosclerosis index (AI), prevalence of hypertension, body mass index (BMI) and homeostatic model assessment of insulin resistance (HOMA-IR) were higher in the NAFLD group compared to the non-NAFLD group. In T3 group, AIP, AI, BMI and HOMA-IR were higher than those of T1 group. Multivariate logistic regression showed that age, systolic blood pressure, low-density lipoprotein-cholesterol (LDL-C) and AIP were risk factors for cardiovascular disease among nonobese patients with T2DM and NAFLD. The area under the ROC curve for age, systolic blood pressure, LDL-C and AIP were 0.705, 0.688, 0.738 and 0.642, respectively. The area under the ROC curve was 0.895 when combining them. Conclusion Age, systolic blood pressure, AIP and LDL-C are all independent risk factors for cardiovascular disease in non-obese individuals with T2DM and NAFLD, which can be combined to identify high-risk populations and carry out intervention.
Collapse
Affiliation(s)
- Shuping Ruan
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaoqing Yuan
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People’s Republic of China
| | - Juan Liu
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People’s Republic of China
| | - Qing Zhang
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xinhua Ye
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
24
|
Shiraishi S, Liu J, Saito Y, Oba Y, Nishihara Y, Yoshimura S. A New Non-Obese Steatohepatitis Mouse Model with Cardiac Dysfunction Induced by Addition of Ethanol to a High-Fat/High-Cholesterol Diet. BIOLOGY 2024; 13:91. [PMID: 38392309 PMCID: PMC10886349 DOI: 10.3390/biology13020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Non-obese metabolic dysfunction-associated steatotic liver disease (MASLD) has been associated with cardiovascular-related mortality, leading to a higher mortality rate compared to the general population. However, few reports have examined cardiovascular events in non-obese MASLD mouse models. In this study we created a mouse model to mimic this condition. In this study involving seven-week-old C57BL/6J male mice, two dietary conditions were tested: a standard high-fat/high-cholesterol diet (STHD-01) and a combined diet of STHD-01 and ethanol. Over periods of 6 and 12 weeks, we analyzed the effects on liver and cardiac tissues using various staining techniques and PCR. Echocardiography and blood tests were also performed to assess cardiac function and liver damage. The results showed that mice on the ethanol-supplemented STHD-01 diet developed signs of steatohepatitis and cardiac dysfunction, along with increased sympathetic activity, as early as 6 weeks. At 12 weeks, more pronounced exacerbations accompanied with cardiac dilation, advanced liver fibrosis, and activated myocardial fibrosis with sympathetic activation were observed. This mouse model effectively replicated non-obese MASLD and cardiac dysfunction over a 12-week period using a combined diet of STHD-01 and ethanol. This dietary approach highlighted that both liver inflammation and fibrosis, as well as cardiac dysfunction, could be significantly worsened due to the activation of the sympathetic nervous system. Our results indicate that alcohol, even when completely metabolized on the day of drinking, exacerbates the progression of non-obese MASLD and cardiac dysfunction.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Exploratory Research Department, EA Pharma Co., Ltd., Fujisawa-shi 251-8555, Kanagawa, Japan
| | - Jinyao Liu
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan
| | - Yuki Saito
- Exploratory Research Department, EA Pharma Co., Ltd., Fujisawa-shi 251-8555, Kanagawa, Japan
| | - Yumiko Oba
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan
| | - Yuiko Nishihara
- Exploratory Research Department, EA Pharma Co., Ltd., Fujisawa-shi 251-8555, Kanagawa, Japan
| | - Satomichi Yoshimura
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan
| |
Collapse
|
25
|
Tidwell J, Wu GY. Unique Genetic Features of Lean NAFLD: A Review of Mechanisms and Clinical Implications. J Clin Transl Hepatol 2024; 12:70-78. [PMID: 38250459 PMCID: PMC10794266 DOI: 10.14218/jcth.2023.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 01/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global population. About 20% have a normal body mass index (BMI) and a variant known as lean NAFLD. Unlike typical NAFLD cases associated with obesity and diabetes, lean NAFLD causes liver disease by mechanisms not related to excess weight or insulin resistance. Genetic disorders are among the major factors in developing lean NAFLD, and genome-wide association studies have identified several genes associated with the condition. This review aims to increase awareness by describing the genetic markers linked to NAFLD and the defects involved in developing lean NAFLD.
Collapse
Affiliation(s)
- Jasmine Tidwell
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
- Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
26
|
Moore E, Patanwala I, Jafari A, Davies IG, Kirwan RP, Newson L, Mazidi M, Lane KE. A systematic review and meta-analysis of randomized controlled trials to evaluate plant-based omega-3 polyunsaturated fatty acids in nonalcoholic fatty liver disease patient biomarkers and parameters. Nutr Rev 2024; 82:143-165. [PMID: 37290426 PMCID: PMC10777680 DOI: 10.1093/nutrit/nuad054] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is prevalent in 25-30% of British and European populations, representing a potential global public health crisis. Marine omega-3 (n-3) polyunsaturated fatty acids offer well-evidenced benefits to NAFLD biomarkers; however, the effect of plant-based n-3 has not been evaluated with a systematic review and meta-analysis. OBJECTIVE The review aimed to systematically evaluate the effect of plant-based n-3 supplementation on NAFLD surrogate biomarkers and parameters. DATA SOURCES Medline (EBSCO), PubMed, CINAHL (EBSCO), Cochrane Central Register of Controlled Trials, the International Clinical Trials Registry Platform, and Google Scholar databases were searched to identify randomized controlled trials published between January 1970 and March 2022 evaluating the impact of plant-based n-3 interventions on diagnosed NAFLD. The review followed the PRISMA checklist and is PROSPERO registered (CRD42021251980). DATA EXTRACTION A random-effects model and generic inverse variance methods synthesized quantitative data, followed by a leave-one-out method for sensitivity analysis. We identified 986 articles; after the application of selection criteria, six studies remained with 362 patients with NAFLD. RESULTS The meta-analysis showed that plant-based n-3 fatty acid supplementation significantly reduced alanine aminotransferase (ALT) (mean difference: 8.04 IU/L; 95% confidence interval: 14.70, 1.38; I2 = 48.61%) and plasma/serum triglycerides (44.51 mg/dL; 95% confidence interval: -76.93, -12.08; I2 = 69.93%), alongside body-composition markers in patients with NAFLD (P < 0.05). CONCLUSION Plant-based n-3 fatty acid supplementation improves ALT enzyme biomarkers, triglycerides, body mass index, waist circumference, and weight loss when combined with lifestyle interventions to increase physical activity and a calorie-controlled diet. Further research is needed to identify the most effective plant-based n-3 sources in larger numbers of patients with NAFLD over longer study durations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021251980.
Collapse
Affiliation(s)
- Ella Moore
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ian G Davies
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Richard P Kirwan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lisa Newson
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Katie E Lane
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
27
|
Wang S, Xia BX, Luo T, Wang P. Association between physical activity and diet quality of obese and non-obese MAFLD. Nutr Metab Cardiovasc Dis 2024; 34:75-89. [PMID: 37949716 DOI: 10.1016/j.numecd.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIM Clinical data on the prevalence of metabolic-associated fatty liver disease (MAFLD) in obese and non-obese individuals within a diverse US population is scarce. Furthermore, the influence of physical activity (PA) and dietary quality (DQ) on MAFLD risk remains unclear. This study aims to assess the prevalence and clinical features of MAFLD and examine the relationship between PA and DQ with the risk of developing MAFLD. METHODS AND RESULTS A cross-sectional analysis of data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) was conducted. The overall MAFLD prevalence was 41.9%, with 28.6% of participants being obese and 13.4% non-obese. Among those with MAFLD, 67.1% (95% confidence interval (CI): 59.1%-75.1%) were obese, and 32.9% (95% CI: 29.1%-36.7%) were non-obese. Non-obese MAFLD was more frequent in Asians (27.2%), while obese MAFLD was more prevalent in Blacks (66.3%). Metabolic comorbidities were more common in individuals with obese MAFLD, who also exhibited more advanced fibrosis. A high-quality diet (HQD) and increased PA were linked to reduced odds of both obese and non-obese MAFLD (odds ratio (OR) and 95% CI: 0.67 [0.51-0.88] and 0.57 [0.47-0.69]; 0.62 [0.43-0.90] and 0.63 [0.46-0.87], respectively). PA and HQD significantly decreased the risk of obese and non-obese MAFLD (OR and 95% CI: 0.46 [0.33-0.64] and 0.42 [0.31-0.57]). CONCLUSION A substantial proportion of the US population is affected by both obese and non-obese MAFLD. A strong association exists between a lower risk of both types of MAFLD and adherence to an HQD and engagement in PA.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Geriatrics, The People's Hospital of Changshou, Chongqing, China
| | - Bing Xin Xia
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Luo
- Department of Gynaecology, Three Gorges Hospital, Chongqing, China
| | - Peng Wang
- Department of Geriatrics, The People's Hospital of Changshou, Chongqing, China.
| |
Collapse
|
28
|
Nguyen VH, Ha A, Rouillard NA, Le RH, Fong A, Gudapati S, Park JE, Maeda M, Barnett S, Cheung R, Nguyen MH. Differential Mortality Outcomes in Real-world Patients with Lean, Nonobese, and Obese Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1448-1454. [PMID: 38161493 PMCID: PMC10752812 DOI: 10.14218/jcth.2023.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 01/03/2024] Open
Abstract
Background and Aims Nonalcoholic fatty liver disease (NAFLD) is commonly associated with obesity but can develop in normal-weight people (lean NAFLD). We compared outcomes in lean, overweight, and obese NAFLD. Methods This retrospective chart review included patients at Stanford University Medical Center with NAFLD confirmed by imaging between March 1995 and December 2021. Lean, overweight, and obese patients had body mass index of <25.0, >25.0 and <29.9, and ≥30.0 kg/m2 for non-Asian and >23.0 and ≥27.5 for overweight and obese Asian patients. Results A total of 9061 lean (10.2%), overweight (31.7%), and obese (58.1%) patients were included. Lean patients were 5 years older than obese patients (53±17.4 vs. 48.7±15.1 years), more were female (59.6% vs. 55.2%), white (49.1% vs. 46.5%), had NASH (29.2% vs. 22.5%), cirrhosis (25.3% vs.19.2%), or nonliver cancer (25.3% vs. 18.3%). Fewer had diabetes (21.7% vs. 35.8%) or metabolic comorbidities (all p<0.0001). Lean NAFLD patients had liver-related mortality similar to other groups but higher overall (p=0.01) and nonliver-related (p=0.02) mortality. After multivariable model adjustment for covariates, differences between lean and obese NAFLD in liver-related, nonliver-related, and overall mortality (adjusted hazard ratios of 1.34, 1.00, and 1.32; p=0.66, 0.99, and 0.20, respectively) were not significant. Conclusions Lean NAFLD had fewer metabolic comorbidities but similar adverse or worse outcomes, suggesting that it is not benign. Healthcare providers should provide the same level of care and intervention as for overweight and obese NAFLD.
Collapse
Affiliation(s)
- Vy H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Harvard Medical School, Boston, MA, USA
| | - Audrey Ha
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Nicholas Ajit Rouillard
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Richard Hieu Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- William Carey University College of Osteopathic Medicine, Hattiesburg, MS, USA
| | - Ashley Fong
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Surya Gudapati
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Washington University, St Louis, MO, USA
| | - Jung Eun Park
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- William Carey University College of Osteopathic Medicine, Hattiesburg, MS, USA
| | - Mayumi Maeda
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Scott Barnett
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Division of Gastroenterology and Hepatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA, USA
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
29
|
Ding Y, Deng Q, Yang M, Niu H, Wang Z, Xia S. Clinical Classification of Obesity and Implications for Metabolic Dysfunction-Associated Fatty Liver Disease and Treatment. Diabetes Metab Syndr Obes 2023; 16:3303-3329. [PMID: 37905232 PMCID: PMC10613411 DOI: 10.2147/dmso.s431251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Obesity,and metabolic dysfunction-associated fatty liver disease (MAFLD) have reached epidemic proportions globally. Obesity and MAFLD frequently coexist and act synergistically to increase the risk of adverse clinical outcomes (both hepatic and extrahepatic). Type 2 diabetes mellitus (T2DM) is the most important risk factor for rapid progression of steatohepatitis and advanced fibrosis. Conversely, the later stages of MAFLD are associated with an increased risk of T2DM incident. According to the proposed criteria, MAFLD is diagnosed in patients with liver steatosis and in at least one in three: overweight or obese, T2DM, or signs of metabolic dysregulation if they are of normal weight. However, the clinical classification and correlation between obesity and MAFLD is more complex than expected. In addition, treatment for obesity and MAFLD are associated with a reduced risk of T2DM, suggesting that liver-based treatments could reduce the risk of developing T2DM. This review describes the clinical classification of obesity and MAFLD, discusses the clinical features of various types of obesity and MAFLD, emphasizes the role of visceral obesity and insulin resistance (IR) in the development of MAFLD,and summarizes the existing treatments for obesity and MAFLD that reduce the risk of developing T2DM.
Collapse
Affiliation(s)
- Yuping Ding
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Quanjun Deng
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Mei Yang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Haiyan Niu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Zuoyu Wang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Shihai Xia
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| |
Collapse
|
30
|
Yari Z, Fotros D, Hekmatdoost A. Comparison of cardiometabolic risk factors between obese and non-obese patients with nonalcoholic fatty liver disease. Sci Rep 2023; 13:14531. [PMID: 37666894 PMCID: PMC10477254 DOI: 10.1038/s41598-023-41893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is closely associated with cardiometabolic abnormalities. This association could be partly influenced by weight, but not entirely. This study aimed to compare the cardiometabolic risk factors between obese and non-obese NAFLD patients, and explored the relationship between adiposity and severity of fatty liver. This cross-sectional study included 452 patients with Fibroscan-proven NAFLD. Anthropometric measurements, metabolic components and hepatic histological features were evaluated. The risk of metabolic syndrome in each body mass index (BMI) category was analyzed using logistic regression. The prevalence of metabolic syndrome was 10.2%, 27.7%, and 62.1% in normal-weight, overweight and obese participants. Regression analysis showed that the risk of metabolic syndrome in overweight and obese NAFLD patients was 3.74 and 4.85 times higher than in patients with normal weight, respectively. Waist circumference (β = 0.770, P < 0.001) and serum concentration of fasting blood glucose (β = 0.193, P = 0.002) and triglyceride (β = 0.432, P < 0.001) were the determinants of metabolic syndrome occurrence in NAFLD patients. Metabolic abnormalities were similar in obese and non-obese NAFLD patients, although, the increase in BMI was associated with an increased risk of metabolic syndrome in patients.
Collapse
Affiliation(s)
- Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research, Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Badmus OO, Hinds TD, Stec DE. Mechanisms Linking Metabolic-Associated Fatty Liver Disease (MAFLD) to Cardiovascular Disease. Curr Hypertens Rep 2023; 25:151-162. [PMID: 37191842 PMCID: PMC10839567 DOI: 10.1007/s11906-023-01242-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver that occurs in the majority of patients in combination with metabolic dysfunction in the form of overweight or obesity. In this review, we highlight the cardiovascular complications in MAFLD patients as well as some potential mechanisms linking MAFLD to the development of cardiovascular disease and highlight potential therapeutic approaches to treating cardiovascular diseases in patients with MAFLD. RECENT FINDINGS MAFLD is associated with an increased risk of cardiovascular diseases (CVD), including hypertension, atherosclerosis, cardiomyopathies, and chronic kidney disease. While clinical data have demonstrated the link between MAFLD and the increased risk of CVD development, the mechanisms responsible for this increased risk remain unknown. MAFLD can contribute to CVD through several mechanisms including its association with obesity and diabetes, increased levels of inflammation, and oxidative stress, as well as alterations in hepatic metabolites and hepatokines. Therapies to potentially treat MAFLD-induced include statins and lipid-lowering drugs, glucose-lowering agents, antihypertensive drugs, and antioxidant therapy.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, 40508, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
32
|
Lim TS, Chun HS, Kim SS, Kim JK, Lee M, Cho HJ, Kim SU, Cheong JY. Fibrotic Burden in the Liver Differs Across Metabolic Dysfunction-Associated Fatty Liver Disease Subtypes. Gut Liver 2023; 17:610-619. [PMID: 36799062 PMCID: PMC10352051 DOI: 10.5009/gnl220400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated fatty liver disease (MAFLD) is categorized into three subtypes: overweight/obese (OW), lean/normal weight with metabolic abnormalities, and diabetes mellitus (DM). We investigated whether fibrotic burden in liver differs across subtypes of MAFLD patients. METHODS This cross-sectional multicenter study was done in cohorts of subjects who underwent a comprehensive medical health checkup between January 2014 and December 2020. A total of 42,651 patients with ultrasound-diagnosed fatty liver were included. Patients were classified as no MAFLD, OW-MAFLD, lean-MAFLD, and DM-MAFLD. Advanced liver fibrosis was defined based on the nonalcoholic fatty liver disease fibrosis score (NFS) or fibrosis-4 (FIB-4) index. RESULTS The mean age of the patients was 50.0 years, and 74.1% were male. The proportion of patients with NFS-defined advanced liver fibrosis was the highest in DM-MAFLD (6.6%), followed by OW-MAFLD (2.0%), lean-MAFLD (1.3%), and no MAFLD (0.2%). The proportion of patients with FIB-4-defined advanced liver fibrosis was the highest in DM-MAFLD (8.6%), followed by lean-MAFLD (3.9%), OW-MAFLD (3.0%), and no MAFLD (2.0%). With the no MAFLD group as reference, the adjusted odds ratios (95% confidence intervals) for NFS-defined advanced liver fibrosis were 4.46 (2.09 to 9.51), 2.81 (1.12 to 6.39), and 9.52 (4.46 to 20.36) in OW-MAFLD, lean-MAFLD, and DM-MAFLD, respectively, and the adjusted odds ratios for FIB-4-defined advanced liver fibrosis were 1.03 (0.78 to 1.36), 1.14 (0.82 to 1.57), and 1.97 (1.48 to 2.62) in OW-MAFLD, lean-MAFLD, and DM-MAFLD. CONCLUSIONS Fibrotic burden in the liver differs across MAFLD subtypes. Optimized surveillance strategies and therapeutic options might be needed for different MAFLD subtypes.
Collapse
Affiliation(s)
- Tae Seop Lim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yongin Severance Hospital, Yongin, Korea
| | - Ho Soo Chun
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yongin Severance Hospital, Yongin, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
33
|
Donghia R, Pesole PL, Coletta S, Bonfiglio C, De Pergola G, De Nucci S, Rinaldi R, Giannelli G. Food Network Analysis in Non-Obese Patients with or without Steatosis. Nutrients 2023; 15:2713. [PMID: 37375618 DOI: 10.3390/nu15122713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Steatosis is the most common liver disease worldwide and the leading cause of liver-associated morbidity and mortality. The aim of this study was to explore the differences in blood parameters and dietary habits in non-obese patients with and without steatosis. METHODS The present study included 987 participants with BMI < 30, assessed in the fourth recall of the MICOL study. Patients were divided by steatosis grade, and a validated food frequency questionnaire (FFQ) with 28 food groups was administered. RESULTS The prevalence of non-obese participants with steatosis was 42.86%. Overall, the results indicated many statistically significant blood parameters and dietary habits. Analysis of dietary habits revealed that non-obese people with or without steatosis had similar dietary habits, although higher daily amounts of red meat, processed meat, ready meals, and alcohol were recorded in participants with liver disease (p < 0.05). CONCLUSIONS Many differences were found in non-obese people with and without steatosis, but in light of a network analysis, the two groups demonstrated similar dietary habits, proving that pathophysiological, genetic, and hormonal patterns are probably the basis of their liver status, regardless of weight. Future genetic analyses will be performed to analyze the expression of genes involved in the development of steatosis in our cohort.
Collapse
Affiliation(s)
- Rossella Donghia
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Pasqua Letizia Pesole
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Sergio Coletta
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Caterina Bonfiglio
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Giovanni De Pergola
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Sara De Nucci
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Roberta Rinaldi
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| |
Collapse
|
34
|
Maraga E, Safadi R, Amer J, Higazi AAR, Fanne RA. Alleviation of Hepatic Steatosis by Alpha-Defensin Is Associated with Enhanced Lipolysis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050983. [PMID: 37241215 DOI: 10.3390/medicina59050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: The neutrophilic peptide, alpha-defensin, is considered an evolving risk factor intimately linked with lipid mobilization. It was previously linked to augmented liver fibrosis. Here, we assess a potential association between alpha-defensin and fatty liver. Materials and Methods: A cohort of transgenic C57BL/6JDef+/+ male mice that overexpress the human neutrophil-derived alpha-defensin in their polymorphonuclear neutrophils (PMNs) were assessed for liver steatosis and fibrosis development. Wild type (C57BL/6JDef.Wt) and transgenic (C57BL/6JDef+/+) mice were maintained on a standard rodent chow diet for 8.5 months. At the termination of the experiment, systemic metabolic indices and hepatic immunological cell profiling were assessed. Results: The Def+/+ transgenic mice exhibited lower body and liver weights, lower serum fasting glucose and cholesterol, and significantly lower liver fat content. These results were associated with impaired liver lymphocytes count and function (lower CD8, NK cells, and killing marker CD107a). The metabolic cage demonstrated dominant fat utilization with a comparable food intake in the Def+/+ mice. Conclusions: Chronic physiological expression of alpha-defensin induces favorable blood metabolic profile, increased systemic lipolysis, and decreased hepatic fat accumulation. Further studies are needed to characterize the defensin net liver effect.
Collapse
Affiliation(s)
- Emad Maraga
- Department of Clinical Biochemistry, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Rifaat Safadi
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Johnny Amer
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
| | - Rami Abu Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Hospital, Jerusalem IL-91120, Israel
- Department of Cardiology, Hillel Yaffe Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
35
|
DiStefano JK, Gerhard GS. Metabolic dysfunction and nonalcoholic fatty liver disease risk in individuals with a normal body mass index. Curr Opin Gastroenterol 2023; 39:156-162. [PMID: 37144532 PMCID: PMC10201924 DOI: 10.1097/mog.0000000000000920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, but is also common in individuals with a normal body mass index (BMI), who also experience the hepatic inflammation, fibrosis, and decompensated cirrhosis associated with NAFLD progression. The clinical evaluation and treatment of NAFLD in this patient population are challenging for the gastroenterologist. A better understanding of the epidemiology, natural history, and outcomes of NAFLD in individuals with normal BMI is emerging. This review examines the relationship between metabolic dysfunction and clinical characteristics associated with NAFLD in normal-weight individuals. RECENT FINDINGS Despite a more favorable metabolic profile, normal-weight NAFLD patients exhibit metabolic dysfunction. Visceral adiposity may be a critical risk factor for NAFLD in normal-weight individuals, and waist circumference may be better than BMI for assessing metabolic risk in these patients. Although screening for NAFLD is not presently recommended, recent guidelines may assist clinicians in the diagnosis, staging, and management of NAFLD in individuals with a normal BMI. SUMMARY Individuals with a normal BMI likely develop NAFLD as a result of different etiologies. Subclinical metabolic dysfunction may be a key component of NAFLD in these patients, and efforts to better understand this relationship in this patient population are needed.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
36
|
Patel AH, Peddu D, Amin S, Elsaid MI, Minacapelli CD, Chandler TM, Catalano C, Rustgi VK. Nonalcoholic Fatty Liver Disease in Lean/Nonobese and Obese Individuals: A Comprehensive Review on Prevalence, Pathogenesis, Clinical Outcomes, and Treatment. J Clin Transl Hepatol 2023; 11:502-515. [PMID: 36643037 PMCID: PMC9817050 DOI: 10.14218/jcth.2022.00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, with an estimated prevalence of 25% globally. NAFLD is closely associated with metabolic syndrome, which are both becoming increasingly more common with increasing rates of insulin resistance, dyslipidemia, and hypertension. Although NAFLD is strongly associated with obesity, lean or nonobese NAFLD is a relatively new phenotype and occurs in patients without increased waist circumference and with or without visceral fat. Currently, there is limited literature comparing and illustrating the differences between lean/nonobese and obese NAFLD patients with regard to risk factors, pathophysiology, and clinical outcomes. In this review, we aim to define and further delineate different phenotypes of NAFLD and present a comprehensive review on the prevalence, incidence, risk factors, genetic predisposition, and pathophysiology. Furthermore, we discuss and compare the clinical outcomes, such as insulin resistance, dyslipidemia, hypertension, coronary artery disease, mortality, and progression to nonalcoholic steatohepatitis, among lean/nonobese and obese NAFLD patients. Finally, we summarize the most up to date current management of NAFLD, including lifestyle interventions, pharmacologic therapies, and surgical options.
Collapse
Affiliation(s)
- Ankoor H. Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Dhiraj Peddu
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sahil Amin
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mohamed I. Elsaid
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Secondary Data Core, Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Carlos D. Minacapelli
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Toni-Marie Chandler
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Carolyn Catalano
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vinod K. Rustgi
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
37
|
Fan H, Liu Z, Zhang P, Wu S, Han X, Huang Y, Zhu Y, Chen X, Zhang T. Characteristics and long-term mortality of patients with non-MAFLD hepatic steatosis. Hepatol Int 2023; 17:615-625. [PMID: 37000387 DOI: 10.1007/s12072-023-10512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/04/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND & AIMS A cluster of hepatic steatosis without metabolic abnormalities has been excluded by the MAFLD definition, referred to as non-MAFLD steatosis. We aimed to characterize the non-MAFLD steatosis. METHODS We included 16,308 individuals from the UK Biobank who had magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) to describe the clinical and genetic features of non-MAFLD steatosis in a cross-sectional design, and 14,797 individuals of the NHANES III who underwent abdominal ultrasonography at baseline to assess the long-term mortality of non-MAFLD steatosis in a prospective cohort design. RESULTS Of 16,308 individuals in the UK Biobank, 2747 fatty liver disease (FLD) cases (2604 MAFLD and 143 non-MAFLD) and 3007 healthy controls (without metabolic dysfunctions) were identified. The mean PDFF (10.65 vs. 9.00) and the proportion of advanced fibrosis (fibrosis-4 index > 2.67, 1.27% vs. 1.40%) were comparable between MAFLD and non-MAFLD steatosis. Non-MAFLD steatosis has the highest minor allele frequency of PNPLA3 rs738409, TM6SF2 rs58542926, and GCKR rs1260326 in contrast to the other two groups. The genetic risk score calculated by PNPLA3, TM6SF2, and GCKR has a certain predictive ability for non-MAFLD steatosis (AUROC = 0.69). NHANES III population showed that compared to healthy individuals, the adjusted hazard ratio of non-MAFLD steatosis increased by 1.52 (95% confidence interval: 1.21-1.91) and 1.78 (95% confidence interval: 1.03-3.07) for all-cause and heart disease-related mortality, respectively. CONCLUSIONS Non-MAFLD steatosis has comparable degrees of hepatic steatosis and fibrosis to MAFLD and increases the risk of mortality. Genetic predisposition highly contributes to the risk of non-MAFLD steatosis.
Collapse
Affiliation(s)
- Hong Fan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Zhenqiu Liu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
| | - Pengyan Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Sheng Wu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xinyu Han
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yiwen Huang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yichen Zhu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xingdong Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| |
Collapse
|
38
|
Chan WK. Comparison between obese and non-obese nonalcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S58-S67. [PMID: 36472052 PMCID: PMC10029940 DOI: 10.3350/cmh.2022.0350] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions that are characterized by excess accumulation of fat in the liver, and is diagnosed after exclusion of significant alcohol intake and other causes of chronic liver disease. In the majority of cases, NAFLD is associated with overnutrition and obesity, although it may be also found in lean or non-obese individuals. It has been estimated that 19.2% of NAFLD patients are lean and 40.8% are non-obese. The proportion of patients with more severe liver disease and the incidence of all-cause mortality, liver-related mortality, and cardiovascular mortality among non-obese and obese NAFLD patients varies across studies and may be confounded by selection bias, underestimation of alcohol intake, and unaccounted weight changes over time. Genetic factors may have a greater effect towards the development of NAFLD in lean or non-obese individuals, but the effect may be less pronounced in the presence of strong environmental factors, such as poor dietary choices and a sedentary lifestyle, as body mass index increases in the obese state. Overall, non-invasive tests, such as the Fibrosis-4 index, NAFLD fibrosis score, and liver stiffness measurement, perform better in lean or non-obese patients compared to obese patients. Lifestyle intervention works in non-obese patients, and less amount of weight loss may be required to achieve similar results compared to obese patients. Pharmacological therapy in non-obese NAFLD patients may require special consideration and a different approach compared to obese patients.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Kotlyarov S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:597-615. [PMID: 36742172 PMCID: PMC9896611 DOI: 10.3748/wjg.v29.i4.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty liver disease (NAFLD), which is associated with negative epidemiological data on the prevalence of the disease and its clinical significance. NAFLD is closely related to the metabolic syndrome and these relationships are the subject of active research. A growing body of evidence shows cross-linkages between metabolic abnormalities and the innate immune system in the development and progression of NAFLD. These links are bidirectional and largely still unclear, but a better understanding of them will improve the quality of diagnosis and management of patients. In addition, lipid metabolic disorders and the innate immune system link NAFLD with other diseases, such as atherosclerosis, which is of great clinical importance.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
40
|
Kuang M, Yang R, Xie Q, Peng N, Lu S, Xie G, Zhang S, Zou Y. The role of predicted lean body mass and fat mass in non-alcoholic fatty liver disease in both sexes: Results from a secondary analysis of the NAGALA study. Front Nutr 2023; 10:1103665. [PMID: 36742435 PMCID: PMC9894318 DOI: 10.3389/fnut.2023.1103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Objective High body mass index (BMI) is an important risk factor for non-alcoholic fatty liver disease (NAFLD). However, the association of body composition such as fat mass (FM) and lean body mass (LBM) with NAFLD has not been adequately studied. The purpose of this study was to clarify the contribution of body composition FM and LBM to NAFLD. Methods We analyzed data from 7,411 men and 6,840 women in the NAGALA cohort study. LBM and FM were estimated for all subjects using validated anthropometric prediction equations previously developed from the National Health and Nutrition Examination Survey (NHANES). Using multiple logistic regression and restricted cubic spline (RCS) to analyze the association and the dose-response curve of predicted LBM and FM with NAFLD in both sexes. Results The prevalence of NAFLD in man and woman subjects was 27.37 and 6.99%, respectively. Predicted FM was positively and linearly associated with NAFLD in both sexes, with each 1 kg increase in predicted FM associated with a 27 and 40% increased risk of NAFLD in men and women, respectively. In contrast, predicted LBM was negatively associated with NAFLD in both sexes, with each 1 kg increase in predicted LBM reducing the risk of NAFLD by 4 and 19% in men and women, respectively. In addition, according to the RCS curve, the risk of NAFLD did not change in men when the predicted LBM was between 47 and 52 kg, and there seemed to be a saturation effect; further, the threshold value of the saturation effect was calculated to be about 52.08 kg by two-piecewise logistic regression, and the protective effect on NAFLD would be significantly enhanced when the man predicted LBM was greater than 52.08 kg. Conclusion The current findings suggested that body composition LBM and FM had opposite associations with NAFLD in both sexes, with higher LBM associated with a lower risk of NAFLD and higher FM increasing the risk of NAFLD, especially in women.
Collapse
Affiliation(s)
- Maobin Kuang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Ruijuan Yang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Endocrinology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qiyang Xie
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Nan Peng
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Song Lu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guobo Xie
- Department of Cardiology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Shuhua Zhang,
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,Yang Zou,
| |
Collapse
|
41
|
Association of liver fibrosis biomarkers with overall and CVD mortality in the Korean population: The Dong-gu study. PLoS One 2022; 17:e0277729. [PMID: 36512564 PMCID: PMC9747044 DOI: 10.1371/journal.pone.0277729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
This study evaluated the associations of liver fibrosis biomarkers [non-alcoholic fatty liver disease fibrosis score (NFS), fibrosis-4 (FIB-4), aspartate aminotransferase/platelet ratio index (APRI), and BARD score] with mortality in Korean adults aged ≥50 years. We analyzed 7,702 subjects who participated in Dong-gu Study. The associations of liber fibrosis biomarkers with mortality were investigated using Cox proportional hazards models. Overall mortality increased with increasing NFS level [adjusted hazard ratio (aHR) 4.3, 95% confidence interval (CI) 3.3-5.5 for high risk vs. low risk], increasing FIB-4 level (aHR 3.5, 95% CI 2.9-4.4 for high risk vs. low risk), and increasing APRI level (aHR 3.5, 95% CI 2.1-5.8 for high risk vs. low risk) but not with BARD score. The Harrell's concordance index for overall mortality for the NFS and FIB-4 was greater than that for the APRI and BARD score. In conclusion, NFS, FIB-4, and APRI showed a significant relationship with the overall mortality, and NFS and FIB-4 showed a significant relationship with the CVD mortality after adjustment for covariates. In addition, the NFS and FIB-4 were more predictive of overall mortality than the APRI and BARD score in Korean adults aged ≥50 years.
Collapse
|
42
|
Lee H, Lim TS, Kim SU, Kim HC. Long-term cardiovascular outcomes differ across metabolic dysfunction-associated fatty liver disease subtypes among middle-aged population. Hepatol Int 2022; 16:1308-1317. [PMID: 36070124 DOI: 10.1007/s12072-022-10407-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The new metabolic dysfunction-associated fatty liver disease (MAFLD) criteria include the following three distinct subtypes: MAFLD with diabetes mellitus (DM), overweight/obese (OW), or lean/normal weight with metabolic dysfunction. We investigated whether long-term cardiovascular disease outcomes differ across the MAFLD subtypes. METHODS From a nationwide health screening database, we included 8,412,730 participants (48.6% males) aged 40-64 years, free of cardiovascular disease history, between 2009 and 2010. Participants were categorized into non-MAFLD, OW-MAFLD, lean-MAFLD, and DM-MAFLD. The primary outcome was a composite cardiovascular disease event, including myocardial infarction, ischemic stroke, heart failure, or cardiovascular disease-related death. The presence of advanced liver fibrosis was estimated using a BARD score ≥ 2. RESULTS Among the study participants, 3,087,640 (36.7%) had MAFLD, among which 2,424,086 (78.5%), 170,761 (5.5%), and 492,793 (16.0%) had OW-MAFLD, lean-MAFLD, and DM-MAFLD, respectively. Over a median follow-up period of 10.0 years, 169,433 new cardiovascular disease events occurred. With the non-MAFLD group as reference, multivariable-adjusted hazard ratios (95% confidence intervals) for cardiovascular disease events were 1.16 (1.15-1.18), 1.23 (1.20-1.27), and 1.82 (1.80-1.85) in the OW-MAFLD, lean-MAFLD, and DM-MAFLD groups, respectively. Participants with lean-MAFLD or DM-MAFLD had a higher cardiovascular disease risk than those with OW-MAFLD, irrespective of metabolic abnormalities or comorbidities. The presence of advanced liver fibrosis was significantly associated with a higher cardiovascular disease risk in each MAFLD subtype. CONCLUSION Long-term cardiovascular disease outcomes differed across the MAFLD subtypes. Further studies are required to investigate whether preventive or therapeutic interventions should be optimized according to the MAFLD subtypes.
Collapse
Affiliation(s)
- Hokyou Lee
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Seop Lim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Internal Medicine, Yongin Severance Hospital, Yongin, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Yonsei Liver Center, Severance Hospital, Seoul, Korea.
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
43
|
Lan Y, Lu Y, Li J, Hu S, Chen S, Wang Y, Yuan X, Liu H, Wang X, Wu S, Wang L. Outcomes of subjects who are lean, overweight or obese with nonalcoholic fatty liver disease: A cohort study in China. Hepatol Commun 2022; 6:3393-3405. [PMID: 36281973 PMCID: PMC9701482 DOI: 10.1002/hep4.2081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023] Open
Abstract
The ability to determine the prognosis of lean nonalcoholic fatty liver disease (NAFLD) is essential for decision making in clinical settings. Using a large community-based Chinese cohort, we aimed to investigate NAFLD outcomes by body mass index (BMI). We used the restricted cubic splines method to investigate the dose-response relationship between BMI and outcomes in subjects with NAFLD and those without NAFLD. We included 73,907 subjects from the Kailuan cohort and grouped all subjects into four phenotypes by using NAFLD and BMI (<23 kg/m2 ). The probability of developing outcomes for individuals with lean NAFLD (LN), overweight/obese NAFLD (ON), overweight/obese non-NAFLD (ONN), and lean non-NAFLD (LNN) was estimated. We found a U-shaped association between BMI and death but a linear positive association concerning cardiovascular disease (CVD) after adjusting for age and other covariates. Compared with the LNN group, the adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of the LN, ON, and ONN groups were 1.30 (1.14-1.49), 0.86 (0.80-0.91), 0.84 (0.80-0.89) for all-cause death, 2.61 (1.13-6.03), 0.74 (0.44-1.26), 1.10 (0.70-1.74) for liver-related death, 2.12 (1.46-3.08), 1.23 (0.99-1.54), 1.19 (0.98-1.43) for digestive system cancers, and 2.04 (1.40-2.96), 1.30 (1.05-1.61), 1.21 (1.01-1.46) for obesity-related cancers. Subjects with LN had a significantly higher risk of colorectal cancer and esophagus cancer. However, the ON group had the highest CVD risk (HR, 1.39; 95% CI, 1.27-1.52). The LN group with hypertension had a higher risk of adverse outcomes, and those without hypertension had a similar risk compared to LNN. Conclusion: Subjects with LN may experience a higher risk of all-cause death, digestive system cancers, and obesity-related cancers than the other three groups but a lower risk of CVD than ON subjects. LN with hypertension may be a high-risk phenotype.
Collapse
Affiliation(s)
- Yanqi Lan
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Ying Lu
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Jinfeng Li
- Cardiology DepartmentKailuan General HospitalTangshanChina
| | - Shiqi Hu
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Shuohua Chen
- Cardiology DepartmentKailuan General HospitalTangshanChina
| | - Yanhong Wang
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaojie Yuan
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Hongmin Liu
- Cardiology DepartmentKailuan General HospitalTangshanChina
| | - Xiaomo Wang
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Shouling Wu
- Cardiology DepartmentKailuan General HospitalTangshanChina
| | - Li Wang
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
44
|
Younossi ZM, Yilmaz Y, Yu ML, Wai-Sun Wong V, Fernandez MC, Isakov VA, Duseja AK, Mendez-Sanchez N, Eguchi Y, Bugianesi E, Burra P, George J, Fan JG, Papatheodoridis GV, Chan WK, Alswat K, Saeed HS, Singal AK, Romero-Gomez M, Gordon SC, Roberts SK, El Kassas M, Kugelmas M, Ong JP, Alqahtani S, Ziayee M, Lam B, Younossi I, Racila A, Henry L, Stepanova M. Clinical and Patient-Reported Outcomes From Patients With Nonalcoholic Fatty Liver Disease Across the World: Data From the Global Non-Alcoholic Steatohepatitis (NASH)/ Non-Alcoholic Fatty Liver Disease (NAFLD) Registry. Clin Gastroenterol Hepatol 2022; 20:2296-2306.e6. [PMID: 34768009 DOI: 10.1016/j.cgh.2021.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Globally, nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. We assessed the clinical presentation and patient-reported outcomes (PROs) among NAFLD patients from different countries. METHODS Clinical, laboratory, and PRO data (Chronic Liver Disease Questionnaire-nonalcoholic steatohepatitis [NASH], Functional Assessment of Chronic Illness Therapy-Fatigue, and the Work Productivity and Activity Index) were collected from NAFLD patients seen in real-world practices and enrolled in the Global NAFLD/NASH Registry encompassing 18 countries in 6 global burden of disease super-regions. RESULTS Across the global burden of disease super-regions, NAFLD patients (n = 5691) were oldest in Latin America and Eastern Europe and youngest in South Asia. Most men were enrolled at the Southeast and South Asia sites. Latin America and South Asia had the highest employment rates (>60%). Rates of cirrhosis varied (12%-21%), and were highest in North Africa/Middle East and Eastern Europe. Rates of metabolic syndrome components varied: 20% to 25% in South Asia and 60% to 80% in Eastern Europe. Chronic Liver Disease Questionnaire-NASH and Functional Assessment of Chronic Illness Therapy-Fatigue PRO scores were lower in NAFLD patients than general population norms (all P < .001). Across the super-regions, the lowest PRO scores were seen in Eastern Europe and North Africa/Middle East. In multivariate analysis adjusted for enrollment region, independent predictors of lower PRO scores included younger age, women, and nonhepatic comorbidities including fatigue (P < .01). Patients whose fatigue scores improved over time experienced a substantial PRO improvement. Nearly 8% of Global NAFLD/NASH Registry patients had a lean body mass index, with fewer metabolic syndrome components, fewer comorbidities, less cirrhosis, and significantly better PRO scores (P < .01). CONCLUSIONS NAFLD patients seen in real-world practices in different countries experience a high comorbidity burden and impaired quality of life. Future research using global data will enable more precise management and treatment strategies for these patients.
Collapse
Affiliation(s)
- Zobair M Younossi
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia; Medicine Service Line, Inova Health Sytem, Falls Church, Virginia.
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Istanbul, Turkey; Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Ming-Lung Yu
- Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | | | - Vasily A Isakov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ajay K Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nahum Mendez-Sanchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico
| | - Yuichiro Eguchi
- Locomedical General Institute, Locomedical Medical Cooperation, Ogi, Saga, Japan
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Australia
| | - Jian-Gao Fan
- Xinhua Hospital, Shanghai Jiatong University School of Medicine, Shanghai, China
| | | | - Wah Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalid Alswat
- Liver Disease Research Center, Department of Medicine, College of Medicine, King Saud University, Saudi Arabia
| | - Hamid S Saeed
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ashwani K Singal
- University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota
| | - Manuel Romero-Gomez
- Digestive Diseases Department, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, University of Seville, Spain
| | - Stuart C Gordon
- Henry Ford Hospital System, Department Gastroenterology and Hepatology, Wayne State University School of Medicine, Detroit, Michigan
| | - Stuart K Roberts
- The Alfred, Department of Hepatology and Gastroenterology, Monash University, Melbourne Victoria, Australia
| | - Mohamed El Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | | | - Janus P Ong
- University of the Philippines, College of Medicine, Manila, Philippines; Center for Outcomes Research in Liver Disease, Washington District of Columbia, Riyadh, Saudi Arabia
| | - Saleh Alqahtani
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| | - Mariam Ziayee
- Center for Outcomes Research in Liver Disease, Washington District of Columbia, Riyadh, Saudi Arabia
| | - Brian Lam
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia; Medicine Service Line, Inova Health Sytem, Falls Church, Virginia; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| | - Issah Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| | - Andrei Racila
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia; Medicine Service Line, Inova Health Sytem, Falls Church, Virginia; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| | - Linda Henry
- Center for Outcomes Research in Liver Disease, Washington District of Columbia, Riyadh, Saudi Arabia; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| | - Maria Stepanova
- Center for Outcomes Research in Liver Disease, Washington District of Columbia, Riyadh, Saudi Arabia; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| |
Collapse
|
45
|
Cavalcante LN, Dezan MGF, Paz CLDSL, Lyra AC. RISK FACTORS FOR HEPATOCELLULAR CARCINOMA IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:540-548. [PMID: 36515349 DOI: 10.1590/s0004-2803.202204000-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Non-alcoholic fatty liver disease is growing in worldwide prevalence and thus, is expected to have a higher number of NAFLD-related hepatocellular carcinoma (HCC) in the following years. This review describes the risk factors associated with HCC in NAFLD-patients. The presence of liver cirrhosis is the preponderant one. Male gender, PNPLA3 variants, diabetes, and obesity also appear to predispose to the development of HCC, even in non-cirrhotic subjects. Thus far, intensive lifestyle modifications, including glycemic control, and obesity treatment, are effective therapies for NAFLD/ non-alcoholic steatohepatitis and, therefore, probably, also for HCC. Some drugs that aimed at decreasing inflammatory activity and fibrosis, as well as obesity, were studied. Other data have suggested the possibility of HCC chemoprevention. So far, however, there is no definitive evidence for the routine utilization of these drugs. We hope, in the future, to be able to profile patients at higher risk of NAFLD-HCC and outline strategies for early diagnosis and prevention.
Collapse
Affiliation(s)
- Lourianne Nascimento Cavalcante
- Universidade Federal da Bahia, Salvador, BA, Brasil.,Hospital São Rafael, Serviço de Gastro-Hepatologia, Salvador, BA, Brasil
| | | | | | - André Castro Lyra
- Universidade Federal da Bahia, Salvador, BA, Brasil.,Hospital São Rafael, Serviço de Gastro-Hepatologia, Salvador, BA, Brasil
| |
Collapse
|
46
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
47
|
Le MH, Yeo YH, Zou B, Barnet S, Henry L, Cheung R, Nguyen MH. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin Mol Hepatol 2022; 28:841-850. [PMID: 36117442 PMCID: PMC9597215 DOI: 10.3350/cmh.2022.0239] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS Due to increases in obesity and type 2 diabetes, the prevalence of nonalcoholic fatty liver disease (NAFLD) has also been increasing. Current forecast models may not include non-obese NAFLD. Here, we used the Bayesian approach to forecast the prevalence of NAFLD through the year 2040. METHODS Prevalence data from 245 articles involving 2,699,627 persons were used with a hierarchical Bayesian approach to forecast the prevalence of NAFLD through 2040. Subgroup analyses were performed for age, gender, presence of metabolic syndrome, region, and smoking status. Sensitivity analysis was conducted for clinical setting and study quality. RESULTS The forecasted 2040 prevalence was 55.7%, a three-fold increase since 1990 and a 43.2% increase from the 2020 prevalence of 38.9%. The estimated average yearly increase since 2020 was 2.16%. For those aged <50 years and ≥50 years, the 2040 prevalence were not significantly different (56.7% vs. 61.5%, P=0.52). There was a significant difference in 2040 prevalence by sex (males: 60% vs. 50%) but the trend was steeper for females (annual percentage change: 2.5% vs. 1.5%, P=0.025). There was no difference in trends overtime by region (P=0.48). The increase rate was significantly higher in those without metabolic syndrome (3.8% vs. 0.84%, P=0.003) and smokers (1.4% vs. 1.1%, P=0.011). There was no difference by clinical/community setting (P=0.491) or study quality (P=0.85). CONCLUSION By 2040, over half the adult population is forecasted to have NAFLD. The largest increases are expected to occur in women, smokers, and those without metabolic syndrome. Intensified efforts are needed to raise awareness of NAFLD and to determine long-term solutions addressing the driving factors of the disease.
Collapse
Affiliation(s)
- Michael H. Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yee Hui Yeo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biyao Zou
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| | - Scott Barnet
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Linda Henry
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Division of Gastroenterology and Hepatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA, USA
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
48
|
Long MT, Noureddin M, Lim JK. AGA Clinical Practice Update: Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Lean Individuals: Expert Review. Gastroenterology 2022; 163:764-774.e1. [PMID: 35842345 PMCID: PMC9398982 DOI: 10.1053/j.gastro.2022.06.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
DESCRIPTION Nonalcoholic fatty liver disease (NAFLD) is well recognized as a leading etiology for chronic liver disease, affecting >25% of the US and global populations. Up to 1 in 4 individuals with NAFLD have nonalcoholic steatohepatitis, which is associated with significant morbidity and mortality due to complications of liver cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Although NAFLD is observed predominantly in persons with obesity and/or type 2 diabetes mellitus, an estimated 7%-20% of individuals with NAFLD have lean body habitus. Limited guidance is available to clinicians on appropriate clinical evaluation in lean individuals with NAFLD, such as for inherited/genetic disorders, lipodystrophy, drug-induced NAFLD, and inflammatory disorders. Emerging data now provide more robust evidence to define the epidemiology, natural history, prognosis, and mortality of lean individuals with NAFLD. Multiple studies have found that NAFLD among lean individuals is associated with increased cardiovascular, liver, and all-cause mortality relative to those without NAFLD. This American Gastroenterological Association Clinical Practice Update provides Best Practice Advice to assist clinicians in evidence-based approaches to the diagnosis, staging, and management of NAFLD in lean individuals. METHODS This expert review was commissioned and approved by the American Gastroenterological Association (AGA) Institute Clinical Practice Updates Committee and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership and underwent internal peer review by the Clinical Practice Updates Committee and external peer review through standard procedures of Gastroenterology. Best Practice Advice Statements BEST PRACTICE ADVICE 1: Lean NAFLD should be diagnosed in individuals with NAFLD and body mass index <25 kg/m2 (non-Asian race) or body mass index <23 kg/m2 (Asian race). BEST PRACTICE ADVICE 2: Lean individuals with NAFLD should be evaluated routinely for comorbid conditions, such as type 2 diabetes mellitus, dyslipidemia, and hypertension. BEST PRACTICE ADVICE 3: Lean individuals with NAFLD should be risk stratified for hepatic fibrosis to identify those with advanced fibrosis or cirrhosis. BEST PRACTICE ADVICE 4: Lean individuals in the general population should not undergo routine screening for NAFLD; however, screening should be considered for individuals older than 40 years with type 2 diabetes mellitus. BEST PRACTICE ADVICE 5: NAFLD should be considered in lean individuals with metabolic diseases (such as type 2 diabetes mellitus, dyslipidemia, and hypertension), elevated liver biochemical tests, or incidentally noted hepatic steatosis. BEST PRACTICE ADVICE 6: Clinicians should query patients routinely regarding alcohol consumption patterns in all patients with lean NAFLD. BEST PRACTICE ADVICE 7: In patients with lean NAFLD, other causes of liver disease should be ruled out, including other causes of fatty liver, such as HIV, lipodystrophy, lysosomal acid lipase deficiency, familial hypobetalipoproteinemia, and medication-induced hepatic steatosis (methotrexate, amiodarone, tamoxifen, and steroids). BEST PRACTICE ADVICE 8: Current evidence is inadequate to support routine testing for genetic variants in patients with lean NAFLD. BEST PRACTICE ADVICE 9: Liver biopsy, as the reference standard, should be considered if there is uncertainty regarding contributing causes of liver injury and/or the stage of liver fibrosis. BEST PRACTICE ADVICE 10: Serum indices (NAFLD fibrosis score and Fibrosis-4 score) and imaging techniques (transient elastography and magnetic resonance elastography) may be used as alternatives to liver biopsy for fibrosis staging and patient follow-up. These tests can be performed at the time of diagnosis and repeated at intervals of 6 months to 2 years, depending on fibrosis stage and the patient's response to intervention. BEST PRACTICE ADVICE 11: If noninvasive tests (eg, Fibrosis-4 and NAFLD fibrosis score) are indeterminate, a second noninvasive test (eg, transient elastography or magnetic resonance elastography) should be performed to confirm the stage and prognosis of NAFLD. BEST PRACTICE ADVICE 12: In lean patients with NAFLD, lifestyle intervention, including exercise, diet modification, and avoidance of fructose- and sugar-sweetened drinks, to target a modest weight loss of 3%-5% is suggested. BEST PRACTICE ADVICE 13: Administration of vitamin E may be considered in lean persons with biopsy-confirmed nonalcoholic steatohepatitis, but without type 2 diabetes mellitus or cirrhosis. Oral pioglitazone 30 mg daily may be considered in lean persons with biopsy-confirmed nonalcoholic steatohepatitis without cirrhosis. BEST PRACTICE ADVICE 14: The therapeutic role of glucagon-like peptide-1 agonists and sodium-glucose cotransporter-2 inhibitors in the management of lean NAFLD is not fully defined and requires further investigation. BEST PRACTICE ADVICE 15: Hepatocellular carcinoma surveillance with abdominal ultrasound with or without serum α-fetoprotein twice per year is suggested in patients with lean NAFLD and clinical markers compatible with liver cirrhosis.
Collapse
Affiliation(s)
- Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts.
| | - Mazen Noureddin
- Fatty Liver Program, Karsh Division of Gastroenterology and Hepatology, Cedars Sinai Medical Center, Los Angeles, California
| | - Joseph K Lim
- Section of Digestive Diseases and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
49
|
Xu R, Pan J, Zhou W, Ji G, Dang Y. Recent advances in lean NAFLD. Biomed Pharmacother 2022; 153:113331. [PMID: 35779422 DOI: 10.1016/j.biopha.2022.113331] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023] Open
Abstract
As the predominant type of chronic liver disease, the growing prevalence of nonalcoholic fatty liver disease (NAFLD) has become a concern worldwide. Although obesity plays the most pivotal role in NAFLD, approximately 10-20% of individuals with NAFLD who are not overweight or obese (BMI < 25 kg/m2, or BMI < 23 kg/m2 in Asians) have "lean NAFLD." Lean individuals with NAFLD have a lower prevalence of diabetes, hypertension, hypertriglyceridemia, central obesity, and metabolic syndrome than nonlean individuals with NAFLD, but higher fibrosis scores and rates of cardiovascular morbidity and all-cause mortality in advanced stages. The pathophysiological mechanisms of lean NAFLD remain poorly understood. Studies have shown that lean NAFLD is more correlated with factors such as environmental, genetic susceptibility, and epigenetic regulation. This review will examine the way in which the research progress and characteristic of lean NAFLD, and explore the function of epigenetic modification to provide the basis for the clinical treatment and diagnosis of lean NAFLD.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
50
|
Association between non-alcoholic fatty liver disease and metabolically healthy deterioration across different body shape phenotypes at baseline and change patterns. Sci Rep 2022; 12:14786. [PMID: 36042236 PMCID: PMC9427771 DOI: 10.1038/s41598-022-18988-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome (MetS), and the relationship between NAFLD and metabolic deterioration remains unclear. This study aimed to investigate dynamic changes in metabolically healthy phenotypes and to assess the impact of non-alcoholic fatty liver disease (NAFLD) on the conversion from metabolically healthy (MH) to metabolically unhealthy (MU) phenotypes across body shape phenotypes and phenotypic change patterns. We defined body shape phenotypes using both the body mass index (BMI) and waist circumference (WC) and defined metabolic health as individuals scoring ≤ 1 on the NCEP-ATP III criteria, excluding WC. A total of 12,910 Chinese participants who were MH at baseline were enrolled in 2013 and followed-up in 2019 or 2020. During a median follow-up of 6.9 years, 27.0% (n = 3,486) of the MH individuals developed an MU phenotype. According to the multivariate Cox analyses, NAFLD was a significant predictor of conversion from the MH to MU phenotype, independent of potential confounders (HR: 1.12; 95% confidence interval: 1.02–1.22). For the MH-normal weight group, the relative risk of NAFLD in phenotypic conversion was 1.21 (95% CI 1.03–1.41, P = 0.017), which was relatively higher than that of MH-overweight/obesity group (HR: 1.14, 95% CI 1.02–1.26, P = 0.013). Interestingly, the effect of NAFLD at baseline on MH deterioration was stronger in the “lean” phenotype group than in the “non-lean” phenotype group at baseline and in the “fluctuating non-lean” phenotype change pattern group than in the “stable non-lean” phenotype change pattern group during follow-up. In conclusion, lean NAFLD is not as benign as currently considered and requires more attention during metabolic status screening.
Collapse
|