1
|
Amin A, Salman TM. Glucagon in glucose homeostasis and metabolic disease: from physiology to therapeutics. J Basic Clin Physiol Pharmacol 2025:jbcpp-2025-0005. [PMID: 40314189 DOI: 10.1515/jbcpp-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/06/2025] [Indexed: 05/03/2025]
Abstract
Glucagon, a key hormone in glucose homeostasis, plays a central role in maintaining blood glucose levels through hepatic glycogenolysis and gluconeogenesis. Historically, glucagon secretion was believed to be primarily regulated by insulin via the "insulin switch-off" hypothesis, where reduced insulin levels triggered glucagon release. However, this view has been revisited as emerging evidence highlights the complexity of glucagon regulation. New studies demonstrate that glucose itself, along with amino acids and fatty acid oxidation, directly influences glucagon secretion, challenging the insulin-centric perspective. These findings reveal the metabolic versatility of pancreatic α-cells and their capacity to adapt to nutrient availability. Recent therapeutic innovations, such as glucagon receptor antagonists, dual GLP-1/glucagon receptor agonists, and modulators of hepatic glucagon signalling, offer promising strategies to mitigate hyperglycemia, improve energy balance, and address metabolic dysregulation. This review provides an in-depth analysis of glucagon's role in health and disease, emphasizing its therapeutic potential in managing diabetes and related metabolic conditions.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Toyin Mohammed Salman
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Hill TG, Briant LJB, Kim A, Wu Y, Rorsman P, Wernstedt Asterholm I, Benrick A. Dehydration-induced AVP stimulates glucagon release and ketogenesis. Am J Physiol Endocrinol Metab 2025; 328:E633-E644. [PMID: 40099572 DOI: 10.1152/ajpendo.00505.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Gliflozins, such as dapagliflozin, belong to a class of drugs that inhibit the sodium-glucose cotransporter 2. Gliflozins have been found to raise glucagon levels, a hormone secreted from pancreatic islet α-cells, which can trigger ketosis. However, the precise mechanisms through which gliflozins increase glucagon secretion remain poorly understood. In addition, gliflozins induce osmotic diuresis, resulting in increased urine volume and plasma osmolality. In this study, we investigated the hypothesis that a compensatory increase in arginine-vasopressin (AVP) mediates dapagliflozin-induced increases in glucagon in vivo. We show that dapagliflozin does not increase glucagon secretion in the perfused mouse pancreas, neither at clinical nor at supra-clinical doses. In contrast, AVP potently increases glucagon secretion. In vivo, dapagliflozin increased plasma glucagon, osmolality, and AVP. An oral load with hypertonic saline amplified dapagliflozin-induced glucagon secretion. Notably, a similar increase in glucagon could also be elicited by dehydration, evoked by 24-h water restriction. Conversely, blockade of vasopressin 1b receptor signaling, with either pharmacological antagonism or knockout of the receptor, resulted in reduced dapagliflozin-induced glucagon secretion in response to both dapagliflozin and dehydration. Finally, blocking vasopressin 1b receptor signaling in a mouse model of type 1 diabetes diminished the glucagon-promoting and ketogenic effects of dapagliflozin. Collectively, our data suggest that AVP is an important regulator of glucagon release during both drug-induced and physiological dehydration.NEW & NOTEWORTHY Gliflozin-induced ketogenic effects partly result from increased glucagon levels. This study shows that dapagliflozin-triggered glucagon secretion is not directly mediated by the pancreas but rather linked to arginine-vasopressin (AVP). Dehydration, common in diabetic ketoacidosis, elevates AVP, potentially explaining the increased ketoacidosis risk in gliflozin-treated patients. Thus, our results highlight AVP as a potential therapeutic target to mitigate the risk of ketoacidosis associated with gliflozin treatments in patients with diabetes.
Collapse
Affiliation(s)
- Thomas G Hill
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Linford J B Briant
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States
| | - Yanling Wu
- Institute of Neuroscience and Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Institute of Neuroscience and Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Institute of Neuroscience and Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Benrick
- Institute of Neuroscience and Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| |
Collapse
|
3
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
4
|
Zhang L, Qin Y, Huang Y, Hu Q, Wu Q, Wang X, Zhang M. Abnormal late postprandial glucagon response in type 1 diabetes is a function of differences in stimulated C-peptide concentrations. Front Endocrinol (Lausanne) 2024; 15:1419329. [PMID: 39149119 PMCID: PMC11324558 DOI: 10.3389/fendo.2024.1419329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background The functional changes in alpha cells in patients with type 1 diabetes (T1D) with different residual beta cell functions remain poorly elucidated. The study aimed to investigate the relationship between glucagon secretion and C-peptide levels and to explore the relationship between glucagon response and glucose increment in respond to a secretagogue in a steamed bread meal tolerance test (BMTT) in T1D. Methods The study enrolled 43 adult patients with T1D and 24 healthy control subjects. Patients with T1D who underwent BMTT were divided into two groups based on peak C-peptide levels: C peptide low (CPL; C-peptide < 200 pmol/L; n=14) and high (CPH; C peptide ≥ 200 pmol/L; n=29). Plasma glucose, C-peptide, glucagon levels at 0, 30, 60, 120, and 180 min were measured. The glucagon response to the BMTT was defined by areas under the curve (AUC) as early (AUC0-30), late (AUC30-180), or total (AUC0-180) glucagon. Results Compared to healthy individuals, fasting plasma glucagon was lower and postprandial plasma glucagon level was increased in patients with T1D. Glucagon levels after BMTT between the CPL and CPH group showed significant group by time interaction. Peak glucagon and glucagon at 60-180 min, total and late glucagon response were higher in CPL than CPH group, while fasting glucagon and early glucagon response adjusted for glucose were comparable between CPL and CPH group. The higher late glucagon response and late glucagon response adjusted for glucose were associated with lower peak C-peptide in T1D. The higher late glucagon response and lower peak C-peptide were associated with the higher value of ▵glucose at 180 min. Conclusion Stimulated C-peptide levels affect the paradoxical increase in postprandial glucagon secretion in patients with T1D, especially late glucagon response. The exaggerated postprandial glucagon secretion further stimulates the elevation of postprandial glucose in patients with T1D.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiting Huang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qizhen Hu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Wang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Guo W, Gao L, Mo H, Deng H, Zhao Y, Xu G. Mechano-sensor Piezo1 inhibits glucagon production in pancreatic α-cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167185. [PMID: 38653360 DOI: 10.1016/j.bbadis.2024.167185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenying Guo
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Handan Deng
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
6
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Abstract
Glucagon hypersecretion from the pancreatic α-cell is a characteristic sign of diabetes, which exacerbates fasting hyperglycemia. Thus, targeting glucagon secretion from α-cells may be a promising approach for combating hyperglucagonemia. We have recently identified stathmin-2 as an α-cell protein that regulates glucagon secretion by directing glucagon toward the endolysosomal system in αTC1-6 cells. We hypothesized that disruption of Stmn2-mediated trafficking of glucagon to the endolysosomes in diabetes contributes to hyperglucagonemia. In isolated islets from male mice treated with streptozotocin (STZ), glucagon secretion and cellular content were augmented, but cellular Stmn2 levels were reduced (p < .01), as measured by both ELISA and immunofluorescence intensity. Using confocal immunofluorescence microscopy, the colocalization of glucagon and Stmn2 in Lamp2A+ lysosomes was dramatically reduced (p < .001) in islets from diabetic mice, and the colocalization of Stmn2, but not glucagon, with the late endosome marker, Rab7, significantly (p < .01) increased. Further studies were conducted in αTC1-6 cells cultured in media containing high glucose (16.7 mM) for 2 weeks to mimic glucagon hypersecretion of diabetes. Surprisingly, treatment of αTC1-6 cells with the lysosomal inhibitor bafilomycin A1 reduced K+-induced glucagon secretion, suggesting that high glucose may induce glucagon secretion from another lysosomal compartment. Both glucagon and Stmn2 co-localized with Lamp1, which marks secretory lysosomes, in cells cultured in high glucose. We propose that, in addition to enhanced trafficking and secretion through the regulated secretory pathway, the hyperglucagonemia of diabetes may also be due to re-routing of glucagon from the degradative Lamp2A+ lysosome toward the secretory Lamp1+ lysosome.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Metabolism & Diabetes and Imaging Programs, Lawson Health Research Institute, London, ON, Canada
- CONTACT Savita Dhanvantari Lawson Health Research Institute, PO Box 5777, Stn B, London, ONN6A 4V2, Canada
| |
Collapse
|
8
|
Martin A, Mick GJ, Choat HM, Lunsford AA, Tse HM, McGwin GG, McCormick KL. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat Commun 2022; 13:7928. [PMID: 36566274 PMCID: PMC9790014 DOI: 10.1038/s41467-022-35544-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Gamma aminobutyric acid(GABA) is synthesized by glutamate decarboxylase(GAD) in β-cells. Regarding Type 1 diabetes(T1D), animal/islet-cell studies found that GABA promotes insulin secretion, inhibits α-cell glucagon and dampens immune inflammation, while GAD immunization may also preserve β-cells. We evaluated the safety and efficacy of oral GABA alone, or combination GABA with GAD, on the preservation of residual insulin secretion in recent-onset T1D. Herein we report a single-center, double-blind, one-year, randomized trial in 97 children conducted March 2015 to June 2019(NCT02002130). Using a 2:1 treatment:placebo ratio, interventions included oral GABA twice-daily(n = 41), or oral GABA plus two-doses GAD-alum(n = 25), versus placebo(n = 31). The primary outcome, preservation of fasting/meal-stimulated c-peptide, was not attained. Of the secondary outcomes, the combination GABA/GAD reduced fasting and meal-stimulated serum glucagon, while the safety/tolerability of GABA was confirmed. There were no clinically significant differences in glycemic control or diabetes antibody titers. Given the low GABA dose for this pediatric trial, future investigations using higher-dose or long-acting GABA formulations, either alone or with GAD-alum, could be considered, although GABA alone or in combination with GAD-alum did nor preserve beta-cell function in this trial.
Collapse
Affiliation(s)
- Alexandra Martin
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gail J Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Heather M Choat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alison A Lunsford
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald G McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth L McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Oh JH, Han YE, Bao YR, Kang CW, Koo J, Ku CR, Cho YH, Lee EJ. Olfactory marker protein regulation of glucagon secretion in hyperglycemia. Exp Mol Med 2022; 54:1502-1510. [PMID: 36104518 PMCID: PMC9534918 DOI: 10.1038/s12276-022-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
The olfactory marker protein (OMP), which is also expressed in nonolfactory tissues, plays a role in regulating the kinetics and termination of olfactory transduction. Thus, we hypothesized that OMP may play a similar role in modulating the secretion of hormones involved in Ca2+ and cAMP signaling, such as glucagon. In the present study, we confirmed nonolfactory α-cell-specific OMP expression in human and mouse pancreatic islets as well as in the murine α-cell line αTC1.9. Glucagon and OMP expression increased under hyperglycemic conditions. Omp knockdown in hyperglycemic αTC1.9 cells using small-interfering RNA (siRNA) reduced the responses to glucagon release and the related signaling pathways compared with the si-negative control. The OMPlox/lox;GCGcre/w mice expressed basal glucagon levels similar to those in the wild-type OMPlox/lox mice but showed resistance against streptozotocin-induced hyperglycemia. The ectopic olfactory signaling events in pancreatic α-cells suggest that olfactory receptor pathways could be therapeutic targets for reducing excessive glucagon levels.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ye Eon Han
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ya Ru Bao
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Cheol Ryong Ku
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Hee Cho
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eun Jig Lee
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea.
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Liebman C, Loya S, Lawrence M, Bashoo N, Cho M. Stimulatory responses in α- and β-cells by near-infrared (810 nm) photobiomodulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202100257. [PMID: 34837336 DOI: 10.1002/jbio.202100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Significant efforts have been committed to better understand and regulate insulin secretion as it has direct implications on diabetes. The first phase of biphasic insulin secretion in response to glucose lasts about 10 minutes, followed by a more sustained release persisting several hours. Attenuated insulin release in the first phase is typically associated with abnormal β-cells. While near-infrared photobiomodulation (PBM) demonstrates potential for multiple therapeutic applications, photostimulatory effects on α- and β-cells remain to be further elucidated. Herein, we demonstrate that 810 nm PBM exposure at fluence of 9 J/cm2 can elevate the intracellular reactive oxygen species within 15 minutes following photostimulation. In addition, calcium spiking showed an approximately 3-fold increase in both ATC1 (α-cells) and BTC6 (β-cells) and correlates with hormone secretion in response to PBM stimulation. Our findings could lay a foundation for the development of non-biologic therapeutics that can augment islet transplantation.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Sheccid Loya
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
11
|
Hauke S, Rada J, Tihanyi G, Schilling D, Schultz C. ATP is an essential autocrine factor for pancreatic β-cell signaling and insulin secretion. Physiol Rep 2022; 10:e15159. [PMID: 35001557 PMCID: PMC8743876 DOI: 10.14814/phy2.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023] Open
Abstract
ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate β-cell activity within islets of Langerhans. Here, we show that β-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary β-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for β-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jona Rada
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gergely Tihanyi
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danny Schilling
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
12
|
Guo K, Tian Q, Yang L, Zhou Z. The Role of Glucagon in Glycemic Variability in Type 1 Diabetes: A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:4865-4873. [PMID: 34992395 PMCID: PMC8710064 DOI: 10.2147/dmso.s343514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/01/2021] [Indexed: 01/20/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive disease as a result of the severe destruction of islet β-cell function, which leads to high glucose variability in patients. However, α-cell function is also compromised in patients with T1DM, characterized by aberrant fasting and postprandial glucagon secretion. According to recent studies, this aberrant glucagon secretion plays an increasing role in hyperglycemia, insulin-induced hypoglycemia and exercise-associated hypoglycemia in patients with T1DM. With application of continuous glucose monitoring system, dozens of metrics enable the assessment of glycemic variability, which is an integral component of glycemic control for patients with T1DM. There is growing evidences to illustrate the contribution of glucagon secretion to the glycemic variability in patients with T1DM, which may promote the development of new treatment strategies aiming to mitigate glycemic variability associated with aberrant glucagon secretion.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Qi Tian
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| |
Collapse
|
13
|
Kim A, Knudsen JG, Madara JC, Benrick A, Hill TG, Abdul Kadir L, Kellard JA, Mellander L, Miranda C, Lin H, James T, Suba K, Spigelman AF, Wu Y, MacDonald PE, Wernstedt Asterholm I, Magnussen T, Christensen M, Vilsbøll T, Salem V, Knop FK, Rorsman P, Lowell BB, Briant LJB. Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes. eLife 2021; 10:e72919. [PMID: 34787082 PMCID: PMC8654374 DOI: 10.7554/elife.72919] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Benrick
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lina Abdul Kadir
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Joely A Kellard
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lisa Mellander
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Caroline Miranda
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Haopeng Lin
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Timothy James
- Department of Clinical Biochemistry, John Radcliffe, Oxford NHS TrustOxfordUnited Kingdom
| | - Kinga Suba
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Yanling Wu
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Ingrid Wernstedt Asterholm
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Tore Magnussen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Linford JB Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
14
|
Asadi F, Dhanvantari S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front Endocrinol (Lausanne) 2021; 12:726368. [PMID: 34659118 PMCID: PMC8511682 DOI: 10.3389/fendo.2021.726368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
- Imaging Research Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
15
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Pancreatic β Cells Inhibit Glucagon Secretion from α Cells: An In Vitro Demonstration of α-β Cell Interaction. Nutrients 2021; 13:nu13072281. [PMID: 34209449 PMCID: PMC8308288 DOI: 10.3390/nu13072281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Interactions between endocrine α and β cells are critical to their secretory function in vivo. The interactions are highly regulated, although yet to be fully understood. In this study, we aim to assess the impact of α and β cell co-culture on hormone secretion. Mouse clonal cell lines α-TC6-1 (α cell line) and MIN-6 (β cell line) were cultured independently or in combination in a medium containing 5.5, 11.1, or 25 mM glucose, respectively. After 72 h, hormone release was measured using insulin and glucagon secretion assays, the cell distribution was visualized by inverted microscopy and an immunocytochemistry assay, and changes in gene expressions were assessed using the RT-PCR technique. The co-culture of the two cell lines caused a decrease in glucagon secretion from α-TC1-6 cells, while no effect on insulin secretion from MIN-6 cells was revealed. Both types of cells were randomly scattered throughout the culture flask, unlike in mice islets in vivo where β cells cluster in the core and α cells are localized at the periphery. During the α-β cell co-culture, the gene expression of glucagon (Gcg) decreased significantly. We conclude that islet β cells suppress glucagon secretion from α cells, apparently via direct cell-to-cell contact, of which the molecular mechanism needs further verification.
Collapse
|
17
|
Gerber KM, Whitticar NB, Rochester DR, Corbin KL, Koch WJ, Nunemaker CS. The Capacity to Secrete Insulin Is Dose-Dependent to Extremely High Glucose Concentrations: A Key Role for Adenylyl Cyclase. Metabolites 2021; 11:metabo11060401. [PMID: 34205432 PMCID: PMC8235240 DOI: 10.3390/metabo11060401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.
Collapse
Affiliation(s)
- Katherine M. Gerber
- Translational Health, Honors Tutorial College, Ohio University, Athens, OH 45701, USA;
| | - Nicholas B. Whitticar
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Daniel R. Rochester
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
| | - Kathryn L. Corbin
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
| | - William J. Koch
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig S. Nunemaker
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +740-593-2387
| |
Collapse
|
18
|
Cao G, González J, Ortiz Fragola JP, Muller A, Tumarkin M, Moriondo M, Azzato F, Blanco MV, Milei J. Structural changes in endocrine pancreas of male Wistar rats due to chronic cola drink consumption. Role of PDX-1. PLoS One 2021; 16:e0243340. [PMID: 34115756 PMCID: PMC8195359 DOI: 10.1371/journal.pone.0243340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
AIM The objective of this work was to analyze the structural changes of the pancreatic islets in rats, after 6 month consuming regular and light cola for 6 months. Also, we have analyzed the possible role of PDX-1 in that process. Finally, with the available knowledge, we propose a general working hypothesis that explains the succession of phenomena observed. Previously, we reported evidence showing that chronic cola consumption in rats impairs pancreatic metabolism of insulin and glucagon and produces some alterations typically observed in the metabolic syndrome, with an increase in oxidative stress. Of note It is worth mentioning that no apoptosis nor proliferation of islet cells could be demonstrated. In the present study, 36 male Wistar rats were divided into three groups to and given free access to freely drink regular cola (C), light cola (L), or water (W, control). We assessed the impact of the three different beverages in on glucose tolerance, lipid levels, creatinine levels and immunohistochemical changes addressed for the expression of insulin, glucagon, PDX-1 and NGN3 in islet cells, to evaluate the possible participation of PDX-1 in the changes observed in α and β cells after 6 months of treatment. Moreover, we assessed by stereological methods, the mean volume of islets (Vi) and three important variables: the fractional β -cell area, the cross-sectional area of alpha (A α-cell) and beta cells (A β-cell), and the number of β and α cell per body weight. Data were analyzed by two-way ANOVA followed by Bonferroni's multiple t-test or by Kruskal-Wallis test, then followed by Dunn's test (depending on distribution). Statistical significance was set at p<0.05. Cola drinking caused impaired glucose tolerance as well as fasting hyperglycemia (mean:148; CI:137-153; p<0.05 vs W) and an increase of in insulin immunolabeling (27.3±19.7; p<0.05 vs W and L). Immunohistochemical expression for PDX-1 was significantly high in C group compared to W (0.79±0.71; p<0.05). In this case, we observed cytoplasmatic and nuclear localization. Likewise, a mild but significant decrease of in Vi was detected after 6 months in C compared to W group (8.2±2.5; p<0.05). Also, we observed a significant decrease of in the fractional β cell area (78.2±30.9; p<0.05) compared to W. Accordingly, a reduced mean value of islet α and β cell number per body weight (0.05±0.02 and 0.08±0.04 respectively; both p<0.05) compared to W was detected. Interestingly, consumption of light cola increased the Vi (10.7±3.6; p<0.05) compared to W. In line with this, a decreased cross-sectional area of β-cells was observed after chronic consumption of both, regular (78.2±30.9; p<0.05) and light cola (110.5±24.3; p<0.05), compared to W. As for, NGN3, it was negative in all three groups. Our results support the idea that PDX-1 plays a key role in the dynamics of the pancreatic islets after chronic consumption of sweetened beverages. In this experimental model, the loss of islets cells might be attributed to autophagy, favored by the local metabolic conditions and oxidative stress.
Collapse
Affiliation(s)
- Gabriel Cao
- Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julián González
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Juan P. Ortiz Fragola
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Angélica Muller
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Mariano Tumarkin
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Marisa Moriondo
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Francisco Azzato
- Facultad de Medicina, Sexta Cátedra de Medicina, Hospital de Clínicas, Buenos Aires, Argentina
| | - Manuel Vazquez Blanco
- Facultad de Medicina, Sexta Cátedra de Medicina, Hospital de Clínicas, Buenos Aires, Argentina
| | - José Milei
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Facultad de Medicina, Sexta Cátedra de Medicina, Hospital de Clínicas, Buenos Aires, Argentina
| |
Collapse
|
19
|
Viloria K, Hewison M, Hodson DJ. Vitamin D binding protein/GC-globulin: a novel regulator of alpha cell function and glucagon secretion. J Physiol 2021; 600:1119-1133. [PMID: 33719063 DOI: 10.1113/jp280890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The contribution of glucagon to type 1 and type 2 diabetes has long been known, but the underlying defects in alpha cell function are not well-described. During both disease states, alpha cells respond inappropriately to stimuli, leading to dysregulated glucagon secretion, impaired glucose tolerance and hypoglycaemia. The mechanisms involved in this dysfunction are complex, but possibly include changes in alpha cell glucose-sensing, alpha cell de-differentiation, paracrine feedback, as well as alpha cell mass. However, the molecular underpinnings of alpha cell failure are still poorly understood. Recent transcriptomic analyses have identified vitamin D binding protein (DBP), encoded by GC/Gc, as an alpha cell signature gene. DBP is highly localized to the liver and alpha cells and is virtually absent from other tissues and cell types under non-pathological conditions. While the vitamin D transportation role of DBP is well characterized in the liver and circulation, its function in alpha cells remains more enigmatic. Recent work reveals that loss of DBP leads to smaller and hyperplastic alpha cells, which secrete less glucagon in response to low glucose concentration, despite vitamin D sufficiency. Alpha cells lacking DBP display impaired Ca2+ fluxes and Na+ conductance, as well as changes in glucagon granule distribution. Underlying these defects is an increase in the ratio of cytoskeletal F-actin to G-actin, highlighting a novel intracellular actin scavenging role for DBP in islets.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Mori H, Takahashi H, Mine K, Higashimoto K, Inoue K, Kojima M, Kuroki S, Eguchi T, Ono Y, Inuzuka S, Soejima H, Nagafuchi S, Anzai K. TYK2 Promoter Variant Is Associated with Impaired Insulin Secretion and Lower Insulin Resistance in Japanese Type 2 Diabetes Patients. Genes (Basel) 2021; 12:400. [PMID: 33799705 PMCID: PMC7999758 DOI: 10.3390/genes12030400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has suggested that viral infection causes type 1 diabetes due to direct β-cell damage and the triggering of autoimmune reactivity to β cells. Here, we elucidated that the tyrosine kinase 2 (Tyk2) gene, encoding an interferon receptor signaling molecule, is responsible for virus-induced diabetes in mice, and its promoter variant confers a risk of type 1 diabetes in humans. This study investigated the relationship between a TYK2 promoter variant (TYK2PV) and insulin secretion in type 2 diabetes patients. TYK2PV status was determined using direct DNA sequencing and its associations with fasting insulin, C-peptide, and homeostatic model assessment of insulin resistance (HOMA-IR) were evaluated in type 2 diabetes patients without sulfonylurea or insulin medication. Of the 172 patients assessed, 18 (10.5%) showed TYK2PV-positivity. Their body mass index (BMI) was significantly lower than in those without the variant (23.4 vs. 25.4 kg/m2, p = 0.025). Fasting insulin (3.9 vs. 6.2 μIU/mL, p = 0.007), C-peptide (1.37 vs. 1.76 ng/mL, p = 0.008), and HOMA-IR (1.39 vs. 2.05, p = 0.006) were lower in those with than in those without the variant. Multivariable analysis identified that TYK2PV was associated with fasting insulin ≤ 5 μIU/mL (odds ratio (OR) 3.63, p = 0.025) and C-peptide ≤ 1.0 ng/mL (OR 3.61, p = 0.028), and also lower insulin resistance (HOMA-IR ≤ 2.5; OR 8.60, p = 0.042). TYK2PV is associated with impaired insulin secretion and low insulin resistance in type 2 diabetes. Type 2 diabetes patients with TYK2PV should be carefully followed in order to receive the appropriate treatment including insulin injections.
Collapse
Affiliation(s)
- Hitoe Mori
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Liver Center, Faculty of Medicine, Saga University Hospital, Saga University, Saga 849-8501, Japan
| | - Keiichiro Mine
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ken Higashimoto
- Divison of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga 849-8501, Japan; (K.H.); (H.S.)
| | - Kanako Inoue
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Motoyasu Kojima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Saiseikai Karatsu Hospital, Saga 847-0852, Japan
| | | | | | - Yasuhiro Ono
- Department of Internal Medicine, Kouhokai Takagi Hospital, Fukuoka 831-0016, Japan;
| | | | - Hidenobu Soejima
- Divison of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga 849-8501, Japan; (K.H.); (H.S.)
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| |
Collapse
|
21
|
Xu SY, KeLi, Zhang Z, Liu CY, Guo QY, Lu B, Gu P, Shao JQ. Association between time in range, a novel measurement of glycemic control and islet secretory function in chinese patients with type 2 diabetes mellitus-An observational study. Diabetes Res Clin Pract 2021; 173:108684. [PMID: 33539867 DOI: 10.1016/j.diabres.2021.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
AIMS To explore the association between dynamic islet secretory function and TIR (time in range), a new valuable metric of glycemic control in type 2 diabetes (T2D). METHODS In this observational study 256 patients with type 2 diabetes were included and continuous glucose monitoring system (CGMS) were applied to monitor blood glucose and also the calculation of TIR [the time spent in an individual's target glucose range (usually 3.9-10 mmol/L)]. The participants were divided into 3 groups according to the tertiles of TIR, 85 cases with TIR ≥ 65.05% (T1 group), 86 cases with 41.84 < TIR ≤ 65.05% (T2 group) and 85 cases with TIR < 41.84% (T3 group). Serum glucagon (GLA0h, GLA0.5h, GLA1h, GLA2h, GLA3h), C-peptide (Cp0h, Cp0.5h, Cp1h, Cp2h, Cp3h) concentration at different time points were measured after a 100 g standard steamed buns meal test to assess the pancreatic alpha cell and beta cell function. Spearman correlation analysis and multivariate linear stepwise regression analysis were adopted for statistical analysis. RESULTS The average age and diabetes duration of all the participants were separately 56.09 ± 13.8 years and 8.0 (4.0,15.0) years. Compared with patients in T1 group, participants in group T2 and T3 tend to have a lower concentration of C-peptide at all time points, as well as GLA0h, GLA2h and GLA3h (p < 0.05). TIR was positively correlated with C-peptide at different time points, area under the curve of C-peptide in half an hour (AUCCp0.5h), GLA0h, GLA3h, area under the curve of glucagon in half an hour (AUCGLA0.5h)(rs = 0.263, 0.414, 0.510, 0.587, 0.528, 0.360, 0.259, 0.144 and 0.208, respectively, p < 0.05) and was negatively correlated with the increment of serum glucagon from baseline at 0.5 h, 1 h and 2 h after the standard energy loaded(△GLA0.5h, △GLA1h, △GLA2h)(rs = -0.152,-0.172 and -0.203, respectively, p < 0.05). Cp2h, Cp0h and GLA0h were independent factors for TIR (β = 6.558,-6.930, 0.247, respectively, p < 0.01). CONCLUSION Both islet alpha cell and beta cell secretory function have important influence on TIR, a novel vital index of glycemic fluctuation.
Collapse
Affiliation(s)
- Shao-Ying Xu
- Department of Endocrinology, Jinling Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China.
| | - KeLi
- Department of Internal Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Zhen Zhang
- Department of Endocrinology, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China.
| | - Chun-Yan Liu
- Affiliated Hospital of Jiangnan University, Nanjing, Jiangsu, China.
| | - Qing-Yu Guo
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu, China.
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China.
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China.
| | - Jia-Qing Shao
- Department of Endocrinology, Jinling Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Jo S, Xu G, Jing G, Chen J, Shalev A. Human Glucagon Expression Is under the Control of miR-320a. Endocrinology 2021; 162:6052618. [PMID: 33367814 PMCID: PMC7814302 DOI: 10.1210/endocr/bqaa238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 11/19/2022]
Abstract
Increased glucagon is a hallmark of diabetes and leads to worsening of the hyperglycemia, but the molecular mechanisms causing it are still unknown. We therefore investigated the possibility that microRNAs might be involved in the regulation of glucagon. Indeed, analysis of the glucagon 3' untranslated region (UTR) revealed potential binding sites for miR-320a, and using luciferase reporter assays we found that miR-320a directly targets the 3' UTRs of human and rodent glucagon. In addition, endogenous glucagon mRNA and protein expression as well as glucagon secretion were reduced in response to miR-320a overexpression, whereas inhibition of miR-320a upregulated glucagon expression. Interestingly, miR-320a expression was decreased by high glucose, and this was associated with an increase in glucagon expression in human islets and mouse αTC1-6 cells. Moreover, miR-320a overexpression completely blunted these effects. Importantly, miR-320a was also significantly downregulated in human islets of subjects with type 2 diabetes and this was accompanied by increased glucagon expression. Thus, our data suggest that glucose-induced downregulation of miR-320a may contribute to the paradoxical increase in glucagon observed in type 2 diabetes and reveal for the first time that glucagon expression is under the control by a microRNA providing novel insight into the abnormal regulation of glucagon in diabetes.
Collapse
Affiliation(s)
- SeongHo Jo
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guanlan Xu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gu Jing
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Junqin Chen
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
- Correspondence: Anath Shalev, MD, Professor and Director, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, SHELBY Bldg 1206, Birmingham, AL 35294-2182, USA.
| |
Collapse
|
23
|
Ito A, Horie I, Miwa M, Sako A, Niri T, Nakashima Y, Shigeno R, Haraguchi A, Natsuda S, Akazawa S, Kamada A, Kawakami A, Abiru N. Impact of glucagon response on early postprandial glucose excursions irrespective of residual β-cell function in type 1 diabetes: A cross-sectional study using a mixed meal tolerance test. J Diabetes Investig 2021; 12:1367-1376. [PMID: 33369175 PMCID: PMC8354509 DOI: 10.1111/jdi.13486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Aims/Introduction Controlling postprandial glucose levels in patients with type 1 diabetes is challenging even under the adequate treatment of insulin injection. Recent studies showed that dysregulated glucagon secretion exacerbates hyperglycemia in type 2 diabetes patients, but little is known in type 1 diabetes patients. We investigated whether the glucagon response to a meal ingestion could influence the postprandial glucose excursion in patients with type 1 diabetes. Materials and Methods We enrolled 34 patients with type 1 diabetes and 23 patients with type 2 diabetes as controls. All patients underwent a liquid mixed meal tolerance test. We measured levels of plasma glucose, C‐peptide and glucagon at fasting (0 min), and 30, 60 and 120 min after meal ingestion. All type 1 diabetes patients received their usual basal insulin and two‐thirds of the necessary dose of the premeal bolus insulin. Results The levels of plasma glucagon were elevated and peaked 30 min after the mixed meal ingestion in both type 1 diabetes and type 2 diabetes patients. The glucagon increments from fasting to each time point (30, 60 and 120 min) in type 1 diabetes patients were comparable to those in type 2 diabetes patients. Among the type 1 diabetes patients, the glucagon response showed no differences between the subgroups based on diabetes duration (<5 vs ≥5 years) and fasting C‐peptide levels (<0.10 vs ≥0.10 nmol/L). The changes in plasma glucose from fasting to 30 min were positively correlated with those in glucagon, but not C‐peptide, irrespective of diabetes duration and fasting C‐peptide levels in patients with type 1 diabetes. Conclusions The dysregulated glucagon likely contributes to postprandial hyperglycemia independent of the residual β‐cell functions during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Masaki Miwa
- Center of Diabetes Care Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Ayaka Sako
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Tetsuro Niri
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Yomi Nakashima
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Riyoko Shigeno
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Ai Haraguchi
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Shoko Natsuda
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Satoru Akazawa
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| | - Akie Kamada
- Center of Diabetes Care Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan.,Center of Diabetes Care Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
24
|
Yabe SG, Fukuda S, Nishida J, Takeda F, Nashiro K, Okochi H. Efficient induction of pancreatic alpha cells from human induced pluripotent stem cells by controlling the timing for BMP antagonism and activation of retinoic acid signaling. PLoS One 2021; 16:e0245204. [PMID: 33428669 PMCID: PMC7799802 DOI: 10.1371/journal.pone.0245204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus is caused by breakdown of blood glucose homeostasis, which is maintained by an exquisite balance between insulin and glucagon produced respectively by pancreatic beta cells and alpha cells. However, little is known about the mechanism of inducing glucagon secretion from human alpha cells. Many methods for generating pancreatic beta cells from human pluripotent stem cells (hPSCs) have been reported, but only two papers have reported generation of pancreatic alpha cells from hPSCs. Because NKX6.1 has been suggested as a very important gene for determining cell fate between pancreatic beta and alpha cells, we searched for the factors affecting expression of NKX6.1 in our beta cell differentiation protocols. We found that BMP antagonism and activation of retinoic acid signaling at stage 2 (from definitive endoderm to primitive gut tube) effectively suppressed NKX6.1 expression at later stages. Using two different hPSCs lines, treatment with BMP signaling inhibitor (LDN193189) and retinoic acid agonist (EC23) at Stage 2 reduced NKX6.1 expression and allowed differentiation of almost all cells into pancreatic alpha cells in vivo after transplantation under a kidney capsule. Our study demonstrated that the cell fate of pancreatic cells can be controlled by adjusting the expression level of NKX6.1 with proper timing of BMP antagonism and activation of retinoic acid signaling during the pancreatic differentiation process. Our method is useful for efficient induction of pancreatic alpha cells from hPSCs.
Collapse
Affiliation(s)
- Shigeharu G Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junko Nishida
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Fujie Takeda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoko Nashiro
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
25
|
González-Vélez V, Piron A, Dupont G. Calcium Oscillations in Pancreatic α-cells Rely on Noise and ATP-Driven Changes in Membrane Electrical Activity. Front Physiol 2020; 11:602844. [PMID: 33281631 PMCID: PMC7705205 DOI: 10.3389/fphys.2020.602844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
In pancreatic α-cells, intracellular Ca2+ ([Ca2+]i) acts as a trigger for secretion of glucagon, a hormone that plays a key role in blood glucose homeostasis. Intracellular Ca2+ dynamics in these cells are governed by the electrical activity of voltage-gated ion channels, among which ATP-sensitive K+ (KATP) channels play a crucial role. In the majority of α-cells, the global Ca2+ response to lowering external glucose occurs in the form of oscillations that are much slower than electrical activity. These Ca2+ oscillations are highly variable as far as inter-spike intervals, shapes and amplitudes are concerned. Such observations suggest that Ca2+ dynamics in α-cells are much influenced by noise. Actually, each Ca2+ increase corresponds to multiple cycles of opening/closing of voltage gated Ca2+ channels that abruptly become silent, before the occurrence of another burst of activity a few tens of seconds later. The mechanism responsible for this intermittent activity is currently unknown. In this work, we used computational modeling to investigate the mechanism of cytosolic Ca2+ oscillations in α-cells. Given the limited population of KATP channels in this cell type, we hypothesized that the stochastic activity of these channels could play a key role in the sporadic character of the action potentials. To test this assumption, we extended a previously proposed model of the α-cells electrical activity (Diderichsen and Göpel, 2006) to take Ca2+ dynamics into account. Including molecular noise on the basis of a Langevin type description as well as realistic dynamics of opening and closing of KATP channels, we found that stochasticity at the level of the activity of this channel is on its own not able to produce Ca2+ oscillations with a time scale of a few tens of seconds. However, when taking into account the intimate relation between Ca2+ and ATP changes together with the intrinsic noise at the level of the KATP channels, simulations displayed Ca2+ oscillations that are compatible with experimental observations. We analyzed the detailed mechanism and used computational simulations to identify the factors that can affect Ca2+ oscillations in α-cells.
Collapse
Affiliation(s)
- Virginia González-Vélez
- Department Basic Sciences, Universidad Autónoma Metropolitana-Azcapotzalco, CDMX, Mèxico, Mexico
| | - Anthony Piron
- ULB Center for Diabetes Research, Faculté de Médecine, Université libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics (IB2), Brussels, Belgium
| | - Geneviève Dupont
- Interuniversity Institute of Bioinformatics (IB2), Brussels, Belgium.,Unit of Theoretical Chronobiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
26
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Xu SFS, Andersen DB, Izarzugaza JMG, Kuhre RE, Holst JJ. In the rat pancreas, somatostatin tonically inhibits glucagon secretion and is required for glucose-induced inhibition of glucagon secretion. Acta Physiol (Oxf) 2020; 229:e13464. [PMID: 32145704 DOI: 10.1111/apha.13464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
AIM It is debated whether the inhibition of glucagon secretion by glucose results from direct effects of glucose on the α-cell (intrinsic regulation) or by paracrine effects exerted by beta- or delta-cell products. METHODS To study this in a more physiological model than isolated islets, we perfused isolated rat pancreases and measured glucagon, insulin and somatostatin secretion in response to graded increases in perfusate glucose concentration (from 3.5 to 4, 5, 6, 7, 8, 10, 12 mmol/L) as well as glucagon responses to blockage/activation of insulin/GABA/somatostatin signalling with or without addition of glucose. RESULTS Glucagon secretion was reduced by about 50% (compared to baseline secretion at 3.5 mmol/L) within minutes after increasing glucose from 4 to 5 mmol/L (P < .01, n = 13). Insulin secretion was increased minimally, but significantly, compared to baseline (3.5 mmol/L) at 4 mmol/L, whereas somatostatin secretion was not significantly increased from baseline until 7 mmol/L. Hereafter secretion of both increased gradually up to 12 mmol/L glucose. Neither recombinant insulin (1 µmol/L), GABA (300 µmol/L) or the insulin-receptor antagonist S961 (at 1 µmol/L) affected basal (3.5 mmol/L) or glucose-induced (5.0 mmol/L) attenuation of glucagon secretion (n = 7-8). Somatostatin-14 attenuated glucagon secretion by ~ 95%, and blockage of somatostatin-receptor (SSTR)-2 or combined blockage of SSTR-2, -3 and -5 by specific antagonists increased glucagon output (at 3.5 mmol/L glucose) and prevented glucose-induced (from 3.5 to 5.0 mmol/L) suppression of secretion. CONCLUSION Somatostatin is a powerful and tonic inhibitor of glucagon secretion from the rat pancreas and is required for glucose to inhibit glucagon secretion.
Collapse
Affiliation(s)
- Stella F. S. Xu
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Daniel B. Andersen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Rune E. Kuhre
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
28
|
A method for the generation of human stem cell-derived alpha cells. Nat Commun 2020; 11:2241. [PMID: 32382023 PMCID: PMC7205884 DOI: 10.1038/s41467-020-16049-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, considerable evidence indicates that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. Compound screening identified a protein kinase c activator that promotes maturation of pre-alpha cells into SC-alpha cells. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.
Collapse
|
29
|
Omar-Hmeadi M, Lund PE, Gandasi NR, Tengholm A, Barg S. Paracrine control of α-cell glucagon exocytosis is compromised in human type-2 diabetes. Nat Commun 2020; 11:1896. [PMID: 32312960 PMCID: PMC7171169 DOI: 10.1038/s41467-020-15717-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
Glucagon is released from pancreatic α-cells to activate pathways that raise blood glucose. Its secretion is regulated by α-cell-intrinsic glucose sensing and paracrine control through insulin and somatostatin. To understand the inadequately high glucagon levels that contribute to hyperglycemia in type-2 diabetes (T2D), we analyzed granule behavior, exocytosis and membrane excitability in α-cells of 68 non-diabetic and 21 T2D human donors. We report that exocytosis is moderately reduced in α-cells of T2D donors, without changes in voltage-dependent ion currents or granule trafficking. Dispersed α-cells have a non-physiological V-shaped dose response to glucose, with maximal exocytosis at hyperglycemia. Within intact islets, hyperglycemia instead inhibits α-cell exocytosis, but not in T2D or when paracrine inhibition by insulin or somatostatin is blocked. Surface expression of somatostatin-receptor-2 is reduced in T2D, suggesting a mechanism for the observed somatostatin resistance. Thus, elevated glucagon in human T2D may reflect α-cell insensitivity to paracrine inhibition at hyperglycemia. Glucagon is elevated Type-2 diabetes, which contributes to poor glucose control in patients with the disease. Here the authors report that secretion of the hormone is controlled by paracrine inhibition, and that resistance of α-cells to somatostatin can explain hyperglucagonemia in type-2 diabetes.
Collapse
Affiliation(s)
- Muhmmad Omar-Hmeadi
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Per-Eric Lund
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Nikhil R Gandasi
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Anders Tengholm
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, Box 571, BMC, 751 23, Uppsala, Sweden.
| |
Collapse
|
30
|
Lu S, Liu G, Chen T, Wang W, Hu J, Tang D, Peng X. Lentivirus-Mediated hFGF21 Stable Expression in Liver of Diabetic Rats Model and Its Antidiabetic Effect Observation. Hum Gene Ther 2020; 31:472-484. [PMID: 32027183 DOI: 10.1089/hum.2019.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has been increasing annually, which is a serious threat to human health. Fibroblast growth factor 21 (FGF21) is one of the most popular targets for the treatment of diabetes because it effectively improves glycolipid metabolism. In our experiment, human FGF21 (hFGF21) was injected and stably expressed in the liver tissues of a rat T2DM model with lentivirus system. Based on clinical and histopathological examinations, islet cells were protected and liver tissue lesions were repaired for >4 months. Glucose metabolism and histopathology were controlled perfectly when hFGF21 was stably expressed in partial liver of T2DM rats. The results showed that the liver tissue cell apoptosis was reduced, the lipid droplet content was decreased, the oxidative stress indexes were improved, the glycogen content was increased, and the islet cells were increased too. Besides, insulin sensitivity and glycogen synthesis-related genes expression were increased, but cell apoptosis-related genes caspase3 and NFκB expression were decreased. The effectiveness of results suggested that injecting hFGF21 to rats liver could effectively treat T2DM.
Collapse
Affiliation(s)
- Shuaiyao Lu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Guanglong Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Tianxing Chen
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Wanpu Wang
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Jingwen Hu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Donghong Tang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
31
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
32
|
Wang J, Li Y, Lai K, Zhong Q, Demin KA, Kalueff AV, Song C. High-glucose/high-cholesterol diet in zebrafish evokes diabetic and affective pathogenesis: The role of peripheral and central inflammation, microglia and apoptosis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109752. [PMID: 31446160 DOI: 10.1016/j.pnpbp.2019.109752] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023]
Abstract
Neuroinflammation and metabolic deficits contribute to the etiology of human affective disorders, such as anxiety and depression. The zebrafish (Danio rerio) has recently emerged as a powerful new model organism in CNS disease modeling. Here, we exposed zebrafish to 2% glucose and 10% cholesterol for 19 days to experimentally induce type 2 diabetes (DM) and to assess stress responses, microglia, inflammation and apoptosis. We analyzed zebrafish anxiety-like behavior in the novel tank and light-dark box (Days 15-16) tests, as well as examined their biochemical and genomic biomarkers (Day 19). Confirming DM-like state in zebrafish, we found higher whole-body glucose, triglyceride, total cholesterol, low-density lipoprotein levels and glucagon mRNA expression, and lower high-density lipoprotein levels. DM zebrafish also showed anxiety-like behavior, elevated whole-body cortisol and cytokines IFN-γ and IL-4, as well as higher brain mRNA expression of the glucocorticoid receptor, CD11b (a microglial biomarker), pro-inflammatory cytokines IL-6 and TNF-α (but not IL-1β or anti-inflammatory cytokines IL-4 and IL-10), GFAP (an astrocytal biomarker), neurotrophin BDNF, its receptors p75 and TrkB, as well as apoptotic Bax and Caspase-3 (but not BCl-2) genes. Collectively, this supports the overlapping nature of DM-related affective pathogenesis and emphasizes the role of peripheral and central inflammation and apoptosis in DM-related affective and neuroendocrine deficits in zebrafish.
Collapse
Affiliation(s)
- JiaJia Wang
- Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - YanJun Li
- Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Lai
- Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - QiMei Zhong
- Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| | - Cai Song
- Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China.
| |
Collapse
|
33
|
Asadi F, Dhanvantari S. Stathmin-2 Mediates Glucagon Secretion From Pancreatic α-Cells. Front Endocrinol (Lausanne) 2020; 11:29. [PMID: 32117057 PMCID: PMC7011091 DOI: 10.3389/fendo.2020.00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/14/2020] [Indexed: 01/26/2023] Open
Abstract
Inhibition of glucagon hypersecretion from pancreatic α-cells is an appealing strategy for the treatment of diabetes. Our hypothesis is that proteins that associate with glucagon within alpha cell secretory granules will regulate glucagon secretion, and may provide druggable targets for controlling abnormal glucagon secretion in diabetes. Recently, we identified a dynamic glucagon interactome within the secretory granules of the α cell line, αTC1-6, and showed that select proteins within the interactome could modulate glucagon secretion. In the present study, we show that one of these interactome proteins, the neuronal protein stathmin-2, is expressed in αTC1-6 cells and in mouse pancreatic alpha cells, and is a novel regulator of glucagon secretion. The secretion of both glucagon and Stmn2 was significantly enhanced in response to 55 mM K+, and immunofluorescence confocal microscopy showed co-localization of stathmin-2 with glucagon and the secretory granule markers chromogranin A and VAMP-2 in αTC1-6 cells. In mouse pancreatic islets, Stathmin-2 co-localized with glucagon, but not with insulin, and co-localized with secretory pathway markers. To show a function for stathmin-2 in regulating glucagon secretion, we showed that siRNA-mediated depletion of stathmin-2 in αTC1-6 cells caused glucagon secretion to become constitutive without any effect on proglucagon mRNA levels, while overexpression of stathmin-2 completely abolished both basal and K+-stimulated glucagon secretion. Overexpression of stathmin-2 increased the localization of glucagon into the endosomal-lysosomal compartment, while depletion of stathmin-2 reduced the endosomal localization of glucagon. Therefore, we describe stathmin-2 as having a novel role as an alpha cell secretory granule protein that modulates glucagon secretion via trafficking through the endosomal-lysosomal system. These findings describe a potential new pathway for the regulation of glucagon secretion, and may have implications for controlling glucagon hypersecretion in diabetes.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- *Correspondence: Savita Dhanvantari
| |
Collapse
|
34
|
Kelly RA, Fitches MJ, Webb SD, Pop SR, Chidlow SJ. Modelling the effects of glucagon during glucose tolerance testing. Theor Biol Med Model 2019; 16:21. [PMID: 31829209 PMCID: PMC6907263 DOI: 10.1186/s12976-019-0115-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/10/2019] [Indexed: 01/15/2023] Open
Abstract
Background Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients. The importance of such tests has prompted the development and utilisation of mathematical models that describe glucose kinetics as a function of insulin activity. The hormone glucagon, also plays a fundamental role in systemic plasma glucose regulation and is secreted reciprocally to insulin, stimulating catabolic glucose utilisation. However, regulation of glucagon secretion by α-cells is impaired in type-1 and type-2 diabetes through pancreatic islet dysfunction. Despite this, inclusion of glucagon activity when modelling the glucose kinetics during glucose tolerance testing is often overlooked. This study presents two mathematical models of a glucose tolerance test that incorporate glucose-insulin-glucagon dynamics. The first model describes a non-linear relationship between glucagon and glucose, whereas the second model assumes a linear relationship. Results Both models are validated against insulin-modified and glucose infusion intravenous glucose tolerance test (IVGTT) data, as well as insulin infusion data, and are capable of estimating patient glucose effectiveness (sG) and insulin sensitivity (sI). Inclusion of glucagon dynamics proves to provide a more detailed representation of the metabolic portrait, enabling estimation of two new diagnostic parameters: glucagon effectiveness (sE) and glucagon sensitivity (δ). Conclusions The models are used to investigate how different degrees of pax‘tient glucagon sensitivity and effectiveness affect the concentration of blood glucose and plasma glucagon during IVGTT and insulin infusion tests, providing a platform from which the role of glucagon dynamics during a glucose tolerance test may be investigated and predicted.
Collapse
Affiliation(s)
- Ross A Kelly
- Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK.
| | | | - Steven D Webb
- Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - S R Pop
- Department of Computer Science, University of Chester, Chester, UK
| | - Stewart J Chidlow
- Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
35
|
Liu W, Kin T, Ho S, Dorrell C, Campbell SR, Luo P, Chen X. Abnormal regulation of glucagon secretion by human islet alpha cells in the absence of beta cells. EBioMedicine 2019; 50:306-316. [PMID: 31780397 PMCID: PMC6921359 DOI: 10.1016/j.ebiom.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The understanding of the regulation of glucagon secretion by pancreatic islet α-cells remains elusive. We aimed to develop an in vitro model for investigating the function of human α-cells under direct influence of glucose and other potential regulators. METHODS Highly purified human α-cells from islets of deceased donors were re-aggregated in the presence or absence of β-cells in culture, evaluated for glucagon secretion under various treatment conditions, and compared to that of intact human islets and non-sorted islet cell aggregates. FINDINGS The pure human α-cell aggregates maintained proper glucagon secretion capability at low concentrations of glucose, but failed to respond to changes in ambient glucose concentration. Addition of purified β-cells, but not the secreted factors from β-cells at low or high concentrations of glucose, partly restored the responsiveness of α-cells to glucose with regulated glucagon secretion. The EphA stimulator ephrinA5-fc failed to mimic the inhibitory effect of β-cells on glucagon secretion. Glibenclamide inhibited glucagon secretion from islets and the α- and β-mixed cell-aggregates, but not from the α-cell-only aggregates, at 2.0 mM glucose. INTERPRETATION This study validated the use of isolated and then re-aggregated human islet cells for investigating α-cell function and paracrine regulation, and demonstrated the importance of cell-to-cell contact between α- and β-cells on glucagon secretion. Loss of proper β- and α-cell physical interaction in islets likely contributes to the dysregulated glucagon secretion in diabetic patients. Re-aggregated select combinations of human islet cells provide unique platforms for studying islet cell function and regulation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Siuhong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China.
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, 650 West 168th Street, BB1701, New York, NY 10032, USA.
| |
Collapse
|
36
|
Abstract
BACKGROUND Current therapeutic strategies for type 1 (T1DM) and type 2 diabetes mellitus (T2DM) rely on increasing or substituting endogenous insulin secretion in combination with lifestyle changes. β-cell regeneration, a process whereby new β-cells arise from progenitors, self-renewal or transdifferentiation, has the potential to become a viable route to insulin self-sufficiency. Current regeneration strategies capture many of the transcriptomic and protein features of native β-cells, generating cells capable of glucose-dependent insulin secretion in vitro and alleviation of hyperglycemia in vivo. However, whether novel β-cells display appreciable heterogeneity remains poorly understood, with potential consequences for long-term functional robustness. SCOPE OF REVIEW The review brings together crucial discoveries in the β-cell regeneration field with state-of-the-art knowledge regarding β-cell heterogeneity. Aspects that might aid production of longer-lasting and more plastic regenerated β-cells are highlighted and discussed. MAJOR CONCLUSIONS Different β-cell regeneration approaches result in a similar outcome: glucose-sensitive, insulin-positive cells that mimic the native β-cell phenotype but which lack normal plasticity. The β-cell subpopulations identified to date expand our understanding of β-cell survival, proliferation and function, signposting the direction for future regeneration strategies. Therefore, regenerated β-cells should exhibit stimulus-dependent differences in gene and protein expression, as well as establish a functional network with different β-cells, all while coexisting with other cell types on a three-dimensional platform.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lewis Everett
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
37
|
Tudurí E, Glavas MM, Asadi A, Baker RK, Ellis CE, Soukhatcheva G, Philit M, Huynh FK, Johnson JD, Bruce Verchere C, Kieffer TJ. AAV GCG-EGFP, a new tool to identify glucagon-secreting α-cells. Sci Rep 2019; 9:10829. [PMID: 31346189 PMCID: PMC6658537 DOI: 10.1038/s41598-019-46735-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/04/2019] [Indexed: 01/07/2023] Open
Abstract
The study of primary glucagon-secreting α-cells is hampered by their low abundance and scattered distribution in rodent pancreatic islets. We have designed a double-stranded adeno-associated virus containing a rat proglucagon promoter (700 bp) driving enhanced green fluorescent protein (AAV GCG-EGFP), to specifically identify α-cells. The administration of AAV GCG-EGFP by intraperitoneal or intraductal injection led to EGFP expression selectively in the α-cell population. AAV GCG-EGFP delivery to mice followed by islet isolation, dispersion and separation by FACS for EGFP resulted in an 86% pure population of α-cells. Furthermore, the administration of AAV GCG-EGFP at various doses to adult wild type mice did not significantly alter body weight, blood glucose, plasma insulin or glucagon levels, glucose tolerance or arginine tolerance. In vitro experiments in transgene positive α-cells demonstrated that EGFP expression did not alter the intracellular Ca2+ pattern in response to glucose or adrenaline. This approach may be useful for studying purified primary α-cells and for the in vivo delivery of other genes selectively to α-cells to further probe their function or to manipulate them for therapeutic purposes.
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e innovación en Biotecnología Sanitaria de Elche (IDiBE), Elche, Spain
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Galina Soukhatcheva
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Marjolaine Philit
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank K Huynh
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
38
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
39
|
Asadi F, Dhanvantari S. Plasticity in the Glucagon Interactome Reveals Novel Proteins That Regulate Glucagon Secretion in α-TC1-6 Cells. Front Endocrinol (Lausanne) 2019; 9:792. [PMID: 30713523 PMCID: PMC6346685 DOI: 10.3389/fendo.2018.00792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Glucagon is stored within the secretory granules of pancreatic alpha cells until stimuli trigger its release. The alpha cell secretory responses to the stimuli vary widely, possibly due to differences in experimental models or microenvironmental conditions. We hypothesized that the response of the alpha cell to various stimuli could be due to plasticity in the network of proteins that interact with glucagon within alpha cell secretory granules. We used tagged glucagon with Fc to pull out glucagon from the enriched preparation of secretory granules in α-TC1-6 cells. Isolation of secretory granules was validated by immunoisolation with Fc-glucagon and immunoblotting for organelle-specific proteins. Isolated enriched secretory granules were then used for affinity purification with Fc-glucagon followed by liquid chromatography/tandem mass spectrometry to identify secretory granule proteins that interact with glucagon. Proteomic analyses revealed a network of proteins containing glucose regulated protein 78 KDa (GRP78) and histone H4. The interaction between glucagon and the ER stress protein GRP78 and histone H4 was confirmed through co-immunoprecipitation of secretory granule lysates, and colocalization immunofluorescence confocal microscopy. Composition of the protein networks was altered at different glucose levels (25 vs. 5.5 mM) and in response to the paracrine inhibitors of glucagon secretion, GABA and insulin. siRNA-mediated silencing of a subset of these proteins revealed their involvement in glucagon secretion in α-TC1-6 cells. Therefore, our results show a novel and dynamic glucagon interactome within α-TC1-6 cell secretory granules. We suggest that variations in the alpha cell secretory response to stimuli may be governed by plasticity in the glucagon "interactome."
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Metabolism, Diabetes and Imaging Programs, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
40
|
Rudenko O, Shang J, Munk A, Ekberg JP, Petersen N, Engelstoft MS, Egerod KL, Hjorth SA, Wu M, Feng Y, Zhou YP, Mokrosinski J, Thams P, Reimann F, Gribble F, Rehfeld JF, Holst JJ, Treebak JT, Howard AD, Schwartz TW. The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Mol Metab 2019; 19:49-64. [PMID: 30472415 PMCID: PMC6323244 DOI: 10.1016/j.molmet.2018.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES GPR142, which is highly expressed in pancreatic islets, has recently been deorphanized as a receptor for aromatic amino acids; however, its physiological role and pharmacological potential is unclear. METHODS AND RESULTS We find that GPR142 is expressed not only in β- but also in α-cells of the islets as well as in enteroendocrine cells, and we confirm that GPR142 is a highly selective sensor of essential aromatic amino acids, in particular Trp and oligopeptides with N-terminal Trp. GPR142 knock-out mice displayed a very limited metabolic phenotype but demonstrated that L-Trp induced secretion of pancreatic and gut hormones is mediated through GPR142 but that the receptor is not required for protein-induced hormone secretion. A synthetic GPR142 agonist stimulated insulin and glucagon as well as GIP, CCK, and GLP-1 secretion. In particular, GIP secretion was sensitive to oral administration of the GPR142 agonist an effect which in contrast to the other hormones was blocked by protein load. Oral administration of the GPR142 agonist increased [3H]-2-deoxyglucose uptake in muscle and fat depots mediated through insulin action while it lowered liver glycogen conceivably mediated through glucagon, and, consequently, it did not lower total blood glucose. Nevertheless, acute administration of the GPR142 agonist strongly improved oral glucose tolerance in both lean and obese mice as well as Zucker fatty rat. Six weeks in-feed chronic treatment with the GPR142 agonist did not affect body weight in DIO mice, but increased energy expenditure and carbohydrate utilization, lowered basal glucose, and improved insulin sensitivity. CONCLUSIONS GPR142 functions as a sensor of aromatic amino acids, controlling GIP but also CCK and GLP-1 as well as insulin and glucagon in the pancreas. GPR142 agonists could have novel interesting potential in modifying metabolism through a balanced action of gut hormones as well as both insulin and glucagon.
Collapse
Affiliation(s)
- Olga Rudenko
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jin Shang
- Merck Research Laboratories, 2015 Galloping Hills Road, Kenilworth, NJ, USA
| | - Alexander Munk
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe P Ekberg
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maja S Engelstoft
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer L Egerod
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Siv A Hjorth
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Margaret Wu
- Merck Research Laboratories, 2015 Galloping Hills Road, Kenilworth, NJ, USA
| | - Yue Feng
- Merck Research Laboratories, 2015 Galloping Hills Road, Kenilworth, NJ, USA
| | - Yun-Ping Zhou
- Merck Research Laboratories, 2015 Galloping Hills Road, Kenilworth, NJ, USA
| | - Jacek Mokrosinski
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Thams
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Frank Reimann
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Gribble
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Section of Translational Metabolic Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Howard
- Merck Research Laboratories, 2015 Galloping Hills Road, Kenilworth, NJ, USA
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Paruthiyil S, Hagiwara SI, Kundassery K, Bhargava A. Sexually dimorphic metabolic responses mediated by CRF 2 receptor during nutritional stress in mice. Biol Sex Differ 2018; 9:49. [PMID: 30400826 PMCID: PMC6218963 DOI: 10.1186/s13293-018-0208-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/21/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic stress is a major contributor in the development of metabolic syndrome and associated diseases, such as diabetes. High-fat diet (HFD) and sex are known modifiers of metabolic parameters. Peptide hormones corticotropin-releasing factor (CRF) and urocortins (UCN) mediate stress responses via activation and feedback to the hypothalamic-pituitary-adrenal (HPA) axis. UCN3 is a marker of pancreatic β-cell differentiation, and UCN2 is known to ameliorate glucose levels in mice rendered diabetic with HFD. CRF receptor 2 (CRF2) is the only known cognate receptor for UCN2/3. Here, we ascertained the role of CRF2 in glucose clearance, insulin sensitivity, and other parameters associated with metabolic syndrome in a mouse model of nutritional stress. METHODS Wild-type (WT) and Crhr2-/- (null) mice of both sexes were fed either normal chow diet or HFD. After 8 weeks, blood glucose levels in response to glucose and insulin challenge were determined. Change in body and fat mass, plasma insulin, and lipid profile were assessed. Histological evaluation of liver sections was performed. RESULTS Here, we show that genotype (Crhr2), sex, and diet were all independent variables in the regulation of blood glucose levels, body and fat mass gain/redistribution, and insulin resistance. Surprisingly, CRF2-deficient mice (Crhr2-/-) male mice showed similarly impaired glucose clearance on HFD and chow. HFD-fed female Crhr2-/- mice redistributed their fat depots that were distinct from wild-type females and male mice on either diet. Blood cholesterol and low-density lipoprotein (LDL) levels were elevated significantly in male Crhr2-/- mice; female Crhr2-/- mice were protected. Male, but not female Crhr2-/- mice developed peripheral insulin resistance. HFD, but not chow-fed wild-type male mice developed hepatic macrovesicular steatosis. In contrast, livers of Crhr2-/- male mice showed microvesicular steatosis on either diet, whereas livers of female mice on this 8-week HFD regimen did not develop steatosis. CONCLUSIONS CRF2 receptor dysregulation is a sexually dimorphic risk factor in development of pre-diabetic and metabolic symptoms.
Collapse
Affiliation(s)
- Sreenivasan Paruthiyil
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA
| | - Shin-Ichiro Hagiwara
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA
| | - Keshav Kundassery
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
42
|
Lai BK, Chae H, Gómez-Ruiz A, Cheng P, Gallo P, Antoine N, Beauloye C, Jonas JC, Seghers V, Seino S, Gilon P. Somatostatin Is Only Partly Required for the Glucagonostatic Effect of Glucose but Is Necessary for the Glucagonostatic Effect of K ATP Channel Blockers. Diabetes 2018; 67:2239-2253. [PMID: 30115649 DOI: 10.2337/db17-0880] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
The mechanisms of control of glucagon secretion are largely debated. In particular, the paracrine role of somatostatin (SST) is unclear. We studied its role in the control of glucagon secretion by glucose and KATP channel blockers, using perifused islets and the in situ perfused pancreas. The involvement of SST was evaluated by comparing glucagon release of control tissue or tissue without paracrine influence of SST (pertussis toxin-treated islets, or islets or pancreas from Sst-/- mice). We show that removal of the paracrine influence of SST suppresses the ability of KATP channel blockers or KATP channel ablation to inhibit glucagon release, suggesting that in control islets, the glucagonostatic effect of KATP channel blockers/ablation is fully mediated by SST. By contrast, the glucagonostatic effect of glucose in control islets is mainly independent of SST for low glucose concentrations (0-7 mmol/L) but starts to involve SST for high concentrations of the sugar (15-30 mmol/L). This demonstrates that the glucagonostatic effect of glucose only partially depends on SST. Real-time quantitative PCR and pharmacological experiments indicate that the glucagonostatic effect of SST is mediated by two types of SST receptors, SSTR2 and SSTR3. These results suggest that alterations of the paracrine influence of SST will affect glucagon release.
Collapse
Affiliation(s)
- Bao-Khanh Lai
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Gómez-Ruiz
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Panpan Cheng
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Paola Gallo
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Nancy Antoine
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Victor Seghers
- Department of Pediatric Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Oral formulation of DPP-4 inhibitor plus Quercetin improves metabolic homeostasis in type 1 diabetic rats. Sci Rep 2018; 8:15310. [PMID: 30333575 PMCID: PMC6192983 DOI: 10.1038/s41598-018-33727-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
This study aimed to investigate the potential of an oral formulation (QV formulation) containing Quercetin and a Dipeptidyl Peptidase-4 Inhibitor (DPP-4 inhibitor), Vildagliptin, in improving metabolic homeostasis in type 1 diabetes model. Female albino Fischer rats were divided into four groups: untreated control animals (C), untreated diabetic animals (D), diabetic animals treated with QV formulation (DQV), and diabetic animals treated with insulin (DI). Diabetes was induced by injection of alloxan (135 mg kg body mass)-1 and confirmed by glycemic test. After the 30-day treatment period, biochemical parameters were analyzed in the pancreas, liver, and serum. Histopathological changes in pancreatic tissue were examined by Hematoxyline & Eosin staining and the insulin content in the islet measured by immunohistochemistry with anti-insulin antibody. The glycogen content in the hepatocytes was quantified by Periodic Schiff Acid staining. The QV formulation reduced the glycemia, preserved the pancreatic architecture, increased insulin levels, furthermore ameliorated lipid profile and to promote higher survival rate of animals. Together, our data suggest that the QV formulation treatment was able to normalize metabolic homeostasis in type 1 diabetic rats.
Collapse
|
44
|
Frandsen CS, Dejgaard TF, Madsbad S, Holst JJ. Non-insulin pharmacological therapies for treating type 1 diabetes. Expert Opin Pharmacother 2018; 19:947-960. [PMID: 29991320 DOI: 10.1080/14656566.2018.1483339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite intensified insulin treatment, many persons with type 1 diabetes (T1D) do not achieve glycemic and metabolic targets. Consequently, non-insulin chemical therapies that improve glycemic control and metabolic parameters without increasing the risk of adverse events (including hypoglycemia) are of interest as adjunct therapies to insulin. AREAS COVERED In this review, the authors discuss the efficacy and safety of non-insulin therapies, including pramlintide, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 inhibitors (DPP-4), sodium-glucose cotransporter (SGLT1 and SGLT2) inhibitors, metformin, sulfonylureas, and thiazolidinediones as add-on therapies to insulin in T1D. EXPERT OPINION The current evidence shows that the efficacy of non-insulin therapies as add-on therapies to insulin is minimal or modest with an average HbA1c reduction of 0.2-0.5% (2-6 mmol/mol). Indeed, the current focus is on the development of SGLT inhibitors as adjuncts to insulin in type 1 diabetes. Studies of subgroups with obesity, residual beta-cell function (including newly diagnosed patients) and patients prone to hypoglycemia could be areas of future research.
Collapse
Affiliation(s)
| | - Thomas Fremming Dejgaard
- a Department of Endocrinology , Hvidovre Hospital, University of Copenhagen , Hvidovre , Denmark.,b Steno Diabetes Center Copenhagen , Gentofte , Denmark
| | - Sten Madsbad
- a Department of Endocrinology , Hvidovre Hospital, University of Copenhagen , Hvidovre , Denmark
| | - Jens Juul Holst
- c Department of Biomedical Sciences and NNF Center for Basic Metabolic Research , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
45
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
46
|
Pettus J, Reeds D, Cavaiola TS, Boeder S, Levin M, Tobin G, Cava E, Thai D, Shi J, Yan H, Bautista E, McMillan J, Unger R, Henry RR, Klein S. Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: A randomized controlled trial. Diabetes Obes Metab 2018; 20:1302-1305. [PMID: 29283470 PMCID: PMC6181222 DOI: 10.1111/dom.13202] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
The aim of the current study (Clinical trial reg. no. NCT02715193, clinicaltrials.gov) was to study the efficacy and safety of REMD-477, a glucagon receptor antagonist, in type 1 diabetes. This was a randomized controlled trial in which 21 patients with type 1 diabetes were enrolled. Glycaemic control and insulin use were evaluated in outpatient and inpatient settings, before and after a single 70-mg dose of REMD-477 (half-life 7-10 days) or placebo. Inpatient insulin use was 26% (95% CI, 47%, 4%) lower 1 day after dosing with REMD-477 than with placebo (P = .02). Continuous glucose monitoring during post-treatment days 6 to 12 showed that average daily glucose was 27 mg/dL lower (P < .001), percent time-in-target-range (70-180 mg/dL) was ~25% greater (~3.5 h/d) (P = .001), and percent time-in-hyperglycaemic-range (> 180 mg/dL) was ~40% lower (~4 h/d) (P = .001) in the REMD-477 group than in the placebo group, without a difference in percent time-in-hypoglycaemic-range (<70 mg/dL). No serious adverse events were reported. Glucagon receptor antagonism decreases insulin requirements and improves glycaemic control in patients with type 1 diabetes.
Collapse
MESH Headings
- Adult
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/adverse effects
- Antibodies, Blocking/therapeutic use
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Blood Glucose/analysis
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Double-Blind Method
- Drug Administration Schedule
- Drug Therapy, Combination
- Drugs, Investigational/adverse effects
- Drugs, Investigational/therapeutic use
- Female
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Injections, Subcutaneous
- Insulin/administration & dosage
- Insulin/therapeutic use
- Male
- Monitoring, Ambulatory
- Proof of Concept Study
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
Collapse
Affiliation(s)
- Jeremy Pettus
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Dominic Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | | | - Schafer Boeder
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Michelle Levin
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Gary Tobin
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Edda Cava
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA
- Beijing Cosci-REMD, Beijing, China
| | - Jim Shi
- REMD Biotherapeutics, Camarillo, CA
- Beijing Cosci-REMD, Beijing, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA
- Beijing Cosci-REMD, Beijing, China
| | | | | | - Roger Unger
- Touchstone Diabetes Center, University of Texas Southwestern, Dallas TX
| | - Robert R. Henry
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
47
|
Pancreatic alpha cells in diabetic rats express active GLP-1 receptor: Endosomal co-localization of GLP-1/GLP-1R complex functioning through intra-islet paracrine mechanism. Sci Rep 2018; 8:3725. [PMID: 29487355 PMCID: PMC5829082 DOI: 10.1038/s41598-018-21751-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion from pancreatic beta cells and suppresses glucagon secretion from alpha cells. It remains controversial, however, whether GLP-1 receptor (GLP-1R) is expressed in mature alpha cells. In this study, unlike previous studies using non-diabetic animals, we demonstrated using diabetic model rats and confocal laser scanning microscopy that the GLP-1/GLP-1R complex was located in the endosome of diabetic islets. In addition, we showed that GLP-1 and GLP-1R co-localized with various endosomal markers and adenylate cyclase in the alpha cells of diabetic rats. Diabetic rats had endosomal signaling pathway but normal rats had classical signaling pathway for activated GLP-1R. Furthermore, we performed pancreatic perfusion to assess the functional activity of GLP-1R when stimulated by exendin-4 (EX4). In a pancreas perfusion study, EX4 significantly stimulated glucagon secretion in diabetic rats but not normal rats. However, such glucagon secretion was immediately suppressed, probably due to concomitantly secreted insulin. The GLP-1/GLP-1R complex appears to function through an intra-islet paracrine mechanism in diabetic conditions which could explain, at least in part, the mechanism of paradoxical hyperglucagonaemia in type 2 diabetes.
Collapse
|
48
|
Abstract
Type 1 diabetes is characterized by selective loss of beta cells and insulin secretion, which significantly impact glucose homeostasis. However, this progressive disease is also associated with dysfunction of the alpha cell component of the islet, which can exacerbate hyperglycemia due to paradoxical hyperglucagonemia or lead to severe hypoglycemia as a result of failed counterregulation. In this review, the physiology of alpha cell secretion and the potential mechanisms underlying alpha cell dysfunction in type 1 diabetes will be explored. Because type 1 diabetes is a progressive disease, a synthesized timeline of aberrant alpha cell function will be presented as an attempt to delineate the natural history of type 1 diabetes with respect to the alpha cell.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO 63104, United States.
| |
Collapse
|
49
|
Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab 2017; 19 Suppl 1:42-53. [PMID: 28466587 DOI: 10.1111/dom.12993] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic β- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the β-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in β- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Kawamori D. Exploring the molecular mechanisms underlying α- and β-cell dysfunction in diabetes. Diabetol Int 2017; 8:248-256. [PMID: 30603330 PMCID: PMC6224887 DOI: 10.1007/s13340-017-0327-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Abstract
Pancreatic islet dysfunction, including impaired insulin secretion in β cells and dysregulated glucagon secretion in α cells, is the chief pathology of diabetes. In β cells, oxidative stress, evoked by chronic hyperglycemia, was found to induce dysfunction of a critical transcription factor, PDX1, caused by its nucleocytoplasmic translocation via interactions with the insulin and JNK signaling pathways and another transcription factor, FOXO1. The significance of α-cell insulin signaling in the physiological and pathological regulation of α-cell biology was demonstrated in α-cell-specific insulin receptor knockout mice, which exhibited dysregulated glucagon secretion. Moreover, a high-glucose load directly induced excessive glucagon secretion in a glucagon-secreting cell line and isolated islets, together with impairment of insulin signaling. These findings indicate that disordered insulin signaling is central to the pathophysiology of islet dysfunction in both α and β cells. On the other hand, certain beneficial effects of GLP-1 on dysfunctional α and β cells indicate that it has therapeutic potential for diabetes patients who exhibit insulin resistance in islets. These studies, involving basic medical research approaches, have-at least in part-clarified the molecular mechanisms underlying α- and β-cell dysfunction in diabetes, and offer important clues that should aid the development of future therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Dan Kawamori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|